JP2008150644A - Aluminum alloy for semiconductor or liquid crystal production device, and method for producing the same - Google Patents
Aluminum alloy for semiconductor or liquid crystal production device, and method for producing the same Download PDFInfo
- Publication number
- JP2008150644A JP2008150644A JP2006337334A JP2006337334A JP2008150644A JP 2008150644 A JP2008150644 A JP 2008150644A JP 2006337334 A JP2006337334 A JP 2006337334A JP 2006337334 A JP2006337334 A JP 2006337334A JP 2008150644 A JP2008150644 A JP 2008150644A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- aluminum alloy
- semiconductor
- concentration
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
本発明は、半導体又は液晶製造装置用アルミニウム合金およびその製造方法に関する技術分野に属するものであり、特には、耐プラズマ性に優れる半導体又は液晶製造装置用アルミニウム合金(アルミニウム合金を、以下、Al合金ともいう)およびその製造方法に関する技術分野に属するものである。なお、半導体又は液晶製造装置用アルミニウム合金とは、半導体製造装置用のアルミニウム合金又は液晶製造装置用のアルミニウム合金のことである。 The present invention belongs to a technical field related to an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus and a method for manufacturing the same, and in particular, an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus excellent in plasma resistance (an aluminum alloy, hereinafter referred to as an Al alloy) Also belongs to the technical field related to the manufacturing method thereof. The aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus is an aluminum alloy for a semiconductor manufacturing apparatus or an aluminum alloy for a liquid crystal manufacturing apparatus.
非特許文献1〔世利修美ら:日本金属学会誌,第63巻,776 (1999)〕には、Al−Fe合金試片表面に存在するFeAl3 系の金属間化合物を除去するために17mass%の硝酸水溶液中で1000s以上定電流で保持し、これにより前記金属間化合物を選択的に除去できることが示されている。また、非特許文献2〔O.Lunder et. al : Corrosion Science, vol.60, 622(2004)〕には、Al合金(AA6060-T6 )を35%HNO3-0.4%HF混合液で処理することで表面に存在するα-Al(Fe,Mn)Siを選択除去できることが示されている。 Non-Patent Document 1 [Shomi Seimi et al .: Journal of the Japan Institute of Metals, Vol. 63, 776 (1999)] describes the removal of FeAl 3 intermetallic compounds present on the surface of Al-Fe alloy specimens. It has been shown that the intermetallic compound can be selectively removed by holding at a constant current for 1000 s or more in a 17 mass% nitric acid aqueous solution. Non-Patent Document 2 [O. Lunder et. Al: Corrosion Science, vol. 60, 622 (2004)] treats an Al alloy (AA6060-T6) with a 35% HNO 3 -0.4% HF mixture. It is shown that α-Al (Fe, Mn) Si existing on the surface can be selectively removed.
しかしながら、これらの技術は、Al合金表面の金属間化合物の選択除去を目的とした技術に関するものであり、半導体又は液晶製造装置用部材として陽極酸化皮膜表面の不純物低減を目的とした表面処理技術に関する文献は無い。
耐プラズマ性を考慮した半導体又は液晶製造装置用部材として、Al合金表面に陽極酸化処理皮膜を生成させた部材が用いられている。しかしながら、半導体又は液晶製造プロセスにおいて部材中に含まれる添加元素が不純物として混入することにより製造工程での不具合発生が問題となりつつある。 As a member for a semiconductor or liquid crystal manufacturing apparatus in consideration of plasma resistance, a member in which an anodized film is generated on the surface of an Al alloy is used. However, in the semiconductor or liquid crystal manufacturing process, an additive element contained in a member is mixed as an impurity, so that a problem in the manufacturing process is becoming a problem.
Al合金中に含まれる元素はFe、Cr、Zn、Cu、Mn、Mg等である。これらの中で特にFeの混入はプロセスの信頼性を向上させる観点からも防ぐ必要がある。 Elements contained in the Al alloy are Fe, Cr, Zn, Cu, Mn, Mg, and the like. Among these, mixing of Fe must be prevented from the viewpoint of improving the reliability of the process.
前述の非特許文献1に記載の方法では、硝酸中で電解処理を行うことでAl−Fe合金表面に存在するFeAl3 系の析出物(金属間化合物)を除去できるとしているが、硝酸に浸漬しただけでは効果を発揮せず、電解が必要であることから、この方法は製造には適さない。また、前述の非特許文献2では、フッ酸あるいは弗化化合物を含む水溶液で処理することで、表面に存在するSi系の析出物を除去できることが示されているが、Al合金基材に関するものであり、陽極酸化された酸化皮膜表面に存在する不純物量については調べられていない。前述の非特許文献1でも、陽極酸化された酸化皮膜表面に存在する不純物量については調べられていない。 In the method described in Non-Patent Document 1 described above, FeAl 3 -based precipitates (intermetallic compounds) existing on the surface of the Al—Fe alloy can be removed by performing electrolytic treatment in nitric acid. This method is not suitable for production because it does not exhibit an effect and requires electrolysis. Further, the above-mentioned Non-Patent Document 2 shows that Si-based precipitates existing on the surface can be removed by treatment with an aqueous solution containing hydrofluoric acid or a fluorinated compound. The amount of impurities present on the surface of the anodized oxide film has not been investigated. Even in the aforementioned Non-Patent Document 1, the amount of impurities present on the surface of the anodized oxide film has not been investigated.
本発明はこのような事情に鑑みてなされたものであって、その目的は、陽極酸化皮膜の表面の不純物濃度が低い半導体又は液晶製造装置用アルミニウム合金を製造することができる半導体又は液晶製造装置用アルミニウム合金の製造方法および陽極酸化皮膜の表面の不純物濃度が低い半導体又は液晶製造装置用アルミニウム合金を提供しようとするものである。 The present invention has been made in view of such circumstances, and the object thereof is a semiconductor or liquid crystal manufacturing apparatus capable of manufacturing a semiconductor or an aluminum alloy for a liquid crystal manufacturing apparatus having a low impurity concentration on the surface of an anodized film. It is an object of the present invention to provide an aluminum alloy for use in a semiconductor or liquid crystal production apparatus having a low impurity concentration on the surface of an anodized film.
本発明者らは、上記目的を達成するため、鋭意検討した結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。 As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. According to the present invention, the above object can be achieved.
このようにして完成され上記目的を達成することができた本発明は、半導体又は液晶製造装置用アルミニウム合金およびおよびその製造方法に係わり、請求項1〜5記載の半導体又は液晶製造装置用アルミニウム合金の製造方法(第1〜5発明に係る半導体又は液晶製造装置用Al合金の製造方法)、請求項6記載の半導体又は液晶製造装置用アルミニウム合金(第6発明に係る半導体又は液晶製造装置用Al合金)であり、それは次のような構成としたものである。 The present invention thus completed and capable of achieving the above object relates to an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus and a method for manufacturing the same, and an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus according to claim 1. Manufacturing method (a manufacturing method of an Al alloy for a semiconductor or liquid crystal manufacturing apparatus according to the first to fifth inventions), an aluminum alloy for a semiconductor or a liquid crystal manufacturing apparatus according to claim 6 (Al for a semiconductor or a liquid crystal manufacturing apparatus according to the sixth invention) Alloy), which has the following structure.
即ち、請求項1記載の半導体又は液晶製造装置用アルミニウム合金の製造方法は、アルミニウム合金をpH10以上のアルカリ性水溶液で洗浄し、次いでフッ素及び硝酸イオンを含む水溶液で洗浄した後、電解法により酸化皮膜を形成させることを特徴とする半導体又は液晶製造装置用アルミニウム合金の製造方法である〔第1発明〕。 That is, in the method for producing an aluminum alloy for a semiconductor or liquid crystal production apparatus according to claim 1, the aluminum alloy is washed with an alkaline aqueous solution having a pH of 10 or more, then washed with an aqueous solution containing fluorine and nitrate ions, and then an oxide film is formed by an electrolytic method. A method for producing an aluminum alloy for a semiconductor or liquid crystal production apparatus, wherein the first invention is formed.
請求項2記載の半導体又は液晶製造装置用アルミニウム合金の製造方法は、前記フッ素及び硝酸イオンを含む水溶液中のフッ素の濃度が25〜50g/リットル、硝酸イオンの濃度が1100〜1420g/リットルである請求項1記載の半導体又は液晶製造装置用アルミニウム合金の製造方法である〔第2発明〕。 The method for producing an aluminum alloy for a semiconductor or liquid crystal production apparatus according to claim 2, wherein the concentration of fluorine in the aqueous solution containing fluorine and nitrate ions is 25 to 50 g / liter, and the concentration of nitrate ions is 1100 to 1420 g / liter. It is a manufacturing method of the aluminum alloy for semiconductor or liquid crystal manufacturing apparatuses of Claim 1 [2nd invention].
請求項3記載の半導体又は液晶製造装置用アルミニウム合金の製造方法は、前記フッ素及び硝酸イオンを含む水溶液のフッ素源が酸性フッ化アンモン、フッ化水素酸から選ばれる1種以上である請求項1または2記載の半導体又は液晶製造装置用アルミニウム合金の製造方法である〔第3発明〕。 4. The method for producing an aluminum alloy for a semiconductor or liquid crystal production apparatus according to claim 3, wherein the fluorine source of the aqueous solution containing fluorine and nitrate ions is one or more selected from acidic ammonium fluoride and hydrofluoric acid. Or it is a manufacturing method of the aluminum alloy for semiconductors or liquid crystal manufacturing apparatuses of 2 [3rd invention].
請求項4記載の半導体又は液晶製造装置用アルミニウム合金の製造方法は、前記フッ素及び硝酸イオンを含む水溶液の硝酸イオン源が硝酸である請求項1〜3のいずれかに記載の半導体又は液晶製造装置用アルミニウム合金の製造方法である〔第4発明〕。 The method for manufacturing an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus according to claim 4, wherein the nitrate ion source of the aqueous solution containing fluorine and nitrate ions is nitric acid. It is a manufacturing method of the aluminum alloy for use [4th invention].
請求項5記載の半導体又は液晶製造装置用アルミニウム合金の製造方法は、前記電解法により酸化皮膜を形成させるに際し、電解液として、濃度が5〜90g/リットルのシュウ酸と0.5 〜50g/リットルの硫酸との混酸を用いる請求項1〜4のいずれかに記載の半導体又は液晶製造装置用アルミニウム合金の製造方法である〔第5発明〕。 The method for producing an aluminum alloy for a semiconductor or liquid crystal production apparatus according to claim 5 is characterized in that, when an oxide film is formed by the electrolytic method, oxalic acid having a concentration of 5 to 90 g / liter and 0.5 to 50 g / liter are used as an electrolytic solution. It is a manufacturing method of the aluminum alloy for semiconductors or liquid crystal manufacturing apparatuses in any one of Claims 1-4 which uses a mixed acid with a sulfuric acid [5th invention].
請求項6記載の半導体又は液晶製造装置用アルミニウム合金は、請求項1〜5のいずれかに記載の半導体又は液晶製造装置用アルミニウム合金の製造方法により製造したことを特徴とする半導体又は液晶製造装置用アルミニウム合金である〔第6発明〕。 The aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus according to claim 6 is manufactured by the method for manufacturing an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus according to any one of claims 1 to 5. [Sixth invention].
本発明に係る半導体又は液晶製造装置用アルミニウム合金の製造方法によれば、陽極酸化皮膜の表面の不純物濃度が低い半導体又は液晶製造装置用アルミニウム合金を製造することができる。本発明に係る半導体又は液晶製造装置用アルミニウム合金は、この製造方法により製造されたものであり、陽極酸化皮膜の表面の不純物濃度が低くて有用である。 According to the method for producing an aluminum alloy for a semiconductor or liquid crystal production apparatus according to the present invention, an aluminum alloy for a semiconductor or liquid crystal production apparatus having a low impurity concentration on the surface of the anodized film can be produced. The aluminum alloy for semiconductor or liquid crystal manufacturing apparatus according to the present invention is manufactured by this manufacturing method, and is useful because the impurity concentration on the surface of the anodized film is low.
本発明に係る半導体又は液晶製造装置用アルミニウム合金の製造方法においては、前述のように、Al合金をpH10以上のアルカリ性水溶液で洗浄し、次いでフッ素及び硝酸イオンを含む水溶液で洗浄した後、電解法により酸化皮膜を形成させるようにしている。 In the method for producing an aluminum alloy for a semiconductor or liquid crystal production apparatus according to the present invention, as described above, the Al alloy is washed with an alkaline aqueous solution having a pH of 10 or more, and then washed with an aqueous solution containing fluorine and nitrate ions, followed by an electrolytic method. Thus, an oxide film is formed.
この電解法により酸化皮膜を形成させる処理は、いわゆる陽極酸化処理である。この処理により形成される酸化皮膜は、いわゆる陽極酸化皮膜である。上記のpH10以上のアルカリ性水溶液で洗浄し、次いでフッ素及び硝酸イオンを含む水溶液で洗浄する処理は、上記陽極酸化処理の前処理である。 The treatment for forming an oxide film by this electrolytic method is a so-called anodic oxidation treatment. The oxide film formed by this treatment is a so-called anodic oxide film. The treatment of washing with an alkaline aqueous solution having a pH of 10 or higher and then washing with an aqueous solution containing fluorine and nitrate ions is a pretreatment of the anodizing treatment.
従って、本発明に係る半導体又は液晶製造装置用アルミニウム合金の製造方法は、陽極酸化処理の前処理として、pH10以上のアルカリ性水溶液で洗浄し、次いでフッ素及び硝酸イオンを含む水溶液で洗浄する処理を行い、この前処理の後に陽極酸化処理を行うものであるといえる。 Therefore, in the method for producing an aluminum alloy for a semiconductor or liquid crystal production apparatus according to the present invention, as a pretreatment for anodizing treatment, washing with an alkaline aqueous solution having a pH of 10 or more and then washing with an aqueous solution containing fluorine and nitrate ions are performed. It can be said that anodizing is performed after this pretreatment.
この前処理においては、先ず、pH10以上のアルカリ性水溶液での洗浄を行う。この洗浄では、Al合金表面をエッチングして不純物が多く含まれるMg−Si系の晶析出物などを優先的に露出させる作用効果がある。この洗浄後はスマットと呼ばれるMg−Si系晶析出物が表面に多く存在する。これら晶析出物中にはFe元素も含まれることから晶析出物の除去が要求される。 In this pretreatment, first, washing is performed with an alkaline aqueous solution having a pH of 10 or more. This cleaning has an effect of preferentially exposing Mg-Si based crystal precipitates containing a large amount of impurities by etching the Al alloy surface. After this cleaning, a large amount of Mg-Si crystal precipitates called smut are present on the surface. Since these crystal precipitates contain Fe element, removal of crystal precipitates is required.
次に、フッ素及び硝酸イオンを含む水溶液での洗浄を行う。この洗浄では、上記スマット(Mg−Si系晶析出物)を完全に除去することができる作用効果がある。 Next, cleaning with an aqueous solution containing fluorine and nitrate ions is performed. This cleaning has the effect of being able to completely remove the smut (Mg—Si based crystal precipitate).
以上の前処理により、Al合金表面はMg−Si系の晶析出物(不純物を多く含有する)が除去されて不純物濃度が低いものとなる。 By the above pretreatment, the Mg alloy surface precipitates (containing a large amount of impurities) are removed from the Al alloy surface, and the impurity concentration becomes low.
上記前処理(pH10以上のアルカリ性水溶液での洗浄→フッ素及び硝酸イオンを含む水溶液での洗浄)の後に陽極酸化処理を行う。この処理では陽極酸化皮膜が形成される。この陽極酸化皮膜は不純物濃度が低い。それは、この陽極酸化処理に供されるAl合金表面は上記前処理により不純物濃度が低いものとなっているからである。このようにして陽極酸化皮膜が形成されたもの、即ち、半導体又は液晶製造装置用Al合金が得られる。 After the above pretreatment (cleaning with an alkaline aqueous solution of pH 10 or higher → cleaning with an aqueous solution containing fluorine and nitrate ions), an anodic oxidation treatment is performed. This treatment forms an anodized film. This anodized film has a low impurity concentration. This is because the surface of the Al alloy subjected to the anodic oxidation treatment has a low impurity concentration due to the pretreatment. In this way, an anodized film is formed, that is, an Al alloy for a semiconductor or liquid crystal manufacturing apparatus.
従って、本発明に係る半導体又は液晶製造装置用アルミニウム合金の製造方法によれば、陽極酸化皮膜の表面の不純物濃度が低い半導体又は液晶製造装置用アルミニウム合金を製造することができる。 Therefore, according to the method for manufacturing an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus according to the present invention, an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus having a low impurity concentration on the surface of the anodized film can be manufactured.
以上からわかるように、本発明に係る半導体又は液晶製造装置用Al合金の製造方法は、陽極酸化処理の前処理過程においてAl合金表面の不純物濃度を低減させておき、これにより、陽極酸化皮膜の不純物濃度が低くて陽極酸化皮膜の表面の不純物濃度が低いAl合金を得るものであるといえる。 As can be seen from the above, the method for producing an Al alloy for a semiconductor or liquid crystal production apparatus according to the present invention reduces the impurity concentration on the surface of the Al alloy in the pretreatment process of the anodizing treatment, thereby It can be said that an Al alloy having a low impurity concentration and a low impurity concentration on the surface of the anodized film is obtained.
陽極酸化処理の前処理において、アルカリ性水溶液での洗浄に際し、このアルカリ性水溶液のpHが10未満の場合は、Mg−Si系の晶析出物(不純物を多く含有する)の露出が充分ではない。これに対し、本発明の場合はアルカリ性水溶液のpHがpH10以上であり、このため、Mg−Si系の晶析出物(不純物を多く含有する)の露出が充分になされる。アルカリ水溶液としては、例えばNaOH水溶液を用いることができる。 In the pretreatment of the anodizing treatment, when the pH of the alkaline aqueous solution is less than 10 at the time of washing with the alkaline aqueous solution, the Mg-Si-based crystal precipitates (containing a large amount of impurities) are not sufficiently exposed. On the other hand, in the case of the present invention, the pH of the alkaline aqueous solution is pH 10 or more, and therefore, Mg-Si based crystal precipitates (containing a large amount of impurities) are sufficiently exposed. As the aqueous alkaline solution, for example, an aqueous NaOH solution can be used.
アルカリ性水溶液での洗浄後、スマット(Mg−Si系晶析出物)除去のため、これまでの方法では硝酸での洗浄を行っているが、この硝酸での洗浄ではスマット除去が不完全である。これに対し、本発明の場合はフッ素及び硝酸イオンを含む水溶液での洗浄を行っており、このため、スマット(Mg−Si系晶析出物)を完全に除去することができる。 In order to remove smut (Mg-Si based crystal precipitates) after washing with an alkaline aqueous solution, washing with nitric acid is performed in the conventional methods, but smut removal is incomplete in this washing with nitric acid. On the other hand, in the case of the present invention, washing with an aqueous solution containing fluorine and nitrate ions is performed, and therefore, smut (Mg—Si based crystal precipitates) can be completely removed.
本発明に係る半導体又は液晶製造装置用アルミニウム合金の製造方法において、フッ素及び硝酸イオンを含む水溶液中のフッ素の濃度が25〜50g/リットル、硝酸イオンの濃度が1100〜1420g/リットルであることが望ましい〔第2発明〕。フッ素濃度:25g/リットル(以下、Lともいう)未満の場合も、硝酸イオンの濃度:1100g/L未満の場合も、表面の洗浄、即ち、スマット(Mg−Si系晶析出物)の除去の程度が低下して不純物が表面に残留する傾向がある。一方、フッ素の濃度が50g/L超の場合は、フッ素濃度が高くなることから、Si系の晶析出物の除去速度は上がるものの、Siを含まない晶析出物については残存する傾向がある。硝酸イオン濃度が1420g/L超の場合は、Al合金表面に酸化皮膜が形成されることから、陽極酸化皮膜の形成速度が減少し、膜質が変化する。 In the method for producing an aluminum alloy for a semiconductor or liquid crystal production apparatus according to the present invention, the concentration of fluorine in the aqueous solution containing fluorine and nitrate ions is 25 to 50 g / liter, and the concentration of nitrate ions is 1100 to 1420 g / liter. Desirable [second invention]. Whether the fluorine concentration is less than 25 g / liter (hereinafter also referred to as L) or the concentration of nitrate ions is less than 1100 g / L, the surface is washed, that is, the removal of smut (Mg-Si crystal precipitates). The degree tends to decrease and impurities remain on the surface. On the other hand, when the fluorine concentration is more than 50 g / L, the fluorine concentration is high, so the removal rate of Si-based crystal precipitates is increased, but the crystal precipitates not containing Si tend to remain. When the nitrate ion concentration exceeds 1420 g / L, an oxide film is formed on the surface of the Al alloy, so that the formation rate of the anodized film decreases and the film quality changes.
フッ素及び硝酸イオンを含む水溶液のフッ素源としては、特には限定されないが、酸性フッ化アンモン、フッ化水素酸の1種以上であることが望ましい〔第3発明〕。これらは容易に入手可能であり、また、溶液中への添加量によりフッ素量の調整が容易であるからである。 The fluorine source of the aqueous solution containing fluorine and nitrate ions is not particularly limited, but is preferably at least one of acidic ammonium fluoride and hydrofluoric acid [third invention]. This is because they are easily available and the amount of fluorine can be easily adjusted by the amount added to the solution.
フッ素及び硝酸イオンを含む水溶液の硝酸イオン源としては、特には限定されないが、硝酸である場合、Si系析出物の除去に特に有効である〔第4発明〕。 The nitrate ion source of the aqueous solution containing fluorine and nitrate ions is not particularly limited, but nitric acid is particularly effective for removing Si-based precipitates (fourth invention).
電解法により酸化皮膜を形成させる(陽極酸化処理)に際し、電解液として、濃度が5〜90g/Lのシュウ酸と0.5 〜50g/Lの硫酸との混酸を用いることが望ましい〔第5発明〕。かかる混酸を用いると、陽極酸化処理の前処理による不純物除去に加えて、更に効果的に表面の不純物濃度を低減できるからである。なお、シュウ酸と硫酸との混酸であっても、シュウ酸濃度が5g/L未満の領域では硫酸のみの処理と同等程度の効果しか発揮せず、硫酸濃度が0.5 g/L未満の場合はシュウ酸のみの処理と同等程度の効果しか発揮しない。一方、シュウ酸濃度が90g/L超の場合も、硫酸濃度が50g/L超の場合も、混酸の効果が少なくなり、上記の更に効果的に表面の不純物濃度を低減できるという作用効果が得られ難くなる。濃度が5〜90g/Lのシュウ酸と0.5 〜50g/Lの硫酸との混酸とは、シュウ酸水溶液と硫酸水溶液とを混合した酸(混酸)であって、この混酸中でのシュウ酸としての濃度が5〜90g/L、硫酸としての濃度が0.5 〜50g/Lとしたもののことである。 In forming an oxide film by an electrolytic method (anodic oxidation treatment), it is desirable to use a mixed acid of oxalic acid having a concentration of 5 to 90 g / L and sulfuric acid having a concentration of 0.5 to 50 g / L as the electrolytic solution [fifth invention]. . This is because when such a mixed acid is used, the impurity concentration on the surface can be more effectively reduced in addition to the impurity removal by the pretreatment of the anodizing treatment. In addition, even if it is a mixed acid of oxalic acid and sulfuric acid, in the region where the oxalic acid concentration is less than 5 g / L, only the same effect as the treatment with sulfuric acid is exhibited. It is only as effective as treatment with oxalic acid alone. On the other hand, when the oxalic acid concentration is higher than 90 g / L and when the sulfuric acid concentration is higher than 50 g / L, the effect of the mixed acid is reduced, and the above-described effect of reducing the surface impurity concentration more effectively can be obtained. It becomes difficult to be. A mixed acid of oxalic acid having a concentration of 5 to 90 g / L and sulfuric acid having a concentration of 0.5 to 50 g / L is an acid (mixed acid) obtained by mixing an aqueous oxalic acid solution and an aqueous sulfuric acid solution, and as oxalic acid in the mixed acid. The concentration is 5 to 90 g / L, and the concentration as sulfuric acid is 0.5 to 50 g / L.
本発明に係る半導体又は液晶製造装置用アルミニウム合金の製造方法(第2発明〜第5発明に係るものを含む)によれば、これらのいずれの方法の場合も、陽極酸化皮膜の表面の不純物濃度が低い半導体又は液晶製造装置用アルミニウム合金を得ることができる。このアルミニウム合金は、陽極酸化皮膜の表面の不純物濃度が低いので、半導体又は液晶製造装置用の部材として使用した場合のプラズマによるダメージが生じ難くて耐プラズマ性に優れている〔第6発明〕。 According to the method for manufacturing an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus according to the present invention (including those according to the second to fifth inventions), the impurity concentration on the surface of the anodized film in any of these methods Can be obtained, an aluminum alloy for a semiconductor or liquid crystal production apparatus with a low value. Since this aluminum alloy has a low impurity concentration on the surface of the anodized film, it is difficult to cause plasma damage when used as a member for a semiconductor or liquid crystal manufacturing apparatus, and has excellent plasma resistance [Sixth Invention].
本発明の実施例および比較例を以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.
〔比較例〕
Al合金としては、Al-Mg-Si系合金であってSi、Fe、Cu、Mn、Mg、Cr、Zn、Tiを含有している6061を用いた。このAl合金をpH12のNaOH水溶液にて洗浄し、次いで20%HNO3水溶液にて洗浄する処理(デスマット処理)をした。このHNO3水溶液のHNO3濃度(g/L)を表1に示す(No.1)。このデスマット処理の後、陽極酸化処理をした。このとき、電解液としては硫酸水溶液を用いた。この硫酸水溶液の硫酸濃度を表1に示す(No.1)
[Comparative example]
As the Al alloy, 6061 which is an Al—Mg—Si alloy and contains Si, Fe, Cu, Mn, Mg, Cr, Zn, and Ti was used. The Al alloy was washed with a pH 12 NaOH aqueous solution and then washed with a 20% HNO 3 aqueous solution (desmut treatment). Shown HNO 3 concentration of HNO 3 aqueous solution (g / L) in Table 1 (No.1). After this desmutting treatment, anodizing treatment was performed. At this time, a sulfuric acid aqueous solution was used as the electrolytic solution. The sulfuric acid concentration of this aqueous sulfuric acid solution is shown in Table 1 (No. 1)
〔実施例〕
Al合金としては、比較例の場合と同様のAl合金(6061)を用いた。このAl合金をpH12のNaOH水溶液にて洗浄し、次いでフッ素及び硝酸イオンを含む水溶液にて洗浄する処理(デスマット処理)をした。このとき、フッ素及び硝酸イオンを含む水溶液としては、酸性フッ化アンモン(NH4HF4)と40〜90%硝酸(HNO3)を混ぜた液体(水溶液)を用いた。その際、両者の混合量を調節することにより、フッ素濃度を変化させ、更に硝酸濃度を変えることにより硝酸イオンの濃度を変化させた。この水溶液のフッ素濃度および硝酸濃度を表1に示す(No.2〜17)。
〔Example〕
As the Al alloy, the same Al alloy (6061) as in the comparative example was used. This Al alloy was washed with a pH 12 NaOH aqueous solution and then washed with an aqueous solution containing fluorine and nitrate ions (desmut treatment). At this time, a liquid (aqueous solution) in which acidic ammonium fluoride (NH 4 HF 4 ) and 40 to 90% nitric acid (HNO 3 ) were mixed was used as the aqueous solution containing fluorine and nitrate ions. At that time, the fluorine concentration was changed by adjusting the mixing amount of both, and the concentration of nitrate ions was changed by changing the nitric acid concentration. The fluorine concentration and nitric acid concentration of this aqueous solution are shown in Table 1 (Nos. 2 to 17).
上記デスマット処理の後、陽極酸化処理をした。このとき、電解液としては、硫酸水溶液、シュウ酸水溶液、硫酸とシュウ酸との混酸(水溶液)を用いた。この硫酸水溶液の硫酸濃度、シュウ酸水溶液のシュウ酸濃度、混酸のシュウ酸濃度および硫酸濃度を表1に示す(No.2〜17)。 After the desmut treatment, anodization treatment was performed. At this time, as the electrolytic solution, a sulfuric acid aqueous solution, an oxalic acid aqueous solution, or a mixed acid (aqueous solution) of sulfuric acid and oxalic acid was used. The sulfuric acid concentration of this sulfuric acid aqueous solution, the oxalic acid concentration of the oxalic acid aqueous solution, the oxalic acid concentration of the mixed acid and the sulfuric acid concentration are shown in Table 1 (Nos. 2 to 17).
〔陽極酸化皮膜の表面の不純物濃度の測定〕
上記比較例および実施例により得られたAl合金(陽極酸化処理後のもの)について陽極酸化皮膜の表面のEPMA(電子線プローブマイクロアナライザ)分析を行い、検出される各元素のエネルギーでのピークの積分値を算出した。そして、比較例により得られたAl合金(No.1)についての積分値を基準とし、これに対する割合(倍率)を求めた。即ち、比較例により得られたAl合金(No.1)についての積分値を1.0 としたときの相対値を求めた。なお、EPMA分析では深さ方向が数μm程度までの情報を検出していることから、上記EPMA分析では陽極酸化皮膜中の各元素の濃度分析を行っていることになるが、この陽極酸化皮膜中の各元素の濃度は陽極酸化皮膜の表面の各元素の濃度に等しい。
[Measurement of impurity concentration on the surface of anodized film]
EPMA (electron beam probe microanalyzer) analysis of the surface of the anodized film was performed on the Al alloys obtained by the above comparative examples and examples (after the anodizing treatment), and the peak of the energy of each element detected was detected. The integral value was calculated. And the ratio (magnification) with respect to this was calculated | required on the basis of the integrated value about Al alloy (No. 1) obtained by the comparative example. That is, the relative value when the integrated value for the Al alloy (No. 1) obtained by the comparative example was 1.0 was determined. In EPMA analysis, the depth direction is detected up to several μm. Therefore, in the above EPMA analysis, the concentration of each element in the anodized film is analyzed. The concentration of each element is equal to the concentration of each element on the surface of the anodized film.
この結果を表1に示す。上記のように、陽極酸化皮膜中の各元素の濃度は陽極酸化皮膜の表面の各元素の濃度に等しいことから、EPMA分析の結果(陽極酸化皮膜中の濃度分析の結果)の欄は陽極酸化皮膜の表面の不純物量と表示した。 The results are shown in Table 1. As mentioned above, since the concentration of each element in the anodized film is equal to the concentration of each element on the surface of the anodized film, the EPMA analysis result (concentration analysis result in the anodized film) column is anodized. The amount of impurities on the surface of the film was indicated.
表1からわかるように、実施例により得られたAl合金(No.2〜17)は、比較例により得られたAl合金(No.1)に比較し、陽極酸化皮膜中のFe、Cr、Siの濃度が低い。より定量的には、実施例により得られたAl合金の陽極酸化皮膜中のFe、Cr、Siの濃度は、それぞれ、比較例により得られたAl合金(No.1)の場合の0.88〜0.16倍すなわち88〜16%(Fe)、0.78〜0.07倍すなわち78〜7%(Cr)、0.98〜0.48倍すなわち98〜48%(Si)である。比較例により得られたAl合金(No.1)に対する低減率では、Feの場合で12〜84%、Crの場合で22〜93%、Siの場合で2〜52%である。このように、実施例により得られたAl合金は、陽極酸化皮膜の不純物濃度が低い。 As can be seen from Table 1, the Al alloys (Nos. 2 to 17) obtained by the examples were compared with the Al alloys (No. 1) obtained by the comparative examples, and Fe, Cr, The concentration of Si is low. More quantitatively, the concentrations of Fe, Cr, and Si in the anodized film of the Al alloy obtained in the example are 0.88 to 0.16 in the case of the Al alloy (No. 1) obtained in the comparative example, respectively. The ratio is 88 to 16% (Fe), 0.78 to 0.07, or 78 to 7% (Cr), and 0.98 to 0.48 or 98 to 48% (Si). The reduction ratio for the Al alloy (No. 1) obtained by the comparative example is 12 to 84% in the case of Fe, 22 to 93% in the case of Cr, and 2 to 52% in the case of Si. Thus, the Al alloy obtained by the Examples has a low impurity concentration of the anodized film.
本発明に係る半導体又は液晶製造装置用アルミニウム合金の製造方法によれば、陽極酸化皮膜の表面の不純物濃度が低い半導体又は液晶製造装置用アルミニウム合金を製造することができるので、この製造方法は陽極酸化皮膜の表面の不純物濃度が低くて耐プラズマ性に優れた半導体又は液晶製造装置用アルミニウム合金の製造の際に好適に用いることができて有用である。 According to the method for manufacturing an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus according to the present invention, an aluminum alloy for a semiconductor or liquid crystal manufacturing apparatus having a low impurity concentration on the surface of the anodized film can be manufactured. It is useful because it can be suitably used in the production of semiconductors or aluminum alloys for liquid crystal production equipment having a low impurity concentration on the surface of the oxide film and excellent plasma resistance.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006337334A JP4814073B2 (en) | 2006-12-14 | 2006-12-14 | Aluminum alloy for semiconductor or liquid crystal manufacturing apparatus and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006337334A JP4814073B2 (en) | 2006-12-14 | 2006-12-14 | Aluminum alloy for semiconductor or liquid crystal manufacturing apparatus and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008150644A true JP2008150644A (en) | 2008-07-03 |
JP4814073B2 JP4814073B2 (en) | 2011-11-09 |
Family
ID=39653134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006337334A Expired - Fee Related JP4814073B2 (en) | 2006-12-14 | 2006-12-14 | Aluminum alloy for semiconductor or liquid crystal manufacturing apparatus and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4814073B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011518958A (en) * | 2008-04-29 | 2011-06-30 | イー.エム.ダブリュ.エナジー カンパニー リミテッド | INORGANIC ION CONDUCTIVE MEMBRANE, FUEL CELL CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME |
KR101224537B1 (en) | 2010-09-30 | 2013-01-22 | 한국생산기술연구원 | Surface Treatment Method of Aluminum Alloy for Plastic Injection Mold |
CN110284174A (en) * | 2019-08-12 | 2019-09-27 | 潍坊国一铝材有限公司 | A kind of electrolytic oxidation liquid and oxidized aluminum alloy film build method that oxidized aluminum alloy film forming is used |
CN110644031A (en) * | 2015-04-03 | 2020-01-03 | 苹果公司 | Treatment to reduce grain texture differential growth rate in mirror-modified anodized aluminum |
CN114256107A (en) * | 2021-12-14 | 2022-03-29 | 合肥升滕半导体技术有限公司 | Ultrahigh cleaning process for semiconductor parts |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60181282A (en) * | 1984-02-24 | 1985-09-14 | Okuno Seiyaku Kogyo Kk | Surface treatment of aluminum alloy |
JPH091319A (en) * | 1995-06-20 | 1997-01-07 | Showa:Kk | Surface treatment method of aluminum alloy casting or aluminum alloy die casting |
JPH09184094A (en) * | 1995-12-28 | 1997-07-15 | Mitsubishi Alum Co Ltd | Surface treated aluminum material and its production |
JPH11264088A (en) * | 1998-03-17 | 1999-09-28 | Sumitomo Light Metal Ind Ltd | Pretreating method of surface treatment of aluminum alloy member |
JP2003034894A (en) * | 2001-07-25 | 2003-02-07 | Kobe Steel Ltd | Al ALLOY MEMBER SUPERIOR IN CORROSION RESISTANCE |
JP2004225113A (en) * | 2003-01-23 | 2004-08-12 | Kobe Steel Ltd | Al alloy member excellent in corrosion resistance and plasma resistance |
JP2006291259A (en) * | 2005-04-07 | 2006-10-26 | Kumabo Metal:Kk | Method for forming surface of aluminum or aluminum alloy suppressing electrification, and aluminum or aluminum alloy member suppressing electrification |
-
2006
- 2006-12-14 JP JP2006337334A patent/JP4814073B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60181282A (en) * | 1984-02-24 | 1985-09-14 | Okuno Seiyaku Kogyo Kk | Surface treatment of aluminum alloy |
JPH091319A (en) * | 1995-06-20 | 1997-01-07 | Showa:Kk | Surface treatment method of aluminum alloy casting or aluminum alloy die casting |
JPH09184094A (en) * | 1995-12-28 | 1997-07-15 | Mitsubishi Alum Co Ltd | Surface treated aluminum material and its production |
JPH11264088A (en) * | 1998-03-17 | 1999-09-28 | Sumitomo Light Metal Ind Ltd | Pretreating method of surface treatment of aluminum alloy member |
JP2003034894A (en) * | 2001-07-25 | 2003-02-07 | Kobe Steel Ltd | Al ALLOY MEMBER SUPERIOR IN CORROSION RESISTANCE |
JP2004225113A (en) * | 2003-01-23 | 2004-08-12 | Kobe Steel Ltd | Al alloy member excellent in corrosion resistance and plasma resistance |
JP2006291259A (en) * | 2005-04-07 | 2006-10-26 | Kumabo Metal:Kk | Method for forming surface of aluminum or aluminum alloy suppressing electrification, and aluminum or aluminum alloy member suppressing electrification |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011518958A (en) * | 2008-04-29 | 2011-06-30 | イー.エム.ダブリュ.エナジー カンパニー リミテッド | INORGANIC ION CONDUCTIVE MEMBRANE, FUEL CELL CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME |
US8728681B2 (en) | 2008-04-29 | 2014-05-20 | E.M.W. Energy Co., Ltd. | Inorganic conductive membrane, fuel cell containing the same, and method for manufacturing thereof |
KR101224537B1 (en) | 2010-09-30 | 2013-01-22 | 한국생산기술연구원 | Surface Treatment Method of Aluminum Alloy for Plastic Injection Mold |
CN110644031A (en) * | 2015-04-03 | 2020-01-03 | 苹果公司 | Treatment to reduce grain texture differential growth rate in mirror-modified anodized aluminum |
CN110284174A (en) * | 2019-08-12 | 2019-09-27 | 潍坊国一铝材有限公司 | A kind of electrolytic oxidation liquid and oxidized aluminum alloy film build method that oxidized aluminum alloy film forming is used |
CN110284174B (en) * | 2019-08-12 | 2021-04-09 | 潍坊国一铝材有限公司 | Electrolytic oxidation liquid for aluminum alloy oxidation film forming and aluminum alloy oxidation film forming method |
CN114256107A (en) * | 2021-12-14 | 2022-03-29 | 合肥升滕半导体技术有限公司 | Ultrahigh cleaning process for semiconductor parts |
Also Published As
Publication number | Publication date |
---|---|
JP4814073B2 (en) | 2011-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008045161A (en) | Aluminum alloy to be anodized and used for plasma treatment apparatus, manufacturing method therefor, aluminum alloy member having anodic oxide film thereon, and plasma treatment apparatus | |
JP4970429B2 (en) | Litho strip conditioning | |
JP4814073B2 (en) | Aluminum alloy for semiconductor or liquid crystal manufacturing apparatus and method for manufacturing the same | |
JP2001220637A (en) | Aluminum alloy for anodic oxidation treatment, aluminum alloy member having anodically oxidized film and plasma treating system | |
JP2008095192A (en) | Electropolishing process for niobium and tantalum | |
JP3917966B2 (en) | Surface treatment method of aluminum or aluminum alloy used for vacuum apparatus and parts thereof, vacuum apparatus and parts thereof | |
JP2007103798A (en) | Method of forming aluminum electrode foil for electrolytic capacitor | |
JPH11264088A (en) | Pretreating method of surface treatment of aluminum alloy member | |
JP5613125B2 (en) | Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity | |
KR101598572B1 (en) | Composition for desmut treatment and method of desmut treatment of aluminum alloy using the same | |
JP5686608B2 (en) | Method for sealing anodized film | |
JP5509669B2 (en) | Etching solution for structure observation of copper or copper alloy, etching method and structure observation method | |
JP4285649B2 (en) | Surface treatment composition and treatment method for removing silicon component and reducing metal salt generated during etching of aluminum die casting material | |
JP5352204B2 (en) | Surface-treated aluminum material for vacuum equipment | |
JP2009084658A (en) | Aluminum alloy foil for electrolytic capacitor | |
JP5872322B2 (en) | Magnetic disk substrate manufacturing method, magnetic disk substrate, magnetic disk, magnetic disk substrate cleaning agent | |
JP5798900B2 (en) | Method for forming oxide film and oxide film | |
KR20190037727A (en) | Composition for etching aluminum and method of etching aluminum using the same | |
US6267870B1 (en) | Treating aluminum workpieces | |
JP2009235543A (en) | Surface treatment method of aluminum material | |
JP4758827B2 (en) | Method for producing electrode foil for electrolytic capacitor | |
JP5683077B2 (en) | Aluminum alloy member with excellent low contamination | |
JP2007009318A (en) | Aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor | |
JP2012057224A (en) | Method for pre-plating treatment | |
JP2007324253A (en) | Manufacturing method of aluminum electrode foil for electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090417 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110407 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110825 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4814073 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |