JP3917966B2 - Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof - Google Patents

Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof Download PDF

Info

Publication number
JP3917966B2
JP3917966B2 JP2003336602A JP2003336602A JP3917966B2 JP 3917966 B2 JP3917966 B2 JP 3917966B2 JP 2003336602 A JP2003336602 A JP 2003336602A JP 2003336602 A JP2003336602 A JP 2003336602A JP 3917966 B2 JP3917966 B2 JP 3917966B2
Authority
JP
Japan
Prior art keywords
film
porous
aluminum
alloy
anodic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003336602A
Other languages
Japanese (ja)
Other versions
JP2005105300A (en
JP2005105300A5 (en
Inventor
幸子 小野
さかえ 稲吉
英孝 阿相
雅之 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2003336602A priority Critical patent/JP3917966B2/en
Publication of JP2005105300A publication Critical patent/JP2005105300A/en
Publication of JP2005105300A5 publication Critical patent/JP2005105300A5/ja
Application granted granted Critical
Publication of JP3917966B2 publication Critical patent/JP3917966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、真空装置及びその部品に使用されるアルミニウム又はアルミニウム合金の表面処理方法、真空装置及びその部品に関する。   The present invention relates to a surface treatment method of aluminum or aluminum alloy used for a vacuum apparatus and its components, a vacuum apparatus and its components.

従来の表面のガス放出係数の小さなアルミニウム又はアルミニウム合金製の耐食性真空容器の耐食処理方法として、例えば、特許文献1に開示されるような陽極酸化処理方法がある。この特許文献1には、被処理物を陽極酸化処理後に、100〜150℃、5〜20時間、真空中で加熱乾燥処理を施すことについて開示されている。
しかしながら、この方法で処理された被処理物は、再び大気に曝された後に真空状態に置かれると、被処理物表面からのガス放出量が増加するという問題があった。また、腐食性ガスやプラズマとの反応を全く起こさないというものではなく、使用中に腐食されると反応生成物が微粒子として発生し、例えば、半導体製造装置として用いられると不良品の原因となることがあった。
As a conventional corrosion resistance treatment method for a corrosion-resistant vacuum vessel made of aluminum or an aluminum alloy having a small surface gas emission coefficient, for example, there is an anodizing treatment method as disclosed in Patent Document 1. This Patent Document 1 discloses that an object to be processed is subjected to a heat drying process in a vacuum at 100 to 150 ° C. for 5 to 20 hours after an anodizing process.
However, there is a problem that the amount of gas released from the surface of the object to be processed increases when the object to be processed processed by this method is exposed to the atmosphere again and then placed in a vacuum state. In addition, it does not cause any reaction with corrosive gas or plasma. If it is corroded during use, reaction products are generated as fine particles. For example, when used as a semiconductor manufacturing apparatus, it causes defective products. There was a thing.

また、特許文献2には、耐食処理が施されたアルミニウム材が開示されており、アルミニウム又はアルミニウム合金の表面にベーキング処理が施されたバリア型陽極酸化皮膜(無孔質陽極酸化皮膜)を形成することについて開示されている。
しかしながら、バリア型陽極酸化皮膜は、純アルミニウムの表面に一様な膜を形成できるものの、アルミニウム以外の金属が含まれた実用合金では、図4(a)に示されるように、合金中に存在するSi、Fe、Cu、Mg等の介在物3が存在するために、陽極酸化処理をしても同図(b)に示されるように皮膜2が介在物3により分断されたり、或いは、皮膜2から介在物3が欠落してボイド等の欠損4が発生したりして均一な膜厚を得ることが難しかった。その結果として、表面が凸凹状になり真の表面積を増加させたり、ガス溜まりが形成されたりして、被処理物からのガス放出量が増加するという問題があった。
Patent Document 2 discloses an aluminum material that has been subjected to corrosion resistance treatment, and forms a barrier type anodic oxide film (nonporous anodic oxide film) that has been baked on the surface of aluminum or an aluminum alloy. Has been disclosed.
However, although the barrier type anodic oxide film can form a uniform film on the surface of pure aluminum, in a practical alloy containing a metal other than aluminum, it exists in the alloy as shown in FIG. Since there are inclusions 3 such as Si, Fe, Cu, and Mg, the film 2 is divided by the inclusions 3 as shown in FIG. It was difficult to obtain a uniform film thickness because the inclusion 3 was missing from 2 and a defect 4 such as a void was generated. As a result, there is a problem that the surface becomes uneven and the true surface area is increased, or a gas reservoir is formed, and the amount of gas released from the object to be processed is increased.

また、特許文献3には、アルミニウム又はアルミニウム合金製真空チャンバ部材に、ポーラス型陽極酸化処理を施し、次いで、バリア型陽極酸化処理(非ポーラス型陽極酸化処理)を行うことが開示されている。
しかしながら、耐プラズマ性を良好とするためにポーラス型陽極酸化皮膜のポアの内表面全てが外気に対して曝されるようにして形成されていたために、真の表面積を増加させてしまい、ガス放出量の増加を引き起こしてしまうという問題があった。
特公平5−053870号公報(請求項1) 特開平9−184094号公報(請求項1) 特許第2900820号公報(請求項1)
Patent Document 3 discloses that a porous anodizing treatment is performed on a vacuum chamber member made of aluminum or aluminum alloy, and then a barrier anodizing treatment (non-porous anodizing treatment) is performed.
However, since the entire inner surface of the pore of the porous anodic oxide film was formed to be exposed to the outside air in order to improve the plasma resistance, the true surface area was increased and the gas was released. There was a problem of causing an increase in the amount.
Japanese Patent Publication No. 5-053870 (Claim 1) JP-A-9-184094 (Claim 1) Japanese Patent No. 2900820 (Claim 1)

そこで、本発明は、上記の課題を解決するもので、ガス放出量の少ない真空装置及びその部品に使用されるアルミニウム又はアルミニウム合金の表面処理方法、真空装置及びその部品を提供するものである。   Accordingly, the present invention solves the above-described problems, and provides a vacuum device with a small amount of gas emission and a surface treatment method for aluminum or aluminum alloy used for the component, a vacuum device and the component.

上記課題を解決するために、本発明者等は鋭意検討の結果、真空装置及びその部品に使用されるアルミニウム又はアルミニウム合金に対して、ポーラス型陽極酸化処理を行い、その後、バリア型陽極酸化処理を行い、ポーラス型陽極酸化皮膜のポア内全てにバリア型陽極酸化皮膜を成長させることにより、合金中に含まれる介在物によるガス溜まりを減らし、被処理物表面の真の表面積を減らすことにより、被処理物表面からのガス放出量を低減できることを見出した。
即ち、本発明の真空装置及びその部品に使用されるアルミニウム又はアルミニウム合金の表面処理方法は、請求項1に記載の通り、真空装置及びその部品に使用されるアルミニウム又はアルミニウム合金の表面処理方法であって、ポーラス型陽極酸化処理をした後に、バリア型陽極酸化処理を行い、ポーラス型陽極酸化皮膜のポア内全てにバリア型陽極酸化皮膜を成長させることを特徴とする。
また、請求項2に記載の表面処理方法は、請求項1に記載の表面方法において、前記アルミニウム合金は、Al−Mg合金、Al−Si−Mg系合金、Al−Cu合金又はAl−Mn合金であることを特徴とする。
また、請求項3に記載の表面処理方法は、請求項1に記載の表面方法において、前記ポーラス型陽極酸化処理の溶液に硫酸、シュウ酸、リン酸又はクロム酸を用いることを特徴とする。
また、請求項4に記載の表面処理方法は、請求項1乃至3のいずれかに記載の表面方法において、前記バリア型陽極酸化処理の溶液にアジピン酸塩、ホウ酸塩、リン酸塩、酒石酸塩若しくはケイ酸塩又はこれらの混合液を用いることを特徴とする。
また、本発明の表面皮膜構造は、請求項5に記載の通り、真空装置及びその部品に使用されるアルミニウム又はアルミニウム合金の表面皮膜構造であって、前記アルミニウム又はアルミニウム合金に形成されたポーラス型陽極酸化皮膜のポア内には、バリア型陽極酸化皮膜が形成されていることを特徴とする。
また、請求項6に記載の表面皮膜構造は、請求項5に記載の表面皮膜構造において、前記皮膜構造における前記皮膜表面からポーラス型陽極酸化皮膜底面までの厚さの20%〜100%が、前記ポーラス型陽極酸化皮膜であることを特徴とする。
また、本発明の真空装置の部品は、請求項7に記載の通り、請求項5又は6に記載の前記表面皮膜構造を備えたことを特徴とする。
また、本発明の真空装置は、請求項8に記載の通り、請求項7に記載の部品を備えることを特徴とする。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and performed porous type anodizing treatment on aluminum or aluminum alloy used in the vacuum apparatus and its components, and thereafter barrier type anodizing treatment. By growing a barrier type anodic oxide film in all the pores of the porous anodic oxide film, reducing gas accumulation due to inclusions contained in the alloy and reducing the true surface area of the workpiece surface, It has been found that the amount of gas released from the surface of the workpiece can be reduced.
That is, the surface treatment method of aluminum or aluminum alloy used for the vacuum apparatus and its parts according to the present invention is the surface treatment method of aluminum or aluminum alloy used for the vacuum apparatus and its parts as described in claim 1. Then, after performing the porous type anodizing treatment, the barrier type anodizing treatment is performed, and the barrier type anodized film is grown in all the pores of the porous type anodized film.
The surface treatment method according to claim 2 is the surface method according to claim 1, wherein the aluminum alloy is an Al-Mg alloy, an Al-Si-Mg alloy, an Al-Cu alloy, or an Al-Mn alloy. It is characterized by being.
The surface treatment method according to claim 3 is characterized in that, in the surface method according to claim 1, sulfuric acid, oxalic acid, phosphoric acid or chromic acid is used for the solution of the porous anodizing treatment.
Further, the surface treatment method according to claim 4 is the surface treatment according to any one of claims 1 to 3, wherein the solution of the barrier type anodizing treatment is adipate, borate, phosphate, tartaric acid. A salt or a silicate or a mixture thereof is used.
The surface film structure of the present invention is a surface film structure of aluminum or an aluminum alloy used for a vacuum apparatus and its parts as described in claim 5, and is a porous type formed on the aluminum or aluminum alloy. A barrier type anodized film is formed in the pores of the anodized film.
Further, the surface film structure according to claim 6 is the surface film structure according to claim 5, wherein 20% to 100% of the thickness from the film surface to the bottom surface of the porous anodic oxide film in the film structure is It is the porous anodic oxide film.
Moreover, the component of the vacuum apparatus of this invention was provided with the said surface film structure of Claim 5 or 6 as described in Claim 7.
Moreover, the vacuum apparatus of this invention is equipped with the components of Claim 7, as described in Claim 8. It is characterized by the above-mentioned.

本発明によれば、アルミニウム又はアルミニウム合金に対して、ポーラス型陽極酸化処理をした後に、バリア型陽極酸化処理を行うことにより、ポーラス型陽極酸化皮膜のポア内まで、バリア型陽極酸化皮膜を成長させ、合金中に含まれる介在物により形成されるガス溜まり部を減らし、被処理物表面の真の表面積を減らすことにより、真空装置又は真空装置に使用される部品の表面からのガス放出量を低減することができる。   According to the present invention, after a porous type anodizing treatment is performed on aluminum or an aluminum alloy, a barrier type anodized film is grown to the inside of the porous type anodized film by performing the barrier type anodizing treatment. The amount of gas released from the surface of the vacuum device or the parts used in the vacuum device is reduced by reducing the gas reservoir formed by the inclusions contained in the alloy and reducing the true surface area of the surface of the workpiece. Can be reduced.

本発明に使用される被処理物であるアルミニウム又はアルミニウム合金としては、特に制限されるものではないが、一例として、純アルミ系の1000系合金、Al−Cu系、Al−Cu−Mg系の2000系合金、Al−Mn系の3000系合金、Al−Si系の4000系合金、Al−Mg系の5000系合金、Al−Mg−Si系の6000系合金、Al−Zn−Mg−Cu系、Al−Zn−Mg系の7000系合金、7N01合金、Al−Fe−Mn系の8000系合金などが用いられ、成型用合金、構造用合金、電気用合金、AC1A、AC2A、AC3A、AC4Bなどの鋳造用合金を挙げることができる。
また、これらの合金に溶体化処理、時効処理などの様々な調質処理を施したものも用いられる。更に、これらのアルミニウム合金の表面にクラディングしたクラッド材も使用できる。
The aluminum or aluminum alloy to be processed used in the present invention is not particularly limited, but as an example, pure aluminum-based 1000-based alloy, Al-Cu-based, Al-Cu-Mg-based 2000 series alloy, Al-Mn series 3000 series alloy, Al-Si series 4000 series alloy, Al-Mg series 5000 series alloy, Al-Mg-Si series 6000 series alloy, Al-Zn-Mg-Cu series Al-Zn-Mg-based 7000-based alloys, 7N01 alloys, Al-Fe-Mn-based 8000-based alloys, etc. are used, such as molding alloys, structural alloys, electrical alloys, AC1A, AC2A, AC3A, AC4B, etc. The casting alloy can be mentioned.
Also, those alloys subjected to various tempering treatments such as solution treatment and aging treatment can be used. Furthermore, cladding materials clad on the surface of these aluminum alloys can also be used.

前記被処理物には、一般的には、前処理が施される。この前処理としては、特に制限されるものではないが、被処理物の表面に付着した油脂分を除去し、被処理物表面の不均質な酸化物皮膜が除去できるものであればよい。例えば、弱アルカリ性の脱脂液による脱脂処理を施し、水酸化ナトリウム溶液でアルカリエッチングを施し、硝酸水溶液中でデスマット処理を行う方法や、脱硝酸処理後に酸洗浄を行う方法等が適宜選択して用いられる。   In general, the object to be processed is pretreated. Although it does not restrict | limit especially as this pre-processing, The oil-and-fat content adhering to the surface of a to-be-processed object may be removed, and the heterogeneous oxide film on the to-be-processed object surface should just be removed. For example, a method of performing a degreasing treatment with a weak alkaline degreasing solution, performing an alkali etching with a sodium hydroxide solution, performing a desmut treatment in an aqueous nitric acid solution, a method of performing an acid cleaning after a denitration treatment, etc. is appropriately selected and used. It is done.

次いで、前処理が施された被処理物に対して、被処理物表面に開口したポアを多数有するポーラス型陽極酸化皮膜を形成するためのポーラス型陽極酸化処理を行い、そして、前記ポーラス型陽極酸化皮膜の上に、ポアを形成することなくバリア層を有するバリア型陽極酸化皮膜を形成するためのバリア型陽極酸化処理を行う。
尚、本発明においてポーラス型陽極酸化処理とは、JIS H 0201のアルミニウム表面処理用語における陽極酸化皮膜細胞を形成する通常の陽極酸化処理をいい、電解溶液として、硫酸、シュウ酸、リン酸、クロム酸のいずれか、或いは、これらの混合溶液を用いて、5〜200Vの電界電圧において行う。
また、本発明においてバリア型陽極酸化処理とは、具体的には、アジピン酸塩(例えば、アジピン酸アンモニウム)、ホウ酸塩(例えば、ホウ酸とホウ酸アンモニウムの混合したもの)、リン酸塩(例えば、リン酸二水素アンモニウム)、酒石酸塩、ケイ酸塩、フタル酸塩(例えば、フタル酸水素カリウム)、炭酸塩(例えば、炭酸ナトリウム)、クエン酸塩、クロム酸ナトリウム等の溶液のいずれかを用いるか、或いは、これらの混合溶液を用いて、60〜500Vの電界電圧で陽極酸化処理する方法等を挙げることができる。
Next, a porous type anodizing treatment for forming a porous type anodized film having a large number of pores opened on the surface of the processed object is performed on the pretreated object, and the porous anode Barrier type anodic oxidation treatment for forming a barrier type anodic oxide film having a barrier layer without forming pores on the oxide film is performed.
In the present invention, the porous type anodizing treatment is a normal anodizing treatment for forming anodized film cells in terms of aluminum surface treatment in JIS H 0201. As an electrolytic solution, sulfuric acid, oxalic acid, phosphoric acid, chromium The reaction is performed at an electric field voltage of 5 to 200 V using any of acids or a mixed solution thereof.
In the present invention, the barrier type anodizing treatment specifically includes adipates (for example, ammonium adipate), borates (for example, a mixture of boric acid and ammonium borate), phosphates. (Eg, ammonium dihydrogen phosphate), tartrate, silicate, phthalate (eg, potassium hydrogen phthalate), carbonate (eg, sodium carbonate), citrate, sodium chromate, etc. Or a method of anodizing with an electric field voltage of 60 to 500 V using these mixed solutions.

前記ポーラス型陽極酸化皮膜のポア内の全てに、前記バリア型陽極酸化皮膜を成長させることにより形成される皮膜構造における前記皮膜表面からポーラス型陽極酸化皮膜底面までの厚さに対して、前記ポーラス型陽極酸化皮膜が20〜100%の厚さであることが好ましい。20%未満であると、バリア型陽極酸化皮膜からのガス放出量が多くなり、100%以上とするとポアの一部が表面に露出するために不要なガスを吸着してしまうからである。   With respect to the thickness from the film surface to the bottom surface of the porous anodic oxide film in the film structure formed by growing the barrier anodic oxide film in all the pores of the porous anodic oxide film, the porous The mold anodized film is preferably 20 to 100% thick. This is because if it is less than 20%, the amount of gas released from the barrier type anodic oxide film increases, and if it is 100% or more, a part of the pore is exposed on the surface, and unnecessary gas is adsorbed.

前記被処理物は、真空装置とその部品であるが、本発明において、部品とは、真空チャンバの構造材だけではなく、真空チャンバ内に配設されるガス拡散プレート(GDP)、クランパー、シャワーヘッド、サセプター、クランプリング、静電チャック等の部材であって、アルミニウム又はアルミニウム合金で製造されうるもの全てに適用可能である。   The object to be processed is a vacuum apparatus and its parts. In the present invention, the parts are not only the structural material of the vacuum chamber, but also a gas diffusion plate (GDP), a clamper, and a shower disposed in the vacuum chamber. The present invention is applicable to all members such as a head, a susceptor, a clamp ring, and an electrostatic chuck that can be manufactured from aluminum or an aluminum alloy.

次に、本発明の表面処理方法について図1を参照して説明する。
図中1はアルミニウム合金、2はバリア型陽極酸化膜、3はアルミニウム合金中の介在物、4は欠損、5はポーラス型陽極酸化膜である。
本発明の表面処理方法は、同図(a)に示されるアルミニウム合金1に、前記ポーラス型陽極酸化処理を施し(同図(b))、その後、バリア型陽極酸化処理を施して、ポーラス型陽極酸化皮膜のポア内の全てにバリア型陽極酸化皮膜を成長させる(同図(c))ものである。
この過程において、介在物3は、同図(b)に示されるようにポーラス型陽極酸化処理に用いる酸性電解液により一部溶解される。この際、アルミニウム合金1は、酸化が進み溶液への溶解速度が遅くなるので、結果的に介在物3が選択的に除去され、欠損4の少ないバリア型陽極酸化皮膜2を形成することができる。
これにより、介在物3によりガス溜まりが形成されることを防ぐことができ、真の表面積を減少させることができる。その結果として、大気に曝されてもアルミニウム合金1の表面に不純物を吸着することがなく、真空状態においてガスの放出を減少させることができる。
Next, the surface treatment method of the present invention will be described with reference to FIG.
In the figure, 1 is an aluminum alloy, 2 is a barrier type anodic oxide film, 3 is an inclusion in the aluminum alloy, 4 is a defect, and 5 is a porous type anodic oxide film.
In the surface treatment method of the present invention, the porous type anodizing treatment is performed on the aluminum alloy 1 shown in FIG. 1A (FIG. 1B), and then the barrier type anodizing treatment is performed to obtain a porous type. A barrier type anodic oxide film is grown in all the pores of the anodic oxide film ((c) in the figure).
In this process, the inclusion 3 is partially dissolved by the acidic electrolyte used for the porous anodizing treatment as shown in FIG. At this time, since the aluminum alloy 1 is oxidized and the dissolution rate in the solution is slow, as a result, the inclusions 3 are selectively removed, and the barrier type anodic oxide film 2 with few defects 4 can be formed. .
Thereby, it is possible to prevent a gas reservoir from being formed by the inclusions 3 and to reduce the true surface area. As a result, even when exposed to the atmosphere, impurities are not adsorbed on the surface of the aluminum alloy 1, and gas emission can be reduced in a vacuum state.

以下、本発明の実施例について比較例とともに説明する。
まず、被処理物として、アルミニウム合金とアルミニウムを使用した例について説明する。
(実施例1)
実施例1は、被処理物であるA6061合金に対して、1Mの硫酸溶液を用い、処理液温度20℃、10Vで90秒間のポーラス型陽極酸化処理を行い、厚さ約130nmのポーラス型構造を成長させた後、被処理物を洗浄し、0.1Mアジピン酸アンモニウム溶液を使用して200V、最大電流密度5mAcm-2でバリア型陽極酸化処理を行い、バリア型陽極酸化皮膜を成長させて、ポーラス型陽極酸化皮膜のポア内全てに亘ってバリア型陽極酸化皮膜を成長させることにより被処理物に皮膜を形成した例である。
被処理物の表面皮膜構造は、図2にその断面図を示すように、ポア全てがバリア型陽極酸化皮膜によって被覆されており(表面皮膜構造の表面からポーラス型陽極酸化皮膜底面までの厚さに対して、ポーラス型陽極酸化皮膜の厚さが50%)、欠損が少なかった。
また、皮膜形成された被処理物を、昇温脱離法を用いて、室温から300℃まで温度を上げたときのガス放出量を測定したところ(以下、「ガス放出量」とする。)、0.8Pamであった。
Examples of the present invention will be described below together with comparative examples.
First, an example in which an aluminum alloy and aluminum are used as objects to be processed will be described.
Example 1
In Example 1, a porous structure having a thickness of about 130 nm is obtained by subjecting an A6061 alloy as an object to be processed to a porous anodizing treatment using a 1M sulfuric acid solution at a processing solution temperature of 20 ° C. and 10 V for 90 seconds. Then, the object to be treated is washed, and a barrier type anodizing treatment is performed using a 0.1 M ammonium adipate solution at 200 V and a maximum current density of 5 mAcm −2 to grow a barrier type anodized film. This is an example in which a film is formed on an object to be processed by growing a barrier type anodized film over the entire pore of the porous type anodized film.
As shown in the cross-sectional view of FIG. 2, the surface film structure of the object to be treated is entirely covered with a barrier type anodized film (thickness from the surface of the surface film structure to the bottom of the porous type anodized film). On the other hand, the thickness of the porous anodic oxide film was 50%) and there were few defects.
In addition, when the temperature of the object on which the film was formed was increased from room temperature to 300 ° C. using a temperature programmed desorption method, the amount of gas released was measured (hereinafter referred to as “gas emission amount”). 0.8 Pam.

(比較例1)
比較例1は、実施例1に対してポーラス型陽極酸化処理を行わず、バリア型陽極酸化処理のみを行った例である。
被処理物の表面皮膜は、図3にその断面図を示すように、合金中に存在する介在物により、分断され、或いは、介在物が脱落して欠損しており凹凸面が形成されていた。
皮膜形成された被処理物のガス放出量を測定したところ、1.4Pamであった。
(Comparative Example 1)
Comparative Example 1 is an example in which only porous type anodizing treatment was performed on Example 1 without performing porous type anodizing treatment.
As shown in the cross-sectional view of FIG. 3, the surface film of the object to be processed was divided by inclusions present in the alloy, or the inclusions were dropped and lost, forming an uneven surface. .
It was 1.4 Pam when the amount of gas emission of the to-be-processed object in which the film was formed was measured.

(実施例2)
実施例2は、被処理物である99.99%アルミニウムに対して、0.3Mのシュウ酸溶液を用い、処理液温度20℃、20Vで90秒間のポーラス型陽極酸化処理を行い、厚さ約130nmのポーラス型構造を成長させた以外は、実施例1と同じ処理を行い被処理物に皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、0.3Pamであった。
(Example 2)
Example 2 uses a 0.3M oxalic acid solution for 99.99% aluminum as an object to be processed, and performs a porous anodizing treatment at a treatment solution temperature of 20 ° C. and 20 V for 90 seconds to obtain a thickness. This is an example in which a film is formed on the workpiece by performing the same treatment as in Example 1 except that a porous structure of about 130 nm is grown.
It was 0.3 Pam when the amount of gas discharge of the to-be-processed object in which the film was formed was measured.

(比較例2)
比較例2は、被処理物として99.99%アルミニウムを使用した以外は、比較例1と同じ処理を行い被処理物に皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、0.5Pamであった。
(Comparative Example 2)
Comparative Example 2 is an example in which a film was formed on the object to be processed by performing the same process as Comparative Example 1 except that 99.99% aluminum was used as the object to be processed.
It was 0.5 Pam when the amount of gas discharge of the to-be-processed object in which the film was formed was measured.

上記実施例1、2及び比較例1、2の結果をまとめると下記表1の通りとなる。   The results of Examples 1 and 2 and Comparative Examples 1 and 2 are summarized as shown in Table 1 below.

Figure 0003917966
Figure 0003917966

上記表1から、本実施例では、アルミニウム又はアルミニウム合金のいずれに対しても、ガス放出量の少ない皮膜を形成できることがわかった。
尚、アルミニウムの種類によってガス放出量が異なっているが、アルミニウム中に含まれる不純物に依存することによるものと考えられる。
From Table 1 above, it was found that in this example, a film with a small amount of outgassing can be formed for either aluminum or aluminum alloy.
Although the amount of gas emission varies depending on the type of aluminum, it is considered that it depends on the impurities contained in the aluminum.

次に、ポーラス陽極酸化皮膜の膜厚を変化させた例について説明する。
(実施例3a)
実施例3aは、被処理物であるA5052合金に対して、1Mの硫酸溶液を用い、処理液温度20℃、10Vで90秒間のポーラス型陽極酸化処理を行い、厚さ約130nmのポーラス型構造を成長させた後、被処理物を洗浄し、0.1Mアジピン酸アンモニウム溶液を使用して200V、最大電流密度5mAcm-2でバリア型陽極酸化処理を行い、バリア型陽極酸化皮膜を成長させて、ポーラス型陽極酸化皮膜のポア内全てに亘ってバリア型陽極酸化皮膜を成長させることにより被処理物に皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、0.6Pamであった。また、表面皮膜構造の表面からポーラス型陽極酸化皮膜底面までの厚さに対して、ポーラス型陽極酸化皮膜の厚さは50%であった。
Next, an example in which the film thickness of the porous anodic oxide film is changed will be described.
Example 3a
In Example 3a, a porous structure having a thickness of about 130 nm is obtained by subjecting an A5052 alloy to be processed to a porous anodizing treatment using a 1M sulfuric acid solution at a treatment solution temperature of 20 ° C. and 10 V for 90 seconds. Then, the object to be treated is washed, and a barrier type anodizing treatment is performed using a 0.1 M ammonium adipate solution at 200 V and a maximum current density of 5 mAcm −2 to grow a barrier type anodized film. This is an example in which a film is formed on an object to be processed by growing a barrier type anodized film over the entire pore of the porous type anodized film.
It was 0.6 Pam when the gas emission amount of the to-be-processed object in which the film was formed was measured. The thickness of the porous anodic oxide film was 50% with respect to the thickness from the surface of the surface film structure to the bottom of the porous anodic oxide film.

(実施例3b)
実施例3bは、ポーラス型陽極酸化処理の時間を40秒として厚さ約60nmのポーラス型構造を成長させた以外は、実施例3aと同じ条件で被処理物に皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、0.8Pamであった。また、表面皮膜構造の表面からポーラス型陽極酸化皮膜底面までの厚さに対して、ポーラス型陽極酸化皮膜の厚さは20%であった。
(Example 3b)
Example 3b is an example in which a film was formed on the workpiece under the same conditions as Example 3a, except that a porous type structure having a thickness of about 60 nm was grown with a porous type anodizing time of 40 seconds.
It was 0.8 Pam when the amount of gas discharge of the to-be-processed object in which the film was formed was measured. The thickness of the porous anodic oxide film was 20% with respect to the thickness from the surface of the surface film structure to the bottom of the porous anodic oxide film.

(比較例3a)
比較例3aは、ポーラス陽極酸化処理を行わなかった以外は、実施例1と同じ条件で皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、1.1Pamであった。
(Comparative Example 3a)
Comparative Example 3a is an example in which a film was formed under the same conditions as in Example 1 except that the porous anodizing treatment was not performed.
It was 1.1 Pam when the gas emission amount of the to-be-processed object in which the film was formed was measured.

(比較例3b)
比較例3bは、バリア型陽極酸化処理を行わなかった以外は、実施例2と同じ条件で皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、5.3Pamであった。
(Comparative Example 3b)
Comparative Example 3b is an example in which a film was formed under the same conditions as in Example 2 except that the barrier type anodizing treatment was not performed.
It was 5.3 Pam when the amount of gas emission of the to-be-processed object in which the film was formed was measured.

(比較例3c)
比較例3cは、ポーラス型陽極酸化処理を300秒として、約470nmのポーラス型陽極酸化皮膜を形成した以外は、実施例1と同じ条件で皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、12.0Pamであった。また、表面皮膜構造の表面からポーラス型陽極酸化皮膜底面までの厚さに対して、ポーラス型陽極酸化皮膜の厚さは170%であった。
(Comparative Example 3c)
Comparative Example 3c is an example in which a film was formed under the same conditions as in Example 1 except that a porous anodic oxidation film having a thickness of about 470 nm was formed for 300 seconds.
It was 12.0 Pam when the amount of gas emission of the to-be-processed object in which the film was formed was measured. The thickness of the porous anodic oxide film was 170% with respect to the thickness from the surface of the surface film structure to the bottom of the porous anodic oxide film.

上記実施例3a、3b及び比較例3a〜3cの結果をまとめると下記表2の通りとなる。   The results of Examples 3a and 3b and Comparative Examples 3a to 3c are summarized as shown in Table 2 below.

Figure 0003917966
Figure 0003917966

表2から、実施例3a、3bでは、ガス放出量が比較例3a〜3cに比べて少なかった。このことから、表面皮膜構造の表面からポーラス型陽極酸化皮膜底面までの厚さに対して、ポーラス型陽極酸化皮膜の厚さは20〜100%であることが好ましいことがわかった。   From Table 2, in Example 3a, 3b, there was little gas discharge | emission amount compared with Comparative Example 3a-3c. From this, it was found that the thickness of the porous anodic oxide film is preferably 20 to 100% with respect to the thickness from the surface of the surface film structure to the bottom surface of the porous anodic oxide film.

次に、ポーラス型陽極酸化処理に使用する電解液及び/又はバリア型陽極酸化処理に使用する電解液を変更した例について説明する。   Next, an example in which the electrolytic solution used for the porous type anodizing treatment and / or the electrolytic solution used for the barrier type anodizing treatment is changed will be described.

(実施例4)
実施例4は、被処理物であるA5052合金に対して、0.3Mのクロム酸溶液を用い、処理液温度20℃、10Vで90秒間のポーラス型陽極酸化処理を行い、厚さ約130nmのポーラス型構造を成長させた後、被処理物を洗浄し、0.1Mアジピン酸アンモニウム溶液を使用して200V、最大電流密度5mAcm-2でバリア型陽極酸化処理を行い、バリア型陽極酸化皮膜を成長させて、ポーラス型陽極酸化皮膜のポア内全てに亘ってバリア型陽極酸化皮膜を成長させることにより被処理物に皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、0.7Pamであった。
Example 4
In Example 4, a 0.3M chromic acid solution was used for the A5052 alloy to be processed, and a porous anodizing treatment was performed at a processing solution temperature of 20 ° C. and 10 V for 90 seconds. After the growth of the porous structure, the object to be processed is washed, and barrier type anodization is performed using a 0.1 M ammonium adipate solution at 200 V and a maximum current density of 5 mAcm −2. In this example, a film is formed on the workpiece by growing the barrier type anodic oxide film over the entire pore of the porous anodic oxide film.
It was 0.7 Pam when the gas emission amount of the to-be-processed object in which the film was formed was measured.

(実施例5)
実施例5は、ポーラス型陽極酸化処理に使用する電解液を0.3Mのシュウ酸とした以外は、実施例4と同じ条件で被処理物に皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、0.7Pamであった。
(Example 5)
Example 5 is an example in which a film is formed on an object to be processed under the same conditions as Example 4 except that the electrolyte used for the porous anodizing treatment is 0.3 M oxalic acid.
It was 0.7 Pam when the gas emission amount of the to-be-processed object in which the film was formed was measured.

(実施例6)
実施例6は、バリア型陽極酸化処理に使用する電解液を0.1Mのホウ酸アンモニウムとした以外は、実施例4と同じ条件で被処理物に皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、0.6Pamであった。
(Example 6)
Example 6 is an example in which a film was formed on the workpiece under the same conditions as in Example 4 except that the electrolyte used for the barrier type anodizing treatment was 0.1 M ammonium borate.
It was 0.6 Pam when the gas emission amount of the to-be-processed object in which the film was formed was measured.

(実施例7)
実施例7は、バリア型陽極酸化処理に使用する電解液を0.1Mのリン酸水素アンモニウムとした以外は、実施例4と同じ条件で被処理物に皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、0.5Pamであった。
(Example 7)
Example 7 is an example in which a film is formed on the object to be processed under the same conditions as Example 4 except that the electrolytic solution used for the barrier type anodizing treatment is 0.1M ammonium hydrogen phosphate.
It was 0.5 Pam when the amount of gas discharge of the to-be-processed object in which the film was formed was measured.

(実施例8)
実施例8は、ポーラス型陽極酸化処理に使用する電解液を0.4Mのリン酸とした以外は、実施例4と同じ条件で被処理物に皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、0.6Pamであった。
(Example 8)
Example 8 is an example in which a film was formed on the object to be processed under the same conditions as Example 4 except that the electrolyte used for the porous anodizing treatment was 0.4 M phosphoric acid.
It was 0.6 Pam when the gas emission amount of the to-be-processed object in which the film was formed was measured.

(実施例9)
実施例9は、被処理物として、A6061合金を使用した以外は、実施例5と同じ条件で被処理物に皮膜を形成した例である。
皮膜形成された被処理物のガス放出量を測定したところ、1.1Pamであった。
Example 9
Example 9 is an example in which a film was formed on the object to be processed under the same conditions as Example 5 except that A6061 alloy was used as the object to be processed.
It was 1.1 Pam when the gas emission amount of the to-be-processed object in which the film was formed was measured.

上記実施例5〜9の結果をまとめると下記表3の通りとなる。   The results of Examples 5 to 9 are summarized as shown in Table 3 below.

Figure 0003917966
Figure 0003917966

上記表3から、本実施例では、被処理物の合金の種類、ポーラス型陽極酸化処理に使用する電解液の種類、バリア型陽極酸化処理に使用する電解液の種類を変更しても、ガス放出量が少ないことがわかった。
尚、バリア型陽極酸化処理において、酒石酸アンモニウム溶液を使用しても同様の効果を得ることができることを確認した。
また、上記実施例では、ポーラス型陽極酸化処理、バリア型陽極酸化処理に直流を用いたが、両処理とも交流を用いても、どちらか一方の処理に交流を用いても同様な効果が得られることを確認した。
From Table 3 above, in this example, even if the type of alloy of the object to be processed, the type of electrolytic solution used for the porous type anodizing treatment, and the type of electrolytic solution used for the barrier type anodizing treatment are changed, the gas It was found that the amount released was small.
In the barrier type anodizing treatment, it was confirmed that the same effect could be obtained even when an ammonium tartrate solution was used.
In the above embodiment, direct current is used for the porous type anodizing treatment and the barrier type anodizing treatment. However, the same effect can be obtained by using alternating current for both treatments or by using alternating current for either treatment. It was confirmed that

本発明の表面処理方法を説明するための(a)アルミニウム合金の断面図、(b)同ポーラス型陽極酸化処理後の断面図、(c)同バリア型陽極酸化処理後の断面図(A) Cross-sectional view of aluminum alloy, (b) Cross-sectional view after porous type anodizing treatment, (c) Cross-sectional view after barrier type anodizing treatment for explaining the surface treatment method of the present invention 実施例1において表面処理された被処理物の断面図Sectional drawing of the to-be-processed object surface-treated in Example 1 比較例1において表面処理された被処理物の断面図Sectional drawing of the to-be-processed object surface-treated in the comparative example 1 従来のバリア型陽極酸化皮膜を形成する方法を説明するための(a)アルミニウム合金の断面図、(b)同陽極酸化処理後の断面図(A) A sectional view of an aluminum alloy for explaining a conventional method for forming a barrier type anodic oxide film, (b) A sectional view after the anodizing treatment

符号の説明Explanation of symbols

1 アルミニウム合金
2 バリア型陽極酸化皮膜
3 アルミニウム合金中の介在物
4 欠損
5 ポーラス型陽極酸化膜
DESCRIPTION OF SYMBOLS 1 Aluminum alloy 2 Barrier type anodized film 3 Inclusion in aluminum alloy 4 Defect 5 Porous type anodized film

Claims (8)

真空装置及びその部品に使用されるアルミニウム又はアルミニウム合金の表面処理方法であって、ポーラス型陽極酸化処理をした後に、バリア型陽極酸化処理を行い、ポーラス型陽極酸化皮膜のポア内全てにバリア型陽極酸化皮膜を成長させることを特徴とする表面処理方法。   A surface treatment method of aluminum or aluminum alloy used for a vacuum apparatus and its components, which is a porous type anodizing treatment after a porous type anodizing treatment, and a barrier type is applied to all pores of the porous type anodized film. A surface treatment method characterized by growing an anodized film. 前記アルミニウム合金は、Al−Mg合金、Al−Si−Mg系合金、Al−Cu合金又はAl−Mn合金であることを特徴とする請求項1に記載の表面処理方法。   The surface treatment method according to claim 1, wherein the aluminum alloy is an Al—Mg alloy, an Al—Si—Mg alloy, an Al—Cu alloy, or an Al—Mn alloy. 前記ポーラス型陽極酸化処理の溶液に硫酸、シュウ酸、リン酸若しくはクロム酸又はこれらの混合液を用いることを特徴とする請求項1又は2に記載の表面処理方法。   3. The surface treatment method according to claim 1, wherein sulfuric acid, oxalic acid, phosphoric acid, chromic acid, or a mixture thereof is used for the porous anodizing treatment solution. 4. 前記バリア型陽極酸化処理の溶液にアジピン酸塩、ホウ酸塩、リン酸塩、酒石酸塩若しくはケイ酸塩又はこれらの混合液を用いることを特徴とする請求項1乃至3のいずれかに記載の表面処理方法。   The adipate, borate, phosphate, tartrate or silicate or a mixture thereof is used as the barrier type anodizing solution, according to any one of claims 1 to 3. Surface treatment method. 真空装置及びその部品に使用されるアルミニウム又はアルミニウム合金の表面皮膜構造であって、前記アルミニウム又はアルミニウム合金に形成されたポーラス型陽極酸化皮膜のポア内全てに、バリア型陽極酸化皮膜が形成されていることを特徴とする表面皮膜構造。   A surface coating structure of aluminum or an aluminum alloy used for a vacuum apparatus and its components, wherein a barrier type anodic oxide coating is formed in all pores of the porous anodic oxide coating formed on the aluminum or aluminum alloy. Surface film structure characterized by having 前記皮膜構造における前記皮膜表面からポーラス型陽極酸化皮膜底面までの厚さに対して、前記ポーラス型陽極酸化皮膜が20〜100%の厚さであることを特徴とする請求項5に記載の表面皮膜構造。   6. The surface according to claim 5, wherein the porous anodic oxide film has a thickness of 20 to 100% with respect to the thickness from the film surface to the bottom surface of the porous anodic oxide film in the film structure. Film structure. 請求項5又は6に記載の前記表面皮膜構造を備えたことを特徴とする真空装置の部品。   A component of a vacuum apparatus comprising the surface coating structure according to claim 5 or 6. 請求項7に記載の部品を備えることを特徴とする真空装置。
A vacuum apparatus comprising the component according to claim 7.
JP2003336602A 2003-09-29 2003-09-29 Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof Expired - Lifetime JP3917966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336602A JP3917966B2 (en) 2003-09-29 2003-09-29 Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336602A JP3917966B2 (en) 2003-09-29 2003-09-29 Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof

Publications (3)

Publication Number Publication Date
JP2005105300A JP2005105300A (en) 2005-04-21
JP2005105300A5 JP2005105300A5 (en) 2005-07-28
JP3917966B2 true JP3917966B2 (en) 2007-05-23

Family

ID=34532652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336602A Expired - Lifetime JP3917966B2 (en) 2003-09-29 2003-09-29 Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof

Country Status (1)

Country Link
JP (1) JP3917966B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716779B2 (en) * 2005-05-18 2011-07-06 株式会社アルバック Corrosion-resistant treatment method for aluminum or aluminum alloy
JP4619197B2 (en) * 2005-05-25 2011-01-26 進次 三浦 Aluminum substrate with anodized film and method for producing the same
US8124240B2 (en) 2005-06-17 2012-02-28 Tohoku University Protective film structure of metal member, metal component employing protective film structure, and equipment for producing semiconductor or flat-plate display employing protective film structure
US8206833B2 (en) 2005-06-17 2012-06-26 Tohoku University Metal oxide film, laminate, metal member and process for producing the same
JPWO2008081748A1 (en) 2006-12-28 2010-04-30 国立大学法人東北大学 Structural member used in semiconductor or flat display manufacturing apparatus and manufacturing method thereof
US8282807B2 (en) 2006-12-28 2012-10-09 National University Corporation Tohoku University Metal member having a metal oxide film and method of manufacturing the same
JP5162148B2 (en) * 2007-03-26 2013-03-13 株式会社アルバック Composite and production method thereof
JP2010098158A (en) * 2008-10-17 2010-04-30 Seiko Epson Corp Susceptor for plasma cvd device and method of manufacturing the same, plasma cvd device and maintenance method for the plasma cvd device, and method of manufacturing semiconductor device
JP2012057251A (en) * 2010-08-13 2012-03-22 Toshiba Corp Protective film, method for forming the same, apparatus for manufacturing semiconductor, and plasma treatment apparatus
JP6753899B2 (en) * 2017-08-23 2020-09-09 株式会社栗本鐵工所 Film formation method and metal material
US11312107B2 (en) * 2018-09-27 2022-04-26 Apple Inc. Plugging anodic oxides for increased corrosion resistance
CN113594014B (en) * 2020-04-30 2024-04-12 中微半导体设备(上海)股份有限公司 Component, plasma reaction device, and component processing method

Also Published As

Publication number Publication date
JP2005105300A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP4716779B2 (en) Corrosion-resistant treatment method for aluminum or aluminum alloy
JP3917966B2 (en) Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof
US7033447B2 (en) Halogen-resistant, anodized aluminum for use in semiconductor processing apparatus
US7048814B2 (en) Halogen-resistant, anodized aluminum for use in semiconductor processing apparatus
US6565984B1 (en) Clean aluminum alloy for semiconductor processing equipment
CN108385148B (en) Semiconductor reactor and method for forming coating of metal base material for semiconductor reactor
JPH08144088A (en) Surface treatment of vacuum chamber member made of aluminium or aluminum alloy
JP4656405B2 (en) Surface treatment method of aluminum or its alloy
JP5770575B2 (en) Formation method of oxide film
US6242111B1 (en) Anodized aluminum susceptor for forming integrated circuit structures and method of making anodized aluminum susceptor
JP3148878B2 (en) Aluminum plate, method of manufacturing the same, and anti-adhesive cover using the aluminum plate
JP3506827B2 (en) Surface-treated aluminum material and method for producing the same
JP2900820B2 (en) Surface treatment method for vacuum chamber member made of Al or Al alloy
JP3705898B2 (en) Surface-treated aluminum components for vacuum equipment and manufacturing method thereof
JP4068742B2 (en) Method for producing anodized film-coated member for semiconductor production equipment having excellent heat cracking resistance and corrosion resistance
JP2008150644A (en) Aluminum alloy for semiconductor or liquid crystal production device, and method for producing the same
JP4587875B2 (en) Corrosion-resistant treatment method for aluminum or aluminum alloy
JP5352204B2 (en) Surface-treated aluminum material for vacuum equipment
JP2000282294A (en) Formation of anodically oxidized film excellent in thermal crack resistance and corrosion resistance and anodically oxidized film-coated member
KR20180131280A (en) Method of desmut treatment of aluminum alloy
JP2008249251A (en) Surface treatment method of heat transfer member
KR20180131279A (en) Method of recycling aluminum member
JP5798900B2 (en) Method for forming oxide film and oxide film
JPH09302499A (en) Aluminum material
KR20090092228A (en) Surface treatment material for semiconductor manufacturing system and method for producing same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3917966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term