JP2001220637A - Aluminum alloy for anodic oxidation treatment, aluminum alloy member having anodically oxidized film and plasma treating system - Google Patents

Aluminum alloy for anodic oxidation treatment, aluminum alloy member having anodically oxidized film and plasma treating system

Info

Publication number
JP2001220637A
JP2001220637A JP2000026892A JP2000026892A JP2001220637A JP 2001220637 A JP2001220637 A JP 2001220637A JP 2000026892 A JP2000026892 A JP 2000026892A JP 2000026892 A JP2000026892 A JP 2000026892A JP 2001220637 A JP2001220637 A JP 2001220637A
Authority
JP
Japan
Prior art keywords
aluminum alloy
plasma
impurity elements
less
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000026892A
Other languages
Japanese (ja)
Other versions
JP3919996B2 (en
Inventor
Toshiyuki Tanaka
敏行 田中
Koji Wada
浩司 和田
Atsushi Hisamoto
淳 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000026892A priority Critical patent/JP3919996B2/en
Priority to TW090102254A priority patent/TW488010B/en
Priority to US09/773,638 priority patent/US6521046B2/en
Priority to KR10-2001-0005247A priority patent/KR100407704B1/en
Publication of JP2001220637A publication Critical patent/JP2001220637A/en
Application granted granted Critical
Publication of JP3919996B2 publication Critical patent/JP3919996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy for anodic oxidation treatment excellent in heat cracking resistance and corrosion resistance in a high temperature corrosive environment or moreover capable of realizing the excellent reduction of contamination and to provide an aluminum alloy member having an anodically oxidized film or the like. SOLUTION: This aluminum alloy for anodic oxidation treatment contains, by weight, 0.1 to 2.0% Si, 0.1 to 3.5% Mg, 0.02 to 4.0% Cu, and the balance Al with impurity elements. Among the impurity elements, preferably, the content of Fe is controlled to <=0.1%, Cr to<=0.04% and Mn to <=0.04%, and furthermore, the total of the impurity elements other than Fe, Cr and Mn is preferably controlled to <=0.1%. Moreover, the aluminum alloy member in this invention is the one obtained by depositing an anodically oxidized film on the surface of a base material composed of the above alloy. This invention is suitably utilized for various members used in a high temperature corrosive environment, particularly, in high temperature corrosive gas and plasma environments.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、陽極酸化処理に適
したアルミニウム合金およびこのアルミニウム合金によ
って形成された基材の表面に陽極酸化皮膜が形成された
アルミニウム合金部材に関し、これらの合金、部材は高
温腐食環境下での耐熱割れ性や耐食性が要求される種々
の用途、例えば半導体や液晶の製造設備などのプラズマ
処理装置に用いられる真空チャンバ、そのチャンバの内
部に設けられる部品の材料として好適に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy suitable for anodizing and an aluminum alloy member having an anodized film formed on a surface of a substrate formed of the aluminum alloy. Suitable for various applications requiring heat cracking resistance and corrosion resistance under high-temperature corrosive environment, for example, vacuum chambers used in plasma processing equipment such as semiconductor and liquid crystal manufacturing equipment, and materials suitable for components provided inside the chambers Used.

【0002】[0002]

【従来の技術】アルミニウム合金を基材として、その基
材の表面に陽極酸化皮膜を形成し、基材に耐食性、耐摩
耗性などを付与させる陽極酸化処理は、従来から頻繁に
行われてきた。例えば、半導体製造設備のプラズマ処理
装置に用いられる真空チャンバおよびその中に設置され
る電極等の各種部品は、主にアルミニウム合金によって
形成されているが、無垢のアルミニウム合金のままでは
耐食性や耐摩耗性を維持することができないので、通
常、アルミニウム合金によって形成された基材に陽極酸
化処理を施して、その表面に陽極酸化皮膜が形成され
る。その理由は、前記真空チャンバの内部では、シリコ
ン・ウェハ等の被処理物に半導体製造の前処理工程や製
造工程において室温から200℃以上の高温環境下で様
々な種類の腐食性ガスやプラズマあるいはプラズマ化す
ることによって得られる活性種によって所定の処理が行
われるため、真空チャンバの内面や、真空チャンバの内
部に設置されるプラズマ電極等の種々の部品も前記雰囲
気に曝され、無垢のアルミニウム合金のままでは耐食性
や耐摩耗性を維持することができないからである。
2. Description of the Related Art An anodizing treatment for forming an anodized film on the surface of an aluminum alloy substrate to impart corrosion resistance, abrasion resistance and the like to the substrate has been frequently performed. . For example, various components such as a vacuum chamber used in a plasma processing apparatus of a semiconductor manufacturing facility and electrodes installed therein are mainly formed of an aluminum alloy, but the corrosion resistance and abrasion resistance of a pure aluminum alloy as it is. In general, the base material formed of an aluminum alloy is subjected to an anodic oxidation treatment, so that an anodic oxide film is formed on the surface thereof. The reason is that, inside the vacuum chamber, various kinds of corrosive gas, plasma or various kinds of materials are processed in a pretreatment process or a manufacturing process of a semiconductor in a high temperature environment from room temperature to 200 ° C. or more in an object to be processed such as a silicon wafer. Since predetermined processing is performed by the active species obtained by the plasma, various components such as the inner surface of the vacuum chamber and the plasma electrode installed inside the vacuum chamber are also exposed to the atmosphere, and a pure aluminum alloy is used. This is because corrosion resistance and wear resistance cannot be maintained as it is.

【0003】前記アルミニウム合金としては、主にAl
−Mg系合金(JISA5000系)、Al−Mg−Si
系合金(JISA6000系)が用いられているが、近年
になって、デバイスデザインルールの微細化、プラズマ
の高密度化に対応するため、部材のさらなる高耐食性、
被処理物の低汚染化が求められるに至っている。
[0003] As the aluminum alloy, Al is mainly used.
-Mg-based alloy (JISA5000-based), Al-Mg-Si
Alloys (JISA6000 series) are used, but in recent years, in order to cope with miniaturization of device design rules and high density of plasma, further high corrosion resistance of members,
It has been required to reduce the pollution of the object to be treated.

【0004】これらの要求を満足するため、陽極酸化処
理を施す基材の材料として高純度アルミニウム(Al:
99.9wt%以上)や、また特開平10−88271号
公報に記載されているように、高純度のアルミニウム中
にSi、Mgを添加し、その他の不純物の総和を0.1
%以下としたアルミニウム合金が提案されている。
In order to satisfy these requirements, high-purity aluminum (Al:
99.9 wt% or more) or as described in JP-A-10-88271, Si and Mg are added to high-purity aluminum, and the total amount of other impurities is 0.1%.
% Has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
のアルミニウム合金からなる基材に陽極酸化処理を施し
た部材は、陽極酸化皮膜自身に起因する汚染をある程度
低減することができるが、いずれも室温から200℃以
上の高温の腐食性ガス、プラズマ環境下では、基材アル
ミニウム合金と陽極酸化皮膜との熱膨張率の差に起因し
た膨張差を緩和することが出来ず、陽極酸化皮膜に割れ
が発生し、発生した割れに沿って腐食が進展する。これ
によって、部材の寿命が短くなるだけでなく、パーティ
クルの発生を招来し、プラズマ処理における被処理物の
汚染原因となる。
However, the members obtained by anodizing the substrate made of these aluminum alloys can reduce the contamination caused by the anodic oxide film itself to some extent, but in any case, from the room temperature. In a corrosive gas at a high temperature of 200 ° C or higher and in a plasma environment, the expansion difference due to the difference in the coefficient of thermal expansion between the base aluminum alloy and the anodic oxide film cannot be reduced, and the anodic oxide film cracks. Corrosion then progresses along the cracks. As a result, not only the life of the member is shortened, but also particles are generated, which causes contamination of an object to be processed in the plasma processing.

【0006】本発明は、かかる問題に鑑みなされたもの
で、高温腐食環境下において、耐熱割れ性および耐食性
に優れ、あるいはさらに優れた低汚染化を実現すること
ができる陽極酸化処理用アルミニウム合金、陽極酸化皮
膜を有するアルミニウム合金部材等を提供しようとする
ものである。
The present invention has been made in view of the above problems, and an aluminum alloy for anodic oxidation treatment capable of achieving excellent heat cracking resistance and corrosion resistance in a high-temperature corrosive environment, or capable of realizing further excellent low pollution. It is an object of the present invention to provide an aluminum alloy member having an anodized film.

【0007】[0007]

【課題を解決するための手段】本発明の陽極酸化処理用
アルミニウム合金は、請求項1に記載したように、化学
組成がwt%で、Si:0.1〜2.0%、Mg:0.1
〜3.5%、Cu:0.02〜4.0%、残部Alを本
質的成分として含有し、その他不純物元素からなるもの
である。
According to the present invention, the aluminum alloy for anodizing treatment has a chemical composition of 0.1% to 2.0% by weight of Si, 0.1% by weight of Mg and 0% by weight of Mg. .1
-3.5%, Cu: 0.02-4.0%, the balance containing Al as an essential component, and other impurity elements.

【0008】この発明によれば、所定量のSiおよびM
gの含有により析出物(Mg2Si)が時効により析出
し、このMg2Si の周りにCuが濃化した状態とな
り、この状態で陽極酸化処理を施すことにより、陽極酸
化皮膜中のセル3重点に熱膨張率の差異を緩和するのに
十分な空隙が形成される。このため、高温環境において
陽極酸化皮膜における割れの発生が抑制、防止され、陽
極酸化皮膜の本来の耐食性が発揮されるようになり、耐
熱割れ性および耐食性に優れる。また、熱膨張差に起因
した割れに基づいて発生する腐食が防止されるため、腐
食生成物に起因した汚染を抑制、防止することができ
る。
According to the present invention, a predetermined amount of Si and M
g, precipitates (Mg 2 Si) are precipitated by aging, and Cu is concentrated around the Mg 2 Si. By performing anodizing treatment in this state, the cells 3 in the anodized film are formed. Voids are formed at the point of interest that are sufficient to reduce the difference in the coefficient of thermal expansion. For this reason, the occurrence of cracks in the anodic oxide film is suppressed and prevented in a high temperature environment, the original corrosion resistance of the anodic oxide film is exhibited, and the heat crack resistance and the corrosion resistance are excellent. Further, since corrosion caused by cracks caused by a difference in thermal expansion is prevented, contamination caused by corrosion products can be suppressed and prevented.

【0009】この発明において、請求項2に記載したよ
うに、不純物元素の内、Fe:0.1%以下、Cr:
0.04%以下、Mn:0.04%以下とすることが好
ましく、さらには請求項3に記載したように、Fe、C
r、Mn以外の不純物元素の総和を0.1%以下に止め
ることが好ましい。これによって、陽極酸化皮膜におけ
る不純物元素量を低減することができ、皮膜自身に起因
する汚染も抑制することができ、優れた低汚染化を実現
することができる。
According to the present invention, among the impurity elements, Fe: 0.1% or less, Cr:
0.04% or less, Mn: 0.04% or less is preferable, and further, as described in claim 3, Fe, C
It is preferable to keep the total sum of impurity elements other than r and Mn to 0.1% or less. As a result, the amount of impurity elements in the anodic oxide film can be reduced, contamination due to the film itself can be suppressed, and excellent low contamination can be realized.

【0010】また、本発明のアルミニウム合金部材は、
請求項4に記載したように、請求項1、2または3に記
載したアルミニウム合金からなる基材の表面に陽極酸化
皮膜が形成されたものである。
[0010] Further, the aluminum alloy member of the present invention comprises:
As described in claim 4, an anodic oxide film is formed on the surface of the base material made of the aluminum alloy described in claim 1, 2 or 3.

【0011】この発明によれば、基材と陽極酸化皮膜と
の熱膨張差が緩和され、高温環境において陽極酸化皮膜
における割れの発生が抑制、防止され、陽極酸化皮膜の
本来の耐食性が発揮されるようになり、耐熱割れ性およ
び耐食性に優れ、さらには割れに基づいて発生する腐食
が防止されるため、低汚染化を実現することができる。
According to the present invention, the difference in thermal expansion between the base material and the anodic oxide film is reduced, the occurrence of cracks in the anodic oxide film in a high temperature environment is suppressed and prevented, and the original corrosion resistance of the anodic oxide film is exhibited. As a result, the resistance to heat cracking and corrosion resistance is excellent, and furthermore, the corrosion caused by cracking is prevented, so that low pollution can be realized.

【0012】また、本発明のプラズマ処理装置は、請求
項5に記載したように、真空チャンバ内でプラズマある
いはプラズマ化することによって得られる活性種によっ
て彼処理物に所定の処理を施すプラズマ処理装置であっ
て、前記真空チャンバおよびその内部に設けられる部品
のうちの1種以上が請求項2または3に記載したアルミ
ニウム合金からなる基材の表面に陽極酸化皮膜が形成さ
れたアルミニウム合金部材によって構成されたものであ
る。
According to a fifth aspect of the present invention, there is provided a plasma processing apparatus for performing a predetermined process on an object to be processed by using plasma or active species obtained by forming a plasma in a vacuum chamber. Wherein at least one of the vacuum chamber and components provided therein is formed of an aluminum alloy member having an anodized film formed on a surface of the aluminum alloy base material according to claim 2 or 3. It was done.

【0013】このプラズマ処理装置によれば、真空チャ
ンバおよびその内部に設けられる部品のうちの1種以
上、すなわち真空チャンバ、あるいは真空チャンバ内に
設けられる部品の1種以上、あるいはこれらの両者が請
求項2または3に記載したアルミニウム合金からなる基
材の表面に陽極酸化皮膜が形成されたアルミニウム合金
部材によって構成されるので、当該部材は真空チャンバ
内の高温腐食性ガス、プラズマ等の雰囲気下において優
れた耐熱割れ性、耐食性を有し、また陽極酸化皮膜自身
に起因する不純物元素による汚染をも低減することがで
きるため、被処理物に対して優れた低汚染化を実現する
ことができ、製造歩留まりが向上する。
According to this plasma processing apparatus, at least one of the vacuum chamber and the components provided therein, that is, the vacuum chamber, or at least one of the components provided in the vacuum chamber, or both of them are required. Item 2 or 3, which is constituted by an aluminum alloy member having an anodic oxide film formed on the surface of the base material made of the aluminum alloy described in Item 2 or 3, so that the member can be used in an atmosphere such as a high-temperature corrosive gas or plasma in a vacuum chamber. It has excellent heat cracking resistance and corrosion resistance, and can also reduce contamination due to impurity elements caused by the anodic oxide film itself. The production yield is improved.

【0014】[0014]

【発明の実施の形態】本発明者らは、室温から200℃
以上の高温腐食環境下において、耐熱割れ性および耐食
性が良好でしかも低汚染化を実現することができる陽極
酸化皮膜を有するアルミニウム合金部材を実現すべく、
鋭意研究を行った結果、基材を形成するアルミニウム合
金中の添加元素成分と陽極酸化皮膜の耐食性との間に相
関関係があることを突き止め、高耐食性陽極酸化皮膜を
形成する添加元素成分としてSi、Mg、Cuを見出し
た。すなわち、Si、Mgのみを添加したアルミニウム
合金あるいはJISAl000系のような高純度アルミ
ニウム材を基材として陽極酸化皮膜を形成した部材で
は、室温から200℃以上の高温腐食ガス環境下ではそ
の陽極酸化皮膜に熱による割れが発生し、割れに腐食性
ガスが侵入することにより基材が腐食してしまうため、
陽極酸化皮膜の持つ本来の耐食性を発現できず、また腐
食生成物によるパーティクルが発生した。ところが、S
i、Mg以外にCuを適量添加することにより、その陽
極酸化皮膜に割れが入らず、このため基材に腐食性ガス
が接触しないようになるため、高温において優れた耐食
性を発現させることでき、引いてはパーティクルの発生
が抑制できることを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION
Under the above high-temperature corrosive environment, in order to realize an aluminum alloy member having an anodic oxide film that has good heat cracking resistance and corrosion resistance and can realize low pollution.
As a result of intensive research, they have found that there is a correlation between the additive element component in the aluminum alloy forming the base material and the corrosion resistance of the anodic oxide film, and found that Si is an additive element component that forms the high corrosion resistant anodic oxide film. , Mg, and Cu. That is, in a member having an anodized film formed on an aluminum alloy to which only Si or Mg is added or a high-purity aluminum material such as JIS Al000 as a base material, the anodized film is formed in a high temperature corrosive gas environment from room temperature to 200 ° C. or more. Cracks occur due to heat, and the base material is corroded by the corrosive gas entering the cracks.
The inherent corrosion resistance of the anodic oxide film could not be exhibited, and particles due to corrosion products were generated. However, S
i, by adding an appropriate amount of Cu other than Mg, the anodic oxide film does not crack, so that the corrosive gas does not come into contact with the base material, it is possible to express excellent corrosion resistance at high temperatures, It has been found that the generation of particles can be suppressed by pulling.

【0015】基材中に存在するMg、Si、Cuが陽極
酸化皮膜の耐食性に効果を発揮するメカニズムについて
は現在鋭意調査中であるが、基材中に析出するMg2
i の周りにCuが濃化した状態で陽極酸化処理を施す
ことにより、皮膜中のセル3重点に熱膨張率の差異を緩
和するのに十分な空隙が形成されることを突き止めてい
る。さらに、Mg,Si,Cuの元素が、陽極酸化処理
時に形成される1つ1つのセル自身に熱割れに対する抵
抗力を発現するような影響を与えているのではないかと
推察される。
The mechanism by which Mg, Si, and Cu present in the base material exert an effect on the corrosion resistance of the anodic oxide film is currently being investigated, but Mg 2 S deposited in the base material is being investigated.
It has been ascertained that by performing anodizing treatment in a state where Cu is concentrated around i, sufficient voids are formed at the triple point of the cells in the coating to reduce the difference in the coefficient of thermal expansion. Furthermore, it is speculated that the elements of Mg, Si, and Cu may have an effect on each cell formed during the anodic oxidation treatment so as to develop resistance to thermal cracking.

【0016】さらにアルミニウム合金中の含有元素量に
ついて鋭意検討した結果、化学組成がwt%で、Si:
0.1〜2.0%、Mg:0.1〜3.5%およびC
u:0.02〜4.0%を本質的成分として含有するア
ルミニウム合金を基材として、これに陽極酸化皮膜を形
成することにより、所望の耐熱割れ性、耐食性を付与で
きることを見出した。従って、不純物元素であるFe、
Cr、Mnなど、その他の元素は皮膜自身に起因する汚
染を低減する上で含有量を低減しても耐食性を劣化させ
ることはない。
Further, as a result of intensive studies on the content of elements contained in the aluminum alloy, it was found that the chemical composition was wt.
0.1-2.0%, Mg: 0.1-3.5% and C
It has been found that desired heat cracking resistance and corrosion resistance can be imparted by forming an anodized film on an aluminum alloy containing u: 0.02 to 4.0% as an essential component as a base material. Therefore, the impurity element Fe,
Other elements such as Cr and Mn do not deteriorate the corrosion resistance even if the content is reduced in order to reduce the contamination caused by the film itself.

【0017】本発明は、上記知見を基になされたもので
あり、まず本発明のアルミニウム合金の成分限定理由に
ついて説明する。成分の単位はwt%である。
The present invention has been made based on the above findings. First, the reasons for limiting the components of the aluminum alloy of the present invention will be described. The unit of the component is wt%.

【0018】Si:0.1〜2.0% Mg:0.1〜3.5% Si、Mgは、Mg2Si 析出物を時効により析出させ
るのに必要な元素であり、Si:0.1%未満、Mg:
0.1%未満では析出物Mg2Si がほとんど形成され
ないため、セル3重点に熱膨張を緩和するほどの空隙を
形成することができない。一方、Si:2.0%超、M
g:3.5%超では粗大な晶出物、例えばMg2Si、
AlmMgn(Al3Mg2、Al12Mg17)及び粗大なSi
析出相が形成され、これが陽極酸化皮膜中に残存して欠
陥となり、耐食性を劣化させる。
Si: 0.1 to 2.0% Mg: 0.1 to 3.5% Si and Mg are elements necessary for precipitating a Mg 2 Si precipitate by aging. Less than 1%, Mg:
If the amount is less than 0.1%, the precipitate Mg 2 Si is scarcely formed, so that it is not possible to form a void at the triple point of the cell to reduce the thermal expansion. On the other hand, Si: more than 2.0%, M
g: If it exceeds 3.5%, coarse crystals such as Mg 2 Si,
Al m Mg n (Al 3 Mg 2, Al 12 Mg 17 ) and coarse Si
A precipitated phase is formed, which remains in the anodic oxide film and becomes a defect, and deteriorates corrosion resistance.

【0019】Cu:0.02〜4.0% CuはMg2Si の周りに濃化した状態で陽極酸化処理
を施すことにより、陽極酸化皮膜中のセル3重点に熱膨
張率の差異を緩和するのに十分な空隙を形成させる作用
を有する。0.02%未満ではかかる作用が過少であ
り、一方4.0%を超えると皮膜の成長が大きく阻害さ
れ、処理に長時間がかかる。また、長時間の処理中に皮
膜が電解液に溶解し、皮膜性状が不均一になる。このた
め、Cuの下限を0.02%、好ましくは0.1%と
し、その上限を4.0%、好ましくは0.15%とす
る。
Cu: 0.02 to 4.0% Cu is anodized in a state of being concentrated around Mg 2 Si to reduce the difference in the coefficient of thermal expansion at the triple point of the cell in the anodic oxide film. It has the effect of forming a void sufficient to perform If the content is less than 0.02%, the effect is too small. On the other hand, if the content exceeds 4.0%, the growth of the film is greatly inhibited, and the treatment takes a long time. Further, the film dissolves in the electrolytic solution during the long-term treatment, and the film properties become non-uniform. Therefore, the lower limit of Cu is set to 0.02%, preferably 0.1%, and the upper limit is set to 4.0%, preferably 0.15%.

【0020】本発明のアルミニウム合金は上記Si、M
g、Cuおよび残部Alを本質的成分とし、その他不純
物によって形成されるが、不純物元素としてのFe、C
r、Mnなど重金属がウェハ等の被処理物中に置換型不
純物の位置を占めると、接合リーク電流の増加など半導
体装置(デバイス)の特性不良を引き起こすので、F
e、Cr、Mnをそれぞれ0.1%以下、0.04%以
下、0.04%以下に止めるのがよい。これにより、陽
極酸化皮膜自身からの汚染量を抑えることができ、半導
体装置の特性不良を抑制し、製造歩留まりを向上するこ
とができる。
The aluminum alloy of the present invention has the above Si, M
g, Cu and the balance Al are essential components and are formed by other impurities.
If a heavy metal such as r or Mn occupies the position of a substitutional impurity in an object to be processed such as a wafer, the characteristics of a semiconductor device (device) such as an increase in junction leak current are caused.
e, Cr, and Mn are preferably kept to 0.1% or less, 0.04% or less, and 0.04% or less, respectively. As a result, the amount of contamination from the anodic oxide film itself can be suppressed, the characteristic failure of the semiconductor device can be suppressed, and the manufacturing yield can be improved.

【0021】前記Fe、Cr、Mn以外にも、Ni、Z
n、Ti、B、Ca、Na、Kなどの不純物元素の存在
が被処理物の汚染に影響を及ぼすことがあるため、低汚
染化の観点からこれらの不純物元素の総和が0.1%以
下に止めることが好ましい。
In addition to the above Fe, Cr and Mn, Ni, Z
Since the presence of impurity elements such as n, Ti, B, Ca, Na, and K may affect the contamination of the object to be treated, the total of these impurity elements is 0.1% or less from the viewpoint of reducing pollution. It is preferable to stop at.

【0022】本発明のアルミニウム合金部材は、前記ア
ルミニウム合金からなる基材の表面に陽極酸化皮膜が形
成されたものである。前記基材は、前記アルミニウム合
金の鋳塊を圧延、鍛造、押出等の適宜の塑性加工によっ
て得たアルミニウム合金材を溶体化処理、時効処理を施
した後、適宜の形状に機械加工することによって製作し
てもよく、あるいは前記アルミニウム合金材を所定の形
状に成形加工した後、溶体化処理、時効処理を施しても
よい。溶体化処理、時効処理の条件としては、例えば通
常のT6処理である、溶体化処理515〜550℃、水
冷、時効処理170℃×8hr、155〜165℃×1
8hrを行うことができる。このような基材に陽極酸化
処理を施すことで、基材の表面に耐熱割れ性、耐食性に
優れた陽極酸化皮膜が形成される。
The aluminum alloy member of the present invention is obtained by forming an anodized film on the surface of a substrate made of the aluminum alloy. The base material is obtained by subjecting an ingot of the aluminum alloy to rolling, forging, solution treatment of an aluminum alloy material obtained by appropriate plastic working such as extrusion, aging treatment, and then machining into an appropriate shape. After the aluminum alloy material is formed into a predetermined shape, a solution treatment and an aging treatment may be performed. The conditions of the solution treatment and the aging treatment are, for example, a normal T6 treatment: solution treatment 515 to 550 ° C., water cooling, aging treatment 170 ° C. × 8 hr, 155 to 165 ° C. × 1
8 hours can be performed. By performing anodic oxidation treatment on such a substrate, an anodic oxide film excellent in heat crack resistance and corrosion resistance is formed on the surface of the substrate.

【0023】陽極酸化皮膜を形成する方法としては、電
解を行う条件、すなわら電解溶液の組成、濃度、電解条
件(電圧、電流密度、電流−電圧波形)などの条件を適
宜選択して行えばよい。陽極酸化処理液については、
C,S,N,P,Bから選ばれる1種以上の元素を含有
する溶液で電解を行うことが必要であり、例えば、シュ
ウ酸、ギ酸、スルファミン酸、リン酸、亜リン酸、ホウ
酸、硝酸あるいはその化合物、フタル酸あるいはその化
合物から選ばれる1種以上を含む水溶液を用いて行うこ
とが有効である。陽極酸化皮膜の膜厚は特に制限されな
いが、0.1〜200μm 程度、好ましくは0.5〜7
0μm 程度、より好ましくは1〜50μm程度が適当で
ある。
As a method of forming the anodic oxide film, conditions such as electrolysis conditions, that is, the composition and concentration of the electrolytic solution, and electrolysis conditions (voltage, current density, current-voltage waveform) are appropriately selected. Just do it. For the anodizing solution,
It is necessary to perform electrolysis in a solution containing at least one element selected from C, S, N, P, and B. For example, oxalic acid, formic acid, sulfamic acid, phosphoric acid, phosphorous acid, boric acid It is effective to use an aqueous solution containing at least one selected from acetic acid, nitric acid or a compound thereof, and phthalic acid or a compound thereof. Although the thickness of the anodic oxide film is not particularly limited, it is about 0.1 to 200 μm, preferably 0.5 to 7 μm.
About 0 μm, more preferably about 1 to 50 μm is appropriate.

【0024】前記アルミニウム合金部材は、高温の腐食
性雰囲気下で使用される各種用途に適するが、特に高温
環境下で腐食性ガス、プラズマ、あるいはプラズマ化す
ることによって得られる活性種に曝され、その一方で被
処理物に低汚染化が求められる半導体製造設備等に付設
されるプラズマ処理装置に用いられる真空チャンバおよ
びその内部に設けられる電極等の部品として好適に使用
される。
The aluminum alloy member is suitable for various uses used in a high-temperature corrosive atmosphere, but is particularly exposed to a corrosive gas, plasma, or an active species obtained by plasmatization in a high-temperature environment. On the other hand, it is suitably used as a vacuum chamber used in a plasma processing apparatus attached to a semiconductor manufacturing facility or the like in which an object to be processed is required to have low contamination, and as components such as electrodes provided inside the vacuum chamber.

【0025】以下、実施例によって本発明をさらに具体
的に説明するが、本発明はかかる実施例によって限定的
に解釈されるものではない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not construed as being limited to such Examples.

【0026】[0026]

【実施例】下記表1に記載した組成を有するアルミニウ
ム合金を溶製し、鋳造により得られた鋳塊を切断し、面
削した後、均熱処理を施した。均熱処理後、45mm厚の
素材を熱間圧延により4mm厚の板材に圧延し、溶体化処
理後、通常のT6処理を施して供試合金板を得た。この
合金板より35×25mmの試験片を採取し、表面を面削
加工した後、陽極酸化処理を施した。陽極酸化処理に使
用した処理液および電解電圧を表1に示す。処理液の温
度は室温とし、所定の膜厚になるまで処理した。
EXAMPLE An aluminum alloy having the composition shown in Table 1 below was melted, an ingot obtained by casting was cut, face-cut, and then subjected to soaking. After soaking, the 45 mm thick material was rolled into a 4 mm thick plate by hot rolling, subjected to a solution treatment, and then subjected to a normal T6 treatment to obtain a match metal plate. A 35 × 25 mm test piece was sampled from this alloy plate, the surface of the test piece was chamfered, and then anodized. Table 1 shows the processing solutions and the electrolytic voltages used for the anodizing treatment. The temperature of the treatment liquid was set to room temperature, and the treatment was performed until a predetermined film thickness was obtained.

【0027】以上のようにして製作された試料の耐熱割
れ性、耐ガス腐食性を評価するため、室温から250
℃までの加熱冷却サイクルを5サイクル行う耐熱割れ性
試験、5%塩素−アルゴン混合ガス中、300℃で3
hr保持する耐ハロゲンガス腐食性試験を行い、高温熱
サイクルおよび腐食環境下での陽極酸化皮膜の耐熱割れ
性およびガス耐食性を下記の基準によって評価した。 耐熱割れ性評価基準 ◎:割れ無し ○:割れ長さ80mm/10cm2未満 △:割れ長さ80mm/10cm2 以上〜160mm/10cm
2 未満 ×:割れ長さ160mm/10cm2 以上 耐ガス腐食性評価基準 ◎:腐食発生無し ○:腐食発生面積率10%未満 △:腐食発生面積率10%以上、20%未満 ×:腐食発生面積率20%以上
In order to evaluate the heat cracking resistance and gas corrosion resistance of the sample manufactured as described above, the temperature was changed from room temperature to 250 ° C.
Thermal crack resistance test in which 5 heating / cooling cycles up to 100 ° C are performed.
Halogen gas corrosion resistance test for holding at hr was performed, and heat crack resistance and gas corrosion resistance of the anodic oxide film under a high-temperature heat cycle and a corrosive environment were evaluated according to the following criteria. Evaluation criteria for heat cracking resistance :: no cracking ○: crack length less than 80 mm / 10 cm 2 △: crack length 80 mm / 10 cm 2 or more to 160 mm / 10 cm
Less than 2 ×: Crack length 160 mm / 10 cm 2 or more Gas corrosion resistance evaluation criteria :: No corrosion occurred ○: Corrosion occurrence area ratio less than 10% △: Corrosion occurrence area ratio 10% or more, less than 20% ×: Corrosion occurrence area 20% or more

【0028】また、試料No. 16〜23については、皮
膜形成速度を測定し、Cu含有量の相違による陽極酸化
処理性を下記の基準に基づいて評価した。 ・陽極酸化処理性評価基準 ○:20μm /hr以上 △:8μm /hr以上、20μm /hr未満 ×:8μm /hr未満
For Sample Nos. 16 to 23, the film formation rate was measured, and the anodic oxidizing property due to the difference in Cu content was evaluated based on the following criteria. · Anodizing treatment evaluation criteria ○: 20 μm / hr or more Δ: 8 μm / hr or more, less than 20 μm / hr ×: less than 8 μm / hr

【0029】上記耐熱割れ性、耐ガス腐食性および陽極
酸化処理性の評価結果を表1に併せて示す。なお、表1
の試料No. 5のアルミニウム合金は市販のJISA60
61アルミニウム合金に相当する。表1より、Si、M
gおよびCuの含有量が本発明条件を満足している試料
(No. 1〜10、No. 18〜22)については、良好な
耐熱割れ性、耐ガス腐食性および陽極酸化処理性が得ら
れた。一方、Cu量が発明範囲超のNo. 23は、耐熱割
れ性、耐ガス腐食性は良好であったが、陽極酸化処理性
の劣化が著しい。
The results of evaluation of the above-mentioned heat cracking resistance, gas corrosion resistance and anodic oxidation treatment properties are also shown in Table 1. Table 1
The sample No. 5 aluminum alloy is commercially available JISA60
Equivalent to 61 aluminum alloy. From Table 1, Si, M
For the samples (Nos. 1 to 10 and Nos. 18 to 22) in which the contents of g and Cu satisfy the conditions of the present invention, good heat cracking resistance, gas corrosion resistance and anodizing property are obtained. Was. On the other hand, No. 23 having a Cu content exceeding the range of the invention had good heat cracking resistance and gas corrosion resistance, but markedly deteriorated anodizing property.

【0030】[0030]

【表1】 [Table 1]

【0031】次に、試料No. 1〜7のアルミニウム合金
について、プラズマ処理装置により、基板処理における
汚染性を調べた。前記プラズマ処理装置用の真空チャン
バは、鋳塊を圧延してアルミニウム合金の厚板を製作
し、これに溶体化処理、時効処理(T6)を施した素材
から、φ270mm×100mm深さの処理室を有する真空
チャンバ用基材を機械加工により製作し、これを表1と
同様の処理条件でその表面に20μm の陽極酸化皮膜が
形成されたものである。この真空チャンバの開口部の上
にSiO2 ガラスで形成された上蓋が気密に組み立てら
れ、その上蓋の真上に高周波発生用アンテナが設置され
た。この真空チャンバの内部に設けられた電極板の上に
φ150mmの基板(シリコン・ウェハ)を設置した。前
記電極板は前記真空チャンバ用基材と同材であり、同条
件にて20μm の陽極酸化皮膜が形成されたものであ
る。また、真空チャンバには、その内部に連通する排気
管、ガス供給管が付設された。
Next, the contamination of the aluminum alloys of Sample Nos. 1 to 7 in substrate processing was examined by a plasma processing apparatus. The vacuum chamber for the plasma processing apparatus is a processing chamber having a depth of φ270 mm × 100 mm from a material obtained by rolling an ingot to produce a thick plate of an aluminum alloy and subjecting it to a solution treatment and an aging treatment (T6). A substrate for a vacuum chamber having the following characteristics was produced by machining, and a 20 μm anodic oxide film was formed on the surface of the substrate under the same processing conditions as in Table 1. An upper lid made of SiO 2 glass was hermetically assembled on the opening of the vacuum chamber, and an antenna for high-frequency generation was installed directly above the upper lid. A substrate (silicon wafer) having a diameter of 150 mm was set on an electrode plate provided inside the vacuum chamber. The electrode plate is made of the same material as the substrate for the vacuum chamber, and has a 20 μm anodic oxide film formed under the same conditions. The vacuum chamber was provided with an exhaust pipe and a gas supply pipe communicating with the inside of the vacuum chamber.

【0032】プラズマ試験は、下記の条件でプラズマを
発生させ、基板を腐食性ガスおよびプラズマに2hr曝
した後、基板上のFe、Cr、Mnの総量を測定し、下
記基準に基づいて基板の汚染度を評価した。 ・試験条件 使用ガス:塩素ガス ガス圧力:10mTorr ガス流量:100sccm RFパワー:ICP l00W RF発生時間:2hr(試験時間) ・基板汚染度評価基準 試料No. 5のアルミニウム合金(市販の6061材に相
当)による真空チャンバ(基準チャンバ)によってプラ
ズマ処理した基板のFe、Cr、Mnの総量を100%
として ◎:基準チャンバの50%未満 ○:基準チャンバの50%以上80%未満 △:基準チャンバの80%以上95%以下
In the plasma test, a plasma is generated under the following conditions, and after exposing the substrate to a corrosive gas and plasma for 2 hours, the total amount of Fe, Cr, and Mn on the substrate is measured. The degree of contamination was evaluated. Test conditions Gas used: Chlorine gas Gas pressure: 10 mTorr Gas flow rate: 100 sccm RF power: ICP 100 W RF generation time: 2 hr (test time) Substrate contamination evaluation criteria Sample No. 5 aluminum alloy (equivalent to 6061 commercially available material) ), The total amount of Fe, Cr, and Mn of the substrate plasma-treated by the vacuum chamber (reference chamber) is 100%
◎: less than 50% of the reference chamber ○: 50% to less than 80% of the reference chamber △: 80% to 95% of the reference chamber

【0033】その結果を上記表1に併せて示す。表1よ
り、試料No. 1〜7のアルミニウム合金のうち、Fe、
Cr、Mnが本発明に規定する所定量以下とされたNo.
1〜4は、基板の低汚染化が実現されている。もっと
も、No. 4はその他の不純物が0.15%とやや多いた
めに、汚染度は他のものに比してやや大きい。一方、F
e、Cr、Mnのいずれか1種でも発明範囲超であるN
o. 5〜7は、耐熱割れ性および耐ガス腐食性は良好で
あるものの、No. 1〜4に比して基板の低汚染化に劣
る。
The results are shown in Table 1 above. From Table 1, among the aluminum alloys of Sample Nos. 1 to 7, Fe,
No. in which Cr and Mn are not more than a predetermined amount specified in the present invention.
In Nos. 1 to 4, low contamination of the substrate is realized. However, No. 4 has a slightly larger amount of other impurities, such as 0.15%, so that the degree of contamination is slightly larger than that of the others. On the other hand, F
e, Cr, Mn, N
o. 5 to 7 have good heat cracking resistance and gas corrosion resistance, but are inferior to low contamination of the substrate as compared with Nos. 1 to 4.

【0034】[0034]

【発明の効果】本発明のアルミニウム合金、アルミニウ
ム合金部材によれば、耐熱割れ性、耐ガス腐食性に優れ
た陽極酸化皮膜が得られ、引いては低汚染性をも兼備し
たものとなり、高温腐食性ガス、プラズマ環境下におい
て好適に使用することができる。また、本発明のプラズ
マ処理装置によれば、プラズマ処理において優れた低汚
染化を実現することができ、被処理物の製造歩留まりを
向上させることができる。
According to the aluminum alloy and the aluminum alloy member of the present invention, an anodic oxide film excellent in heat cracking resistance and gas corrosion resistance can be obtained, and, in addition, it has low pollution and high temperature. It can be suitably used in a corrosive gas or plasma environment. Further, according to the plasma processing apparatus of the present invention, excellent low pollution can be realized in the plasma processing, and the production yield of the object to be processed can be improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H05H 1/46 H01L 21/302 B (72)発明者 久本 淳 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 5F004 AA16 BB29 BB30 5F045 BB14 EB03 EC05 EM09 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // H05H 1/46 H01L 21/302 B (72) Inventor Atsushi Hisamoto 1-chome Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture No.5-5 Kobe Steel Ltd. Kobe Research Institute F-term (reference) 5F004 AA16 BB29 BB30 5F045 BB14 EB03 EC05 EM09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 化学組成がwt%で、Si:0.1〜2.
0%、Mg:0.1〜3.5%、Cu:0.02〜4.
0%、残部Alを本質的成分として含有し、その他不純
物元素からなる、陽極酸化処理用アルミニウム合金。
1. The chemical composition is wt%, and Si: 0.1-2.
0%, Mg: 0.1 to 3.5%, Cu: 0.02 to 4.
Anodizing aluminum alloy containing 0%, balance Al as an essential component, and other impurity elements.
【請求項2】 不純物元素の内、Fe:0.1%以下、
Cr:0.04%以下、Mn:0.04%以下である、
請求項1に記載した陽極酸化処理用アルミニウム合金。
2. The method according to claim 1, wherein Fe: 0.1% or less among the impurity elements.
Cr: 0.04% or less, Mn: 0.04% or less,
The aluminum alloy for anodizing treatment according to claim 1.
【請求項3】 Fe、Cr、Mn以外の不純物元素の総
和が0.1%以下である、請求項2に記載した陽極酸化
処理用アルミニウム合金。
3. The anodized aluminum alloy according to claim 2, wherein the total amount of impurity elements other than Fe, Cr, and Mn is 0.1% or less.
【請求項4】 請求項1、2または3に記載したアルミ
ニウム合金からなる基材の表面に陽極酸化皮膜が形成さ
れた、陽極酸化皮膜を有するアルミニウム合金部材。
4. An aluminum alloy member having an anodized film, wherein an anodized film is formed on a surface of the substrate made of the aluminum alloy according to claim 1.
【請求項5】 真空チャンバ内でプラズマあるいはプラ
ズマ化することによって得られる活性種によって被処理
物に所定の処理を施すプラズマ処理装置であって、 前記真空チャンバおよびその内部に設けられる部品のう
ちの1種以上が請求項2または3に記載したアルミニウ
ム合金からなる基材の表面に陽極酸化皮膜が形成された
アルミニウム合金部材によって構成された、陽極酸化皮
膜を有するアルミニウム合金部材を備えたプラズマ処理
装置。
5. A plasma processing apparatus for performing a predetermined process on an object to be processed by plasma or an active species obtained by converting the plasma into a plasma in a vacuum chamber, wherein the vacuum chamber and components provided therein are provided. A plasma processing apparatus comprising an aluminum alloy member having an anodized film, wherein the plasma processing device comprises an aluminum alloy member having an anodized film formed on a surface of at least one of the aluminum alloys according to claim 2 or 3. .
JP2000026892A 2000-02-04 2000-02-04 Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus Expired - Lifetime JP3919996B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000026892A JP3919996B2 (en) 2000-02-04 2000-02-04 Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus
TW090102254A TW488010B (en) 2000-02-04 2001-02-02 Chamber member made of aluminum alloy and heater block
US09/773,638 US6521046B2 (en) 2000-02-04 2001-02-02 Chamber material made of Al alloy and heater block
KR10-2001-0005247A KR100407704B1 (en) 2000-02-04 2001-02-03 Aluminum alloy member for chamber and heater block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026892A JP3919996B2 (en) 2000-02-04 2000-02-04 Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2001220637A true JP2001220637A (en) 2001-08-14
JP3919996B2 JP3919996B2 (en) 2007-05-30

Family

ID=18552555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026892A Expired - Lifetime JP3919996B2 (en) 2000-02-04 2000-02-04 Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP3919996B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221492A2 (en) * 2000-12-29 2002-07-10 Alcan Technology & Management AG Light alloy container and method for its production
US6686053B2 (en) 2001-07-25 2004-02-03 Kabushiki Kaisha Kobe Seiko Sho AL alloy member having excellent corrosion resistance
US6982121B2 (en) 2002-09-10 2006-01-03 Kyushyu Mitsui Aluminum Co. Ltd. Anodization-adapted aluminum alloy and plasma-treating apparatus made thereof
JP2007260624A (en) * 2006-03-29 2007-10-11 Tokyo Electron Ltd Vacuum vessel for use in vacuum apparatus, and method for manufacturing the same
DE112007001836T5 (en) 2006-08-11 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho, Kobe Aluminum alloy for anodic oxidation treatment, process for producing the same, aluminum component with anodic oxidation coating and plasma processing apparatus
JP2009114470A (en) * 2007-11-01 2009-05-28 Fujifilm Corp Method for producing fine structure
JP2009173965A (en) * 2008-01-22 2009-08-06 Tokyo Electron Ltd Component for substrate treating apparatus and method for forming film
JP2010133003A (en) * 2008-10-30 2010-06-17 Kobe Steel Ltd Aluminum alloy member superior in cracking resistance and corrosion resistance, method for confirming cracking resistance and corrosion resistance of porous-type anodic oxide coating, and method for setting condition of forming porous-type anodic oxide coating superior in cracking resistance and corrosion resistance
WO2010128687A1 (en) * 2009-05-08 2010-11-11 Fujifilm Corporation Aluminum base material, metal substrate having insulating layer employing the aluminum base material, semiconductor element, and solar battery
JP2011080118A (en) * 2009-10-07 2011-04-21 Nippon Light Metal Co Ltd Aluminum alloy member and manufacturing method therefor
FR2955336A1 (en) * 2010-01-20 2011-07-22 Alcan Rhenalu PROCESS FOR MANUFACTURING 6XXX ALLOY PRODUCTS FOR VACUUM CHAMBER
FR2996857A1 (en) * 2012-10-17 2014-04-18 Constellium France ELEMENTS OF ALUMINUM ALLOY VACUUM CHAMBERS
US8888982B2 (en) 2010-06-04 2014-11-18 Mks Instruments Inc. Reduction of copper or trace metal contaminants in plasma electrolytic oxidation coatings
JP2017512260A (en) * 2014-03-11 2017-05-18 サパ・イクストリュージョンズ・インコーポレイテッドSapa Extrusions, Inc. High strength aluminum alloy
WO2018162823A1 (en) 2017-03-10 2018-09-13 Constellium Issoire Aluminium alloy vacuum chamber elements which are stable at high temperature
CN110246738A (en) * 2018-03-08 2019-09-17 北京北方华创微电子装备有限公司 Reaction chamber modular construction and preparation method thereof, reaction chamber
CN114369773A (en) * 2021-12-30 2022-04-19 王永勤 Treatment method of aluminum alloy material
CN115807183A (en) * 2022-12-13 2023-03-17 广东中色研达新材料科技股份有限公司 Aluminum alloy with ceramic color-sensing anodic oxidation effect and processing technology thereof
WO2023042812A1 (en) * 2021-09-15 2023-03-23 昭和電工株式会社 Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221492A3 (en) * 2000-12-29 2002-08-28 Alcan Technology & Management AG Light alloy container and method for its production
EP1221492A2 (en) * 2000-12-29 2002-07-10 Alcan Technology & Management AG Light alloy container and method for its production
US6686053B2 (en) 2001-07-25 2004-02-03 Kabushiki Kaisha Kobe Seiko Sho AL alloy member having excellent corrosion resistance
US6982121B2 (en) 2002-09-10 2006-01-03 Kyushyu Mitsui Aluminum Co. Ltd. Anodization-adapted aluminum alloy and plasma-treating apparatus made thereof
JP2007260624A (en) * 2006-03-29 2007-10-11 Tokyo Electron Ltd Vacuum vessel for use in vacuum apparatus, and method for manufacturing the same
US8404059B2 (en) 2006-08-11 2013-03-26 Kobe Steel, Ltd. Aluminum alloy for anodizing having durability, contamination resistance and productivity, method for producing the same, aluminum alloy member having anodic oxide coating, and plasma processing apparatus
DE112007001836T5 (en) 2006-08-11 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho, Kobe Aluminum alloy for anodic oxidation treatment, process for producing the same, aluminum component with anodic oxidation coating and plasma processing apparatus
JP2009114470A (en) * 2007-11-01 2009-05-28 Fujifilm Corp Method for producing fine structure
JP2009173965A (en) * 2008-01-22 2009-08-06 Tokyo Electron Ltd Component for substrate treating apparatus and method for forming film
JP2010133003A (en) * 2008-10-30 2010-06-17 Kobe Steel Ltd Aluminum alloy member superior in cracking resistance and corrosion resistance, method for confirming cracking resistance and corrosion resistance of porous-type anodic oxide coating, and method for setting condition of forming porous-type anodic oxide coating superior in cracking resistance and corrosion resistance
JP2010283342A (en) * 2009-05-08 2010-12-16 Fujifilm Corp Al BASE MATERIAL, METAL SUBSTRATE WITH INSULATING LAYER USING THE SAME, SEMICONDUCTOR ELEMENT, AND SOLAR CELL
WO2010128687A1 (en) * 2009-05-08 2010-11-11 Fujifilm Corporation Aluminum base material, metal substrate having insulating layer employing the aluminum base material, semiconductor element, and solar battery
JP2011080118A (en) * 2009-10-07 2011-04-21 Nippon Light Metal Co Ltd Aluminum alloy member and manufacturing method therefor
FR2955336A1 (en) * 2010-01-20 2011-07-22 Alcan Rhenalu PROCESS FOR MANUFACTURING 6XXX ALLOY PRODUCTS FOR VACUUM CHAMBER
WO2011089337A1 (en) 2010-01-20 2011-07-28 Alcan Rhenalu Method for manufacturing 6xxx alloy materials for vacuum chambers
JP2013517383A (en) * 2010-01-20 2013-05-16 コンステリウム フランス Method for producing 6xxx alloy product for vacuum chamber
US8888982B2 (en) 2010-06-04 2014-11-18 Mks Instruments Inc. Reduction of copper or trace metal contaminants in plasma electrolytic oxidation coatings
EP2576872B1 (en) * 2010-06-04 2017-08-23 MKS Instruments, Inc. Reduction of copper or trace metal contaminants in plasma electrolytic oxidation coatings
FR2996857A1 (en) * 2012-10-17 2014-04-18 Constellium France ELEMENTS OF ALUMINUM ALLOY VACUUM CHAMBERS
KR101970043B1 (en) 2012-10-17 2019-04-17 콩스텔리움 이수와르 Vacuum chamber elements made of aluminum alloy
CN104797726A (en) * 2012-10-17 2015-07-22 法国肯联铝业 Vacuum chamber elements made of aluminium alloy
EP3168316A1 (en) 2012-10-17 2017-05-17 Constellium Issoire Method of manufacturing a vacuum chamber element in aluminium alloy
KR20150067211A (en) * 2012-10-17 2015-06-17 콩스텔리움 프랑스 Vacuum chamber elements made of aluminum alloy
WO2014060660A1 (en) 2012-10-17 2014-04-24 Constellium France Vacuum chamber elements made of aluminium alloy
JP2017512260A (en) * 2014-03-11 2017-05-18 サパ・イクストリュージョンズ・インコーポレイテッドSapa Extrusions, Inc. High strength aluminum alloy
WO2018162823A1 (en) 2017-03-10 2018-09-13 Constellium Issoire Aluminium alloy vacuum chamber elements which are stable at high temperature
US11248280B2 (en) 2017-03-10 2022-02-15 Constellium Issoire Aluminium alloy vacuum chamber elements stable at high temperature
CN110246738A (en) * 2018-03-08 2019-09-17 北京北方华创微电子装备有限公司 Reaction chamber modular construction and preparation method thereof, reaction chamber
WO2023042812A1 (en) * 2021-09-15 2023-03-23 昭和電工株式会社 Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
CN114369773A (en) * 2021-12-30 2022-04-19 王永勤 Treatment method of aluminum alloy material
CN114369773B (en) * 2021-12-30 2022-09-16 山东瑞烨新能源装备有限公司 Treatment method of aluminum alloy material
CN115807183A (en) * 2022-12-13 2023-03-17 广东中色研达新材料科技股份有限公司 Aluminum alloy with ceramic color-sensing anodic oxidation effect and processing technology thereof
CN115807183B (en) * 2022-12-13 2024-03-26 广东中色研达新材料科技股份有限公司 Aluminum alloy with ceramic color sense anodic oxidation effect and processing technology thereof

Also Published As

Publication number Publication date
JP3919996B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP2001220637A (en) Aluminum alloy for anodic oxidation treatment, aluminum alloy member having anodically oxidized film and plasma treating system
JP4168066B2 (en) Aluminum alloy for anodizing treatment used in plasma processing apparatus and manufacturing method thereof, aluminum alloy member having anodized film, and plasma processing apparatus
US7033447B2 (en) Halogen-resistant, anodized aluminum for use in semiconductor processing apparatus
KR100407704B1 (en) Aluminum alloy member for chamber and heater block
JP5064935B2 (en) Anodized aluminum alloy that combines durability and low contamination
TWI615480B (en) Vacuum chambers elements made of aluminum alloy
US20030150530A1 (en) Halogen-resistant, anodized aluminum for use in semiconductor processing apparatus
JP2004225113A (en) Al alloy member excellent in corrosion resistance and plasma resistance
WO2014017297A1 (en) Aluminum alloy having excellent anodic oxidation treatability, and anodic-oxidation-treated aluminum alloy member
JP6927646B2 (en) Method for forming a coating layer of a semiconductor reactor and a metal base material for a semiconductor reactor
EP1541701A1 (en) Titanium alloys excellent in hydrogen absorption-resistance
JP3871544B2 (en) Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same
CN113891960B (en) Corrosion resistant member
JP3891815B2 (en) Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same
JP3871560B2 (en) Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same
JP3152960B2 (en) Manufacturing method of aluminum or aluminum alloy material for vacuum equipment
JP5416436B2 (en) Aluminum alloy member excellent in crack resistance and corrosion resistance, method for confirming crack resistance and corrosion resistance of porous anodic oxide film, and conditions for forming porous anodic oxide film excellent in crack resistance and corrosion resistance Setting method
JP5452034B2 (en) Surface treatment member for semiconductor manufacturing apparatus and method for manufacturing the same
JPH09217197A (en) Formation of alumina film and aluminum product
TWI223354B (en) Clean aluminum alloy for semiconductor processing equipment
JP2002256488A (en) Aluminium alloy for anodizing and aluminium alloy material superior in gas corrosion resistance
JP2004509461A (en) Apparatus and method for reducing contamination of a heat treated semiconductor substrate
JP4105565B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP5683077B2 (en) Aluminum alloy member with excellent low contamination
JP2004006683A (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3919996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

EXPY Cancellation because of completion of term