JP3891815B2 - Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same - Google Patents

Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same Download PDF

Info

Publication number
JP3891815B2
JP3891815B2 JP2001316012A JP2001316012A JP3891815B2 JP 3891815 B2 JP3891815 B2 JP 3891815B2 JP 2001316012 A JP2001316012 A JP 2001316012A JP 2001316012 A JP2001316012 A JP 2001316012A JP 3891815 B2 JP3891815 B2 JP 3891815B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
corrosion resistance
film
alloy material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001316012A
Other languages
Japanese (ja)
Other versions
JP2003119540A (en
Inventor
茂利 成願
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001316012A priority Critical patent/JP3891815B2/en
Publication of JP2003119540A publication Critical patent/JP2003119540A/en
Application granted granted Critical
Publication of JP3891815B2 publication Critical patent/JP3891815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Description

【0001】
【発明の属する技術分野】
この発明は、例えば半導体、LCD(液晶ディスプレイ)等の製造装置材料として好適に使用され、皮膜形成処理によって優れた耐食性が得られるアルミニウム合金、ならびに耐食性に優れたアルミニウム合金材およびその製造方法に関する。
【0002】
【従来の技術】
半導体やLCD等の製造装置を構成するチャンバー、サセプター、バッキングプレート等の部材材料として、アルミニウム合金、特にAl−Si系のJIS 5052アルミニウム合金やAl−Si−Mg系のJIS 6061アルミニウム合金からなる展伸材や鋳物材が使用されることが多い。また、これらの製造装置は高温で使用される上にシラン(SiH4)やフッ素系または塩素系のハロゲンガス等の腐食性ガス雰囲気で使用されるため、各部材に陽極酸化処理を施して表面に硬質の陽極酸化皮膜を形成し、耐食性を向上させている。
【0003】
しかし、このような表面処理をしても使用環境や使用頻度によっては早期に表面劣化が起こり、表面処理の更新が必要であった。特に、CVD、PVD処理装置では、使用温度が室温から約400℃までの広範囲にわたり、しかも繰り返し熱応力が加わるため、母材と陽極酸化皮膜との熱変形能の違いにより割れが生じることがある。また長期使用の間には、顕著な損傷はなくてもワークを処理する際に装置表面に接触して陽極酸化皮膜が摩耗することもある。
【0004】
そこで、半導体等の製造装置材料として、例えば特開平11−43734号公報においてMn、Cu、Feを添加したアルミニウム合金が提案されている。このアルミニウム合金は、重金属を添加することで熱的に安定な金属間化合物を生成させるとともに、熱サイクルが加わったときに緩衝効果を果たす二重構造の陽極酸化皮膜を生成させることによって、熱サイクルおよび腐食環境下における耐 食性向上を図ったものである。
【0005】
また、特開平8−92684号公報においてフッ化処理用Al−Mg系合金が提案されている。このアルミニウム合金は、フッ化処理により形成されるフッ化不働態膜によって耐食性向上を図ったものである。
【0006】
【発明が解決しようとする課題】
しかしながら、上述の特開平11−43734号公報記載のアルミニウム合金は、陽極酸化皮膜の欠陥から、母材中のAl−Fe系等の金属間化合物が腐食性ガスと反応して放出されたり、あるいは陽極酸化皮膜中の金属間化合物が僅かずつ蒸発または析出により放出されるという問題があった。このようなアルミニウム合金を、例えば半導体等の絶縁膜の成膜装置に使用すると、処理チャンバー内が放出された金属間化合物で汚染され、ひいては生成される絶縁膜が金属間化合物で汚染されて膜質が低下するという問題があった。
【0007】
また、特開平8−92684号公報記載のアルミニウム合金についても、形成されたフッ化不働態膜による耐食性が不十分であり、さらなる耐食性の向上が求められている。
【0008】
この発明は、上述の技術背景に鑑み、高温熱サイクル、腐食雰囲気下において強度および耐食性に優れた皮膜形成処理用アルミニウム合金、ならびに耐食性に優れたアルミニウム合金材およびその製造方法の提供を目的とする。
【0009】
【課題を解決するための手段】
前記目的を達成するために、この発明の皮膜形成処理用アルミニウム合金は、Mg:4.0〜5.0質量%およびCr:0.02〜0.1質量%を含有し、不純物としてのSi、Fe、Cu、Mn、ZnおよびNiの各含有量がそれぞれ0.1質量%以下に規制され、残部がAlおよび他の不純物からなることを基本要旨とする。
【0010】
前記皮膜形成処理用アルミニウム合金において、Mg含有量は4.3〜4.7質量%、Cr含有量は0.04〜0.08質量%、Si、Fe、Cu、Mn、ZnおよびNiの各含有量はそれぞれ0.05質量%以下に規制されていることが好ましい。
【0011】
また、前記皮膜形成処理用アルミニウム合金は、CVD装置用アルミニウム合金、PVD装置用アルミニウム合金、液晶ディスプレイ(LCD)製造装置用アルミニウム合金、半導体製造装置用アルミニウム合金として好適に使用される。
【0012】
この発明の耐食性に優れたアルミニウム合金材は、Mg:4.0〜5.0質量%およびCr:0.02〜0.1質量%を含有し、不純物としてのSi、Fe、Cu、Mn、ZnおよびNiの各含有量がそれぞれ0.1質量%以下に規制され、残部がAlおよび他の不純物からなるアルミニウム合金母材の表面に、耐食性皮膜が形成されてなることを基本要旨とする。
【0013】
前記耐食性に優れたアルミニウム合金材において、前記耐食性皮膜は、陽極酸化処理皮膜またはフッ化処理皮膜の単独皮膜であることが好ましく、あるいはNi−Pメッキ処理とフッ化処理による複合皮膜、または陽極酸化処理とフッ化処理による複合皮膜であることが好ましい。
【0014】
また、前記アルミニウム合金母材におけるMg含有量は4.3〜4.7質量%、Cr含有量は0.04〜0.08質量%、Si、Fe、Cu、Mn、ZnおよびNiの各含有量はそれぞれ0.05質量%以下に規制されていることが好ましい。
【0015】
また、耐食性に優れたアルミニウム合金材は、CVD装置用アルミニウム合金材、PVD装置用アルミニウム合金材、液晶ディスプレイ(LCD)製造装置用アルミニウム合金材、半導体製造装置用アルミニウム合金材として好適に使用される。
【0016】
この発明の耐食性に優れたアルミニウム合金材の製造方法は、Mg:4.0〜5.0質量%およびCr:0.02〜0.1質量%を含有し、不純物としてのSi、Fe、Cu、Mn、ZnおよびNiの各含有量がそれぞれ0.1質量%以下に規制され、残部がAlおよび他の不純物からなるアルミニウム合金母材の表面に、耐食性皮膜形成処理を施すことを基本要旨とする。
【0017】
前記耐食性に優れたアルミニウム合金材は、CVD装置用アルミニウム合金材、PVD装置用アルミニウム合金材、液晶ディスプレイ(LCD)製造装置用アルミニウム合金材、半導体製造装置用アルミニウム合金材として好適に使用される。
【0018】
この発明の皮膜形成処理用アルミニウム合金、および耐食性に優れたアルミニウム合金材のアルミニウム合金母材の化学組成において、各元素の添加意義および規制意義は次のとおりである。
【0019】
Mgは合金強度を向上させる元素である。Mg含有量が4.0質量%未満では強度向上効果に乏しく、5.0質量%を超えると加工性が低下するため、Mg含有量は4.0〜5.0質量%とする。さらに、Mgには、フッ化処理を施した場合にフッ素とともにフッ化不働態膜を形成させ、また機械加工性を向上させる効果がある。好ましいMg含有量は4.3〜4.7質量%である。
【0020】
Crは、合金組織を微細化して表面処理性を向上させる元素であり、ひいては母材と皮膜との密着性を良好にして皮膜形成による耐食性を助長する効果がある。Cr含有量が0.02質量%未満では前記効果に乏しく、0.1質量%を超えると粗大組織が形成されて加工性が低下する。好ましいCr含有量は0.04〜0.08質量%である。
【0021】
また、不純物としての重金属Si、Fe、Cu、Mn、ZnおよびNiが多量に含有されていると、母材および皮膜中のAl−Fe系金属間化合物の生成量が増し、皮膜欠陥から、金属間化合物が蒸発または析出により放出され、あるいはハロゲンガス等の腐食性ガスと反応して金属組織から脱落して放出される。重金属単体でも放出される。また、重金属含有量および金属間化合物量が増えると皮膜の欠陥が増大し、重金属および金属間化合物が放出され易くなる。換言すれば、上記不純物元素の含有量が少量になると、皮膜欠陥から放出される金属単体および金属間化合物が減少し、皮膜欠陥の増大が抑制される。そして、このアルミニウム合金またはアルミニウム合金材が、例えばCVD装置用材料、PVD装置用材料、LCD製造装置用材料、半導体製造装置用材料として用いられる場合には、放出された重金属および金属間化合物が処理または製造されるLCD、半導体等を汚染して製品品質を劣化させる。さらに、強度向上および表面処理性向上のために上記範囲のMg、Crの添加するためには、金属間化合物を生成させる不純物としての重金属を規制する必要がある。このため、前記各重金属元素はそれぞれ0.1質量%以下に規制して、金属間化合物の生成量を抑制するとともに皮膜欠陥の増大を抑制する必要がある。これらの重金属元素の好ましい含有量はそれぞれ0.05質量%以下である。
【0022】
この発明の耐食性に優れたアルミニウム合金材は、上述した組成のアルミニウム合金母材の表面に、耐食性皮膜が形成されている。前記皮膜は、上述したように母材合金の組成制御によって欠陥の少ない皮膜に維持されるため、高温熱サイクル、腐食環境下においても重金属および金属間化合物が放出されにくく、優れた耐食性、特にガス耐食性を有し、ひいては合金材としての耐食性が優れている。また、長時間の使用劣化によって皮膜が割れたり摩耗して母材が露出した場合でも、母材中の重金属含有量そのものが規制されているために放出量も少なく、半導体等への汚染による悪影響も少ない。
【0023】
前記耐食性皮膜としては、陽極酸化処理皮膜またはフッ化処理皮膜の単独皮膜、あるいはNi−Pメッキ処理とフッ化処理による複合皮膜、または陽極酸化処理とフッ化処理による複合皮膜を例示でき、いずれも上述した優れた耐食性が得られる。これらのうち、単独皮膜は皮膜形成処理が容易である点で推奨でき、複合皮膜は異種皮膜の複合化により耐食性を相乗的に向上しうる点で推奨できる。
【0024】
なお、このような皮膜によって優れたガス耐食性を有する合金材は、水に対しても優れた耐食性を示す。
【0025】
前記耐食性に優れたアルミニウム合金材の製造方法において、各耐食性皮膜形成処理は常法に従って行えば良く、条件は限定されない。
【0026】
陽極酸化処理は、硫酸浴、蓚酸浴等により処理する。例えばアルミニウム合金材を半導体等製造装置材料として使用する場合であれば、液組成:10%H2SO4、液温0+/-2℃、電流密度:DC2〜4.5A/dm2、電圧:23〜120V、処理時間:60分の条件で処理すると、約50μmの硬質陽極酸化皮膜を形成することができる。
【0027】
フッ化処理は、加熱下でフッ素ガスまたはフッ化物ガスをアルミニウム合金母材の表面に接触させるか、あるいは液体フッ化物を接触させる方法等を例示でき、フッ化不働態皮膜を形成することができる。
【0028】
Ni−Pメッキ処理とフッ化処理による複合皮膜を形成する場合は、例えば次亜りん酸塩を還元剤とした硫酸ニッケル浴を用いてNi−Pメッキ処理を施してメッキ皮膜を形成した後、上述したフッ化処理を施す。これにより、Ni−Pメッキ皮膜とフッ化不働態皮膜との複合皮膜が形成される。
【0029】
また、陽極酸化処理とフッ化処理による複合皮膜を形成する場合は、上述した陽極酸化処理を施して陽極酸化皮膜を形成した後、上述したフッ化処理を施す。これにより、陽極酸化皮膜とフッ化不働態皮膜との複合皮膜が形成される。
【0030】
また、いずれの場合も、皮膜形成処理の前処理として脱脂洗浄、エッチング、表面研磨等、後処理としての洗浄、乾燥、加熱等は適宜行う。
【0031】
所要形状への加工も常法に従えば良く限定されないが、半導体等製造装置材料として高温熱サイクル、腐食環境下で使用する場合は、切削、研削時および接合時の残留応力を除去するために、それぞれの加工後に350〜380℃で熱処理することが好ましい。
【0032】
また、この発明のアルミニウム合金および合金材は、高温、腐食ガス雰囲気に曝されるあらゆる部材に適した合金および合金材であり、特にCVD装置用、PVD装置用、液晶ディスプレイ(LCD)製造装置用、半導体製造装置用のアルミニウム合金材料として好適に使用される。
【0033】
【実施例】
後掲の表1に示す各組成のアルミニウム合金について、常法に従ってDC鋳造した鋳塊を450〜600℃で均質化処理し、その後熱間圧延および冷間圧延を施して厚さ4mmのアルミニウム合金板を製作した。
【0034】
50mm×50mmに切断した各アルミニウム合金板に対し、下記条件で皮膜を形成した。ただし、比較例14は皮膜形成処理を施さなかった。
(硫酸陽極酸化皮膜の形成)
浴組成:15%H2SO4、浴温:25℃、電圧:20V、処理時間:20分で陽極酸化処理を行い、膜厚:20μmの皮膜を形成した。
(蓚酸陽極酸化皮膜の形成)
浴組成:4%(COOH)2・2H2O、浴温:25℃、電圧:30V、処理時間:30分で陽極酸化処理を行い、膜厚:15μmの皮膜を形成した。
(フッ化処理皮膜の形成)
前処理として化学研磨を行った後、20%フッ素ガス(F2)+80%N2を導入したチャンバー内で、260℃×24時間保持し、膜厚5μmのフッ化不働態皮膜を形成した。
(Ni−Pメッキ処理とフッ化処理の複合皮膜の形成)
次亜りん酸塩を還元剤とした硫酸ニッケル浴中で、無電解Ni−Pメッキを行い5μmのメッキ皮膜を形成した後、20%フッ素ガス(F2)+80%N2を導入したチャンバー内で260℃×24時間保持し、Ni−Pメッキ皮膜とフッ化不働態皮膜との複合皮膜を形成した。この複合皮膜の膜厚は30μmであった。
(陽極酸化処理とフッ化処理の複合皮膜の形成)
上述の方法で20μmの硫酸陽極酸化皮膜を形成した後、20%フッ素ガス(F2)+80%N2を導入したチャンバー内で260℃×24時間保持し、硫酸陽極酸化皮膜とフッ化不働態皮膜との複合皮膜を形成した。この複合皮膜の膜厚は15μmであった。
【0035】
そして、各皮膜を形成したアルミニウム合金板に対し、下記の方法によりガス耐食性試験および強度試験を行った。
〔ガス耐食性試験〕
前記アルミニウム合金板を、半導体製造工程における絶縁膜の成膜装置の処理チャンバー内に投入し、半導体絶縁膜の絶縁不良が発生するまでの時間を計測した。試験に使用したシリコンウエーハは直径200mm、厚さ700μm、チャンバー寸法は幅400mm×奥行き400mm×高さ200mmであり、絶縁膜の成膜はプラズマCVD(400℃、腐食性ガス:SiH4−N2O、プラズマ励起雰囲気)により行った。
【0036】
前記絶縁膜の成膜試験において、絶縁不良は、アルミニウム合金中に不純物として含有される重金属またはこの重金属によって形成された金属間化合物が絶縁膜を汚染し、SiまたはSiO2への拡散係数が大となったためであると推測される。従って、絶縁不良までの時間、換言すれば成膜可能時間が長いほどアルミニウム合金母材または各皮膜からの重金属および金属間化合物の放出量が少ないと評価することができる。評価結果を表1に示す。
【0037】
なお、実施例9,10の同一組成のアルミニウム合金において、硫酸陽極酸化皮膜よりも蓚酸陽極酸化皮膜の成膜可能時間が長いのは、蓚酸陽極酸化皮膜の耐熱性によるものと推測される。
【0038】
また、複合皮膜を形成した2種類のアルミニウム合金板(実施例12,13))が、陽極酸化処理皮膜またはフッ化処理皮膜の単独皮膜(実施例1〜11)よりも成膜可能時間が長いのは異種皮膜の複合化によりガス耐食性が相乗的に向上したことによると考えられる。
〔強度試験〕
ガス耐食性試験と同サンプルを用い、JIS Z2201に基づいて引張試験を行い、強度を比較した。評価結果を表1に示す。
【0039】
【表1】

Figure 0003891815
【0040】
表1の結果より、重金属の含有量を規制したアルミニウム合金、および各耐食性皮膜を形成したアルミニウム合金板は、高温、腐食雰囲気下における絶縁膜の成膜可能時間が長く、母材または各皮膜からの重金属および金属間化合物の放出量が少ないことを裏付けている。また、重金属含有量の規制により、金属化合物の生成量が少ないことに加え、欠陥の少ない皮膜が形成されて、重金属や金属間化合物が放出されにくいことも成膜可能時間延長に寄与していると推測される。さらに所定量のMgを含有することで優れた強度が得られる。
【0041】
これらの結果より、各実施例の皮膜形成処理用アルミニウム合金および皮膜を形成したアルミニウム合金板は、強度、耐食性が優れており、CVD装置用材料、PVD装置用材料、LCD製造装置用材料、半導体製造装置用材料として好適である。
【0042】
【発明の効果】
以上説明したように、この発明の皮膜形成処理用アルミニウム合金は、Mg:4.0〜5.0質量%およびCr:0.02〜0.1質量%を含有し、不純物としてのSi、Fe、Cu、Mn、ZnおよびNiの各含有量がそれぞれ0.1質量%以下に規制され、残部がAlおよび他の不純物からなるから、母材および形成される皮膜中の重金属含有量、およびこれらの重金属によって形成される金属間化合物量が少ない。また、これらの量が少ないことによって、欠陥の少ない皮膜を維持することができて耐食性が優れ、高温熱サイクル、腐食環境下においても、皮膜欠陥からの重金属および金属間化合物の放出量が少ない。さらに、Mgの含有により優れた強度が得られ、Crの含有により優れた表面処理性が得られる。
【0043】
前記皮膜形成処理用アルミニウム合金において、Mg含有量が4.3〜4.7質量%である場合は特に優れた強度が得られ、Cr含有量が0.04〜0.08質量%であるには、特に優れた表面処理性が得られる。
【0044】
また、Si、Fe、Cu、Mn、ZnおよびNiの各含有量がそれぞれ0.05質量%以下に規制されている場合には、特にこれらの重金属含有量および金属間化合物の少ない皮膜を形成することができる。
【0045】
また、この発明の耐食性に優れたアルミニウム合金材は、母材が上述の化学組成であり、重金属含有量およびこれらの重金属によって形成される金属間化合物量が少ない。このため、表面に形成されている耐食性皮膜は欠陥の少ない耐食性に優れたものとなり、高温熱サイクル、腐食環境下においても、皮膜欠陥からの重金属および金属間化合物の放出量が少ない。また、Mgの含有によって母材強度が優れ、Crの含有によって優れた表面処理性が得られ、ひいては皮膜と母材との密着性を良好にして皮膜形成による耐食性を助長する。
【0046】
従って、高温熱サイクル、腐食環境下で使用されるCVD装置、PVD装置、LCD製造装置、半導体製造装置等の材料として、この発明の皮膜形成処理用アルミニウム合金または耐食性に優れたアルミニウム合金材を使用することにより、これらの装置で処理または製造される製品への重金属および金属間化合物の汚染を抑制し、製品品質を向上させることができる。さらに、長時間の使用劣化によって耐食性皮膜が割れたり摩耗して母材が露出した場合でも、重金属含有量そのものが規制されているから放出量も少なく、製品への汚染による悪影響も少ない。
【0047】
特に、前記耐食性皮膜が、陽極酸化処理皮膜またはフッ化処理皮膜の単独皮膜である場合は皮膜形成処理が容易である。また、前記耐食性皮膜が、Ni−Pメッキ処理とフッ化処理による複合皮膜、または陽極酸化処理とフッ化処理による複合皮膜である場合には、異種皮膜の複合化によって特に優れた耐食性が得られる。
【0048】
また、この発明の耐食性に優れたアルミニウム合金材の製造方法は、上述の組成の合金母材に対して各皮膜形成処理を施すものであり、この発明の耐食性に優れたアルミニウム合金材を製造することができる。
【0049】
また、この発明のアルミニウム合金および合金材は耐食性に優れているから、高温、腐食ガス雰囲気に曝されるあらゆる部材材料に適している。特にこのような環境で使用されるCVD装置用、PVD装置用、液晶ディスプレイ(LCD)製造装置用、半導体製造装置用のアルミニウム合金材料として適し、優れた耐食性を有するこれらの装置を構成することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy that is suitably used as a manufacturing apparatus material such as a semiconductor or an LCD (liquid crystal display), for example, and has excellent corrosion resistance by a film forming process, an aluminum alloy material having excellent corrosion resistance, and a method for manufacturing the same.
[0002]
[Prior art]
As a material for chambers, susceptors, backing plates, etc. constituting manufacturing devices such as semiconductors and LCDs, an aluminum alloy, particularly an Al-Si JIS 5052 aluminum alloy or an Al-Si-Mg JIS 6061 aluminum alloy is used. Stretched and cast materials are often used. In addition, these manufacturing devices are used at high temperatures and in corrosive gas atmospheres such as silane (SiH 4 ) and fluorine-based or chlorine-based halogen gases. A hard anodized film is formed on the surface to improve corrosion resistance.
[0003]
However, even with such a surface treatment, depending on the use environment and the frequency of use, the surface deterioration occurred early, and the surface treatment had to be updated. In particular, in CVD and PVD processing apparatuses, cracks may occur due to the difference in thermal deformability between the base material and the anodic oxide film because the operating temperature is in a wide range from room temperature to about 400 ° C. and repeated thermal stress is applied. . During long-term use, the anodic oxide film may be worn by contact with the surface of the apparatus when the workpiece is processed even if there is no significant damage.
[0004]
Accordingly, as a manufacturing apparatus material such as a semiconductor, for example, JP-A-11-43734 proposes an aluminum alloy to which Mn, Cu, and Fe are added. This aluminum alloy generates thermally stable intermetallic compounds by adding heavy metals, and also creates a double-structured anodic oxide film that acts as a buffer when heated. It is intended to improve the corrosion resistance in a corrosive environment.
[0005]
JP-A-8-92684 proposes an Al—Mg alloy for fluorination treatment. This aluminum alloy is intended to improve corrosion resistance by a fluorinated passive film formed by fluorination treatment.
[0006]
[Problems to be solved by the invention]
However, in the aluminum alloy described in JP-A-11-43734 described above, an intermetallic compound such as an Al—Fe system in the base material is released by reacting with a corrosive gas due to a defect in the anodized film, or There is a problem that the intermetallic compound in the anodized film is released little by little by evaporation or deposition. When such an aluminum alloy is used in an apparatus for forming an insulating film such as a semiconductor, for example, the inside of the processing chamber is contaminated with the released intermetallic compound, and as a result, the generated insulating film is contaminated with the intermetallic compound. There was a problem that decreased.
[0007]
Further, the aluminum alloy described in JP-A-8-92684 also has insufficient corrosion resistance due to the formed fluorinated passive film, and further improvement in corrosion resistance is required.
[0008]
In view of the above technical background, an object of the present invention is to provide an aluminum alloy for film formation treatment excellent in strength and corrosion resistance under a high temperature thermal cycle and a corrosive atmosphere, an aluminum alloy material excellent in corrosion resistance, and a method for producing the same. .
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the aluminum alloy for film formation treatment of the present invention contains Mg: 4.0-5.0 mass% and Cr: 0.02-0.1 mass%, and Si as impurities , Fe, Cu, Mn, Zn and Ni content is regulated to 0.1 mass% or less, respectively, and the remainder is composed of Al and other impurities.
[0010]
In the aluminum alloy for film formation treatment, Mg content is 4.3 to 4.7 % by mass , Cr content is 0.04 to 0.08 % by mass , each of Si, Fe, Cu, Mn, Zn and Ni The content is preferably regulated to 0.05 % by mass or less.
[0011]
The aluminum alloy for film formation treatment is suitably used as an aluminum alloy for CVD devices, an aluminum alloy for PVD devices, an aluminum alloy for liquid crystal display (LCD) manufacturing devices, and an aluminum alloy for semiconductor manufacturing devices.
[0012]
Excellent aluminum alloy material corrosion resistance of the present invention, Mg: 4.0 to 5.0 wt% and Cr: 0.02 to 0.1 containing mass%, Si as an impurity, Fe, Cu, Mn, The basic gist is that each content of Zn and Ni is regulated to 0.1 % by mass or less, and a corrosion-resistant film is formed on the surface of an aluminum alloy base material whose balance is made of Al and other impurities.
[0013]
In the aluminum alloy material having excellent corrosion resistance, the corrosion-resistant film is preferably a single film of an anodized film or a fluorinated film, or a composite film by an Ni-P plating process and a fluoridated film, or an anodized film. A composite film obtained by treatment and fluorination treatment is preferred.
[0014]
Moreover, Mg content in the said aluminum alloy base material is 4.3-4.7 mass% , Cr content is 0.04-0.08 mass% , each content of Si, Fe, Cu, Mn, Zn, and Ni The amount is preferably regulated to 0.05 % by mass or less.
[0015]
Moreover, the aluminum alloy material excellent in corrosion resistance is suitably used as an aluminum alloy material for CVD devices, an aluminum alloy material for PVD devices, an aluminum alloy material for liquid crystal display (LCD) manufacturing devices, and an aluminum alloy material for semiconductor manufacturing devices. .
[0016]
The method for producing an aluminum alloy material excellent in corrosion resistance according to the present invention contains Mg: 4.0-5.0 mass% and Cr: 0.02-0.1 mass%, and contains Si, Fe, Cu as impurities. The basic gist is that the contents of each of Mn, Zn and Ni are regulated to 0.1 % by mass or less, and the surface of the aluminum alloy base material, the balance of which is made of Al and other impurities, is subjected to a corrosion-resistant film formation treatment. To do.
[0017]
The aluminum alloy material having excellent corrosion resistance is suitably used as an aluminum alloy material for CVD devices, an aluminum alloy material for PVD devices, an aluminum alloy material for liquid crystal display (LCD) manufacturing devices, and an aluminum alloy material for semiconductor manufacturing devices.
[0018]
In the chemical composition of the aluminum alloy for film formation treatment of the present invention and the aluminum alloy base material of the aluminum alloy material excellent in corrosion resistance, the significance of addition of each element and the significance of regulation are as follows.
[0019]
Mg is an element that improves the alloy strength. Mg content poor strength improving effect is less than 4.0 wt%, to lower the workability and more than 5.0 wt%, Mg content should be 4.0 to 5.0 mass%. Further, Mg has an effect of forming a fluoride passivation film together with fluorine when fluorination treatment is performed, and improving machinability. A preferable Mg content is 4.3 to 4.7 % by mass .
[0020]
Cr is an element that refines the alloy structure and improves surface treatment properties, and as a result, has an effect of improving the corrosion resistance by forming a film by improving the adhesion between the base material and the film. When the Cr content is less than 0.02 % by mass , the above effects are poor, and when it exceeds 0.1 % by mass , a coarse structure is formed and workability is lowered. A preferable Cr content is 0.04 to 0.08 mass% .
[0021]
Moreover, when heavy metals Si, Fe, Cu, Mn, Zn, and Ni as impurities are contained in large amounts, the amount of Al-Fe intermetallic compound generated in the base material and the film increases, and from the film defects, metal The intermetallic compound is released by evaporation or precipitation, or reacts with a corrosive gas such as a halogen gas to drop out of the metal structure and be released. Even heavy metals alone are released. Further, when the heavy metal content and the intermetallic compound amount are increased, the defects of the film are increased, and the heavy metal and the intermetallic compound are easily released. In other words, when the content of the impurity element is small, the simple metals and intermetallic compounds released from the film defects are reduced, and the increase in film defects is suppressed. When this aluminum alloy or aluminum alloy material is used as, for example, a material for a CVD device, a material for a PVD device, a material for an LCD manufacturing device, or a material for a semiconductor manufacturing device, the released heavy metal and intermetallic compound are treated. Or, the manufactured LCD, semiconductor, etc. are contaminated to deteriorate the product quality. Furthermore, in order to add Mg and Cr within the above ranges for improving strength and surface treatment, it is necessary to regulate heavy metals as impurities that generate intermetallic compounds. For this reason, it is necessary to control each heavy metal element to 0.1 mass% or less to suppress the production amount of intermetallic compounds and to suppress increase in film defects. The preferred contents of these heavy metal elements are each 0.05 % by mass or less.
[0022]
In the aluminum alloy material having excellent corrosion resistance according to the present invention, a corrosion-resistant film is formed on the surface of the aluminum alloy base material having the above-described composition. As described above, since the film is maintained in a film with few defects by controlling the composition of the base alloy, as described above, heavy metals and intermetallic compounds are hardly released even under high-temperature thermal cycles and corrosive environments, and excellent corrosion resistance, particularly gas Corrosion resistance, and thus excellent corrosion resistance as an alloy material. Even if the coating is cracked or worn out due to long-term use deterioration and the base metal is exposed, the release amount is small because the heavy metal content itself in the base material is regulated, and adverse effects due to contamination of semiconductors, etc. There are few.
[0023]
Examples of the corrosion resistant film include an anodized film or a fluorinated film alone, a composite film obtained by Ni-P plating treatment and fluorination treatment, or a composite film obtained by anodization treatment and fluorination treatment. The excellent corrosion resistance described above can be obtained. Among these, a single film can be recommended in terms of easy film formation treatment, and a composite film can be recommended in that the corrosion resistance can be synergistically improved by combining different types of films.
[0024]
Note that an alloy material having excellent gas corrosion resistance due to such a film exhibits excellent corrosion resistance against water.
[0025]
In the method for producing an aluminum alloy material having excellent corrosion resistance, each corrosion-resistant film forming treatment may be performed according to a conventional method, and the conditions are not limited.
[0026]
The anodizing treatment is performed using a sulfuric acid bath, an oxalic acid bath, or the like. For example, if the case of using an aluminum alloy material as a semiconductor like manufacturing device material, the liquid composition: 10% H 2 SO 4, the liquid temperature 0 +/- 2 ° C., a current density: DC2~4.5A / dm 2, the voltage When processed under the conditions of: 23 to 120 V, processing time: 60 minutes, a hard anodized film of about 50 μm can be formed.
[0027]
Examples of the fluorination treatment include a method in which fluorine gas or fluoride gas is brought into contact with the surface of the aluminum alloy base material under heating, or a method in which liquid fluoride is brought into contact, and a fluoride passivation film can be formed. .
[0028]
In the case of forming a composite film by Ni-P plating treatment and fluorination treatment, for example, after forming a plating film by performing Ni-P plating treatment using a nickel sulfate bath using hypophosphite as a reducing agent, The above-described fluorination treatment is performed. Thereby, the composite film of a Ni-P plating film and a fluoride passivation film is formed.
[0029]
Moreover, when forming the composite film by an anodizing process and a fluorination process, after performing the above-mentioned anodizing process and forming an anodized film, the above-mentioned fluorination process is performed. As a result, a composite film of the anodized film and the fluorinated passive film is formed.
[0030]
In either case, degreasing cleaning, etching, surface polishing, etc. as pretreatment of the film forming treatment, post-treatment washing, drying, heating, etc. are appropriately performed.
[0031]
Processing to the required shape is not limited as long as the conventional method is followed, but when used under high temperature thermal cycle and corrosive environment as a manufacturing equipment material such as semiconductor, in order to remove residual stress during cutting, grinding and joining It is preferable to perform heat treatment at 350 to 380 ° C. after each processing.
[0032]
In addition, the aluminum alloy and alloy material of the present invention are alloys and alloy materials suitable for all members exposed to high temperature and corrosive gas atmosphere, especially for CVD apparatus, PVD apparatus, and liquid crystal display (LCD) manufacturing apparatus. It is suitably used as an aluminum alloy material for semiconductor manufacturing equipment.
[0033]
【Example】
The aluminum alloy having the composition shown in Table 1 is homogenized at 450 to 600 ° C., and then hot-rolled and cold-rolled to obtain an aluminum alloy having a thickness of 4 mm. I made a board.
[0034]
A film was formed on each aluminum alloy plate cut to 50 mm × 50 mm under the following conditions. However, Comparative Example 14 was not subjected to film formation treatment.
(Formation of sulfuric acid anodized film)
Bath composition: 15% H 2 SO 4 , bath temperature: 25 ° C., voltage: 20 V, treatment time: 20 minutes, anodizing treatment was performed to form a film with a thickness of 20 μm.
(Formation of oxalic acid anodized film)
Bath composition: 4% (COOH) 2 · 2H 2 O, bath temperature: 25 ° C., voltage: 30 V, treatment time: 30 minutes, anodization was performed to form a film with a film thickness of 15 μm.
(Formation of fluoride treatment film)
After chemical polishing as pretreatment, the film was kept at 260 ° C. for 24 hours in a chamber into which 20% fluorine gas (F 2 ) + 80% N 2 was introduced to form a fluorinated passive film having a thickness of 5 μm.
(Formation of Ni-P plating treatment and fluoride treatment composite film)
In a nickel sulfate bath using hypophosphite as a reducing agent, after electroless Ni-P plating was performed to form a 5 μm plating film, the inside of the chamber into which 20% fluorine gas (F 2 ) + 80% N 2 was introduced At 260 ° C. for 24 hours to form a composite film of a Ni—P plating film and a fluoride passivation film. The film thickness of this composite film was 30 μm.
(Formation of composite film of anodizing treatment and fluorination treatment)
After forming a 20 μm sulfuric acid anodic oxide film by the above-mentioned method, it is kept at 260 ° C. for 24 hours in a chamber into which 20% fluorine gas (F 2 ) + 80% N 2 is introduced. A composite film with the film was formed. The film thickness of this composite film was 15 μm.
[0035]
And the gas corrosion resistance test and the strength test were done with the following method with respect to the aluminum alloy plate in which each film was formed.
[Gas corrosion resistance test]
The aluminum alloy plate was put into a processing chamber of an insulating film forming apparatus in a semiconductor manufacturing process, and the time until an insulation failure of the semiconductor insulating film occurred was measured. The silicon wafer used for the test had a diameter of 200 mm, a thickness of 700 μm, a chamber size of 400 mm wide × 400 mm deep × 200 mm high, and an insulating film was formed by plasma CVD (400 ° C., corrosive gas: SiH 4 -N 2 O, plasma excitation atmosphere).
[0036]
In the insulation film formation test, insulation failure is caused by heavy metal contained as an impurity in an aluminum alloy or an intermetallic compound formed by this heavy metal contaminates the insulation film and has a large diffusion coefficient into Si or SiO 2 . This is presumed to be due to this. Therefore, it can be evaluated that the amount of release of heavy metals and intermetallic compounds from the aluminum alloy base material or each film decreases as the time until insulation failure, in other words, the longer the film formation time is. The evaluation results are shown in Table 1.
[0037]
In addition, in the aluminum alloy of the same composition of Examples 9 and 10, it is presumed that the film formation possible time of the oxalic acid anodized film is longer than the sulfuric acid anodized film due to the heat resistance of the oxalic acid anodized film.
[0038]
In addition, the two types of aluminum alloy plates (Examples 12 and 13) on which the composite film is formed have a longer film forming time than the single film (Examples 1 to 11) of the anodized film or the fluorinated film. This is thought to be due to the synergistic improvement in gas corrosion resistance due to the combination of different types of coatings.
〔Strength test〕
Using the same sample as the gas corrosion resistance test, a tensile test was performed based on JIS Z2201, and the strength was compared. The evaluation results are shown in Table 1.
[0039]
[Table 1]
Figure 0003891815
[0040]
From the results of Table 1, the aluminum alloy plate in which the content of heavy metals is regulated and the aluminum alloy plate on which each corrosion-resistant film is formed are long in the time at which an insulating film can be formed at a high temperature and in a corrosive atmosphere. This confirms that the release amount of heavy metals and intermetallic compounds is small. Moreover, due to the regulation of heavy metal content, in addition to the small amount of metal compound produced, the formation of a film with few defects and the difficulty of releasing heavy metals and intermetallic compounds contributes to the extension of the film formation time. It is guessed. Furthermore, the outstanding intensity | strength is obtained by containing predetermined amount of Mg.
[0041]
From these results, the aluminum alloy plate for film formation treatment and the aluminum alloy plate on which the film is formed of each example have excellent strength and corrosion resistance, and materials for CVD devices, materials for PVD devices, materials for LCD manufacturing devices, semiconductors It is suitable as a material for manufacturing equipment.
[0042]
【The invention's effect】
As explained above, the aluminum alloy for film formation treatment of this invention contains Mg: 4.0-5.0 mass% and Cr: 0.02-0.1 mass%, and Si, Fe as impurities , Cu, Mn, Zn, and Ni are each controlled to be 0.1 % by mass or less, and the balance is made of Al and other impurities. Therefore, the heavy metal content in the base material and the formed film, and these The amount of intermetallic compounds formed by heavy metals is small. In addition, since these amounts are small, a film with few defects can be maintained and the corrosion resistance is excellent, and the amount of heavy metals and intermetallic compounds released from the film defects is small even under a high temperature thermal cycle and a corrosive environment. Furthermore, excellent strength can be obtained by containing Mg, and excellent surface treatment can be obtained by containing Cr.
[0043]
In the film forming treatment aluminum alloy, when the Mg content is 4.3 to 4.7 mass% , particularly excellent strength is obtained, and the Cr content is 0.04 to 0.08 mass%. Provides particularly excellent surface treatment.
[0044]
Moreover, when each content of Si, Fe, Cu, Mn, Zn, and Ni is regulated to 0.05 % by mass or less, a film having a small content of these heavy metals and intermetallic compounds is formed. be able to.
[0045]
In the aluminum alloy material excellent in corrosion resistance of the present invention, the base material has the above-described chemical composition, and the heavy metal content and the amount of intermetallic compounds formed by these heavy metals are small. For this reason, the corrosion-resistant film formed on the surface is excellent in corrosion resistance with few defects, and the release amount of heavy metals and intermetallic compounds from the film defects is small even under high temperature thermal cycle and corrosive environment. Moreover, the base material strength is excellent by the inclusion of Mg, and the excellent surface treatment property is obtained by the inclusion of Cr. As a result, the adhesion between the film and the base material is improved to promote the corrosion resistance due to the film formation.
[0046]
Therefore, the film forming treatment aluminum alloy of the present invention or the aluminum alloy material excellent in corrosion resistance is used as a material for CVD equipment, PVD equipment, LCD manufacturing equipment, semiconductor manufacturing equipment, etc. used in high temperature thermal cycles and corrosive environments. By doing so, the contamination of heavy metals and intermetallic compounds on the products processed or manufactured by these apparatuses can be suppressed, and the product quality can be improved. Furthermore, even when the corrosion-resistant film is cracked or worn due to long-term use deterioration and the base material is exposed, the release amount is small because the heavy metal content itself is regulated, and the adverse effects due to contamination of the product are also small.
[0047]
In particular, when the corrosion-resistant film is a single film of an anodized film or a fluorinated film, the film forming process is easy. Further, when the corrosion-resistant film is a composite film by Ni-P plating treatment and fluorination treatment, or a composite film by anodization treatment and fluorination treatment, particularly excellent corrosion resistance can be obtained by combining different kinds of films. .
[0048]
Moreover, the manufacturing method of the aluminum alloy material excellent in corrosion resistance of the present invention is to perform each film forming treatment on the alloy base material having the above composition, and manufactures the aluminum alloy material excellent in corrosion resistance of the present invention. be able to.
[0049]
Moreover, since the aluminum alloy and alloy material of the present invention are excellent in corrosion resistance, they are suitable for all member materials exposed to high temperature and corrosive gas atmosphere. It is particularly suitable as an aluminum alloy material for CVD equipment, PVD equipment, liquid crystal display (LCD) manufacturing equipment, and semiconductor manufacturing equipment used in such an environment, and it is possible to configure these equipment having excellent corrosion resistance. it can.

Claims (23)

Mg:4.0〜5.0質量%およびCr:0.02〜0.1質量%を含有し、不純物としてのSi、Fe、Cu、Mn、ZnおよびNiの各含有量がそれぞれ0.1質量%以下に規制され、残部がAlおよび他の不純物からなることを特徴とする皮膜形成処理用アルミニウム合金。Mg: 4.0-5.0 mass% and Cr: 0.02-0.1 mass% , each content of Si, Fe, Cu, Mn, Zn and Ni as impurities is 0.1 An aluminum alloy for film formation treatment, characterized in that it is regulated to not more than mass%, and the balance consists of Al and other impurities. Mg含有量は4.3〜4.7質量%である請求項1に記載の皮膜形成処理用アルミニウム合金。The aluminum alloy for film formation treatment according to claim 1, wherein the Mg content is 4.3 to 4.7 mass% . Cr含有量は0.04〜0.08質量%である請求項1または2に記載の皮膜形成処理用アルミニウム合金。The aluminum alloy for film formation treatment according to claim 1 or 2, wherein the Cr content is 0.04 to 0.08 mass% . Si、Fe、Cu、Mn、ZnおよびNiの各含有量はそれぞれ0.05質量%以下に規制されている請求項1〜3のいずれかに記載の皮膜形成処理用アルミニウム合金。The aluminum alloy for film formation treatment according to any one of claims 1 to 3, wherein each content of Si, Fe, Cu, Mn, Zn and Ni is regulated to 0.05 % by mass or less. 前記皮膜形成処理用アルミニウム合金は、CVD装置用アルミニウム合金である請求項1〜4のいずれかに記載の皮膜形成処理用アルミニウム合金。  The aluminum alloy for film formation treatment according to any one of claims 1 to 4, wherein the aluminum alloy for film formation treatment is an aluminum alloy for CVD apparatus. 前記皮膜形成処理用アルミニウム合金は、PVD装置用アルミニウム合金である請求項1〜4のいずれかに記載の皮膜形成処理用アルミニウム合金。  The aluminum alloy for film formation treatment according to any one of claims 1 to 4, wherein the aluminum alloy for film formation treatment is an aluminum alloy for PVD devices. 前記皮膜形成処理用アルミニウム合金は、液晶ディスプレイ(LCD)製造装置用アルミニウム合金である請求項1〜4のいずれかに記載の皮膜形成処理用アルミニウム合金。  The aluminum alloy for film formation treatment according to any one of claims 1 to 4, wherein the aluminum alloy for film formation treatment is an aluminum alloy for a liquid crystal display (LCD) manufacturing apparatus. 前記皮膜形成処理用アルミニウム合金は、半導体製造装置用アルミニウム合金である請求項1〜4のいずれかに記載の皮膜形成処理用アルミニウム合金。  The aluminum alloy for film formation treatment according to any one of claims 1 to 4, wherein the aluminum alloy for film formation treatment is an aluminum alloy for semiconductor manufacturing equipment. Mg:4.0〜5.0質量%およびCr:0.02〜0.1質量%を含有し、不純物としてのSi、Fe、Cu、Mn、ZnおよびNiの各含有量がそれぞれ0.1質量%以下に規制され、残部がAlおよび他の不純物からなるアルミニウム合金母材の表面に、耐食性皮膜が形成されてなることを特徴とする耐食性に優れたアルミニウム合金材。Mg: 4.0-5.0 mass% and Cr: 0.02-0.1 mass% , each content of Si, Fe, Cu, Mn, Zn and Ni as impurities is 0.1 An aluminum alloy material excellent in corrosion resistance, characterized in that a corrosion-resistant film is formed on the surface of an aluminum alloy base material, the balance of which is regulated to not more than mass%, and the balance is made of Al and other impurities. 前記耐食性皮膜は、陽極酸化処理皮膜またはフッ化処理皮膜の単独皮膜である請求項9に記載の耐食性に優れたアルミニウム合金材。  The aluminum alloy material having excellent corrosion resistance according to claim 9, wherein the corrosion resistant film is a single film of an anodized film or a fluorinated film. 前記耐食性皮膜は、Ni−Pメッキ処理とフッ化処理による複合皮膜、または陽極酸化処理とフッ化処理による複合皮膜である請求項9に記載の耐食性に優れたアルミニウム合金材  The aluminum alloy material having excellent corrosion resistance according to claim 9, wherein the corrosion-resistant film is a composite film by Ni-P plating treatment and fluorination treatment, or a composite film by anodization treatment and fluorination treatment. 前記アルミニウム合金母材におけるMg含有量は4.3〜4.7質量%である請求項9〜11のいずれかに記載の耐食性に優れたアルミニウム合金材。The aluminum alloy material excellent in corrosion resistance according to any one of claims 9 to 11, wherein the Mg content in the aluminum alloy base material is 4.3 to 4.7 mass% . 前記アルミニウム合金母材におけるCr含有量は0.04〜0.08質量%である請求項9〜12のいずれかに記載の耐食性に優れたアルミニウム合金材。The aluminum alloy material excellent in corrosion resistance according to any one of claims 9 to 12, wherein a Cr content in the aluminum alloy base material is 0.04 to 0.08 mass% . 前記アルミニウム合金母材におけるSi、Fe、Cu、Mn、ZnおよびNiの各含有量はそれぞれ0.05質量%以下に規制されている請求項9〜13のいずれかに記載の耐食性に優れたアルミニウム合金材。The aluminum excellent in corrosion resistance according to any one of claims 9 to 13, wherein each content of Si, Fe, Cu, Mn, Zn and Ni in the aluminum alloy base material is regulated to 0.05 mass% or less. Alloy material. 前記耐食性に優れたアルミニウム合金材は、CVD装置用アルミニウム合金である請求項9〜14のいずれかに記載の耐食性に優れたアルミニウム合金材。  The aluminum alloy material excellent in corrosion resistance according to any one of claims 9 to 14, wherein the aluminum alloy material excellent in corrosion resistance is an aluminum alloy for a CVD apparatus. 前記耐食性に優れたアルミニウム合金材は、PVD装置用アルミニウム合金材である請求項9〜14のいずれかに記載の耐食性に優れたアルミニウム合金材。  The aluminum alloy material excellent in corrosion resistance according to any one of claims 9 to 14, wherein the aluminum alloy material excellent in corrosion resistance is an aluminum alloy material for PVD devices. 前記耐食性に優れたアルミニウム合金材は、液晶ディスプレイ(LCD)製造装置用アルミニウム合金材である請求項9〜14のいずれかに記載の耐食性に優れたアルミニウム合金材。  The aluminum alloy material excellent in corrosion resistance according to any one of claims 9 to 14, wherein the aluminum alloy material excellent in corrosion resistance is an aluminum alloy material for a liquid crystal display (LCD) manufacturing apparatus. 前記耐食性に優れたアルミニウム合金材は、半導体製造装置用アルミニウム合金材である請求項9〜14のいずれかに記載の皮膜形成処理用アルミニウム合金材。  The aluminum alloy material for film formation treatment according to any one of claims 9 to 14, wherein the aluminum alloy material having excellent corrosion resistance is an aluminum alloy material for semiconductor manufacturing equipment. Mg:4.0〜5.0質量%およびCr:0.02〜0.1質量%を含有し、不純物としてのSi、Fe、Cu、Mn、ZnおよびNiの各含有量がそれぞれ0.1質量%以下に規制され、残部がAlおよび他の不純物からなるアルミニウム合金母材の表面に、耐食性皮膜形成処理を施すことを特徴とする耐食性に優れたアルミニウム合金材の製造方法。Mg: 4.0-5.0 mass% and Cr: 0.02-0.1 mass% , each content of Si, Fe, Cu, Mn, Zn and Ni as impurities is 0.1 A method for producing an aluminum alloy material having excellent corrosion resistance, characterized in that a corrosion-resistant film forming treatment is performed on the surface of an aluminum alloy base material, the balance of which is regulated to less than or equal to mass% , and the balance is made of Al and other impurities. 前記耐食性に優れたアルミニウム合金材は、CVD装置用アルミニウム合金材である請求項19に記載の耐食性に優れたアルミニウム合金材の製造方法。  The method for producing an aluminum alloy material having excellent corrosion resistance according to claim 19, wherein the aluminum alloy material having excellent corrosion resistance is an aluminum alloy material for a CVD apparatus. 前記耐食性に優れたアルミニウム合金材は、PVD装置用アルミニウム合金材である請求項19に記載の耐食性に優れたアルミニウム合金材の製造方法。  The method for producing an aluminum alloy material with excellent corrosion resistance according to claim 19, wherein the aluminum alloy material with excellent corrosion resistance is an aluminum alloy material for PVD devices. 前記耐食性に優れたアルミニウム合金材は、液晶ディスプレイ(LCD)製造装置用アルミニウム合金材である請求項19に記載の耐食性に優れたアルミニウム合金材の製造方法。  The method for producing an aluminum alloy material having excellent corrosion resistance according to claim 19, wherein the aluminum alloy material having excellent corrosion resistance is an aluminum alloy material for a liquid crystal display (LCD) manufacturing apparatus. 前記耐食性に優れたアルミニウム合金材は、半導体製造装置用アルミニウム合金材である請求項19に記載の耐食性に優れたアルミニウム合金材の製造方法。  The method for producing an aluminum alloy material with excellent corrosion resistance according to claim 19, wherein the aluminum alloy material with excellent corrosion resistance is an aluminum alloy material for semiconductor manufacturing equipment.
JP2001316012A 2001-10-12 2001-10-12 Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same Expired - Fee Related JP3891815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316012A JP3891815B2 (en) 2001-10-12 2001-10-12 Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001316012A JP3891815B2 (en) 2001-10-12 2001-10-12 Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003119540A JP2003119540A (en) 2003-04-23
JP3891815B2 true JP3891815B2 (en) 2007-03-14

Family

ID=19134084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316012A Expired - Fee Related JP3891815B2 (en) 2001-10-12 2001-10-12 Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3891815B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220089724A (en) 2020-12-21 2022-06-29 에스케이스페셜티 주식회사 Container for storing high-purity hydrogen fluoride and method for manufacturing the same
KR20220089723A (en) 2020-12-21 2022-06-29 에스케이스페셜티 주식회사 Metal material for container for storing high purity hydrogen fluoride with improved scratch resistance and manufacturing method thereof
KR20220089725A (en) 2020-12-21 2022-06-29 에스케이스페셜티 주식회사 Container for storing high-purity hydrogen fluoride using a metal substrate having low corrosion resistance, and a method for manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4168066B2 (en) 2006-08-11 2008-10-22 株式会社神戸製鋼所 Aluminum alloy for anodizing treatment used in plasma processing apparatus and manufacturing method thereof, aluminum alloy member having anodized film, and plasma processing apparatus
SG155111A1 (en) 2008-02-26 2009-09-30 Kobe Steel Ltd Surface treatment material for semiconductor manufacturing system and method for producing same
JP5833987B2 (en) * 2012-07-26 2015-12-16 株式会社神戸製鋼所 Aluminum alloy excellent in anodizing property and anodized aluminum alloy member
CN103203915A (en) * 2013-03-27 2013-07-17 成都阳光铝制品有限公司 Aluminum micro-arc electrophoresis composite film and preparation process thereof
WO2015059785A1 (en) * 2013-10-23 2015-04-30 九州三井アルミニウム工業株式会社 Aluminum alloy, and semiconductor production device and plasma treatment device each using same
CN108103548B (en) * 2018-03-02 2023-09-19 安徽尚德科技有限公司 High wear-resisting aluminum alloy intermediate plate
US20210198788A1 (en) * 2019-12-30 2021-07-01 Entegris, Inc. Metal body having magnesium fluoride region formed therefrom

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954716B2 (en) * 1990-03-08 1999-09-27 三菱アルミニウム株式会社 Industrial material having a fluorinated passivation film and method for producing the same
JP2986859B2 (en) * 1990-07-05 1999-12-06 三菱アルミニウム株式会社 Aluminum alloy material and method of manufacturing the same
JPH0499144A (en) * 1990-08-06 1992-03-31 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disk base plate having good ni-p plating property
JP3691089B2 (en) * 1994-09-27 2005-08-31 ステラケミファ株式会社 Aluminum alloy for fluorination treatment
JP3648821B2 (en) * 1995-12-25 2005-05-18 ステラケミファ株式会社 Al alloy and method for forming fluorinated passive film having excellent corrosion resistance using Al alloy
JP3855663B2 (en) * 2001-02-15 2006-12-13 日本軽金属株式会社 Parts for surface treatment equipment with excellent withstand voltage characteristics
JP3871544B2 (en) * 2001-10-12 2007-01-24 昭和電工株式会社 Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220089724A (en) 2020-12-21 2022-06-29 에스케이스페셜티 주식회사 Container for storing high-purity hydrogen fluoride and method for manufacturing the same
KR20220089723A (en) 2020-12-21 2022-06-29 에스케이스페셜티 주식회사 Metal material for container for storing high purity hydrogen fluoride with improved scratch resistance and manufacturing method thereof
KR20220089725A (en) 2020-12-21 2022-06-29 에스케이스페셜티 주식회사 Container for storing high-purity hydrogen fluoride using a metal substrate having low corrosion resistance, and a method for manufacturing the same

Also Published As

Publication number Publication date
JP2003119540A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
JP4168066B2 (en) Aluminum alloy for anodizing treatment used in plasma processing apparatus and manufacturing method thereof, aluminum alloy member having anodized film, and plasma processing apparatus
KR100407704B1 (en) Aluminum alloy member for chamber and heater block
TWI615480B (en) Vacuum chambers elements made of aluminum alloy
JP5064935B2 (en) Anodized aluminum alloy that combines durability and low contamination
JP7190491B2 (en) Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
CN110402296B (en) High temperature stable aluminum alloy vacuum chamber element
JP3871544B2 (en) Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same
JP3891815B2 (en) Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same
JP3871560B2 (en) Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same
JP2003034894A (en) Al ALLOY MEMBER SUPERIOR IN CORROSION RESISTANCE
JP2004225113A (en) Al alloy member excellent in corrosion resistance and plasma resistance
JP3919996B2 (en) Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus
JP2014025110A (en) Aluminum alloy having excellent anodic oxidation treatability, and anodic oxidation treated aluminum alloy member
TWI526412B (en) Anti-corrosion film, metal substrate with anti-corrosion layer and manufacturing method thereof
CN113692455B (en) Aluminum alloy member for forming fluoride coating film and aluminum alloy member having fluoride coating film
JPH1192912A (en) Metal material or metal film having fluorinated surface layer and fluorinating method
US6982121B2 (en) Anodization-adapted aluminum alloy and plasma-treating apparatus made thereof
JP3746878B2 (en) Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment
JP2002256488A (en) Aluminium alloy for anodizing and aluminium alloy material superior in gas corrosion resistance
JP5416436B2 (en) Aluminum alloy member excellent in crack resistance and corrosion resistance, method for confirming crack resistance and corrosion resistance of porous anodic oxide film, and conditions for forming porous anodic oxide film excellent in crack resistance and corrosion resistance Setting method
JP7468512B2 (en) Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
JP5416437B2 (en) Aluminum alloy members used as materials for vacuum chambers in semiconductor and liquid crystal manufacturing equipment or parts provided in the vacuum chamber
WO2023033120A1 (en) Aluminum member for semiconductor manufacturing devices and method for producing said aluminum member
WO2019169912A1 (en) Reaction chamber component and preparation method therefor, and reaction chamber
JPS63447A (en) Hot-dipped steel material with high damping capacity and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees