JP5798900B2 - Method for forming oxide film and oxide film - Google Patents

Method for forming oxide film and oxide film Download PDF

Info

Publication number
JP5798900B2
JP5798900B2 JP2011266724A JP2011266724A JP5798900B2 JP 5798900 B2 JP5798900 B2 JP 5798900B2 JP 2011266724 A JP2011266724 A JP 2011266724A JP 2011266724 A JP2011266724 A JP 2011266724A JP 5798900 B2 JP5798900 B2 JP 5798900B2
Authority
JP
Japan
Prior art keywords
oxide film
voltage
forming
treatment
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011266724A
Other languages
Japanese (ja)
Other versions
JP2013119634A (en
Inventor
稲吉 さかえ
さかえ 稲吉
文昭 石榑
文昭 石榑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011266724A priority Critical patent/JP5798900B2/en
Publication of JP2013119634A publication Critical patent/JP2013119634A/en
Application granted granted Critical
Publication of JP5798900B2 publication Critical patent/JP5798900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、アルミニウム又はアルミニウム合金からなる部材への耐食処理に関し、詳細には、真空装置を構成する部材の表面にアノード酸化処理することにより酸化皮膜を形成する方法及びこの方法により形成された酸化皮膜に関する。   The present invention relates to a corrosion resistance treatment for a member made of aluminum or an aluminum alloy, and more specifically, a method of forming an oxide film by anodic oxidation treatment on the surface of a member constituting a vacuum apparatus, and an oxidation formed by this method. It relates to the film.

反応性ガスを用いる真空装置では、その構成部材のアルミニウム及びアルミニウム合金(以下、「アルミニウム等」ともいう。)には、反応性ガスとの反応を阻止する耐食処理が必要であるためアノード酸化処理が行われている。
その中でも、ポーラス型アノード酸化処理が一般的に行われている(特許文献1参照)。
しかしながら、同処理により形成される酸化皮膜は、厚さ数10nm程度のポーラス構造であるために、真の表面積が大きく、表面が水和物であることに起因して真空下におけるガス放出量が多いという問題がある。また、100℃程度に加熱すると酸化皮膜にひび割れが生じてしまうために、保護しようとするアルミニウム等が露出するという問題がある。この問題は、蒸気圧の高いマグネシウムを含むアルミニウム合金の場合には、ひび割れを介して真空下にマグネシウムが放出されてしまうという問題につながる。
また、他のアノード酸化処理として、バリア型アノード酸化処理がある(特許文献2,3参照)が、得られる酸化皮膜の膜圧が1μm以下と薄いために傷がつきやすいという問題がある。
また、更に、他のアノード酸化処理として、マイクロアーク型アノード酸化処理がある(特許文献4〜7参照)が、ナトリウムやカリウム等のアルカリ金属が酸化皮膜中に含まれるために、同処理が施された真空処理装置において成膜を行うと不純物がデバイスに混入してしまうという問題があった。
In a vacuum apparatus using a reactive gas, aluminum and an aluminum alloy (hereinafter, also referred to as “aluminum” or the like) of its constituent members need an anti-corrosion treatment to prevent a reaction with the reactive gas, so that an anodic oxidation treatment is performed. Has been done.
Among them, a porous anodizing treatment is generally performed (see Patent Document 1).
However, since the oxide film formed by this process has a porous structure with a thickness of about several tens of nanometers, the true surface area is large and the surface is a hydrate. There is a problem that there are many. Further, when heated to about 100 ° C., the oxide film is cracked, so that there is a problem that aluminum to be protected is exposed. This problem leads to a problem that magnesium is released under vacuum through cracks in the case of an aluminum alloy containing magnesium with a high vapor pressure.
As another anodizing treatment, there is a barrier type anodizing treatment (see Patent Documents 2 and 3). However, there is a problem that a film pressure of an obtained oxide film is as thin as 1 μm or less, so that it is easily damaged.
Further, as another anodic oxidation treatment, there is a micro arc type anodic oxidation treatment (see Patent Documents 4 to 7). However, since alkali metal such as sodium or potassium is contained in the oxide film, this treatment is performed. When film formation is performed in the vacuum processing apparatus, there is a problem that impurities are mixed into the device.

特開2001−172795号公報JP 2001-172895 A 特開2006−322040号公報JP 2006-322040 A 特許第3506827号公報Japanese Patent No. 3568527 特許第3881461号公報Japanese Patent No. 3881461 特開2008−266701号公報JP 2008-266701 A 特開2009−102721号公報JP 2009-107211 A 特開2010−172795号公報JP 2010-172895 A

上記課題を解決するために、本発明は、真空下におけるガス放出が少なく、熱膨張によるひび割れがなく、傷つきに強く、更に、アルカリ金属を含まない酸化皮膜の形成方法及びこの方法により得られた酸化皮膜を提供することを目的とする。   In order to solve the above-mentioned problems, the present invention has been obtained by a method for forming an oxide film containing less gas under vacuum, without cracking due to thermal expansion, being resistant to scratching, and not containing an alkali metal, and this method. An object is to provide an oxide film.

上記課題を解決するために、本発明の酸化皮膜の形成方法は、請求項1に記載の通り、アルミニウム又はアルミニウム合金を火花放電を伴うマイクロアーク型のアノード酸化処理することにより酸化皮膜を形成する方法において、アルカリ金属とアルミニウムに対する安定度定数が9以上のアミノカルボン酸アニオンを含まず、且つ、リン酸アンモニウム塩、ホウ酸アンモニウム塩及び有機酸アンモニウム塩のうちの少なくとも1種を含む溶液に、アンモニア、ヒドラジン、エタノールアミン及び炭酸アンモニウムのうちの少なくとも1種を添加して、アルカリ性溶液としたものを電解液として使用することを特徴とする。
請求項2記載の本発明は、請求項1において、リン酸アンモニウム塩、ホウ酸アンモニウム塩及び有機酸アンモニウム塩を溶液中に2〜15重量%含有することを特徴とする。
請求項3記載の本発明は、請求項1又は2において、前記アノード酸化処理における電流密度を2A/dm〜8A/dmとし、最大の電圧を250V〜650Vとすることを特徴とする。
請求項4記載の本発明は、請求項3において、前記最大の電圧に到達した後に、前記電圧を維持した状態でアノード酸化処理を少なくとも15分維持することを特徴とする。
In order to solve the above-mentioned problems, the method for forming an oxide film according to the present invention forms an oxide film by subjecting aluminum or an aluminum alloy to micro-arc type anodic oxidation with spark discharge as described in claim 1. In the method, a solution containing at least one of an ammonium phosphate salt, an ammonium borate salt, and an organic acid ammonium salt, which does not contain an aminocarboxylic acid anion having a stability constant of 9 or more with respect to alkali metal and aluminum , An alkaline solution obtained by adding at least one of ammonia, hydrazine, ethanolamine, and ammonium carbonate is used as an electrolytic solution.
The present invention according to claim 2 is characterized in that, in claim 1, 2-15% by weight of an ammonium phosphate salt, an ammonium borate salt and an organic acid ammonium salt are contained in the solution.
According to a third aspect of the present invention, in the first or second aspect, the current density in the anodic oxidation treatment is 2 A / dm 2 to 8 A / dm 2 , and the maximum voltage is 250 V to 650 V.
According to a fourth aspect of the present invention, in the third aspect of the present invention, after reaching the maximum voltage, the anodic oxidation treatment is maintained for at least 15 minutes while maintaining the voltage .

本発明の酸化皮膜の形成方法により形成された酸化皮膜の形態は、溶岩状に不規則な形態で、且つ、酸化皮膜の厚さは全体に均一且つ比較的厚く形成することができるので、処理対象となるアルミニウムやアルミニウム合金と熱膨張係数が大きく異なっていても、温度変化に起因するひび割れに強いものとなる。また、形成される酸化皮膜を比較的厚くすることができ、傷に強いものとすることができる。更に、形成された酸化皮膜はアルカリ金属を含まないものとすることができる。   The form of the oxide film formed by the method of forming an oxide film of the present invention is irregular in lava shape, and the thickness of the oxide film can be formed uniformly and relatively thick as a whole. Even if the coefficient of thermal expansion is significantly different from the target aluminum or aluminum alloy, it is resistant to cracks caused by temperature changes. Moreover, the oxide film to be formed can be made relatively thick and can be resistant to scratches. Furthermore, the formed oxide film may not contain an alkali metal.

(a)実施例1の表面の走査電子顕微鏡像、(b)比較例1の表面の走査電子顕微鏡像(A) Scanning electron microscope image of the surface of Example 1, (b) Scanning electron microscope image of the surface of Comparative Example 1 実施例1と比較例3の処理過程における電圧変化を示すグラフThe graph which shows the voltage change in the process of Example 1 and Comparative Example 3 実施例21と比較例5の処理過程における電圧変化を示すグラフThe graph which shows the voltage change in the process of Example 21 and Comparative Example 5 実施例1の処理過程の電圧及び電流の変化を示すグラフThe graph which shows the change of the voltage in the process of Example 1, and an electric current.

一般的にマイクロアーク型処理の電解液は、リン酸ナトリウム、水酸化ナトリウム、水酸化カリウム、水ガラス等で構成される。このような電解液で形成したアノード酸化皮膜にはナトリウム、カリウムが取り込まれるので、真空雰囲気下で処理を行う真空装置の構成部材の表面処理としては適当ではない。
これに対して、本願発明では、アルカリ金属とアルミニウムに対する安定度定数が9以上のアミノカルボン酸アニオンを含まない電解液で火花放電を伴うマイクロアーク型のアノード酸化処理を行うようにしたものである。
具体的に、電解液としては、リン酸アンモニウム塩、ほう酸アンモニウム塩及び有機酸アンモニウムの塩(アルカリ金属を含むものを除く。)の単独又は2種以上の混合させた電解液に、アンモニア、ヒドラジン、エタノールアミン及び炭酸アンモニウムのうちの少なくとも1つを添加し、pH7.5〜11としたアルカリ性溶液を使用する。
有機酸アンモニウムの塩としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸及びデカンジカルボン酸等のHOOC(CH2)nCOOHで表せる鎖状ジカルボン酸の塩や、シュウ酸、タルトロン酸、フマル酸、マレイン酸、シトラコン酸、りんご酸及び酒石酸等のその他のジカルボン酸の塩、或いは、フタル酸、ニトロフタル酸、テトラヒドロフタル酸及びボロジサリチル酸等の環式ジカルボン酸の塩を使用することができる。
In general, the electrolytic solution for micro arc type treatment is composed of sodium phosphate, sodium hydroxide, potassium hydroxide, water glass and the like. Since sodium and potassium are taken into the anodic oxide film formed with such an electrolytic solution, it is not suitable as a surface treatment for constituent members of a vacuum apparatus that performs the treatment in a vacuum atmosphere.
On the other hand, in the present invention, a micro-arc type anodizing process involving spark discharge is performed with an electrolyte containing no aminocarboxylic acid anion having a stability constant of 9 or more for alkali metals and aluminum. .
Specifically, as an electrolytic solution, ammonium phosphate, ammonium borate salt and organic acid ammonium salt (excluding those containing an alkali metal) alone or in a mixture of two or more thereof, ammonia, hydrazine At least one of ethanolamine and ammonium carbonate is added, and an alkaline solution having a pH of 7.5 to 11 is used.
Examples of salts of organic acid ammonium include chain dicarboxylic acids represented by HOOC (CH 2 ) n COOH such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and decanedicarboxylic acid. And other dicarboxylic acid salts such as oxalic acid, tartronic acid, fumaric acid, maleic acid, citraconic acid, malic acid and tartaric acid, or rings such as phthalic acid, nitrophthalic acid, tetrahydrophthalic acid and borodisalicylic acid Salts of the formula dicarboxylic acid can be used.

アンモニア、ヒドラジン、エタノールアミン及び炭酸アンモニウムの何れの添加物も含まれない電解液を使用すると、絶縁破壊が生じる電圧まではバリア型アノード酸化皮膜が形成され、当該電圧以上に電圧を上昇させると火花放電が生じるが、絶縁破壊が局所的に集中して被処理物の全面に絶縁破壊が散ることがなく、酸化皮膜に班やムラが生じたり、酸化皮膜の膜厚を数μm程度までしか成長させることができなくなる。また、電圧上昇曲線に異常な振れが生じ、均一な皮膜を形成することができなくなる。また、更に、400V以上の電圧を印加した場合に、電圧の上昇速度が遅くなり、強固な酸化皮膜が形成できない、或いは、処理時間が長くなるという問題がある。
このため、本願発明では、アンモニア、ヒドラジン、エタノールアミン及び炭酸アンモニウムの少なくとも何れかを、電解液のpHが7.5〜11となるように調製しながら添加してアノード酸化処理を行うようにしている。
これにより、放電が分散し、アノード酸化処理の処理開始から1000秒までの電圧の乱れが少なくなり安定した電圧上昇と処理開始の電圧が安定させることができ、1000秒以降の放電処理の間も電圧の上昇幅が少なく安定した放電処理が可能となる。その結果として、溶岩状に不規則な形態で、且つ、酸化皮膜の厚さは全体に均一且つ比較的厚く(膜厚1μm〜30μm程度、特に、20μm〜30μm)形成することができる。また、目標とする電圧値に達するまでの時間が短くなり、処理時間を短縮することができる。
また、リン酸アンモニウム塩、ホウ酸アンモニウム塩及び有機酸アンモニウム塩を溶液中に2〜15重量%含有することが好ましい。2重量%未満であると、処理電圧が高くなり、15重量%を超えると形成された皮膜にムラが生じ均質な皮膜が形成できないからである。
また、pH7.5未満では電圧が上昇せずマイクロアーク酸化皮膜を成長させることができず、pH11を超える溶液は、本願で使用する薬剤を混合させても得ることが困難で液性の維持および管理が難しくなるからである。
When using an electrolyte that does not contain any additive of ammonia, hydrazine, ethanolamine, and ammonium carbonate, a barrier type anodic oxide film is formed up to the voltage at which dielectric breakdown occurs, and sparking occurs when the voltage is raised above that voltage. Although electric discharge occurs, dielectric breakdown does not concentrate locally, and the dielectric breakdown does not spread over the entire surface of the object to be processed, resulting in spots or unevenness in the oxide film, or growing the oxide film to a thickness of only a few micrometers. Can not be made. In addition, an abnormal fluctuation occurs in the voltage rise curve, and a uniform film cannot be formed. Furthermore, when a voltage of 400 V or higher is applied, there is a problem that the rate of voltage increase is slow and a strong oxide film cannot be formed, or the processing time is long.
Therefore, in the present invention, at least one of ammonia, hydrazine, ethanolamine, and ammonium carbonate is added while adjusting the pH of the electrolytic solution to be 7.5 to 11, and the anodic oxidation treatment is performed. Yes.
As a result, the discharge is dispersed, the voltage disturbance from the start of the anodic oxidation treatment to 1000 seconds is reduced, the stable voltage rise and the voltage at the start of treatment can be stabilized, and during the discharge treatment after 1000 seconds. A stable discharge treatment is possible with a small voltage rise. As a result, it can be formed in a lava-like irregular shape, and the thickness of the oxide film is uniform and relatively thick as a whole (film thickness of about 1 μm to 30 μm, especially 20 μm to 30 μm). Further, the time required to reach the target voltage value is shortened, and the processing time can be shortened.
Moreover, it is preferable to contain 2 to 15 weight% of ammonium phosphate salts, ammonium borate salts, and organic acid ammonium salts in a solution. If the amount is less than 2% by weight, the treatment voltage becomes high. If the amount exceeds 15% by weight, the formed film is uneven and a uniform film cannot be formed.
In addition, when the pH is less than 7.5, the voltage does not increase and the micro-arc oxide film cannot be grown, and the solution exceeding pH 11 is difficult to obtain even when the chemicals used in the present application are mixed. This is because management becomes difficult.

本発明の酸化皮膜の形成対象となる部材は、アルミニウム又はアルミニウム合金であり、例えば、Al−Si合金の4000番系、1000番〜3000番、5000番から7000番台のアルミニウム合金等について適用できる。   The member to be formed with the oxide film of the present invention is aluminum or an aluminum alloy, and can be applied to, for example, Al-Si alloy No. 4000 series, No. 1000 to No. 3000, No. 5000 to No. 7000 series aluminum alloys and the like.

アノード酸化処理の過程において目標の電圧値に達した後、この電圧を維持した状態(定電圧)で処理を継続することが好ましい。貫通孔や入り組んだ構造(例えば、シャワープレート)の場合には、この定電圧の工程により細部への皮膜形成がより完全なものとなるからである。また、定電圧の処理は、電流値が降下して酸化皮膜の修復効果が得られるため、蒸気圧の高いマグネシウムを含むアルミニウム合金部材により構成された真空装置に適用した場合に、真空雰囲気下におけるマグネシウム等の飛散を防止することができる。
尚、処理時間は電流値が十分低下する30分以下でよく、特に電流値が半分以下に低下する15分以内とすることが好ましい。
After reaching the target voltage value in the course of the anodic oxidation treatment, it is preferable to continue the treatment while maintaining this voltage (constant voltage). This is because, in the case of a through-hole or an intricate structure (for example, a shower plate), the film formation on the details becomes more complete by this constant voltage process. In addition, since the treatment of the constant voltage reduces the current value and provides a repair effect of the oxide film, when applied to a vacuum apparatus constituted by an aluminum alloy member containing magnesium having a high vapor pressure, the treatment under a vacuum atmosphere Spattering of magnesium and the like can be prevented.
The treatment time may be 30 minutes or less when the current value is sufficiently reduced, and is preferably within 15 minutes when the current value is reduced to half or less.

[実施例1〜30]
電解液Aとして、アジピン酸二アンモニウム、四ほう酸アンモニウム、又は、リン酸三アンモニウムを用い、電解液Bには、ヒドラジン、トリエタノールアミン、アンモニア、モノエタノールアミン又は炭酸アンモニウムを用い、下記の表1に示した電解液Aと電解液Bを混合した電解液を用意した。
アルミニウム合金A6061の30mm×40mm×2mmの板状試料を、実施例1〜30として用意した電解液に浸漬した。試料側をプラス極とし、対極のマイナス極にカーボン電極を取り付けた。一定電流密度4A/dmを保持しながら、最大電圧410V〜450Vまで火花放電を伴うアノード酸化処理を行い、設定した最大電圧に電圧が到達後、最大電圧を保持しながらアノード酸化処理を30分行った。
実施例1〜30の条件でアノード酸化処理を行ったときの電解液のpH、アノード酸化処理により成長させた酸化皮膜の膜厚、及び、ガス放出量を表1に示した。
尚、ガス放出量は、昇温脱離法により室温から300℃まで昇温する間の単位面積当たりのガス放出量を示した。
[Examples 1 to 30]
As electrolytic solution A, diammonium adipate, ammonium tetraborate, or triammonium phosphate was used, and as electrolytic solution B, hydrazine, triethanolamine, ammonia, monoethanolamine, or ammonium carbonate was used. An electrolytic solution prepared by mixing the electrolytic solution A and the electrolytic solution B shown in FIG.
A 30 mm × 40 mm × 2 mm plate sample of aluminum alloy A6061 was immersed in the electrolyte prepared as Examples 1-30. The sample side was a positive electrode, and a carbon electrode was attached to the negative electrode of the counter electrode. While maintaining a constant current density of 4 A / dm 2 , anodization with spark discharge is performed to a maximum voltage of 410 V to 450 V, and after the voltage reaches the set maximum voltage, the anodization is performed for 30 minutes while maintaining the maximum voltage. went.
Table 1 shows the pH of the electrolyte when anodizing was performed under the conditions of Examples 1 to 30, the thickness of the oxide film grown by anodizing, and the amount of gas released.
In addition, the amount of gas released indicates the amount of gas released per unit area during the temperature rising from room temperature to 300 ° C. by the temperature programmed desorption method.

実施例との比較のために、下記表2に示す比較例1〜6を用意した。尚、実施例に対する比較考察に関しては、表2以降に具体的に説明する。
For comparison with Examples, Comparative Examples 1 to 6 shown in Table 2 below were prepared. In addition, the comparative consideration with respect to an Example is demonstrated concretely after Table 2.

[比較例1]
電解液として15wt.%の硫酸を用意した。アルミニウム合金A6061の30mm×40mm×2mmの板状試料を電解液に浸漬した。試料側をプラス極とし、対極のマイナス極にカーボン電極を取り付けた。一定電流密度2A/dmでアノード酸化処理を行い、厚さ15μmのポーラス型アノード酸化皮膜を形成した。処理終了時点での電圧は20Vであった。ガス放出量を実施例と比較すると、実施例1〜30の全てが、比較例1の約1/10以下のガス放出量であった。
[Comparative Example 1]
15 wt. % Sulfuric acid was prepared. A 30 mm × 40 mm × 2 mm plate sample of aluminum alloy A6061 was immersed in the electrolyte. The sample side was a positive electrode, and a carbon electrode was attached to the negative electrode of the counter electrode. Anodization was performed at a constant current density of 2 A / dm 2 to form a porous anodic oxide film having a thickness of 15 μm. The voltage at the end of processing was 20V. When the gas release amount was compared with the examples, all of Examples 1 to 30 were about 1/10 or less of the gas release amount of Comparative Example 1.

また、図1(a)に本願実施例の代表的な表面形態として、実施例1の表面の走査電子顕微鏡像、同図(b)に比較例1の表面の走査電子顕微鏡像を示した。
実施例1では、表面は溶岩状の形態をしており、ところどころ空孔が存在した様な酸化皮膜形態であるが、比較例1は一般的なポーラス型のアノード酸化処理の形態であった。
FIG. 1A shows a scanning electron microscope image of the surface of Example 1, and FIG. 1B shows a scanning electron microscope image of the surface of Comparative Example 1 as a representative surface form of the embodiment of the present application.
In Example 1, the surface is in the form of lava and is in the form of an oxide film in which pores existed in some places, but Comparative Example 1 was in the form of a general porous type anodic oxidation treatment.

[比較例2]
電解液に3g/L−りん酸三ナトリウム、3g/L水酸化カリウム、3g/L−メタケイ酸ナトリウムの混合液を用意した。アルミニウム合金A6061の30mm×40mm×2mmの板を電解液に浸漬し実施例と同様な方法で火花放電を伴うアノード酸化処理を行い、試料表面に酸化皮膜を形成した。
図1(c)に比較例2の表面の走査電子顕微鏡像を示す。皮膜形態は、実施例1と同様であった。
下記表3に実施例1と比較例2の酸化皮膜の構成成分を電子線μアナライザー(EPMA)で分析した結果を示す。比較例2では、酸化皮膜中に電解液のアニオンである、ナトリウム、カリウムが比較的大量に検出された。一方、実施例1では、電解液中にナトリウム、カリウムを含まないので、形成された酸化皮膜中にもナトリウム、カリウムは存在しなかった。
この結果から、半導体、フラットパネルなどの製造工程中における成膜やエッチングなどの際にはナトリウム、カリウムは最も嫌われる不純物であるが、本発明の方法による耐食処理を行った部材はナトリウム、カリウムが含有されず、半導体、フラットパネルなどの製造工程にも使用することができることが分かった。
[Comparative Example 2]
A mixed solution of 3 g / L-trisodium phosphate, 3 g / L potassium hydroxide, and 3 g / L-sodium metasilicate was prepared as the electrolytic solution. A 30 mm × 40 mm × 2 mm plate of aluminum alloy A6061 was immersed in an electrolytic solution, and an anodic oxidation treatment with spark discharge was performed in the same manner as in the example to form an oxide film on the sample surface.
FIG. 1C shows a scanning electron microscope image of the surface of Comparative Example 2. The film form was the same as in Example 1.
Table 3 below shows the results of analyzing the constituent components of the oxide films of Example 1 and Comparative Example 2 using an electron beam μ analyzer (EPMA). In Comparative Example 2, a relatively large amount of sodium and potassium, which are anions of the electrolytic solution, were detected in the oxide film. On the other hand, in Example 1, since sodium and potassium were not included in the electrolytic solution, neither sodium nor potassium was present in the formed oxide film.
From these results, sodium and potassium are the most disliked impurities during film formation and etching in the manufacturing process of semiconductors and flat panels, but the members subjected to the corrosion resistance treatment by the method of the present invention are sodium and potassium. It was found that it can be used for manufacturing processes of semiconductors, flat panels and the like.

[比較例3〜5]
表2に示したようにそれぞれの電解質を単独で溶解した電解液を用意した。アルミニウム合金A6061の30mm×40mm×2mmの板状試料を電解液に浸漬した。試料側をプラス極とし、対極のマイナス極にカーボン電極を取り付けた。実施例と同様な電流密度で同様な条件で火花放電を伴うアノード酸化処理を行おうとした。
比較例3のアジピン酸二アンモニウム単独の電解液を用いた場合、最大電圧は450Vまで上昇させることはできるものの、絶縁破壊が不安定になり、図2に示すように、処理開始から1000秒以内(具体的には400秒〜700秒後)に電圧の上昇カーブが途中でふらついた(20Vを超える電圧降下が生じた)。この現象は不規則にかつ処理回数を増やすごとに顕著に現れた。また、試料の絶縁破壊の位置が局所的であり、アジピン酸二アンモニウム単独の電解液では均一で安定な処理ができないことが分かった。一方、実施例1の電圧上昇カーブは比較例3に比べふらつきが少なく処理回数を重ねても安定していた。
比較例4の四ほう酸アンモニウム単独の電解液を用いた場合、最大電圧は450Vまで上昇させることができ、電圧の上昇カーブも安定であった。しかし、処理回数を重ねると、絶縁破壊が不安定になり、アジピン酸二アンモニウム単独電解液と同様に電圧の上昇カーブが途中でふらつく現象が起きた。液の寿命に問題があることが分かった。実施例15の場合の電圧曲線は処理回数を重ねても図2の実施例1と同様に電圧の上昇が安定的であった。
比較例5のリン酸三アンモニウム単独の電解液を用いた場合の電圧上昇曲線を図3に示す。比較例5では電圧の上昇が他の電解液に比べ遅く、しかも、処理開始から1000秒以内に20Vを超える電圧降下が生じた。ようやく410Vまで上昇したところで、急に電流が流れなくなりその結果電圧が急上昇(1秒当たり60V以上の上昇)するという現象が起きた。更に再び電流が流れだし電圧が急降下した。著しく安定性を欠く処理であった。実施例21の電圧曲線は、安定的に電圧が上昇しており、安定な処理が可能になることが分かった。
[Comparative Examples 3 to 5]
As shown in Table 2, an electrolytic solution in which each electrolyte was dissolved alone was prepared. A 30 mm × 40 mm × 2 mm plate sample of aluminum alloy A6061 was immersed in the electrolyte. The sample side was a positive electrode, and a carbon electrode was attached to the negative electrode of the counter electrode. Anodization with spark discharge was performed under the same conditions at the same current density as in the example.
When the electrolyte of diammonium adipate alone in Comparative Example 3 was used, the maximum voltage could be increased up to 450V, but the dielectric breakdown became unstable, and within 1000 seconds from the start of treatment as shown in FIG. The voltage rise curve fluctuated on the way (specifically, after 400 seconds to 700 seconds) (a voltage drop exceeding 20 V occurred). This phenomenon appeared prominently irregularly and every time the number of treatments was increased. Further, it was found that the location of the dielectric breakdown of the sample was local, and uniform and stable treatment could not be performed with an electrolyte solution of diammonium adipate alone. On the other hand, the voltage increase curve of Example 1 had less fluctuation than that of Comparative Example 3, and was stable even after repeated processing.
When the electrolytic solution of ammonium tetraborate alone in Comparative Example 4 was used, the maximum voltage could be increased up to 450 V, and the voltage increase curve was stable. However, when the number of treatments was repeated, the dielectric breakdown became unstable, and the voltage rising curve fluctuated in the middle like the diammonium adipate single electrolyte. It was found that there was a problem with the life of the liquid. The voltage curve in the case of Example 15 showed a stable increase in voltage as in Example 1 of FIG.
FIG. 3 shows a voltage increase curve when the electrolytic solution of triammonium phosphate alone in Comparative Example 5 is used. In Comparative Example 5, the increase in voltage was slower than that of other electrolytes, and a voltage drop exceeding 20 V occurred within 1000 seconds from the start of treatment. When the voltage finally increased to 410V, a current suddenly stopped flowing, and as a result, a voltage suddenly increased (an increase of 60 V or more per second). Furthermore, the current began to flow again and the voltage suddenly dropped. It was a treatment that was significantly less stable. From the voltage curve of Example 21, it was found that the voltage increased stably and stable treatment was possible.

[比較例6]
20wt.%−アジピン酸二アンモニウム、10vol.%−トリエタノールアミンを混合させた電解液を用意した。アルミニウム合金A6061の30mm×40mm×2mmの板状試料を電解液に浸漬した。試料側をプラス極とし、対極のマイナス極にカーボン電極を取り付けた。一定電流密度4A/dmを保持しながら、最大電圧400V程度まで火花放電を伴うアノード酸化処理を行い、設定した最大電圧に電圧が到達後、最大電圧を保持しながら一定電圧でアノード酸化処理を30分行った。最大電圧400Vとしたのは、絶縁破壊が不安定になり電圧がふらつき、これ以上電圧を上昇させることができなかったためである。絶縁破壊の発生個所も局所的であり、皮膜形成した試料を目視で観察したところ、形態にムラがあり均一で安定な処理ができなかった。これはアジピン酸二アンモニウムの濃度が高いことに起因していると考えられる。
[Comparative Example 6]
20 wt. % -Diammonium adipate, 10 vol. An electrolytic solution in which% -triethanolamine was mixed was prepared. A 30 mm × 40 mm × 2 mm plate sample of aluminum alloy A6061 was immersed in the electrolyte. The sample side was a positive electrode, and a carbon electrode was attached to the negative electrode of the counter electrode. While maintaining a constant current density of 4A / dm 2, subjected to anode oxidation process with a spark discharge to around the maximum voltage 400V, after reaching a voltage to the maximum voltage set, the anodized at a constant voltage while maintaining a maximum voltage It went for 30 minutes. The reason why the maximum voltage is set to 400 V is that the dielectric breakdown becomes unstable, the voltage fluctuates, and the voltage cannot be further increased. The location where the dielectric breakdown occurred was also local, and when the film-formed sample was visually observed, the shape was uneven and uniform and stable treatment could not be performed. This is considered due to the high concentration of diammonium adipate.

尚、上記実施例1〜30の処理において、最大の電圧に到達した後に、電圧を維持した状態でアノード酸化処理を30分間維持するようにした。
参考として、実施例1の処理過程の電流及び電圧の関係をグラフにしたものを図4に示す。
図4は、定電圧処理を30分間継続した例を示すが、このグラフから定電圧処理開始から15分程度で電流値は半減していることがわかるので、定電圧処理は最低15分行えば良いことが分かった。
In the treatments of Examples 1 to 30, after reaching the maximum voltage, the anodic oxidation treatment was maintained for 30 minutes while maintaining the voltage.
As a reference, FIG. 4 shows a graph of the relationship between the current and voltage in the process of Example 1.
FIG. 4 shows an example in which the constant voltage process is continued for 30 minutes. From this graph, it can be seen that the current value is halved in about 15 minutes from the start of the constant voltage process. I understood that.

Claims (4)

アルミニウム又はアルミニウム合金を火花放電を伴うマイクロアーク型のアノード酸化処理することにより酸化皮膜を形成する方法において、アルカリ金属とアルミニウムに対する安定度定数が9以上のアミノカルボン酸アニオンを含まず、且つ、リン酸アンモニウム塩、ホウ酸アンモニウム塩及び有機酸アンモニウム塩のうちの少なくとも1種を含む溶液に、アンモニア、ヒドラジン、エタノールアミン及び炭酸アンモニウムのうちの少なくとも1種を添加して、アルカリ性溶液としたものを電解液として使用することを特徴とする酸化皮膜の形成方法。 In a method for forming an oxide film by subjecting aluminum or an aluminum alloy to micro arc type anodizing treatment with spark discharge, an aminocarboxylate anion having a stability constant of 9 or more with respect to alkali metal and aluminum is not contained, and phosphorus An alkaline solution prepared by adding at least one of ammonia, hydrazine, ethanolamine and ammonium carbonate to a solution containing at least one of acid ammonium salt, ammonium borate salt and organic acid ammonium salt A method for forming an oxide film, characterized by being used as an electrolytic solution. リン酸アンモニウム塩、ホウ酸アンモニウム塩及び有機酸アンモニウム塩を溶液中に2〜15重量%含有することを特徴とする請求項1に記載の酸化皮膜の形成方法。   The method for forming an oxide film according to claim 1, wherein the solution contains 2 to 15% by weight of ammonium phosphate, ammonium borate and organic acid ammonium salt. 前記アノード酸化処理における電流密度を2A/dm〜8A/dmとし、最大の電圧を250V〜650Vとすることを特徴とする請求項1又は2に記載の酸化皮膜の形成方法。 3. The method for forming an oxide film according to claim 1, wherein a current density in the anodic oxidation treatment is 2 A / dm 2 to 8 A / dm 2 , and a maximum voltage is 250 V to 650 V. 4. 前記最大の電圧に到達した後に、前記電圧を維持した状態でアノード酸化処理を少なくとも15分維持することを特徴とする請求項3に記載の酸化皮膜の形成方法。   4. The method of forming an oxide film according to claim 3, wherein after the maximum voltage is reached, the anodic oxidation treatment is maintained for at least 15 minutes while maintaining the voltage.
JP2011266724A 2011-12-06 2011-12-06 Method for forming oxide film and oxide film Active JP5798900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266724A JP5798900B2 (en) 2011-12-06 2011-12-06 Method for forming oxide film and oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266724A JP5798900B2 (en) 2011-12-06 2011-12-06 Method for forming oxide film and oxide film

Publications (2)

Publication Number Publication Date
JP2013119634A JP2013119634A (en) 2013-06-17
JP5798900B2 true JP5798900B2 (en) 2015-10-21

Family

ID=48772434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266724A Active JP5798900B2 (en) 2011-12-06 2011-12-06 Method for forming oxide film and oxide film

Country Status (1)

Country Link
JP (1) JP5798900B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6257944B2 (en) * 2013-07-29 2018-01-10 ハンファテクウィン株式会社Hanwha Techwin Co.,Ltd. Aluminum alloy member and method for forming surface protective film of aluminum alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4098979B2 (en) * 2001-12-04 2008-06-11 ディップソール株式会社 Method for forming a ceramic film on the surface of an aluminum substrate
JP2008266701A (en) * 2007-04-18 2008-11-06 Ulvac Japan Ltd Method for producing cooling member for vacuum, cooling member for vacuum and equipment for vacuum
KR101285485B1 (en) * 2008-12-26 2013-07-23 니혼 파커라이징 가부시키가이샤 Method of electrolytic ceramic coating for matal, electrolysis solution for electrolytic ceramic coating for metal, and metallic material
JP5371477B2 (en) * 2009-02-18 2013-12-18 株式会社アルバック Formation method of oxide film
US9701177B2 (en) * 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components

Also Published As

Publication number Publication date
JP2013119634A (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5019391B2 (en) Metal oxide film, laminate, metal member and method for producing the same
US8282807B2 (en) Metal member having a metal oxide film and method of manufacturing the same
EP2604725B1 (en) Method of removing oxide film on surface of copper or copper-base alloy.
JP5152574B2 (en) Method for anodizing aluminum member
JP5078013B2 (en) Metal member having metal oxide film and method for producing the same
JP2008045161A (en) Aluminum alloy to be anodized and used for plasma treatment apparatus, manufacturing method therefor, aluminum alloy member having anodic oxide film thereon, and plasma treatment apparatus
TWI424096B (en) Method for forming anodic oxide film
JP5700235B2 (en) Method of forming alumite film
JP4888948B2 (en) Method for forming high speed anodized film of aluminum material
JP2010111890A (en) Method for anti-corrosion treatment of aluminum or aluminum alloy
JP5798900B2 (en) Method for forming oxide film and oxide film
JP2005105300A (en) Surface treatment method of aluminum or aluminum alloy used for vacuum device and its components, and vacuum device and its components
JP2016156036A (en) Coating formation method
JP2007154300A (en) Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation
JP5369083B2 (en) Surface-treated aluminum member having high withstand voltage and method for producing the same
JP5863301B2 (en) Management method of electrolyte for anodizing
RU2466218C1 (en) Method of micro arc obtaining of composite coating on aluminium and its alloys
JP2013049903A (en) Method for manufacturing aluminum anodic oxide coating being superior in productivity and having high voltage endurance
US9845547B2 (en) Electrolytic solution and method for surface treatment of aluminum alloys for casting
JP5777939B2 (en) Anodized film generation method
JP6108938B2 (en) Formation method of oxide film
JP5162148B2 (en) Composite and production method thereof
JP6123116B2 (en) Manufacturing method of magnesium alloy products
JP2012144750A (en) Anodized member and method for sealing anodized film
JP5452034B2 (en) Surface treatment member for semiconductor manufacturing apparatus and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150824

R150 Certificate of patent or registration of utility model

Ref document number: 5798900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250