WO2023157410A1 - Surface-smoothened metal member and method for manufacturing same - Google Patents

Surface-smoothened metal member and method for manufacturing same Download PDF

Info

Publication number
WO2023157410A1
WO2023157410A1 PCT/JP2022/043140 JP2022043140W WO2023157410A1 WO 2023157410 A1 WO2023157410 A1 WO 2023157410A1 JP 2022043140 W JP2022043140 W JP 2022043140W WO 2023157410 A1 WO2023157410 A1 WO 2023157410A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal member
smoothed
less
titanium
anodized film
Prior art date
Application number
PCT/JP2022/043140
Other languages
French (fr)
Japanese (ja)
Inventor
歩 新山
裕太 清水
耕一 中野
毅士 大嶋
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Publication of WO2023157410A1 publication Critical patent/WO2023157410A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon

Definitions

  • the present invention relates to a metal member made of titanium or a titanium alloy whose surface is required to be smoothed, and a method for manufacturing the same.
  • Titanium and titanium alloys are lightweight, have excellent corrosion resistance and high specific strength, and are used in various applications such as structural members for aircraft and bicycles, engine parts, optical members, electronic parts, and accessories. there is
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-223139
  • the electrolytic solution used is methanesulfonic acid
  • Electropolishing and/or electrochemical deburring comprising one or more alkanediphosphonic acids, which may optionally be substituted with hydroxy and/or amino groups
  • a method of is disclosed.
  • the electrolyte used is not flammable, especially not corrosive, is easy to handle, and in normal operation, electrolysis There is no high risk to those working in or around the polishing plant or high risk to the environment.
  • the electrolytes described herein are also said to not produce toxic gases or vapors.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-43850
  • (a) hydrogen peroxide 5 to 30 weight (b) fluoride 1 to 20 weight, (c) sulfuric acid, nitric acid and phosphoric acid 1 to 10% by weight of at least one kind of surfactant, and (d) 0.001 to 0.1% by weight of a fluorosurfactant, and [(a) hydrogen peroxide concentration]/[(b) fluorine of fluoride
  • a method for etching titanium or a titanium alloy characterized by treating with an aqueous solution having a concentration] of 1.5 to 3.0 by weight is disclosed.
  • the surface scale of titanium or a titanium alloy is removed by etching with an aqueous solution to which hydrogen peroxide, fluoride, inorganic acid and a fluorosurfactant are added. and smoothing can be achieved at the same time.
  • Patent Document 1 and Patent Document 2 provides a good smooth surface only in a relatively narrow range, and the entire surface of a large metal member can be efficiently reduced in foreign matter and mirror-finished. It is difficult to plan. Further, when the metal member has a corner portion with a very small radius of curvature, or when the metal member has an opening portion or a through hole, it is extremely difficult to smooth the inner surfaces of these portions.
  • the present invention provides a surface of a large metal member made of titanium or a titanium alloy, in which the maximum height roughness (Rz) of the flat portion is 1.1 ⁇ m or less and the radius of curvature is To provide a surface-smoothed metal member which is smoothed to the extent that the maximum height roughness (Rz) of a portion where is 0.05 to 2.5 mm is less than 2 ⁇ m, and a simple and efficient manufacturing method thereof. It is an object.
  • the present invention can be applied to a metal member made of titanium or a titanium alloy having a large metal member, an opening, or a through-hole, and the maximum height roughness (Rz) of the inner wall of the through-hole or the opening.
  • Another object of the present invention is to provide a surface-smoothed metal member smoothed to a level of less than 2 ⁇ m, and a simple and efficient method for manufacturing the same.
  • the present inventors have made intensive research on a method for smoothing the surface of a metal member made of titanium or a titanium alloy, and as a result, have found that the anodized film formed under appropriate conditions can be removed. is extremely effective, and arrived at the present invention.
  • a metal member made of titanium or a titanium alloy The maximum length of the metal member is 50 to 1000 mm, The maximum height roughness (Rz) of the surface flat portion of the metal member is 1.1 ⁇ m or less, The maximum height roughness (Rz) of a portion having a radius of curvature of 0.05 to 2.5 mm on the surface of the metal member is less than 2 ⁇ m;
  • a surface-smoothed metal member characterized by:
  • the maximum length of the metal member is preferably 50-1000 mm, more preferably 100-500 mm. Although it is difficult to smoothen the entire surface of a large metal member by a conventionally known technique, the surface-smoothed metal member of the present invention can smooth the surface even if the metal member has a maximum length of 50 mm or more.
  • the maximum height roughness (Rz) of the flat portion is 1.1 ⁇ m or less, and the maximum height roughness (Rz) of the portion having a radius of curvature of 0.05 to 2.5 mm is less than 2 ⁇ m. Further, by setting the maximum length of the metal member to 1000 mm or less, the maximum height roughness (Rz) in the portion having a radius of curvature of 0.05 to 2.5 mm can be reliably kept to less than 2 ⁇ m.
  • the metal member has through holes and/or openings, and the maximum height roughness (Rz) of the inner walls of the through holes and/or openings is less than 2 ⁇ m. is preferred.
  • Rz maximum height roughness
  • the region where a good smooth surface is formed is limited, and in particular, it is extremely difficult to smooth the inner walls of through-holes and openings. All surfaces are sufficiently smoothed in the surface-smoothed metal member.
  • the present invention A metal member made of titanium or a titanium alloy,
  • the maximum length of the metal member is 50 to 1000 mm
  • the arithmetic mean roughness (Ra) of a portion having a radius of curvature of 0.05 to 2.5 mm on the surface of the metal member is less than 0.4 ⁇ m
  • a surface-smoothed metal member characterized by:
  • the maximum length of the metal member is preferably 50-1000 mm, more preferably 100-500 mm. Although it is difficult to smoothen the entire surface of a large metal member by a conventionally known method, in the surface-smoothed metal member of the present invention, even if the metal member has a maximum length of 50 mm or more, the member surface , the arithmetic mean roughness (Ra) of the portion having a radius of curvature of 0.05 to 2.5 mm is less than 0.4 ⁇ m. Further, by setting the maximum length of the metal member to 1000 mm or less, the arithmetic mean roughness (Ra) of the portion having a radius of curvature of 0.05 to 2.5 mm can be reliably set to less than 0.4 ⁇ m.
  • the surface-smoothed metal member of the present invention has through holes and/or openings in the metal member, and the arithmetic mean roughness (Ra) of the inner walls of the through holes and/or openings is 0.0. preferably less than 4 ⁇ m.
  • the region where a good smooth surface is formed is limited, and in particular, it is extremely difficult to smooth the inner walls of through-holes and openings. All surfaces are sufficiently smoothed in the surface-smoothed metal member.
  • the through holes and/or the openings have an equivalent circle diameter of 0.1 to 5 mm.
  • a more preferable equivalent circle diameter is 0.2 to 2 mm, and the most preferable equivalent circle diameter is 0.5 to 1 mm.
  • the equivalent circle diameter of the through holes and/or openings is 0.1 mm or more, variations in the arithmetic mean roughness (Ra) and the maximum height roughness (Rz) of the inner wall can be reduced.
  • the depth of the through holes and/or the openings is 1 to 50 mm.
  • a more preferred depth of the aperture is 1-10 mm, and the most preferred depth of the aperture is 2-8 mm.
  • the arithmetic average roughness (Ra) of the inner surface and the maximum height Roughness (Rz) can be sufficiently reduced.
  • the depth of the through holes and/or openings is 50 mm or less, variations in the arithmetic mean roughness (Ra) and maximum height roughness (Rz) of the inner wall can be reduced.
  • the metal member is a frame.
  • the metal member By using the metal member as the frame, it can be suitably used as, for example, a pellicle frame.
  • the present invention Anodizing a base material made of titanium or a titanium alloy to form an anodized film on the surface of the base material, smoothing the surface of the substrate by removing the anodized film; Also provided is a method for manufacturing a smoothed surface metal member characterized by:
  • the formation of the anodized film consumes the protrusions on the surface of the substrate (metal member surface), thereby smoothing the substrate surface (metal member surface) and detaching the anodized film.
  • a smooth surface can be obtained by
  • foreign matter attached to the substrate surface is removed by detachment of the anodized film, so a clean surface can be obtained.
  • the anodized film can also be formed on a large-sized base material, and can smoothen the surface of a large-sized metal member.
  • the thickness of the anodized film is 2 to 10 ⁇ m. More preferably, by setting the thickness of the anodized film to 4 to 6 ⁇ m, in addition to efficiently consuming the convex portions on the substrate surface, the anodized film can be formed naturally without applying a special process. can be detached.
  • the applied voltage in the anodizing treatment is 20 to 100V.
  • the anodizing treatment conditions are not particularly limited as long as they do not impair the effects of the present invention, and various conventionally known treatment conditions can be used.
  • the anodized film can be naturally detached without applying a special process.
  • the surface of the base material has an arithmetic average roughness (Ra) of less than 0.4 ⁇ m and/or a maximum height roughness (Rz) of less than 2 ⁇ m. It is preferable to repeat the formation and detachment of the anodized film until it is obtained.
  • the arithmetic average roughness (Ra) of less than 0.4 ⁇ m and / or the maximum height of less than 2 ⁇ m on the substrate surface Roughness (Rz) can be reliably obtained.
  • the surface of a large metal member made of titanium or a titanium alloy has a flat portion with a maximum height roughness (Rz) of 1.1 ⁇ m or less and a radius of curvature of 0.05 to 2.5 mm. It is possible to provide a surface-smoothed metal member that is smoothed to such an extent that the maximum height roughness (Rz) of the portion is less than 2 ⁇ m, and a simple and efficient manufacturing method thereof. Further, according to the present invention, even in a metal member made of titanium or a titanium alloy having a large metal member, an opening, or a through hole, the maximum height roughness (Rz ) is also smoothed to less than 2 ⁇ m, and a simple and efficient manufacturing method thereof can be provided.
  • FIG. 1 is a schematic diagram of a pellicle frame, which is one aspect of the surface-smoothed metal member of the present invention
  • FIG. FIG. 2 is a cross-sectional view taken along the line B-B' of FIG. 1
  • 1 is a schematic diagram of a surface smoothing process in the present invention
  • FIG. FIG. 2 shows SEM photographs of the surface of the pellicle frame base material before anodizing treatment, the surface of the anodized film, and the surface of the pellicle frame base material from which the anodized film has been removed.
  • 4 is a SEM photograph of a cross section of a detached anodized film and a base material for a pellicle frame.
  • 4 shows SEM photographs of the surface of the pellicle frame base material from which the anodized film was detached, the surface of the anodized film, and the cross section of the anodized film when anodizing treatment was performed at each voltage.
  • 4A and 4B are SEM photographs of a side surface of a through-hole before anodizing treatment and after detachment of an anodized film; It is a schematic diagram which shows the measurement line of maximum height roughness (Rz) and arithmetic mean roughness (Ra). It is a microscope observation image of the surface of the pure titanium square bar before and after the anodizing treatment. It is a microscope observation image of the inner surface of the through-hole before and after the anodizing treatment.
  • 4A and 4B are SEM photographs of the inner surface of a through-hole before and after anodizing treatment;
  • a pellicle frame will be taken up as a representative example of the surface-smoothed metal member, and representative embodiments of the surface-smoothed metal member of the present invention and a method for manufacturing the same will be described in detail with reference to the drawings. It is not limited only to these. Also, some or all of the constituent elements in the embodiments can be combined as appropriate. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Also, since the drawings are for the purpose of conceptually explaining the present invention, the dimensions and ratios of the depicted components may differ from the actual ones.
  • FIG. 1 shows a schematic diagram of a pellicle frame, which is one embodiment of the surface-smoothing metal member of the present invention.
  • the pellicle frame 1 is made of titanium or titanium alloy and all surfaces are smoothed.
  • the maximum length of the pellicle frame 1 is 50-1000mm.
  • the maximum length of the pellicle frame 1 is the length of the diagonal indicated by A in FIG.
  • the maximum length is preferably 100-500 mm, more preferably 150-300 mm.
  • the maximum height roughness (Rz) is less than 2 ⁇ m at the portion where the height (Rz) is 1.1 ⁇ m or less and the radius of curvature is 0.05 to 2.5 mm. Further, by setting the maximum length of the pellicle frame 1 to 1000 mm or less, the maximum height roughness (Rz) in the portion having a radius of curvature of 0.05 to 2.5 mm can be reliably set to less than 2 ⁇ m.
  • the arithmetic mean roughness (Ra) of the portion having a radius of curvature of 0.05 to 2.5 mm is less than 0.4 ⁇ m.
  • the arithmetic mean roughness (Ra) of the portion having a radius of curvature of 0.05 to 2.5 mm can be reliably set to less than 0.4 ⁇ m.
  • the pellicle frame 1 has through holes and/or apertures, and the maximum height roughness (Rz) of the inner walls of the through holes and/or apertures is less than 2 ⁇ m, and the arithmetic mean roughness (Ra) is 0. It is preferably less than 0.4 ⁇ m.
  • FIG. 1 shows a case where a through hole 2 exists, and FIG. 2 shows a cross-sectional view taken along line B-B' of FIG.
  • the inner surface of the through hole 2 indicated by the dotted line is also sufficiently smoothed, with a maximum height roughness (Rz) of less than 2 ⁇ m and an arithmetic mean roughness (Ra) of less than 0.4 ⁇ m. .
  • the equivalent circle diameter (R in FIG. 2) of the opening portion of the through hole 2 is preferably 0.1 to 5 mm.
  • a more preferable equivalent circle diameter is 0.2 to 2 mm, and the most preferable equivalent circle diameter is 0.5 to 1 mm.
  • the maximum height roughness (Rz) and the arithmetic mean roughness (Ra ) can be sufficiently reduced.
  • variations in the maximum height roughness (Rz) and the arithmetic mean roughness (Ra) of the inner wall can be reduced.
  • the depth of the through hole 2 (D in FIG. 2) is preferably 1 to 50 mm.
  • a more preferable depth of the through hole 2 is 1 to 10 mm, and the most preferable depth of the through hole 2 is 2 to 8 mm.
  • the maximum height roughness (Rz) and the arithmetic mean roughness (Ra) of the inner surface are sufficiently reduced even when deep through holes with a depth of 1 mm or more are formed. can be done.
  • the depth of the through-hole 2 is 50 mm or less, variations in the maximum height roughness (Rz) and the arithmetic mean roughness (Ra) of the inner wall can be reduced.
  • the shape of the pellicle frame 1 is not particularly limited as long as it does not impair the effects of the present invention, and can be made into various conventionally known shapes according to the shape of the original exposure plate. It has a ring shape, a rectangular shape, or a square shape in plan view, and has a size and shape that cover the circuit pattern portion provided on the exposure original plate.
  • the height (thickness) of the pellicle frame 1 is preferably 0.5-10 mm, more preferably 1-7 mm, most preferably 1.0-3.0 mm.
  • the cross-sectional shape of the pellicle frame 1 is not particularly limited as long as it does not impair the effects of the present invention, and can be of various conventionally known shapes, but is preferably a quadrilateral with parallel upper and lower sides.
  • the upper side of the pellicle frame 1 needs a width for stretching the pellicle film, and the lower side needs a width for providing an adhesive layer for adhesion to the exposure original plate. For this reason, the width of the upper and lower sides of the pellicle frame 1 is preferably about 1 to 3 mm.
  • the pellicle frame 1 is made of titanium or a titanium alloy, it has a higher strength and Young's modulus than a pellicle frame made of an aluminum alloy that has been commonly used.
  • titanium and titanium alloys have a specific gravity of about 4.5, which is relatively light, and an increase in the weight of the pellicle frame 1 can be suppressed.
  • the pellicle frame 1 is made of titanium or a titanium alloy, it has a lower coefficient of linear expansion than aluminum and effectively suppresses distortion during temperature rise.
  • titanium or a titanium alloy is a metal material, and has superior toughness compared to ceramics and cemented carbide, so that it is easy to handle. Furthermore, since it has good workability, it is possible to reduce the manufacturing cost and to impart high dimensional accuracy to the pellicle frame 1 .
  • the linear expansion coefficient of the optical member is preferably 6 ⁇ 10 ⁇ 6 to 11 ⁇ 10 ⁇ 6 /K.
  • the coefficient of thermal expansion of the optical member becomes close to that of the material made of ceramic, silicon, or the like.
  • the optical member may be a lens holder and the member made of ceramic, silicon, or the like may be a lens of a camera or the like.
  • the coefficient of linear expansion represents a value within a temperature range of 0 to 100.degree. These linear expansion coefficients can be achieved, for example, by making the optical member from titanium or a titanium alloy.
  • Titanium alloys include Ti-6Al-4V alloy, Ti-6Al-6V-2Sn alloy, Ti-6Al-2Sn-4Zr-6Mo alloy, Ti-10V-2Fe-3Al alloy, Ti-7Al-4Mo alloy, Ti- 5Al-2.5Sn alloy, Ti-6Al-5Zr-0.5Mo-0.2Si alloy, Ti-5.5Al-3.5Sn-3Zr-0.3Mo-1Nb-0.3Si alloy, Ti-8Al-1Mo -1V alloy, Ti-6Al-2Sn-4Zr-2Mo alloy, Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy, Ti-11.5Mo-6Zr-4.5Sn alloy, Ti-15V-3Cr-3Al-3Sn alloy, Ti-15Mo-5Zr-3Al alloy, Ti-15Mo-5Zr alloy, or Ti-13V-11C
  • the pellicle frame 1 was exemplified as the surface-smoothing metal member, but the surface-smoothing metal member is not limited to this.
  • various optical members such as pellicle frames, lens holders, barrels, shades and reflectors can be used.
  • Figure 3 shows a schematic diagram of the surface smoothing process.
  • the formation of the anodized film consumes the projections on the surface of the frame, thereby smoothing the surface, and the detachment of the anodized film makes it possible to obtain a smoothed surface.
  • foreign matter attached to the surface of the frame is removed by detachment of the anodized film, so a clean surface can be obtained.
  • a large pellicle frame 1 with a maximum length of 50 to 1000 mm can be manufactured. All areas of the surface can be smoothed.
  • the thickness of the anodized film formed on the surface of the frame is preferably 2 to 10 ⁇ m. More preferably, by setting the thickness of the anodized film to 4 to 6 ⁇ m, in addition to efficiently consuming the convex portions on the surface of the frame, the anodized film can be formed naturally without applying a special process. can be detached. If the anodized film remains, it may be removed by applying ultrasonic vibration, reverse electrolytic treatment, or the like.
  • the applied voltage in the anodizing treatment is preferably 20 to 100V.
  • the anodizing treatment conditions are not particularly limited as long as they do not impair the effects of the present invention, and various conventionally known treatment conditions can be used.
  • the anodized film can be naturally detached without applying a special process.
  • the maximum height roughness (Rz) of the surface of the frame is 2 ⁇ m or more in the formation and removal of the anodized film once, the anodized film is formed and removed until the value becomes less than 2 ⁇ m. It is preferable to repeat the separation. Since the surface of the frame is smoothed by the formation and removal of the anodized film, by repeating this process, the maximum height roughness (Rz) on the base material surface can be reliably reduced to less than 2 ⁇ m.
  • the arithmetic mean roughness (Ra) of the surface of the frame is 0.4 ⁇ m or more in the formation and detachment of the anodized film once, the anodized film is removed until the value becomes less than 0.4 ⁇ m. Repeated formation and elimination is preferred. Since the surface of the frame is smoothed by the formation and removal of the anodized film, the arithmetic average roughness (Ra) of the base material surface can be reliably reduced to less than 0.4 ⁇ m by repeating this process.
  • Example 1 A frame made of pure titanium and having a long side of 160 mm and a short side of 130 mm was cut out to prepare a base material for a pellicle frame.
  • the thickness and width of the pellicle frame substrate are the same, 1 mm and 4 mm, respectively.
  • An anodizing treatment was applied to the obtained pellicle frame base material to form an anodized film over the entire surface.
  • the anodizing conditions were an anodizing bath containing an aqueous solution of 5 g/L of ammonium fluoride and 134 g/L of ammonium sulfate, a bath temperature of 55° C., and a voltage of 30 to 80 V for 15 minutes.
  • FIG. 4 shows scanning electron micrographs (SEM photographs) of the surface of the pellicle frame base material before anodization treatment, the surface of the anodized film, and the surface of the pellicle frame base material from which the anodized film was detached when the voltage was set to 45 V.
  • FIG. 5 shows an SEM photograph of a cross section of the pellicle frame base material in the detached anodized film and the detached region. Here, most of the anodized film spontaneously detached during the anodizing treatment.
  • the surface of the base material for the pellicle frame has been remarkably smoothed by the detachment of the anodized film, and a good smooth surface with no foreign matter is obtained. Also, from the cross-sectional photograph, it can be confirmed that the unevenness of the base material surface is less than 0.4 ⁇ m. Here, the smooth surface was formed over the entire surface of the base material for the pellicle frame.
  • FIG. 6 shows SEM photographs of the surface of the pellicle frame substrate from which the anodized film was detached, the surface of the anodized film, and the cross section of the anodized film for the pellicle frame substrate anodized at each voltage.
  • the film thickness and detachment state of the anodized film were evaluated, and the obtained results are also shown. Incidentally, when the voltage was 30 V, no natural detachment of the anodized film was observed.
  • Example 2 Anodization was performed for 10 minutes at a voltage of 45 V in the same manner as in Example 1, except that cylindrical through-holes with a diameter of 800 ⁇ m were provided in the thickness direction of the pellicle frame base material.
  • Fig. 7 shows SEM photographs of the side surface of the through-hole before anodizing treatment and after the anodized film was removed. It can be confirmed that the surface from which the anodized film has been removed is remarkably smoothed compared to before the anodizing treatment.
  • Example 3 A 40 mm x 4 mm x 1 mm square material made of pure titanium was cut out, and a through hole with a diameter of 0.8 mm was provided in the 40 mm x 1 mm surface to the back surface. Next, after subjecting the surface of the rectangular bar to physical polishing for deburring, it was subjected to chemical polishing using a chemical polishing solution (TCP-08) at 30° C. for 10 seconds. Next, in the same manner as in Example 1, the voltage was set to 45 V and anodizing treatment was performed for 10 minutes.
  • TCP-08 chemical polishing solution
  • FIG. 8 schematically shows measurement lines on a 40 mm ⁇ 1 mm surface.
  • the length of the measurement line in the vertical direction is 322 ⁇ m and the length of the measurement line in the horizontal direction is 244 ⁇ m.
  • the measurement line on the inner surface of the through hole was 322 ⁇ m in the axial direction. Measurements were performed in each of 3 areas in 9 fields of view, and the average of 27 measurements in total was obtained. Table 1 shows the results obtained.
  • the maximum height roughness (Rz) and the arithmetic mean roughness (Ra) are reduced due to the detachment of the anodized film. It can be seen that the maximum height roughness (Rz) of the surface flat portion is all 1.1 ⁇ m or less, and the maximum height roughness (Rz) of the inner surface of the through hole is less than 2 ⁇ m. Moreover, after the anodizing treatment, the arithmetic mean roughness (Ra) is less than 0.4 ⁇ m in all the measurement areas.
  • the surface condition before anodizing treatment (after chemical polishing treatment) and after anodizing treatment (after anodized film was removed) was observed with a scanning electron microscope (SEM) and a microscope.
  • SEM scanning electron microscope
  • a microscope observation image of a 40 mm ⁇ 1 mm surface is shown in FIG. 9, a microscope observation image of the inner surface of the through hole is shown in FIG. 10, and an SEM observation image of the through hole inner surface is shown in FIG. It can be seen from all observation images that the surface is smoothed by detachment of the anodized film.

Abstract

Provided are a surface-smoothened metal member and a method for easily and effectively manufacturing the same, said surface-smoothened metal member having been smoothened to such an extent that in a surface of a large metal member formed from titanium or a titanium alloy, a flat surface portion has a maximum height roughness (Rz) of 1.1 µm or less and a portion with a curvature radius of 0.05 to 2.5 mm has a maximum height roughness (Rz) of less than 2 µm. This method for manufacturing the surface-smoothened metal member is characterized in that an anodic oxide film is formed on a surface of a substrate formed from titanium or a titanium alloy by applying an anodization treatment to the substrate, and the surface of the substrate is smoothened by removing the anodic oxide film.

Description

表面平滑化金属部材及びその製造方法Surface-smoothed metal member and manufacturing method thereof
 本発明は、表面の平滑化が求められるチタン又はチタン合金製の金属部材及びその製造方法に関する。 The present invention relates to a metal member made of titanium or a titanium alloy whose surface is required to be smoothed, and a method for manufacturing the same.
 チタン及びチタン合金は軽量であることに加えて優れた耐食性と高い比強度を有し、航空機や自転車の構造部材、エンジン部品、光学部材、電子部品及び装飾品等、種々の用途で活用されている。 Titanium and titanium alloys are lightweight, have excellent corrosion resistance and high specific strength, and are used in various applications such as structural members for aircraft and bicycles, engine parts, optical members, electronic parts, and accessories. there is
 ここで、特に光学部材や装飾品等においては部材表面の状態が重要視されることが多く、チタン又はチタン合金からなる部材の表面を平滑化する方法が検討されてきた。 Here, especially in the case of optical members, ornaments, etc., the condition of the member surface is often regarded as important, and methods for smoothing the surface of members made of titanium or titanium alloys have been studied.
 例えば、特許文献1(特開2008-223139号公報)においては、チタン又はチタン含有合金の表面を電解研磨および/又は電気化学的にデバリングする方法において、使用される電解液がメタンスルホン酸と、一種以上のアルカンジホスホン酸を含み、該一種以上のアルカンジホスホン酸は選択的にヒドロキシ基および/又はアミノ基で置換されていてもよいことを特徴とする電解研磨および/又は電気化学的デバリングの方法、が開示されている。 For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-223139), in a method for electropolishing and/or electrochemically deburring the surface of titanium or a titanium-containing alloy, the electrolytic solution used is methanesulfonic acid, Electropolishing and/or electrochemical deburring comprising one or more alkanediphosphonic acids, which may optionally be substituted with hydroxy and/or amino groups A method of is disclosed.
 上記特許文献1に記載の電解研磨および/又は電気化学的デバリングの方法においては、使用される電解液が可燃性ではなく、とりわけ腐食性でもなく、扱いやすいものであり、通常の操作において、電解研磨工場で作業する人又は工場の周辺で働いている人への高いリスク、又は環境への高いリスクが伴うこともない。特に、ここに記載される電解液は、有毒なガス又は蒸気を発生することもない、とされている。 In the method of electropolishing and/or electrochemical deburring described in Patent Document 1, the electrolyte used is not flammable, especially not corrosive, is easy to handle, and in normal operation, electrolysis There is no high risk to those working in or around the polishing plant or high risk to the environment. In particular, the electrolytes described herein are also said to not produce toxic gases or vapors.
 また、特許文献2(特開2004-43850号公報)においては、(a)過酸化水素5~30重量、(b)フッ化物1~20重量、(c)硫酸、硝酸及び燐酸から選ばれた少なくとも一種を1~10重量%、並びに(d)フッ素系界面活性剤0.001~0.1重量%を含有し、且つ[(a)過酸化水素濃度]/[(b)フッ化物のフッ素濃度]が重量比で1.5~3.0である水溶液で処理することを特徴とするチタンまたはチタン合金のエッチング方法、が開示されている。 In addition, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-43850), (a) hydrogen peroxide 5 to 30 weight, (b) fluoride 1 to 20 weight, (c) sulfuric acid, nitric acid and phosphoric acid 1 to 10% by weight of at least one kind of surfactant, and (d) 0.001 to 0.1% by weight of a fluorosurfactant, and [(a) hydrogen peroxide concentration]/[(b) fluorine of fluoride A method for etching titanium or a titanium alloy characterized by treating with an aqueous solution having a concentration] of 1.5 to 3.0 by weight is disclosed.
 上記特許文献2に記載のチタンまたはチタン合金のエッチング方法においては、過酸化水素、フッ化物、無機酸およびフッ素系界面活性剤を添加した水溶液でエッチングすることで、チタンまたはチタン合金の表面スケール除去と平滑化を同時に達成することができる、とされている。 In the method for etching titanium or a titanium alloy described in Patent Document 2, the surface scale of titanium or a titanium alloy is removed by etching with an aqueous solution to which hydrogen peroxide, fluoride, inorganic acid and a fluorosurfactant are added. and smoothing can be achieved at the same time.
特開2008-223139号公報JP 2008-223139 A 特開2004-43850号公報JP-A-2004-43850
 しかしながら、上記特許文献1に記載の電解研磨および/又は電気化学的デバリングの方法においては、良好な作業環境等が得られるものの、「より優れてはいなくても、少なくとも従来技術に記載された方法と同程度の、表面の平滑化又はデバリングを実現することができる。」とされているように、従来技術と比較して平滑性が向上するものではない。 However, in the method of electropolishing and/or electrochemical deburring described in Patent Document 1, although a good working environment and the like can be obtained, "at least the method described in the prior art, if not superior" It is possible to realize the same level of smoothing or deburring of the surface as with the conventional technique.
 また、上記特許文献2に記載のチタンまたはチタン合金のエッチング方法においても、表面スケール除去と平滑化を同時に達成することができるものの、平滑化によって得られる表面粗さは0.4μm程度であり、より高い平滑性が要求される場合には対応することができない。 Also, in the etching method for titanium or titanium alloy described in Patent Document 2, surface scale removal and smoothing can be achieved at the same time, but the surface roughness obtained by smoothing is about 0.4 μm. It cannot correspond to the case where higher smoothness is required.
 更に、上記特許文献1及び特許文献2に記載の方法で良好な平滑面が得られるのは比較的狭い範囲に限られ、大型金属部材の表面の全域について効率的に異物の低減や鏡面化を図ることは困難である。また、金属部材に極めて小さな曲率半径を有するコーナー部が存在する場合や、金属部材に開孔部や貫通孔が存在する場合、これらの内面を平滑化することは極めて困難である。 Furthermore, the method described in Patent Document 1 and Patent Document 2 provides a good smooth surface only in a relatively narrow range, and the entire surface of a large metal member can be efficiently reduced in foreign matter and mirror-finished. It is difficult to plan. Further, when the metal member has a corner portion with a very small radius of curvature, or when the metal member has an opening portion or a through hole, it is extremely difficult to smooth the inner surfaces of these portions.
 以上のような従来技術における問題点に鑑み、本発明は、チタン又はチタン合金製の大型の金属部材の表面において、平坦部の最大高さ粗さ(Rz)が1.1μm以下かつ、曲率半径が0.05~2.5mmである部分の最大高さ粗さ(Rz)が2μm未満となる程度にまで平滑化された表面平滑化金属部材及びその簡便かつ効率的な製造方法を提供することを目的としている。 In view of the problems in the prior art as described above, the present invention provides a surface of a large metal member made of titanium or a titanium alloy, in which the maximum height roughness (Rz) of the flat portion is 1.1 μm or less and the radius of curvature is To provide a surface-smoothed metal member which is smoothed to the extent that the maximum height roughness (Rz) of a portion where is 0.05 to 2.5 mm is less than 2 μm, and a simple and efficient manufacturing method thereof. It is an object.
 また、本発明は、大型の金属部材や開孔部や貫通孔を有するチタン又はチタン合金製の金属部材であっても、貫通孔や開孔部の内壁の最大高さ粗さ(Rz)も2μm未満となる程度にまで平滑化された表面平滑化金属部材及びその簡便かつ効率的な製造方法を提供することも目的としている。 In addition, the present invention can be applied to a metal member made of titanium or a titanium alloy having a large metal member, an opening, or a through-hole, and the maximum height roughness (Rz) of the inner wall of the through-hole or the opening. Another object of the present invention is to provide a surface-smoothed metal member smoothed to a level of less than 2 μm, and a simple and efficient method for manufacturing the same.
 本発明者らは、上記目的を達成すべく、チタン又はチタン合金製の金属部材の表面平滑化方法について鋭意研究を重ねた結果、適当な条件で形成させた陽極酸化皮膜を脱離させること等が極めて有効であることを見出し、本発明に到達した。 In order to achieve the above object, the present inventors have made intensive research on a method for smoothing the surface of a metal member made of titanium or a titanium alloy, and as a result, have found that the anodized film formed under appropriate conditions can be removed. is extremely effective, and arrived at the present invention.
 即ち、本発明は、
 チタン又はチタン合金からなる金属部材であって、
 前記金属部材の最大長さが50~1000mmであり、
 前記金属部材の表面平坦部の最大高さ粗さ(Rz)が1.1μm以下であり、
 前記金属部材の表面において曲率半径が0.05~2.5mmである部分の最大高さ粗さ(Rz)が2μm未満であること、
 を特徴とする表面平滑化金属部材、も提供する。
That is, the present invention
A metal member made of titanium or a titanium alloy,
The maximum length of the metal member is 50 to 1000 mm,
The maximum height roughness (Rz) of the surface flat portion of the metal member is 1.1 μm or less,
The maximum height roughness (Rz) of a portion having a radius of curvature of 0.05 to 2.5 mm on the surface of the metal member is less than 2 μm;
There is also provided a surface-smoothed metal member characterized by:
 金属部材の最大長さは50~1000mmとすることが好ましく、100~500mmとすることがより好ましい。大型金属部材の表面の全域を従来公知の手法で平滑化することは困難であるが、本発明の表面平滑化金属部材においては、最大長さが50mm以上となる金属部材であっても、表面平坦部の最大高さ粗さ(Rz)が1.1μm以下かつ、曲率半径が0.05~2.5mmである部分の最大高さ粗さ(Rz)が2μm未満となっている。また、金属部材の最大長さを1000mm以下とすることで、曲率半径が0.05~2.5mmである部分における最大高さ粗さ(Rz)も確実に2μm未満とすることができる。 The maximum length of the metal member is preferably 50-1000 mm, more preferably 100-500 mm. Although it is difficult to smoothen the entire surface of a large metal member by a conventionally known technique, the surface-smoothed metal member of the present invention can smooth the surface even if the metal member has a maximum length of 50 mm or more. The maximum height roughness (Rz) of the flat portion is 1.1 μm or less, and the maximum height roughness (Rz) of the portion having a radius of curvature of 0.05 to 2.5 mm is less than 2 μm. Further, by setting the maximum length of the metal member to 1000 mm or less, the maximum height roughness (Rz) in the portion having a radius of curvature of 0.05 to 2.5 mm can be reliably kept to less than 2 μm.
 本発明の表面平滑化金属部材は、前記金属部材に貫通孔及び/又は開孔部が存在し、前記貫通孔及び/又は前記開孔部の内壁の最大高さ粗さ(Rz)も2μm未満であること、が好ましい。従来の表面平滑化金属部材においては、良好な平滑面が形成されている領域は限られており、特に、貫通孔や開孔部の内壁については平滑化が極めて困難であるが、本発明の表面平滑化金属部材においては全ての表面が十分に平滑化されている。 In the surface-smoothed metal member of the present invention, the metal member has through holes and/or openings, and the maximum height roughness (Rz) of the inner walls of the through holes and/or openings is less than 2 μm. is preferred. In the conventional surface-smoothed metal member, the region where a good smooth surface is formed is limited, and in particular, it is extremely difficult to smooth the inner walls of through-holes and openings. All surfaces are sufficiently smoothed in the surface-smoothed metal member.
 また、本発明は、
 チタン又はチタン合金からなる金属部材であり、
 前記金属部材の最大長さが50~1000mmであり、
 前記金属部材の表面において曲率半径が0.05~2.5mmである部分の算術平均粗さ(Ra)が0.4μm未満であること、
 を特徴とする表面平滑化金属部材、も提供する。
In addition, the present invention
A metal member made of titanium or a titanium alloy,
The maximum length of the metal member is 50 to 1000 mm,
The arithmetic mean roughness (Ra) of a portion having a radius of curvature of 0.05 to 2.5 mm on the surface of the metal member is less than 0.4 μm,
There is also provided a surface-smoothed metal member characterized by:
 金属部材の最大長さは50~1000mmとすることが好ましく、100~500mmとすることがより好ましい。大型金属部材の表面の全域を従来公知の手法で平滑化することは困難であるが、本発明の表面平滑化金属部材においては、最大長さが50mm以上となる金属部材であっても部材表面において曲率半径が0.05~2.5mmである部分の算術平均粗さ(Ra)が0.4μm未満となっている。また、金属部材の最大長さを1000mm以下とすることで、曲率半径が0.05~2.5mmである部分の算術平均粗さ(Ra)を確実に0.4μm未満とすることができる。 The maximum length of the metal member is preferably 50-1000 mm, more preferably 100-500 mm. Although it is difficult to smoothen the entire surface of a large metal member by a conventionally known method, in the surface-smoothed metal member of the present invention, even if the metal member has a maximum length of 50 mm or more, the member surface , the arithmetic mean roughness (Ra) of the portion having a radius of curvature of 0.05 to 2.5 mm is less than 0.4 μm. Further, by setting the maximum length of the metal member to 1000 mm or less, the arithmetic mean roughness (Ra) of the portion having a radius of curvature of 0.05 to 2.5 mm can be reliably set to less than 0.4 μm.
 本発明の表面平滑化金属部材は、前記金属部材に貫通孔及び/又は開孔部が存在し、前記貫通孔及び/又は前記開孔部の内壁の前記算術平均粗さ(Ra)も0.4μm未満であること、が好ましい。従来の表面平滑化金属部材においては、良好な平滑面が形成されている領域は限られており、特に、貫通孔や開孔部の内壁については平滑化が極めて困難であるが、本発明の表面平滑化金属部材においては全ての表面が十分に平滑化されている。 The surface-smoothed metal member of the present invention has through holes and/or openings in the metal member, and the arithmetic mean roughness (Ra) of the inner walls of the through holes and/or openings is 0.0. preferably less than 4 μm. In the conventional surface-smoothed metal member, the region where a good smooth surface is formed is limited, and in particular, it is extremely difficult to smooth the inner walls of through-holes and openings. All surfaces are sufficiently smoothed in the surface-smoothed metal member.
 本発明の表面平滑化金属部材は、前記貫通孔及び/又は前記開孔部の円相当径が0.1~5mmであること、が好ましい。より好ましい円相当径は0.2~2mmであり、最も好ましい円相当径は0.5~1mmである。本発明の表面平滑化金属部材においては、開孔部の円相当径が5mm以下の微細な貫通孔及び/又は開孔部が形成されている場合であっても、内面の算術平均粗さ(Ra)や最大高さ粗さ(Rz)を十分に低減することができる。また、貫通孔及び/又は開孔部の円相当径が0.1mm以上であれば、内壁の算術平均粗さ(Ra)や最大高さ粗さ(Rz)のばらつきを低減することができる。 In the surface-smoothed metal member of the present invention, it is preferable that the through holes and/or the openings have an equivalent circle diameter of 0.1 to 5 mm. A more preferable equivalent circle diameter is 0.2 to 2 mm, and the most preferable equivalent circle diameter is 0.5 to 1 mm. In the surface-smoothed metal member of the present invention, even if fine through-holes and/or openings having an equivalent circle diameter of 5 mm or less are formed, the arithmetic mean roughness of the inner surface ( Ra) and maximum height roughness (Rz) can be sufficiently reduced. Further, if the equivalent circle diameter of the through holes and/or openings is 0.1 mm or more, variations in the arithmetic mean roughness (Ra) and the maximum height roughness (Rz) of the inner wall can be reduced.
 また、本発明の表面平滑化金属部材は、前記貫通孔及び/又は前記開孔部の深さが1~50mmであること、が好ましい。より好ましい開孔部の深さは1~10mmであり、最も好ましい開孔部の深さは2~8mmである。本発明の表面平滑化金属部材においては、深さが1mm以上の深い貫通孔及び/又は開孔部が形成されている場合であっても、内面の算術平均粗さ(Ra)や最大高さ粗さ(Rz)を十分に低減することができる。また、貫通孔及び/又は開孔部の深さが50mm以下であれば、内壁の算術平均粗さ(Ra)や最大高さ粗さ(Rz)のばらつきを低減することができる。 Further, in the surface-smoothed metal member of the present invention, it is preferable that the depth of the through holes and/or the openings is 1 to 50 mm. A more preferred depth of the aperture is 1-10 mm, and the most preferred depth of the aperture is 2-8 mm. In the surface-smoothed metal member of the present invention, even if deep through-holes and/or openings with a depth of 1 mm or more are formed, the arithmetic average roughness (Ra) of the inner surface and the maximum height Roughness (Rz) can be sufficiently reduced. Further, if the depth of the through holes and/or openings is 50 mm or less, variations in the arithmetic mean roughness (Ra) and maximum height roughness (Rz) of the inner wall can be reduced.
 また、本発明の表面平滑化金属部材においては、前記金属部材が枠体であること、が好ましい。金属部材を枠体とすることで、例えば、ペリクルフレームとして好適に使用することができる。 Further, in the surface-smoothed metal member of the present invention, it is preferable that the metal member is a frame. By using the metal member as the frame, it can be suitably used as, for example, a pellicle frame.
 また、本発明は、
 チタン又はチタン合金からなる基材に陽極酸化処理を施し、前記基材の表面に陽極酸化皮膜を形成させ、
 前記陽極酸化皮膜を脱離させることで前記基材の表面を平滑化すること、
 を特徴とする表面平滑化金属部材の製造方法、も提供する。
In addition, the present invention
Anodizing a base material made of titanium or a titanium alloy to form an anodized film on the surface of the base material,
smoothing the surface of the substrate by removing the anodized film;
Also provided is a method for manufacturing a smoothed surface metal member characterized by:
 本発明の表面平滑化金属部材の製造方法においては、陽極酸化皮膜の形成によって基材表面(金属部材表面)の凸部が消費されることで平滑化が進行し、当該陽極酸化皮膜の脱離によって平滑化した表面を得ることができる。加えて、基材表面に付着した異物は陽極酸化皮膜の脱離によって除去されるため、清浄な表面を得ることができる。更に、陽極酸化皮膜は大型の基材にも形成することができ、大型の金属部材の表面を平滑化することができる。 In the method for producing a surface-smoothed metal member of the present invention, the formation of the anodized film consumes the protrusions on the surface of the substrate (metal member surface), thereby smoothing the substrate surface (metal member surface) and detaching the anodized film. A smooth surface can be obtained by In addition, foreign matter attached to the substrate surface is removed by detachment of the anodized film, so a clean surface can be obtained. Furthermore, the anodized film can also be formed on a large-sized base material, and can smoothen the surface of a large-sized metal member.
 また、本発明の表面平滑化金属部材の製造方法においては、前記陽極酸化皮膜の膜厚を2~10μmとすること、が好ましい。より好ましくは陽極酸化皮膜の膜厚を4~6μmとすることで、基材表面の凸部が効率的に消費されることに加えて、特別な工程を施すことなく、陽極酸化皮膜を自然に脱離させることができる。 Further, in the method for producing a surface-smoothed metal member of the present invention, it is preferable that the thickness of the anodized film is 2 to 10 μm. More preferably, by setting the thickness of the anodized film to 4 to 6 μm, in addition to efficiently consuming the convex portions on the substrate surface, the anodized film can be formed naturally without applying a special process. can be detached.
 また、本発明の表面平滑化金属部材の製造法においては、前記陽極酸化処理における印加電圧を20~100Vとすること、が好ましい。陽極酸化処理条件は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の処理条件とすることができるが、より好ましくは印加電圧を40~50Vとすることで、基材表面の凸部が効率的に消費されることに加えて、特別な工程を施すことなく、陽極酸化皮膜を自然に脱離させることができる。 Further, in the method for producing a surface-smoothed metal member of the present invention, it is preferable that the applied voltage in the anodizing treatment is 20 to 100V. The anodizing treatment conditions are not particularly limited as long as they do not impair the effects of the present invention, and various conventionally known treatment conditions can be used. In addition to the efficient consumption of the projections, the anodized film can be naturally detached without applying a special process.
 更に、本発明の表面平滑化金属部材の製造方法においては、前記基材の前記表面において0.4μm未満の算術平均粗さ(Ra)及び/又は2μm未満の最大高さ粗さ(Rz)が得られるまで、前記陽極酸化皮膜の形成及び脱離を繰り返すこと、が好ましい。 Furthermore, in the method for producing a surface-smoothed metal member of the present invention, the surface of the base material has an arithmetic average roughness (Ra) of less than 0.4 μm and/or a maximum height roughness (Rz) of less than 2 μm. It is preferable to repeat the formation and detachment of the anodized film until it is obtained.
 陽極酸化皮膜の形成及び離脱によって基材表面の平滑化が進行することから、これを繰り返すことによって、基材表面における0.4μm未満の算術平均粗さ(Ra)及び/又は2μm未満の最大高さ粗さ(Rz)を確実に得ることができる。 Since the formation and detachment of the anodized film progresses the smoothing of the substrate surface, by repeating this, the arithmetic average roughness (Ra) of less than 0.4 μm and / or the maximum height of less than 2 μm on the substrate surface Roughness (Rz) can be reliably obtained.
 本発明によれば、チタン又はチタン合金製の大型の金属部材の表面において、平坦部の最大高さ粗さ(Rz)が1.1μm以下かつ、曲率半径が0.05~2.5mmである部分の最大高さ粗さ(Rz)が2μm未満となる程度にまで平滑化された表面平滑化金属部材及びその簡便かつ効率的な製造方法を提供することができる。また、本発明によれば、大型の金属部材や開孔部や貫通孔を有するチタン又はチタン合金製の金属部材であっても、貫通孔や開孔部の内壁の最大高さ粗さ(Rz)も2μm未満となる程度にまで平滑化された表面平滑化金属部材及びその簡便かつ効率的な製造方法を提供することができる。 According to the present invention, the surface of a large metal member made of titanium or a titanium alloy has a flat portion with a maximum height roughness (Rz) of 1.1 μm or less and a radius of curvature of 0.05 to 2.5 mm. It is possible to provide a surface-smoothed metal member that is smoothed to such an extent that the maximum height roughness (Rz) of the portion is less than 2 μm, and a simple and efficient manufacturing method thereof. Further, according to the present invention, even in a metal member made of titanium or a titanium alloy having a large metal member, an opening, or a through hole, the maximum height roughness (Rz ) is also smoothed to less than 2 μm, and a simple and efficient manufacturing method thereof can be provided.
本発明の表面平滑化金属部材の一態様であるペリクルフレームの概略図である。1 is a schematic diagram of a pellicle frame, which is one aspect of the surface-smoothed metal member of the present invention; FIG. 図1のB-B’断面図である。FIG. 2 is a cross-sectional view taken along the line B-B' of FIG. 1; 本発明における表面平滑化プロセスの模式図である。1 is a schematic diagram of a surface smoothing process in the present invention; FIG. 陽極酸化処理前のペリクルフレーム用基材表面、陽極酸化皮膜表面及び陽極酸化皮膜が脱離したペリクルフレーム用基材表面のSEM写真である。FIG. 2 shows SEM photographs of the surface of the pellicle frame base material before anodizing treatment, the surface of the anodized film, and the surface of the pellicle frame base material from which the anodized film has been removed. 脱離した陽極酸化皮膜及びペリクルフレーム用基材の断面のSEM写真である。4 is a SEM photograph of a cross section of a detached anodized film and a base material for a pellicle frame. 各電圧で陽極酸化処理を施した場合の陽極酸化皮膜が脱離したペリクルフレーム用基材表面、陽極酸化皮膜表面及び陽極酸化皮膜断面のSEM写真である。FIG. 4 shows SEM photographs of the surface of the pellicle frame base material from which the anodized film was detached, the surface of the anodized film, and the cross section of the anodized film when anodizing treatment was performed at each voltage. 陽極酸化処理前及び陽極酸化皮膜脱離後における貫通孔側面のSEM写真である。4A and 4B are SEM photographs of a side surface of a through-hole before anodizing treatment and after detachment of an anodized film; 最大高さ粗さ(Rz)及び算術平均粗さ(Ra)の測定線を示す模式図である。It is a schematic diagram which shows the measurement line of maximum height roughness (Rz) and arithmetic mean roughness (Ra). 陽極酸化処理前後における純チタン角材表面のマイクロスコープ観察像である。It is a microscope observation image of the surface of the pure titanium square bar before and after the anodizing treatment. 陽極酸化処理前後における貫通孔内面のマイクロスコープ観察像である。It is a microscope observation image of the inner surface of the through-hole before and after the anodizing treatment. 陽極酸化処理前後における貫通孔内面のSEM写真である。4A and 4B are SEM photographs of the inner surface of a through-hole before and after anodizing treatment;
 以下、表面平滑化金属部材の代表例としてペリクルフレームを取り上げ、図面を参照しながら本発明の表面平滑化金属部材及びその製造方法についての代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。また、実施形態における構成要素は、一部又は全部を適宜組み合わせることができる。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, a pellicle frame will be taken up as a representative example of the surface-smoothed metal member, and representative embodiments of the surface-smoothed metal member of the present invention and a method for manufacturing the same will be described in detail with reference to the drawings. It is not limited only to these. Also, some or all of the constituent elements in the embodiments can be combined as appropriate. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Also, since the drawings are for the purpose of conceptually explaining the present invention, the dimensions and ratios of the depicted components may differ from the actual ones.
1.表面平滑化金属部材
 図1に本発明の表面平滑化金属部材の一態様であるペリクルフレームの概略図を示す。ペリクルフレーム1は、チタン又はチタン合金製であり、全ての表面が平滑化されている。
1. 1. Surface-Smoothing Metal Member FIG. 1 shows a schematic diagram of a pellicle frame, which is one embodiment of the surface-smoothing metal member of the present invention. The pellicle frame 1 is made of titanium or titanium alloy and all surfaces are smoothed.
 ペリクルフレーム1の最大長さは50~1000mmとなっている。ここで、ペリクルフレーム1における最大長さは、図1のAで示す対角線の長さとなる。最大長さは100~500mmとすることが好ましく、150~300mmとすることがより好ましい。大型金属部材の表面の全域を従来公知の手法で平滑化することは困難であるが、ペリクルフレーム1においては、最大長さが50mm以上となる場合であっても表面平坦部の最大高さ粗さ(Rz)が1.1μm以下かつ、曲率半径が0.05~2.5mmである部分の最大高さ粗さ(Rz)が2μm未満となっている。また、ペリクルフレーム1の最大長さを1000mm以下とすることで、曲率半径が0.05~2.5mmである部分における最大高さ粗さ(Rz)を確実に2μm未満とすることができる。 The maximum length of the pellicle frame 1 is 50-1000mm. Here, the maximum length of the pellicle frame 1 is the length of the diagonal indicated by A in FIG. The maximum length is preferably 100-500 mm, more preferably 150-300 mm. Although it is difficult to smooth the entire surface of a large metal member by a conventionally known method, in the pellicle frame 1, even if the maximum length is 50 mm or more, the maximum height roughness of the surface flat portion is reduced. The maximum height roughness (Rz) is less than 2 μm at the portion where the height (Rz) is 1.1 μm or less and the radius of curvature is 0.05 to 2.5 mm. Further, by setting the maximum length of the pellicle frame 1 to 1000 mm or less, the maximum height roughness (Rz) in the portion having a radius of curvature of 0.05 to 2.5 mm can be reliably set to less than 2 μm.
 また、ペリクルフレーム1においては、最大長さが50mm以上となる場合であっても曲率半径が0.05~2.5mmである部分の算術平均粗さ(Ra)が0.4μm未満となっている。また、最大長さを1000mm以下とすることで、曲率半径が0.05~2.5mmである部分の算術平均粗さ(Ra)を確実に0.4μm未満とすることができる。 In addition, in the pellicle frame 1, even when the maximum length is 50 mm or more, the arithmetic mean roughness (Ra) of the portion having a radius of curvature of 0.05 to 2.5 mm is less than 0.4 μm. there is Further, by setting the maximum length to 1000 mm or less, the arithmetic mean roughness (Ra) of the portion having a radius of curvature of 0.05 to 2.5 mm can be reliably set to less than 0.4 μm.
 ペリクルフレーム1には貫通孔及び/又は開孔部が存在し、貫通孔及び/又は前記開孔部の内壁の最大高さ粗さ(Rz)は2μm未満、算術平均粗さ(Ra)は0.4μm未満であることが好ましい。図1は貫通孔2が存在する場合を示しており、図2は図1のB-B’断面図を示している。点線で示されている貫通孔2の内面についても、十分に平滑化されており、最大高さ粗さ(Rz)は2μm未満、算術平均粗さ(Ra)は0.4μm未満となっている。 The pellicle frame 1 has through holes and/or apertures, and the maximum height roughness (Rz) of the inner walls of the through holes and/or apertures is less than 2 μm, and the arithmetic mean roughness (Ra) is 0. It is preferably less than 0.4 μm. FIG. 1 shows a case where a through hole 2 exists, and FIG. 2 shows a cross-sectional view taken along line B-B' of FIG. The inner surface of the through hole 2 indicated by the dotted line is also sufficiently smoothed, with a maximum height roughness (Rz) of less than 2 μm and an arithmetic mean roughness (Ra) of less than 0.4 μm. .
 貫通孔2の開孔部の円相当径(図2におけるR)は0.1~5mmであることが好ましい。より好ましい円相当径は0.2~2mmであり、最も好ましい円相当径は0.5~1mmである。ペリクルフレーム1においては、開孔部の円相当径が5mm以下の微細な貫通孔2が形成されている場合であっても、内面の最大高さ粗さ(Rz)及び算術平均粗さ(Ra)を十分に低減することができる。また、貫通孔2の円相当径が0.1mm以上であれば、内壁の最大高さ粗さ(Rz)及び算術平均粗さ(Ra)のばらつきを低減することができる。 The equivalent circle diameter (R in FIG. 2) of the opening portion of the through hole 2 is preferably 0.1 to 5 mm. A more preferable equivalent circle diameter is 0.2 to 2 mm, and the most preferable equivalent circle diameter is 0.5 to 1 mm. In the pellicle frame 1, even if fine through-holes 2 with an equivalent circle diameter of 5 mm or less are formed, the maximum height roughness (Rz) and the arithmetic mean roughness (Ra ) can be sufficiently reduced. Moreover, if the equivalent circle diameter of the through-hole 2 is 0.1 mm or more, variations in the maximum height roughness (Rz) and the arithmetic mean roughness (Ra) of the inner wall can be reduced.
 また、貫通孔2の深さ(図2におけるD)は1~50mmであることが好ましい。より好ましい貫通孔2の深さは1~10mmであり、最も好ましい貫通孔2の深さは2~8mmである。ペリクルフレーム1においては、深さが1mm以上の深い貫通孔が形成されている場合であっても、内面の最大高さ粗さ(Rz)及び算術平均粗さ(Ra)を十分に低減することができる。また、貫通孔2の深さが50mm以下であれば、内壁の最大高さ粗さ(Rz)及び算術平均粗さ(Ra)のばらつきを低減することができる。 Also, the depth of the through hole 2 (D in FIG. 2) is preferably 1 to 50 mm. A more preferable depth of the through hole 2 is 1 to 10 mm, and the most preferable depth of the through hole 2 is 2 to 8 mm. In the pellicle frame 1, the maximum height roughness (Rz) and the arithmetic mean roughness (Ra) of the inner surface are sufficiently reduced even when deep through holes with a depth of 1 mm or more are formed. can be done. Moreover, if the depth of the through-hole 2 is 50 mm or less, variations in the maximum height roughness (Rz) and the arithmetic mean roughness (Ra) of the inner wall can be reduced.
 ペリクルフレーム1の形状は、本発明の効果を損なわない限りにおいて特に制限されず、露光原版の形状に応じて従来公知の種々の形状とすることができるが、一般的には、ペリクルフレーム1の平面形状はリング状、矩形状又は正方形状であり、露光原版に設けられた回路パターン部を覆う大きさと形状とを備えている。 The shape of the pellicle frame 1 is not particularly limited as long as it does not impair the effects of the present invention, and can be made into various conventionally known shapes according to the shape of the original exposure plate. It has a ring shape, a rectangular shape, or a square shape in plan view, and has a size and shape that cover the circuit pattern portion provided on the exposure original plate.
 ペリクルフレーム1の高さ(厚さ)は、0.5~10mmであることが好ましく、1~7mmであることがより好ましく、1.0~3.0mmであることが最も好ましい。ペリクルフレーム1の高さ(厚さ)をこれらの値とすることで、ペリクルフレーム1の変形を抑制できると共に、良好なハンドリング性を担保することができる。 The height (thickness) of the pellicle frame 1 is preferably 0.5-10 mm, more preferably 1-7 mm, most preferably 1.0-3.0 mm. By setting the height (thickness) of the pellicle frame 1 to these values, the deformation of the pellicle frame 1 can be suppressed and good handling properties can be ensured.
 ペリクルフレーム1の断面形状は、本発明の効果を損なわない限りにおいて特に制限されず、従来公知の種々の形状とすることができるが、上辺及び下辺が平行な四辺形とすることが好ましい。ペリクルフレーム1の上辺にはペリクル膜を張設するための幅が必要であり、下辺には接着用粘着層を設けて露光原版に接着するための幅が必要である。当該理由から、ペリクルフレーム1の上辺及び下辺の幅は1~3mm程度とすることが好ましい。 The cross-sectional shape of the pellicle frame 1 is not particularly limited as long as it does not impair the effects of the present invention, and can be of various conventionally known shapes, but is preferably a quadrilateral with parallel upper and lower sides. The upper side of the pellicle frame 1 needs a width for stretching the pellicle film, and the lower side needs a width for providing an adhesive layer for adhesion to the exposure original plate. For this reason, the width of the upper and lower sides of the pellicle frame 1 is preferably about 1 to 3 mm.
 ペリクルフレーム1はチタン又はチタン合金製であることから、従来一般的に使用されているアルミニウム合金製のペリクルフレームと比較して、高い強度及びヤング率を有している。また、チタン及びチタン合金の比重は約4.5程度と比較的軽量であり、ペリクルフレーム1の重量増加を抑制することができる。 Because the pellicle frame 1 is made of titanium or a titanium alloy, it has a higher strength and Young's modulus than a pellicle frame made of an aluminum alloy that has been commonly used. In addition, titanium and titanium alloys have a specific gravity of about 4.5, which is relatively light, and an increase in the weight of the pellicle frame 1 can be suppressed.
 また、ペリクルフレーム1はチタン又はチタン合金製であることから、アルミニウムと比較して線膨張係数が低く、昇温時の歪みが効果的に抑制される。また、チタン又はチタン合金は金属材であり、セラミックスや超硬合金と比較して優れた靭性を有していることからハンドリングが容易である。更に、良好な加工性を有していることから製造コストを低減することができることに加え、ペリクルフレーム1に高い寸法精度を付与することができる。 In addition, since the pellicle frame 1 is made of titanium or a titanium alloy, it has a lower coefficient of linear expansion than aluminum and effectively suppresses distortion during temperature rise. In addition, titanium or a titanium alloy is a metal material, and has superior toughness compared to ceramics and cemented carbide, so that it is easy to handle. Furthermore, since it has good workability, it is possible to reduce the manufacturing cost and to impart high dimensional accuracy to the pellicle frame 1 .
 また、本発明の表面平滑化金属部材が種々の光学部材である場合、当該光学部材の線膨張係数は6×10-6~11×10-6/Kであることが好ましい。線膨張係数を6×10-6K以上とすることで、光学部材と、セラミックやシリコン等からなる材料との熱膨張係数が近くなる。これにより、光学部材と、セラミックやシリコン等からなる部材との温度上昇時の熱膨張による変形の差に起因して生じる、歪みや割れを低減することができる。このような効果が奏される組み合わせとしては、例えば、光学部材がレンズホルダーであって、セラミックやシリコン等からなる部材がカメラ等のレンズである場合が挙げられる。また、線膨張係数を11×10-6K以下とすることで、昇温時の歪みを低減することができる。より好ましい線膨張係数は7×10-6~10×10-6/Kであり、最も好ましい線膨張係数は8×10-6~9×10-6/Kである。本明細書において線膨張係数は、0~100℃の温度範囲における値を表すものとする。これらの線膨張係数は、例えば、光学部材をチタン又はチタン合金製であることで達成することができる。 Further, when the surface-smoothing metal member of the present invention is various optical members, the linear expansion coefficient of the optical member is preferably 6×10 −6 to 11×10 −6 /K. By setting the coefficient of linear expansion to 6×10 −6 K or more, the coefficient of thermal expansion of the optical member becomes close to that of the material made of ceramic, silicon, or the like. As a result, it is possible to reduce distortion and cracking caused by the difference in deformation due to thermal expansion when the temperature rises between the optical member and the member made of ceramic, silicon, or the like. As a combination that exhibits such an effect, for example, the optical member may be a lens holder and the member made of ceramic, silicon, or the like may be a lens of a camera or the like. Further, by setting the coefficient of linear expansion to 11×10 −6 K or less, distortion during temperature rise can be reduced. A more preferable coefficient of linear expansion is 7×10 -6 to 10×10 -6 /K, and the most preferable coefficient of linear expansion is 8×10 -6 to 9×10 -6 /K. In this specification, the coefficient of linear expansion represents a value within a temperature range of 0 to 100.degree. These linear expansion coefficients can be achieved, for example, by making the optical member from titanium or a titanium alloy.
 ペリクルフレーム1に用いるチタン合金は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々のチタン合金を用いることができる。チタン合金としては、Ti-6Al-4V合金、Ti-6Al-6V-2Sn合金、Ti-6Al-2Sn-4Zr-6Mo合金、Ti-10V-2Fe-3Al合金、Ti-7Al-4Mo合金、Ti-5Al-2.5Sn合金、Ti-6Al-5Zr-0.5Mo-0.2Si合金、Ti-5.5Al-3.5Sn-3Zr-0.3Mo-1Nb-0.3Si合金、Ti-8Al-1Mo-1V合金、Ti-6Al-2Sn-4Zr-2Mo合金、Ti-5Al-2Sn-2Zr-4Mo-4Cr合金、Ti-11.5Mo-6Zr-4.5Sn合金、Ti-15V-3Cr-3Al-3Sn合金、Ti-15Mo-5Zr-3Al合金、Ti-15Mo-5Zr合金、又はTi-13V-11Cr-3Al合金等を挙げることができる。 The titanium alloy used for the pellicle frame 1 is not particularly limited as long as it does not impair the effects of the present invention, and conventionally known various titanium alloys can be used. Titanium alloys include Ti-6Al-4V alloy, Ti-6Al-6V-2Sn alloy, Ti-6Al-2Sn-4Zr-6Mo alloy, Ti-10V-2Fe-3Al alloy, Ti-7Al-4Mo alloy, Ti- 5Al-2.5Sn alloy, Ti-6Al-5Zr-0.5Mo-0.2Si alloy, Ti-5.5Al-3.5Sn-3Zr-0.3Mo-1Nb-0.3Si alloy, Ti-8Al-1Mo -1V alloy, Ti-6Al-2Sn-4Zr-2Mo alloy, Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy, Ti-11.5Mo-6Zr-4.5Sn alloy, Ti-15V-3Cr-3Al-3Sn alloy, Ti-15Mo-5Zr-3Al alloy, Ti-15Mo-5Zr alloy, or Ti-13V-11Cr-3Al alloy.
 加工性と耐食性を重視する場合は純チタンを用いることが好ましく、高い強度及び良好な加工性を両立させる観点からは、α+β型合金を用いることが好ましく、更に、材料価格や入手容易性の観点からは、Ti-6Al-4V合金を用いることがより好ましい。 When emphasizing workability and corrosion resistance, it is preferable to use pure titanium, and from the viewpoint of achieving both high strength and good workability, it is preferable to use an α + β type alloy.In addition, from the viewpoint of material price and availability. Therefore, it is more preferable to use Ti-6Al-4V alloy.
 上述した実施形態では、表面平滑化金属部材としてペリクルフレーム1を例示して説明したが、表面平滑化金属部材はこれに限定されない。例えば、種々の光学部材とすることもでき、ペリクルフレーム、レンズホルダー、バレル、シェード及びリフレクター等を例示することができる。 In the above-described embodiment, the pellicle frame 1 was exemplified as the surface-smoothing metal member, but the surface-smoothing metal member is not limited to this. For example, various optical members such as pellicle frames, lens holders, barrels, shades and reflectors can be used.
2.表面平滑化金属部材の製造方法
 本発明の表面平滑化金属部材の製造方法を用いて表面が平滑化されたペリクルフレーム1を製造する場合、チタン又はチタン合金からなる枠体に陽極酸化処理を施し、当該枠体の表面に陽極酸化皮膜を形成させ、当該陽極酸化皮膜を脱離させることで枠体の表面を平滑化する。
2. Method for producing surface-smoothed metal member When the pellicle frame 1 having a smoothed surface is produced using the method for producing a surface-smoothed metal member according to the present invention, a frame made of titanium or a titanium alloy is anodized. 3) forming an anodized film on the surface of the frame and removing the anodized film to smooth the surface of the frame;
 図3に表面平滑化プロセスの模式図を示す。陽極酸化皮膜の形成によって枠体表面の凸部が消費されることで平滑化が進行し、当該陽極酸化皮膜の脱離によって平滑化した表面を得ることができる。加えて、枠体表面に付着した異物は陽極酸化皮膜の脱離によって除去されるため、清浄な表面を得ることができる。  Figure 3 shows a schematic diagram of the surface smoothing process. The formation of the anodized film consumes the projections on the surface of the frame, thereby smoothing the surface, and the detachment of the anodized film makes it possible to obtain a smoothed surface. In addition, foreign matter attached to the surface of the frame is removed by detachment of the anodized film, so a clean surface can be obtained.
 従来の表面平滑化手法によって大型部材の表面を均一かつ簡便に平滑化することは極めて困難であるが、陽極酸化処理を用いることで、最大長さが50~1000mmである大型のペリクルフレーム1の表面の全域を平滑化することができる。 It is extremely difficult to uniformly and simply smooth the surface of a large member by a conventional surface smoothing method, but by using an anodizing treatment, a large pellicle frame 1 with a maximum length of 50 to 1000 mm can be manufactured. All areas of the surface can be smoothed.
 また、枠体の表面に形成させる陽極酸化皮膜の膜厚は2~10μmとすることが好ましい。より好ましくは陽極酸化皮膜の膜厚を4~6μmとすることで、枠体表面の凸部が効率的に消費されることに加えて、特別な工程を施すことなく、陽極酸化皮膜を自然に脱離させることができる。なお、陽極酸化皮膜が残存する場合は、超音波振動の印加、逆電解処理等によって脱離させてもよい。 The thickness of the anodized film formed on the surface of the frame is preferably 2 to 10 μm. More preferably, by setting the thickness of the anodized film to 4 to 6 μm, in addition to efficiently consuming the convex portions on the surface of the frame, the anodized film can be formed naturally without applying a special process. can be detached. If the anodized film remains, it may be removed by applying ultrasonic vibration, reverse electrolytic treatment, or the like.
 また、陽極酸化処理における印加電圧は20~100Vとすることが好ましい。陽極酸化処理条件は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の処理条件とすることができるが、より好ましくは印加電圧を40~50Vとすることで、枠体表面の凸部が効率的に消費されることに加えて、特別な工程を施すことなく、陽極酸化皮膜を自然に脱離させることができる。 Also, the applied voltage in the anodizing treatment is preferably 20 to 100V. The anodizing treatment conditions are not particularly limited as long as they do not impair the effects of the present invention, and various conventionally known treatment conditions can be used. In addition to the efficient consumption of the projections, the anodized film can be naturally detached without applying a special process.
 更に、一回の陽極酸化皮膜の形成と脱離では枠体表面の最大高さ粗さ(Rz)が2μm以上となる場合は、当該値が2μm未満となるまで、陽極酸化皮膜の形成及び脱離を繰り返すことが好ましい。陽極酸化皮膜の形成及び離脱によって枠体表面の平滑化が進行することから、これを繰り返すことによって、基材表面における最大高さ粗さ(Rz)を確実に2μm未満とすることができる。 Furthermore, if the maximum height roughness (Rz) of the surface of the frame is 2 μm or more in the formation and removal of the anodized film once, the anodized film is formed and removed until the value becomes less than 2 μm. It is preferable to repeat the separation. Since the surface of the frame is smoothed by the formation and removal of the anodized film, by repeating this process, the maximum height roughness (Rz) on the base material surface can be reliably reduced to less than 2 μm.
 また、一回の陽極酸化皮膜の形成と脱離では枠体表面の算術平均粗さ(Ra)が0.4μm以上となる場合は、当該値が0.4μm未満となるまで、陽極酸化皮膜の形成及び脱離を繰り返すことが好ましい。陽極酸化皮膜の形成及び離脱によって枠体表面の平滑化が進行することから、これを繰り返すことによって、基材表面における算術平均粗さ(Ra)を確実に0.4μm未満とすることができる。 In addition, when the arithmetic mean roughness (Ra) of the surface of the frame is 0.4 μm or more in the formation and detachment of the anodized film once, the anodized film is removed until the value becomes less than 0.4 μm. Repeated formation and elimination is preferred. Since the surface of the frame is smoothed by the formation and removal of the anodized film, the arithmetic average roughness (Ra) of the base material surface can be reliably reduced to less than 0.4 μm by repeating this process.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 Although representative embodiments of the present invention have been described above, the present invention is not limited to these, and various design changes are possible, and all such design changes are included in the technical scope of the present invention. be
<実施例1>
 純チタンからなる長辺160mm及び短辺130mmの枠体を切り出して、ペリクルフレーム用基材を作製した。当該ペリクルフレーム用基材の厚さ及び幅は同一であり、それぞれ1mm及び4mmである。
<Example 1>
A frame made of pure titanium and having a long side of 160 mm and a short side of 130 mm was cut out to prepare a base material for a pellicle frame. The thickness and width of the pellicle frame substrate are the same, 1 mm and 4 mm, respectively.
 得られたペリクルフレーム用基材に対して、陽極酸化処理を施し、表面の全域に陽極酸化皮膜を形成させた。陽極酸化の条件は、フッ化アンモニウム5g/L及び硫酸アンモニウム134g/Lが溶解した水溶液を陽極酸化浴として、浴温度55℃において、電圧を30~80Vとして15分の処理を行った。 An anodizing treatment was applied to the obtained pellicle frame base material to form an anodized film over the entire surface. The anodizing conditions were an anodizing bath containing an aqueous solution of 5 g/L of ammonium fluoride and 134 g/L of ammonium sulfate, a bath temperature of 55° C., and a voltage of 30 to 80 V for 15 minutes.
 電圧を45Vとした場合について、陽極酸化処理前のペリクルフレーム用基材表面、陽極酸化皮膜表面及び陽極酸化皮膜が脱離したペリクルフレーム用基材表面の走査電子顕微鏡写真(SEM写真)を図4に示す。また、脱離した陽極酸化皮膜及び脱離領域におけるペリクルフレーム用基材の断面のSEM写真を図5に示す。ここで、殆どの陽極酸化皮膜は陽極酸化処理中に自然に脱離した。 FIG. 4 shows scanning electron micrographs (SEM photographs) of the surface of the pellicle frame base material before anodization treatment, the surface of the anodized film, and the surface of the pellicle frame base material from which the anodized film was detached when the voltage was set to 45 V. shown in FIG. 5 shows an SEM photograph of a cross section of the pellicle frame base material in the detached anodized film and the detached region. Here, most of the anodized film spontaneously detached during the anodizing treatment.
 ペリクルフレーム用基材の表面は陽極酸化皮膜の脱離によって顕著に円滑化されており、異物等も全くない良好な平滑面が得られていることが分かる。また、断面写真から、基材表面の凹凸は0.4μm未満となっていることが確認できる。ここで、当該平滑面はペリクルフレーム用基材表面の全域に形成されていた。 It can be seen that the surface of the base material for the pellicle frame has been remarkably smoothed by the detachment of the anodized film, and a good smooth surface with no foreign matter is obtained. Also, from the cross-sectional photograph, it can be confirmed that the unevenness of the base material surface is less than 0.4 μm. Here, the smooth surface was formed over the entire surface of the base material for the pellicle frame.
 各電圧で陽極酸化処理を施したペリクルフレーム用基材について、陽極酸化皮膜が脱離したペリクルフレーム用基材表面、陽極酸化皮膜表面及び陽極酸化皮膜断面のSEM写真を図6に示す。また、陽極酸化皮膜の膜厚及び脱離状況を評価し、得られた結果を合わせて示している。なお、電圧が30Vの場合は陽極酸化皮膜の自然な脱離は認められなかった。 FIG. 6 shows SEM photographs of the surface of the pellicle frame substrate from which the anodized film was detached, the surface of the anodized film, and the cross section of the anodized film for the pellicle frame substrate anodized at each voltage. In addition, the film thickness and detachment state of the anodized film were evaluated, and the obtained results are also shown. Incidentally, when the voltage was 30 V, no natural detachment of the anodized film was observed.
 図6から、陽極酸化皮膜を自然に脱離させるためには好適な電圧範囲が存在し、印加電圧を40~50Vとすることで脱離を促進できることが分かる。また、陽極酸化皮膜の膜厚も自然脱離現象に影響し、陽極酸化皮膜の膜厚を4~6μmとすることで脱離を促進できる。 From FIG. 6, it can be seen that there is a suitable voltage range for spontaneous detachment of the anodized film, and detachment can be promoted by applying a voltage of 40 to 50V. The thickness of the anodized film also affects the spontaneous desorption phenomenon, and the desorption can be promoted by setting the thickness of the anodized film to 4 to 6 μm.
<実施例2>
 ペリクルフレーム用基材の厚さ方向に直径800μmの円柱状の貫通孔を設けたこと以外は実施例1と同様にして、電圧を45Vとして10分の陽極酸化処理を施した。
<Example 2>
Anodization was performed for 10 minutes at a voltage of 45 V in the same manner as in Example 1, except that cylindrical through-holes with a diameter of 800 μm were provided in the thickness direction of the pellicle frame base material.
 陽極酸化処理前及び陽極酸化皮膜脱離後における貫通孔側面のSEM写真を図7に示す。陽極酸化処理前と比較して、陽極酸化皮膜が脱離した表面は顕著に円滑化されていることが確認できる。  Fig. 7 shows SEM photographs of the side surface of the through-hole before anodizing treatment and after the anodized film was removed. It can be confirmed that the surface from which the anodized film has been removed is remarkably smoothed compared to before the anodizing treatment.
<実施例3>
 40mm×4mm×1mmの純チタンからなる角材を切り出し、40mm×1mm面に裏面に貫通する直径0.8mmの貫通孔を設けた。次に、バリ取りとして角材の表面に物理研磨を施した後、化研液(TCP-08)を用いて30℃、10秒の条件で化学研磨を施した。次に、実施例1と同様にして、電圧を45Vとして10分の陽極酸化処理を施した。
<Example 3>
A 40 mm x 4 mm x 1 mm square material made of pure titanium was cut out, and a through hole with a diameter of 0.8 mm was provided in the 40 mm x 1 mm surface to the back surface. Next, after subjecting the surface of the rectangular bar to physical polishing for deburring, it was subjected to chemical polishing using a chemical polishing solution (TCP-08) at 30° C. for 10 seconds. Next, in the same manner as in Example 1, the voltage was set to 45 V and anodizing treatment was performed for 10 minutes.
 陽極酸化処理前(化学研磨処理後)と陽極酸化処理後(陽極酸化皮膜脱離後)の状態について、40mm×1mm面(表面)及び貫通孔の内面における最大高さ粗さ(Rz)及び算術平均粗さ(Ra)を測定した。測定には白色光干渉顕微鏡を用いた。図8に40mm×1mm面の測定線を模式的に示す。縦方向の測定線の長さは322μm、横方向の測定線の長さは244μmである。また、貫通孔内面の測定線は軸方向に322μmとした。測定は9視野において各3領域で行い、合計27回の測定値の平均を求めた。得られた結果を表1に示す。 About the state before anodizing treatment (after chemical polishing treatment) and after anodizing treatment (after removal of the anodized film), the maximum height roughness (Rz) and arithmetic on the 40 mm × 1 mm surface (surface) and the inner surface of the through hole Average roughness (Ra) was measured. A white light interference microscope was used for the measurement. FIG. 8 schematically shows measurement lines on a 40 mm×1 mm surface. The length of the measurement line in the vertical direction is 322 μm and the length of the measurement line in the horizontal direction is 244 μm. Moreover, the measurement line on the inner surface of the through hole was 322 μm in the axial direction. Measurements were performed in each of 3 areas in 9 fields of view, and the average of 27 measurements in total was obtained. Table 1 shows the results obtained.
 陽極酸化皮膜の脱離によって最大高さ粗さ(Rz)及び算術平均粗さ(Ra)は共に減少している。表面平坦部の最大高さ粗さ(Rz)は全て1.1μm以下となっており、貫通孔内面の最大高さ粗さ(Rz)は2μm未満となっていることが分かる。また、陽極酸化処理後においては、全ての測定領域において算術平均粗さ(Ra)が0.4μm未満となっている。  Both the maximum height roughness (Rz) and the arithmetic mean roughness (Ra) are reduced due to the detachment of the anodized film. It can be seen that the maximum height roughness (Rz) of the surface flat portion is all 1.1 μm or less, and the maximum height roughness (Rz) of the inner surface of the through hole is less than 2 μm. Moreover, after the anodizing treatment, the arithmetic mean roughness (Ra) is less than 0.4 μm in all the measurement areas.
 陽極酸化処理前(化学研磨処理後)と陽極酸化処理後(陽極酸化皮膜脱離後)の表面状態を走査電子顕微鏡(SEM)及びマイクロスコープで観察した。40mm×1mm面のマイクロスコープ観察像を図9、貫通孔内面のマイクロスコープ観察像を図10、貫通孔内面のSEM観察像を図11にそれぞれ示す。何れの観察像においても、陽極酸化皮膜の脱離によって表面が平滑化されていることが分かる。 The surface condition before anodizing treatment (after chemical polishing treatment) and after anodizing treatment (after anodized film was removed) was observed with a scanning electron microscope (SEM) and a microscope. A microscope observation image of a 40 mm×1 mm surface is shown in FIG. 9, a microscope observation image of the inner surface of the through hole is shown in FIG. 10, and an SEM observation image of the through hole inner surface is shown in FIG. It can be seen from all observation images that the surface is smoothed by detachment of the anodized film.
1・・・ペリクルフレーム、
2・・・貫通孔。
1... pellicle frame,
2... Through hole.

Claims (11)

  1.  チタン又はチタン合金からなる金属部材であって、
     前記金属部材の最大長さが50~1000mmであり、
     前記金属部材の表面平坦部の最大高さ粗さ(Rz)が1.1μm以下であり、
     前記金属部材の表面において曲率半径が0.05~2.5mmである部分の最大高さ粗さ(Rz)が2μm未満であること、
     を特徴とする表面平滑化金属部材。
    A metal member made of titanium or a titanium alloy,
    The maximum length of the metal member is 50 to 1000 mm,
    The maximum height roughness (Rz) of the surface flat portion of the metal member is 1.1 μm or less,
    The maximum height roughness (Rz) of a portion having a radius of curvature of 0.05 to 2.5 mm on the surface of the metal member is less than 2 μm;
    A surface-smoothed metal member characterized by:
  2.  前記金属部材に貫通孔及び/又は開孔部が存在し、
     前記貫通孔及び/又は前記開孔部の内壁の最大高さ粗さ(Rz)も2μm未満であること、
     を特徴とする請求項1に記載の表面平滑化金属部材。
    Through holes and/or openings are present in the metal member,
    The maximum height roughness (Rz) of the inner wall of the through hole and/or the opening is also less than 2 μm,
    The surface-smoothed metal member according to claim 1, characterized by:
  3.  チタン又はチタン合金からなる金属部材であり、
     前記金属部材の最大長さが50~1000mmであり、
     前記金属部材の表面において曲率半径が0.05~2.5mmである部分の算術平均粗さ(Ra)が0.4μm未満であること、
     を特徴とする表面平滑化金属部材。
    A metal member made of titanium or a titanium alloy,
    The maximum length of the metal member is 50 to 1000 mm,
    The arithmetic mean roughness (Ra) of a portion having a radius of curvature of 0.05 to 2.5 mm on the surface of the metal member is less than 0.4 μm,
    A surface-smoothed metal member characterized by:
  4.  前記金属部材に貫通孔及び/又は開孔部が存在し、
     前記貫通孔及び/又は前記開孔部の内壁の前記算術平均粗さ(Ra)も0.4μm未満であること、
     を特徴とする請求項3に記載の表面平滑化金属部材。
    Through holes and/or openings are present in the metal member,
    The arithmetic average roughness (Ra) of the inner walls of the through-holes and/or the openings is also less than 0.4 μm,
    The surface-smoothing metal member according to claim 3, characterized by:
  5.  前記貫通孔及び/又は前記開孔部の円相当径が0.1~5mmであること、
     を特徴とする請求項2又は4に記載の表面平滑化金属部材。
    The equivalent circle diameter of the through hole and/or the opening is 0.1 to 5 mm,
    The surface-smoothed metal member according to claim 2 or 4, characterized in that:
  6.  前記貫通孔及び/又は前記開孔部の深さが1~50mmであること、
     を特徴とする請求項2又は4に記載の表面平滑化金属部材。
    The depth of the through-hole and/or the opening is 1 to 50 mm,
    The surface-smoothed metal member according to claim 2 or 4, characterized in that:
  7.  前記金属部材が枠体であること、
     を特徴とする請求項1~6のうちのいずれかに記載の表面平滑化金属部材。
    the metal member being a frame;
    The surface-smoothed metal member according to any one of claims 1 to 6, characterized by:
  8.  チタン又はチタン合金からなる基材に陽極酸化処理を施し、前記基材の表面に陽極酸化皮膜を形成させ、
     前記陽極酸化皮膜を脱離させることで前記基材の表面を平滑化すること、
     を特徴とする表面平滑化金属部材の製造方法。
    Anodizing a base material made of titanium or a titanium alloy to form an anodized film on the surface of the base material,
    smoothing the surface of the substrate by removing the anodized film;
    A method for manufacturing a surface-smoothed metal member, characterized by:
  9.  前記陽極酸化皮膜の膜厚を2~10μmとすること、
     を特徴とする請求項8に記載の表面平滑化金属部材の製造方法。
    The film thickness of the anodized film is 2 to 10 μm,
    The method for manufacturing a surface-smoothed metal member according to claim 8.
  10.  前記陽極酸化処理における印加電圧を20~100Vとすること、
     を特徴とする請求項8又は9に記載の表面平滑化金属部材の製造方法。
    Applying a voltage of 20 to 100 V in the anodizing treatment;
    10. The method for manufacturing a surface-smoothed metal member according to claim 8 or 9.
  11.  前記基材の前記表面において、0.4μm未満の算術平均粗さ(Ra)及び/又は2μm未満の最大高さ粗さ(Rz)が得られるまで、前記陽極酸化皮膜の形成及び脱離を繰り返すこと、
     を特徴とする請求項8~10のうちのいずれかに記載の表面平滑化金属部材の製造方法。
    The formation and removal of the anodized film are repeated until an arithmetic average roughness (Ra) of less than 0.4 μm and/or a maximum height roughness (Rz) of less than 2 μm is obtained on the surface of the substrate. thing,
    The method for manufacturing a surface-smoothed metal member according to any one of claims 8 to 10.
PCT/JP2022/043140 2022-02-15 2022-11-22 Surface-smoothened metal member and method for manufacturing same WO2023157410A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022021180 2022-02-15
JP2022-021180 2022-09-30

Publications (1)

Publication Number Publication Date
WO2023157410A1 true WO2023157410A1 (en) 2023-08-24

Family

ID=87577869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043140 WO2023157410A1 (en) 2022-02-15 2022-11-22 Surface-smoothened metal member and method for manufacturing same

Country Status (2)

Country Link
TW (1) TW202336288A (en)
WO (1) WO2023157410A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043850A (en) * 2002-07-09 2004-02-12 Mitsubishi Gas Chem Co Inc Etching method for titanium or titanium alloy
JP2006299388A (en) * 2005-04-25 2006-11-02 Nippon Oil Corp Method for producing porous titanium-titanium composite body
JP2008223139A (en) * 2007-03-09 2008-09-25 Poligrat Gmbh Electropolishing process for titanium
JP2019039060A (en) * 2017-08-29 2019-03-14 日本軽金属株式会社 Aluminum member and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043850A (en) * 2002-07-09 2004-02-12 Mitsubishi Gas Chem Co Inc Etching method for titanium or titanium alloy
JP2006299388A (en) * 2005-04-25 2006-11-02 Nippon Oil Corp Method for producing porous titanium-titanium composite body
JP2008223139A (en) * 2007-03-09 2008-09-25 Poligrat Gmbh Electropolishing process for titanium
JP2019039060A (en) * 2017-08-29 2019-03-14 日本軽金属株式会社 Aluminum member and manufacturing method thereof

Also Published As

Publication number Publication date
TW202336288A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
JP4716779B2 (en) Corrosion-resistant treatment method for aluminum or aluminum alloy
JP5230846B1 (en) Manufacturing method of mold for nanoimprint
WO2016080314A1 (en) Mold, production method for mold, antireflection film, and production method for antireflection film
US20170218522A1 (en) Metallic workpiece of titanium and/or a titanium alloy and/or nickel-titanium alloys and also nitinol with a porous surface and production process
WO2023157410A1 (en) Surface-smoothened metal member and method for manufacturing same
EP0036672B1 (en) Process for preparing lithographic printing plate bases
US10156018B2 (en) Method for manufacturing anodic metal oxide nanoporous templates
JPH01280590A (en) Production of aluminum base for printing plate
WO2015159797A1 (en) Mold, method for producing mold, anti-reflection film and method for producing anti-reflection film
JP2007204802A (en) Method of manufacturing structure
JP3917966B2 (en) Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof
CN109416505B (en) Pellicle frame and pellicle assembly
JP5824399B2 (en) Resin mold for nanoimprint and manufacturing method thereof
JP4333947B2 (en) Aluminum alloy sheet with a roughened surface
JP4727226B2 (en) Surface-treated light alloy member and manufacturing method thereof
JP4522615B2 (en) Surface-treated aluminum material and aluminum molded body
JP4587875B2 (en) Corrosion-resistant treatment method for aluminum or aluminum alloy
JPH06235091A (en) Pretreatment of colored titanium material by anodization and production of colored titanium material
JP2011252192A (en) Method for treating aluminum anodized film and heat exchanging device
WO2021111780A1 (en) Optical member and production method therefor
JP7426835B2 (en) Porous alumina sheet and its manufacturing method
KR102562890B1 (en) A method for manufacturing anodized film to create a uniform POP nanostructure for aluminum 3000 alloys without pre-patterning process
KR102562889B1 (en) A method for manufacturing anodized film to create a uniform POP nanostructure for aluminum 5000 alloys without prepatterning process
KR102562887B1 (en) A method for manufacturing anodized film to create a uniform POP nanostructure for aluminum 1000 alloys without pre-patterning process
JP2000226694A (en) Surface treatment of aluminum material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927301

Country of ref document: EP

Kind code of ref document: A1