JP3855663B2 - Parts for surface treatment equipment with excellent withstand voltage characteristics - Google Patents

Parts for surface treatment equipment with excellent withstand voltage characteristics Download PDF

Info

Publication number
JP3855663B2
JP3855663B2 JP2001038144A JP2001038144A JP3855663B2 JP 3855663 B2 JP3855663 B2 JP 3855663B2 JP 2001038144 A JP2001038144 A JP 2001038144A JP 2001038144 A JP2001038144 A JP 2001038144A JP 3855663 B2 JP3855663 B2 JP 3855663B2
Authority
JP
Japan
Prior art keywords
film
withstand voltage
less
treatment
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001038144A
Other languages
Japanese (ja)
Other versions
JP2002241992A (en
Inventor
健 海老原
武正 山本
秀明 薄
保博 佐井
靖史 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2001038144A priority Critical patent/JP3855663B2/en
Publication of JP2002241992A publication Critical patent/JP2002241992A/en
Application granted granted Critical
Publication of JP3855663B2 publication Critical patent/JP3855663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Insulating Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子や液晶パネル等を製造する工程で用いられる真空蒸着あるいは乾式腐食等の表面処理装置における反応室内部に装備される部品に関するもので、耐電圧特性に優れた該部品を提供しようとするものである。
【0002】
【従来の技術】
半導体素子や液晶パネル等は、それらの製造過程で種々の処理装置が用いられる。例えば、成膜を目的とするCVDおよびPVD等には真空蒸着装置が採用され、蝕刻を目的とするプラズマエッチング等には乾式腐食装置が用いられる。これらの真空蒸着装置あるいは乾式腐食装置等の所謂半導体などの製造装置は、種々の形式のものがある。例えば、図1はプラズマ処理装置の反応室10の内部構造を説明する説明図であって、ガス導入口8、真空排気口9を備えた反応室10には上部電極支え11、下部電極支え12等の主要製品が配設構成されていて、被処理材3に対し上部電極2と下部電極4との間に被処理材3を位置せしめてヒータユニット5による加熱条件下で処理するものであって、このようなプラズマ処理装置を用いて被処理材3に成膜あるいは蝕刻処理等が施され、この処理には弗素プラズマが用いられる。
【0003】
即ち、プラズマを発生させるには、高周波電力を印可し、あるいは高電圧場を設ける必要があり、反応室の内部部品として例えば被処理材3に対する上部電極2と下部電極4に対しシャワーヘッド13、ヒータユニット5等は、上記した上下電極2、4間の高周波電力、あるいは高電圧場にさらされることになる。従って反応室10の内部部品は上下電極2、4を含め、このような条件に耐える耐弗素プラズマ性および耐電圧特性が要求される。
【0004】
一般に装置の軽量化、少熱容量化等の観点からJIS A5000系あるいはA6000系のアルミニウム合金製の反応室が用いられてきており、上記の耐弗素プラズマ性および耐電圧特性付与を目的として、反応室の内部部品表面には、陽極酸化皮膜が施されている。また上記反応室の内部部品表面の陽極酸化皮膜は、弗素プラズマによって徐々にではあるが皮膜中のアルミニウムが弗素と反応し、弗化アルミニウムとなって気化除去されるので、陽極酸化皮膜が消耗しその厚さが薄くなる。陽極酸化皮膜の厚さが薄くなることによって部品の耐電圧特性が低下するので、これらの部品は使用期間を規定し、消耗品として定期的に交換している。
【0005】
【発明が解決しようとする課題】
しかしながら、このように陽極酸化皮膜の施された反応室の内部部品の中には、予め規定した部品使用期間に達しないうちに、高周波電力あるいは高電圧により局部的に火花放電を起こし、被処理物に重大な欠陥を発生させる現象が発生することがあり、特にこの局部的火花放電が極めて短期間に発生する場合がある。
【0006】
即ち、上記したような局部的火花放電の如き異常放電現象の発生を防止し、規定された所定の使用期間における安定した使用を図ることが枢要であることは広く知られているが、斯様な要請を適切に満足し、規定された使用期間通りに使用できる半導体等の製造装置ないし該装置用部品を得ることができない。
【0007】
【課題を解決するための手段】
発明者らはこのような異常放電現象を、厚さ30μm の陽極酸化皮膜を施した部品について詳細に究明したところ、通常の皮膜の消耗によって発生する放電現象とは異なり、予定時期よりも早期に発生する異常な放電現象はこの皮膜内部に分布する長径のサイズが約5μm を超える金属間化合物の量(数)と相関のあることを見出し、本発明を完成したものであって、以下の如くである。
【0010】
即ち本発明は、陽極酸化処理を施されたアルミニウム合金製部品であって、その組成が、Mg:0.8〜3.5wt%を含有し、残部Alおよび不可避的不純物からなり、該不可避的不純物としてのSiが0.04wt%以下、Feが0.05wt%以下、Si+Feが0.06wt%以下、その他の不可避的不純物が各々0.02wt%以下であり、該部品の陽極酸化皮膜中に存在する長径サイズ5μm以上の金属間化合物の個数が1mm当たり20個以下であることを特徴とする耐電圧特性に優れた表面処理装置用部品である。
【0011】
【作用】
一般的に素材中に存在し皮膜中に取り込まれる金属間化合物の中には、陽極酸化処理で僅かしか酸化されず、あるいはほぼ金属状態のまま残るものと、処理の際に溶解して皮膜中に空洞を形成するものとがある。然して金属間化合物がほぼ金属状態のまま皮膜中に残ると、その粒子部分は耐電圧性を殆ど持たないため、耐電圧皮膜として機能する皮膜の厚さを実質的に減少させてしまう。上述したように弗素プラズマにより皮膜を構成する酸化物は、徐々に弗化アルミニウムへと変化し、皮膜表面から離脱するため皮膜厚さは減少する。この皮膜厚さの減少速度は、皮膜が均一な酸化物であればほぼ等速であると考えられ、上述のように、化合物がほぼ金属状態のまま皮膜中に残るような場合に、皮膜厚さの気化除去速度がばらつき耐電圧を変化させるが、化合物のサイズに対して皮膜厚さが厚ければ、プラズマ処理の初期における皮膜厚さの気化除去速度にばらつきがあっても、そのばらつきによって生じる耐電圧の変化の程度は、実操業の中では十分満足できる程度に低いが、徐々に皮膜厚さが減少し、化合物の無い健全部に比べ早期に耐電圧が不足する状態になると、その不足した部位に電流の集中が起こり火花放電を起こして皮膜は破壊される。
【0012】
従って部品全体として観察した場合、装置使用期間は耐電圧が最も早期に低下する部位、即ち最も大きな化合物の存在によって支配される。実際には最も大きな化合物粒子でも5〜10数μm であるため、火花放電を起こして破壊される皮膜の破損程度は小さく、1ケ所程度の破壊では装置の使用不能には至らない。装置が使用不能になるには、1部品につき数10〜数100ケ所の火花放電後である。
【0013】
一方金属間化合物が陽極酸化処理中に溶解し、その部分が空洞を形成するような種類の化合物は、皮膜処理により形成された空洞が、処理後の封孔処理の際に水和反応生成物によって埋められるため、ほぼ金属状態のまま皮膜中に残る化合物よりははるかに耐電圧低下割合が小さい。しかしながら、この部分は皮膜密度が低く、弗素プラズマによる皮膜体積当たりの弗素とアルミニウムとの反応速度は実質的に速く、その部位の皮膜厚さがこのような空洞の無い健全部より早く減少するので、使用中の火花放電発生カ所になり得る。陽極酸化処理中に溶解し空洞を形成するような化合物は、ほぼ金属状態のまま皮膜中に残る化合物と比べて耐電圧低下に大きな影響は無いが、このような化合物は少ない方が好ましい。
【0014】
部品の耐用期間は、皮膜厚さが厚いほど増すことになるが、上述の如く、その皮膜中に存在する粗大な金属間化合物のサイズの皮膜面積に対して占める割合によって定まることが判る。本発明者らの研究の結果として、弗素プラズマによる健全な部位と判断される皮膜の気化除去速度のバラツキは、数多くの実施例による統計的処理による結果、5μm 以上の金属間化合物が概ね皮膜面積1mm2 当たり20個以下であるところから、本発明は上記の金属間化合物の皮膜中に存在する長径サイズ5μm 以上の金属間化合物の個数を1mm2 当たり20個以下と規定することにより、耐用期間内の異常放電が避けられ、例え使用中に異常放電が有ったとしても、それは統計的な健全部位と差がなく、正常部品の健全な皮膜部位と同等な減少割合とすることができるとしたものである。
【0015】
なお、上述した如く、金属間化合物の存在は局部的な耐電圧低下の原因となるが、このような化合物は鋳造に際して連続して晶出することは少なく、個々の化合物としてそのサイズを測定できる。本発明においては金属間化合物のサイズは、測定面に現れた化合物の長径を測定し規定したものである。
【0016】
【発明の実施の形態】
上記したような本発明についての具体的な実施形態について説明すると、従来の技術の項で記載したように、一般に半導体製造装置は軽量化、少熱容量化等の観点からJIS A5000系あるいはA6000系のアルミニウム合金製の反応室が用いられてきており、特に強度および加工性の観点からJIS A6061(Si 0.4〜0.8wt%、Fe 0.7wt%以下、Cu 0.15〜0.40wt%、Mn 0.15wt%以下、Mg 0.8〜1.2wt%、Cr 0.04〜0.35wt%、Zn 0.25wt%以下、その他個々0.05wt%以下、合計0.15wt%以下)およびJIS A5052(Si 0.25wt%以下、Fe 0.40wt%以下、Cu 0.10wt%以下、Mn 0.10wt%以下、Mg 2.2〜2.8wt%、Cr 0.15〜0.35wt%、Zn 0.10wt%以下、その他個々0.05wt%以下、合計0.15wt%以下)が選ばれている。しかし、上記したような規格合金はSi、Fe等の元素の規定値が高く、従って多く含有されていて、このような合金に含まれる金属間化合物としては、FeAl α−Al−Fe−Si、β−Al−Fe−Si、MgSi、β−Al−Mg、(Fe、Cr)Al、FeAlが挙げられる。これらの中でFeAl は、陽極酸化皮膜中にそのまま取り込まれ、直接異常放電の原因となるため、その化合物粒子サイズを小さくかつ少なく、好ましくは皆無にすることが望ましい。また上記したFeAl 以外の金属間化合物も異常放電に繋がる可能性のある空孔を皮膜中に形成するため、その化合物粒子サイズを小さくかつ少なく、好ましくは皆無にすることが望ましい。
【0017】
半導体等の製造装置部品は、鋳物あるいは板を塑性加工し、もしくは切削加工して部品形状に作成される。いずれの方法でもアルミニウム合金溶湯を所定形状に鋳造することになる。即ち例えばアルミニウム合金板から上記部品を作成するには、まず所定組成に配合したアルミニウム合金溶湯を鋳造して鋳塊とし、該鋳塊を高温に加熱保持して均質化処理を行う。この均質化処理で鋳造時に晶出した晶出物の一部は固溶して小さくなる。この均質化処理の好ましい条件は組成によって異なるが、JIS A5000系で400〜500℃、JIS A6000系で450〜550℃に10〜48時間保持する。
【0018】
次に熱間圧延し、部品寸法の厚さまで圧延する。冷間圧延を加えてもよい。圧延された素材は、次に塑性加工、あるいは切削加工して部品形状に加工される。このようにして加工された上記部品は、従来の技術の項で記載したように、耐電圧特性および耐弗素プラズマ性付与を目的として陽極酸化皮膜処理が施される。またこのように処理されたものに対し、次に該部品に施す陽極酸化皮膜処理について説明すると、まず該部品は陽極酸化皮膜処理前に、脱脂、洗浄しておくことが好ましい。陽極酸化皮膜処理は通常、硫酸、蓚酸、燐酸、クロム酸、スルファミン酸等の酸性溶液中で陽極酸化電解処理によって形成される。なかでも後述の封孔処理との関連において、硫酸あるいは蓚酸溶液中での陽極酸化処理が最も好ましい結果が得られる。処理条件は例えば硫酸溶液を用いる場合、硫酸濃度は10〜30容量%、溶存アルミニウム濃度は20g/L(リットル)以下、液温は15〜30℃、電流密度は60〜300A/m2 の範囲に設定するとよい。蓚酸溶液を用いる場合、蓚酸濃度は2〜5wt%、溶存アルミニウム濃度は20g/L以下、液温は20〜40℃、電流密度は40〜350A/m2 の範囲に設定するとよい。
【0019】
陽極酸化皮膜の膜厚は、必要とされる耐電圧、耐用時間によって設定されるが、通常5〜50μm の範囲で±15%のばらつき内にあれば実用上差し支えない。このようにして形成された陽極酸化皮膜に対して封孔処理を行う。この封孔処理は通常行われている高温水溶液を用いた処理で行うことができる。例えば80℃以上のイオン交換水中に浸漬したり、酢酸ニッケルを含む80〜98℃の水溶液中に浸漬して行う。封孔処理液としては、他に酢酸コバルト、酢酸鉛、酢酸ニッケル−コバルト、硝酸バリウム等の水溶液も使用できるが、酢酸ニッケル水溶液が好ましい。この場合の濃度は5〜25g/L、液温80〜98℃の範囲であればよいが、90℃以上が好ましい。封孔処理終了後は、水洗および乾燥を行う。
【0020】
部分的に耐電圧を必要としない、あるいは電気伝導性の必要な電気接点部は、陽極酸化処理を行わない、もしくは陽極酸化処理後に機械的加工によって皮膜を除去する。さらに耐食性向上のためアルミニウム合金が露出する部分には耐食性のよいニッケル、銅等の金属を湿式あるいは乾式めっきしてもよい。また予めめっきを施してから陽極酸化処理を行ってもよいし、めっきを施してから切削等の機械加工を施してもよい。
【0021】
上述の如く、金属間化合物粒子サイズを小さくかつ少なく、好ましくは皆無にするには、合金溶湯を鋳造する際に晶出する上記化合物を、晶出させないことである。第1の手段は化合物を形成する元素量を固溶限度以下にすることである。
【0022】
上記したような本発明によるものの好ましい成分組成について説明すると、Mg:0.8〜3.5wt%である。即ちこのMgは、マトリックス中にMgを固溶させることによって、金属間化合物を晶出させることなく、強度と切削加工性を付与させることができるために添加するもので、下限値未満ではその効果が少なく、上限値を超えると、圧延加工性を損なうため好ましくない。好ましくはMg:1.5〜2.5wt%である。
【0023】
次に不可避的不純物としての規定は、Siが0.04wt%以下、Feが0.05wt%以下、Si+Feが0.06wt%以下、その他の不可避的不純物が各々0.02wt%以下である。即ちこれらの不可避的不純物規定理由は、すべてが粗大な金属間化合物を晶出させないためのものであって、上限値を超えると、粗大でしかも陽極酸化皮膜処理で、ほぼそのままの金属状態で皮膜中に残る。皮膜厚さによって含有量の上限が定まるものではあるが、規定の上限値は、皮膜厚さを30μmとした場合に許容できる最大量(皮膜面積1mm当たり5μm以上が20個)の金属間化合物が晶出する値である
【0024】
【実施例】
本発明者等が具体的に準備した実施例および該実施例に対する比較例としての合金は次の表1に示す如くである。
【0025】
【表1】

Figure 0003855663
【0026】
【実施例1】
表1に示す合金符号Aの組成に溶製したアルミニウム合金溶湯を板用鋳塊に鋳造し、該鋳塊を530℃×12時間加熱保持して均質化熱処理した後、熱間圧延し、冷間圧延を経て厚さ5mmの素材とし、該素材を直径200mmの円盤状に切削加工し、微アルカリ性脱脂剤を用いて脱脂処理し、水洗後30g/Lの蓚酸水溶液、液温30℃において、200A/m2 の一定電流密度で、45分間陽極酸化を行い平均膜厚30μm の陽極酸化皮膜を形成した。
【0027】
上記のようにして陽極酸化皮膜の形成された円盤状素材は、次いでこれを水洗後、イオン交換水を用い、沸騰状態で50分間の封孔処理を行った。この試料の任意の10mm×10mmの範囲を1ケ所とし、合計10ケ所を顕微鏡で観察したところ、観察可能な1μm を超えるサイズの金属間化合物は50個/mm2 存在したが、長径サイズ5μm 以上の金属間化合物については15個/mm2 であった。
【0028】
上記のようにして得られた試料を被曝試料としてプラズマエッチング装置内に設置し、CF4 ガスを用いてプラズマエッチングを行い、該被曝試料の陽極酸化皮膜の平均皮膜厚さが約10μm となったときに5ケ所の電気抵抗値を測定し、耐電圧の評価を行った結果は後述する比較例1、2のものと共に後述する表2に示す如くであって、この表2の結果によるならば、組成が高純度の素材は、陽極酸化処理した皮膜面積1mm2 当たり、金属間化合物が15個しか存在せず、このような皮膜は、プラズマエッチングして皮膜厚さが10μm と薄くなるまで使用しても、耐電圧が最低値でも46.0MΩあり、皮膜の気化除去速度が小さく、良好な皮膜状態であることが判る。
【0029】
【比較例1】
素材として、市販されているA5052(組成を表1の合金番号Bとして示す)材を用い、実施例と同様に陽極酸化処理し試料とした。この試料に対して実施例1と同様に顕微鏡で観察したところ、観察可能な1μm を超えるサイズの金属間化合物は無数に存在し、長径サイズ5μm を超える化合物も80個/mm2 観察できた。
【0030】
この比較例1の試料を上述した実施例1のものと同様に被曝試料としてプラズマエッチング装置内に設置し、CF4 ガスを用いてプラズマエッチングを行い、該被曝試料の陽極酸化皮膜の平均皮膜厚さが約10μm となったときに5ケ所の電気抵抗値を測定し、耐電圧の評価を行った結果を同じ表2に示すが、この表2の結果から市販の素材は純度も低く、陽極酸化処理した皮膜厚さ30μm に対して、長径サイズ5μm を超えるサイズの金属間化合物が多数存在し、このような皮膜は、プラズマエッチングして皮膜厚さが10μm と薄くなるまで使用すると、耐電圧が場所によっては0MΩとなり、皮膜の気化除去速度が大きく異常放電を起こす寸前であり、しかも他の測定位置における耐電圧も低く、良好な皮膜状態とは言えないことが判る。
【0031】
【比較例2】
素材として、市販されているA6061(組成を表1の合金番号Cとして示す)材を用い、実施例と同様に陽極酸化処理し試料とした。この試料に対して実施例1と同様に顕微鏡で観察したところ、観察可能な1μm を超えるサイズの金属間化合物は無数に存在し、長径サイズ5μm を超える化合物も150個/mm2 観測できた。最も大きな化合物は長径サイズ10μm を超えていた。またこの試料を実施例1と同様に被曝試料としてプラズマエッチング装置内に設置し、CF4 ガスを用いてプラズマエッチングを行い、該被曝試料の陽極酸化皮膜の平均皮膜厚さが約10μm となったときに5ケ所の電気抵抗値を測定し、耐電圧の評価を行った結果を上記実施例および比較例1のものと共に次の表2に示した。
【0032】
【表2】
Figure 0003855663
【0033】
表2の結果から、市販の素材は純度も低く、比較例1と同様に陽極酸化処理した皮膜厚さ30μm に対して、長径サイズ3μm を超えるサイズの金属間化合物が多数存在し、しかも粗大な化合物が存在し、このような皮膜は、プラズマエッチングして皮膜厚さが10μm と薄くなるまで使用すると、耐電圧が場所によっては0MΩとなり、皮膜の気化除去速度が大きく異常放電を起こす寸前であり、しかも他の測定位置における耐電圧も低く、良好な皮膜状態であるとは言えないことが判る。
【0034】
【発明の効果】
以上説明したように本発明によるものは、陽極酸化皮膜中にサイズの大きい金属間化合物の無い素材であるから、プラズマ内の減耗速度が安定していて、プラズマ発生装置内で長期に渡って使用できる部品用の素材であることが理解され、工業的にその効果の大きい発明であることが明らかである。
【図面の簡単な説明】
【図1】図1は、本発明の採用されるプラズマ処理装置の1例についての断面的説明図である。
【符号の説明】
2 上部電極
3 被処理材
4 下部電極
5 ヒータユニット
6 リフター
7 支持ピン
8 ガス導入口
9 真空排気口
10 反応室
11 上部電極支え
12 下部電極支え
13 シャワーヘッド
14 印加電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a component installed in a reaction chamber in a surface treatment apparatus such as vacuum deposition or dry corrosion used in a process for manufacturing a semiconductor element, a liquid crystal panel, etc., and to provide the component with excellent withstand voltage characteristics. It is what.
[0002]
[Prior art]
Various processing apparatuses are used in the manufacturing process of semiconductor elements, liquid crystal panels, and the like. For example, a vacuum deposition apparatus is used for CVD and PVD for film formation, and a dry corrosion apparatus is used for plasma etching for etching. There are various types of so-called semiconductor manufacturing apparatuses such as a vacuum evaporation apparatus or a dry corrosion apparatus. For example, FIG. 1 is an explanatory diagram for explaining the internal structure of a reaction chamber 10 of a plasma processing apparatus. An upper electrode support 11 and a lower electrode support 12 are provided in a reaction chamber 10 having a gas introduction port 8 and a vacuum exhaust port 9. The main product such as the above is arranged, and the material to be processed 3 is positioned between the upper electrode 2 and the lower electrode 4 with respect to the material to be processed 3 and is processed under the heating condition by the heater unit 5. Thus, a film forming or etching process is performed on the material 3 to be processed using such a plasma processing apparatus, and fluorine plasma is used for this process.
[0003]
That is, in order to generate plasma, it is necessary to apply a high-frequency power or to provide a high voltage field. As an internal part of the reaction chamber, for example, a shower head 13 for the upper electrode 2 and the lower electrode 4 for the material 3 to be processed, The heater unit 5 and the like are exposed to the above-described high frequency power between the upper and lower electrodes 2 and 4 or a high voltage field. Accordingly, the internal components of the reaction chamber 10 including the upper and lower electrodes 2 and 4 are required to have fluorine plasma resistance and voltage resistance characteristics that can withstand such conditions.
[0004]
In general, a reaction chamber made of JIS A5000 or A6000 aluminum alloy has been used from the viewpoint of reducing the weight and heat capacity of the apparatus. For the purpose of providing the above-mentioned fluorine plasma resistance and voltage resistance characteristics, the reaction chamber is used. An anodized film is applied to the surface of the internal parts. In addition, the anodic oxide film on the surface of the internal parts of the reaction chamber is gradually consumed by fluorine plasma, but the aluminum in the film reacts with fluorine to be vaporized and removed as aluminum fluoride. Its thickness is reduced. Since the withstand voltage characteristics of the components are reduced as the thickness of the anodic oxide film is reduced, these components are specified for a period of use and are periodically replaced as consumables.
[0005]
[Problems to be solved by the invention]
However, some of the internal parts of the reaction chamber with the anodic oxide coating thus caused spark discharge locally by high-frequency power or high voltage before reaching the pre-defined part use period, Phenomena that cause serious defects may occur, and in particular, this local spark discharge may occur in a very short time.
[0006]
That is, it is widely known that it is important to prevent the occurrence of abnormal discharge phenomenon such as the above-mentioned local spark discharge and to achieve stable use in a prescribed predetermined use period. Therefore, it is not possible to obtain a semiconductor manufacturing apparatus or a component for the apparatus that can properly satisfy such requirements and can be used in accordance with a specified use period.
[0007]
[Means for Solving the Problems]
The inventors have investigated the abnormal discharge phenomenon in detail for a part having an anodized film having a thickness of 30 μm. Unlike the discharge phenomenon that occurs due to normal film consumption, the inventors have earlier the expected time. The abnormal discharge phenomenon that occurred was found to correlate with the amount (number) of intermetallic compounds in which the size of the major axis distributed within the coating exceeded about 5 μm, and the present invention was completed. It is.
[0010]
That is, the present invention is an anodized aluminum alloy part, the composition of which includes Mg: 0.8 to 3.5 wt%, and the balance is Al and inevitable impurities, and the inevitable Si as an impurity is 0.04 wt% or less, Fe is 0.05 wt% or less, Si + Fe is 0.06 wt% or less, and other inevitable impurities are 0.02 wt% or less, respectively. The surface treatment apparatus component having excellent withstand voltage characteristics, wherein the number of intermetallic compounds having a major axis size of 5 μm or more is 20 or less per 1 mm 2 .
[0011]
[Action]
In general, some of the intermetallic compounds present in the material and taken into the film are oxidized little by anodizing treatment, or remain in a substantially metallic state, and are dissolved during the treatment. Some of them form cavities. However, when the intermetallic compound remains in the film in a substantially metallic state, the particle portion has almost no voltage resistance, so that the thickness of the film that functions as a voltage-resistant film is substantially reduced. As described above, the oxide constituting the film by fluorine plasma gradually changes to aluminum fluoride and is detached from the film surface, so that the film thickness decreases. The decrease rate of the film thickness is considered to be almost constant if the film is a uniform oxide, and as described above, when the compound remains in the film almost in the metal state, the film thickness is reduced. Vaporization removal rate varies, and withstand voltage changes.If the film thickness is larger than the compound size, even if there is variation in the vaporization removal rate of the film thickness at the initial stage of plasma treatment, The degree of change in withstand voltage that occurs is low enough to be satisfactory in actual operation, but when the film thickness gradually decreases and the withstand voltage becomes insufficient earlier than in a healthy part without a compound, Concentration of electric current occurs in the insufficient part, spark discharge occurs, and the film is destroyed.
[0012]
Therefore, when observed as a whole component, the period of use of the device is governed by the portion where the withstand voltage decreases the earliest, that is, the presence of the largest compound. Actually, even the largest compound particles are 5 to 10 μm, so the degree of damage to the film that is broken by spark discharge is small, and the destruction of one place does not cause the device to be unusable. The device becomes unusable after several to several hundreds of sparks per part.
[0013]
On the other hand, intermetallic compounds are dissolved during anodizing treatment, and the type of compounds in which the part forms cavities, the cavities formed by film treatment are hydrated reaction products during the sealing treatment after treatment. Therefore, the withstand voltage reduction rate is much smaller than that of the compound remaining in the film in a substantially metallic state. However, this part has a low film density, and the reaction rate between fluorine and aluminum per volume of the film by fluorine plasma is substantially high, and the film thickness at that part decreases faster than a healthy part without such a cavity. It can be a place where spark discharge occurs during use. A compound that dissolves during anodic oxidation to form a cavity does not have a significant effect on the decrease in withstand voltage compared to a compound that remains in the film in a substantially metallic state, but it is preferable that the number of such compounds is small.
[0014]
The lifetime of the part increases as the film thickness increases, but as described above, it can be seen that the size of the coarse intermetallic compound existing in the film is determined by the ratio of the size to the film area. As a result of the study by the present inventors, the variation in the rate of vaporization and removal of the coating judged to be a healthy site by fluorine plasma is a result of statistical processing according to many examples. Since the number of intermetallic compounds having a major axis size of 5 μm or more existing in the above-mentioned intermetallic film is 20 or less per 1 mm 2 , the present invention defines the number of intermetallic compounds as 20 or less per 1 mm 2. Even if there is abnormal discharge during use, it is not different from the statistical healthy part, and it can be reduced at the same rate as the healthy film part of normal parts. It is a thing.
[0015]
As described above, the presence of an intermetallic compound causes a local decrease in withstand voltage, but such a compound rarely crystallizes continuously during casting, and its size can be measured as an individual compound. . In the present invention, the size of the intermetallic compound is defined by measuring the major axis of the compound appearing on the measurement surface.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A specific embodiment of the present invention as described above will be described. As described in the section of the prior art, generally, a semiconductor manufacturing apparatus is based on JIS A5000 series or A6000 series from the viewpoint of weight reduction and reduction in heat capacity. Reaction chambers made of aluminum alloys have been used, and particularly from the viewpoint of strength and workability, JIS A6061 (Si 0.4 to 0.8 wt%, Fe 0.7 wt% or less, Cu 0.15 to 0.40 wt%) Mn 0.15 wt% or less, Mg 0.8 to 1.2 wt%, Cr 0.04 to 0.35 wt%, Zn 0.25 wt% or less, other individual 0.05 wt% or less, total 0.15 wt% or less) And JIS A5052 (Si 0.25 wt% or less, Fe 0.40 wt% or less, Cu 0.10 wt% or less, Mn 0.10 wt% or less, Mg 2.2-2 8wt%, Cr 0.15~0.35wt%, Zn 0.10wt% or less, other individual 0.05 wt% or less, a total 0.15 wt%) is selected. However, the above-mentioned standard alloys have high specified values of elements such as Si and Fe, and therefore are contained in a large amount. As intermetallic compounds contained in such alloys, FeAl 6 , α-Al—Fe— Si, β-Al-Fe- Si, Mg 2 Si, β-Al-Mg, include (Fe, Cr) Al 3, FeAl 3. Among these, FeAl 6 is directly taken into the anodic oxide film and directly causes abnormal discharge. Therefore, it is desirable that the compound particle size is small and small, preferably none. In addition, since intermetallic compounds other than the above-mentioned FeAl 6 also form pores in the film that may lead to abnormal discharge, it is desirable that the compound particle size be small and small, preferably none at all.
[0017]
Manufacturing apparatus parts, such as a semiconductor, are produced into a part shape by plastically processing or cutting a casting or a plate. In either method, the molten aluminum alloy is cast into a predetermined shape. That is, for example, in order to produce the above-mentioned component from an aluminum alloy plate, first, a molten aluminum alloy blended in a predetermined composition is cast into an ingot, and the ingot is heated and held at a high temperature for homogenization. A part of the crystallized product crystallized at the time of casting by this homogenization treatment is dissolved and becomes small. Although the preferable conditions of this homogenization process change with compositions, it hold | maintains at 400-500 degreeC by JISA5000 type | system | group at 450-550 degreeC for 10 to 48 hours by JISA6000 type | system | group.
[0018]
Next, it hot-rolls and it rolls to the thickness of a component dimension. Cold rolling may be added. The rolled material is then processed into a part shape by plastic working or cutting. The parts processed in this way are subjected to an anodic oxide film treatment for the purpose of imparting withstand voltage characteristics and fluorine plasma resistance, as described in the section of the prior art. Further, the anodic oxide film treatment applied to the component will be described next. The component is preferably degreased and washed before the anodic oxide film treatment. The anodized film treatment is usually formed by an anodizing electrolytic treatment in an acidic solution such as sulfuric acid, oxalic acid, phosphoric acid, chromic acid, sulfamic acid and the like. Among these, in connection with the sealing treatment described later, an anodizing treatment in sulfuric acid or oxalic acid solution gives the most preferable result. For example, when a sulfuric acid solution is used, the sulfuric acid concentration is 10 to 30% by volume, the dissolved aluminum concentration is 20 g / L (liter) or less, the liquid temperature is 15 to 30 ° C., and the current density is 60 to 300 A / m 2 . It is good to set to. When the oxalic acid solution is used, the oxalic acid concentration is preferably set to 2 to 5 wt%, the dissolved aluminum concentration to 20 g / L or less, the liquid temperature to 20 to 40 ° C., and the current density to 40 to 350 A / m 2 .
[0019]
The film thickness of the anodized film is set according to the required withstand voltage and service life, but it is practically acceptable if it is within ± 15% variation in the range of 5 to 50 μm. Sealing treatment is performed on the anodized film thus formed. This sealing treatment can be performed by a treatment using a high-temperature aqueous solution which is usually performed. For example, it is performed by immersing in ion exchange water at 80 ° C. or higher or by immersing in an aqueous solution at 80 to 98 ° C. containing nickel acetate. As the sealing treatment liquid, aqueous solutions of cobalt acetate, lead acetate, nickel acetate-cobalt, barium nitrate and the like can be used, but an aqueous nickel acetate solution is preferred. The concentration in this case may be in the range of 5 to 25 g / L and the liquid temperature of 80 to 98 ° C, but preferably 90 ° C or higher. After the sealing treatment is completed, washing and drying are performed.
[0020]
An electrical contact portion that does not require partial withstand voltage or electrical conductivity is not subjected to anodizing treatment, or the film is removed by mechanical processing after anodizing treatment. Further, in order to improve the corrosion resistance, the portion where the aluminum alloy is exposed may be wet or dry-plated with a metal such as nickel or copper having good corrosion resistance. Anodization may be performed after plating in advance, or machining such as cutting may be performed after plating.
[0021]
As described above, in order to make the intermetallic compound particle size small and small, and preferably none, it is necessary not to crystallize the compound that crystallizes when casting the molten alloy. The first means is to make the amount of elements forming the compound below the solid solution limit.
[0022]
The preferred component composition of the present invention as described above will be described as follows: Mg: 0.8 to 3.5 wt%. In other words, this Mg is added because it can give strength and machinability without causing the intermetallic compound to crystallize by dissolving Mg in the matrix. If the upper limit is exceeded, rolling processability is impaired, which is not preferable. Mg is preferably 1.5 to 2.5 wt%.
[0023]
Next, the inevitable impurities are defined as follows: Si is 0.04 wt% or less, Fe is 0.05 wt% or less, Si + Fe is 0.06 wt% or less, and other inevitable impurities are 0.02 wt% or less. In other words, these inevitable impurities are specified because all of them do not crystallize coarse intermetallic compounds. When the upper limit is exceeded, the coarse and anodic oxide film treatment causes the film to remain in an almost intact metal state. Remain in. Although the upper limit of the content is determined by the film thickness, the specified upper limit is the maximum amount that can be tolerated when the film thickness is 30 μm (20 at least 5 μm per 1 mm 2 of the film area). Is the value at which crystallization occurs .
[0024]
【Example】
Examples specifically prepared by the present inventors and alloys as comparative examples with respect to the examples are as shown in Table 1 below.
[0025]
[Table 1]
Figure 0003855663
[0026]
[Example 1]
An aluminum alloy melt melted to the composition of alloy code A shown in Table 1 is cast into a plate ingot, the ingot is heated and held at 530 ° C. for 12 hours, subjected to homogenization heat treatment, hot rolled, A material having a thickness of 5 mm is obtained by hot rolling, and the material is cut into a disk shape having a diameter of 200 mm, degreased with a slightly alkaline degreasing agent, washed with water, 30 g / L oxalic acid aqueous solution at a liquid temperature of 30 ° C., Anodization was performed at a constant current density of 200 A / m 2 for 45 minutes to form an anodized film having an average film thickness of 30 μm.
[0027]
The disc-shaped material on which the anodized film was formed as described above was then washed with water, and then subjected to a sealing treatment for 50 minutes in a boiling state using ion-exchanged water. A sample of 10 mm x 10 mm of this sample was taken as one place, and when a total of 10 places were observed with a microscope, 50 / mm 2 of intermetallic compounds with a size exceeding 1 µm were observed, but the major axis size was 5 µm or more. The number of intermetallic compounds was 15 / mm 2 .
[0028]
The sample obtained as described above was placed in a plasma etching apparatus as an exposed sample, and plasma etching was performed using CF 4 gas, so that the average film thickness of the anodized film of the exposed sample was about 10 μm. The results of measuring the electrical resistance values at five places and evaluating the withstand voltage are as shown in Table 2 described later together with those of Comparative Examples 1 and 2 described later. The high-purity material has only 15 intermetallic compounds per 1 mm 2 of the anodized film area. Such a film is used until the film thickness is reduced to 10 μm by plasma etching. Even with this, the withstand voltage is 46.0 MΩ even at the lowest value, and the vaporization and removal rate of the film is small, indicating that the film is in a good film state.
[0029]
[Comparative Example 1]
As a material, a commercially available A5052 (composition is shown as Alloy No. B in Table 1) material was used, and anodized as in the example to prepare a sample. When this sample was observed with a microscope in the same manner as in Example 1, innumerable intermetallic compounds having a size exceeding 1 μm were present, and 80 compounds / mm 2 exceeding a major axis size of 5 μm could be observed.
[0030]
The sample of Comparative Example 1 was placed in a plasma etching apparatus as an exposed sample in the same manner as in Example 1 described above, and plasma etching was performed using CF 4 gas, and the average film thickness of the anodized film of the exposed sample was measured. Table 2 shows the results of measuring the electrical resistance values at five locations when the thickness is about 10 μm and evaluating the withstand voltage. The results shown in Table 2 indicate that the commercially available materials have low purity, and the anode There are many intermetallic compounds with a major axis size exceeding 5μm for an oxidized film thickness of 30μm. Such a film can withstand withstand voltage when used until the film thickness is reduced to 10μm by plasma etching. However, depending on the location, it becomes 0 MΩ, and the rate of vaporization and removal of the film is large, leading to abnormal discharge, and the withstand voltage at other measurement positions is also low, indicating that it cannot be said to be a good film state.
[0031]
[Comparative Example 2]
A commercially available A6061 (the composition is shown as alloy number C in Table 1) material was used as a material, and anodized in the same manner as in the example to prepare a sample. When this sample was observed with a microscope in the same manner as in Example 1, innumerable intermetallic compounds having a size exceeding 1 μm were observed, and 150 compounds / mm 2 exceeding a major axis size of 5 μm could be observed. The largest compound exceeded the major axis size of 10 μm. Further, this sample was placed in a plasma etching apparatus as an exposed sample in the same manner as in Example 1, and plasma etching was performed using CF 4 gas, and the average film thickness of the anodized film of the exposed sample was about 10 μm. The electrical resistance values at five locations were sometimes measured and the withstand voltage was evaluated. The results are shown in the following Table 2 together with those of the above Examples and Comparative Examples 1.
[0032]
[Table 2]
Figure 0003855663
[0033]
From the results shown in Table 2, the commercially available material has low purity, and there are many intermetallic compounds having a major axis size exceeding 3 μm with respect to the film thickness of 30 μm anodized as in Comparative Example 1, and coarse. There is a compound, and when such a film is used until the film thickness is reduced to 10 μm by plasma etching, the withstand voltage is 0 MΩ depending on the location, and the vaporization and removal rate of the film is large, leading to abnormal discharge. In addition, it can be seen that the withstand voltage at other measurement positions is low and it cannot be said that the film is in a good state.
[0034]
【The invention's effect】
As described above, the material according to the present invention is a material having no large intermetallic compound in the anodic oxide film, so that the depletion rate in the plasma is stable and used for a long time in the plasma generator. It is understood that it is a material for parts that can be produced, and it is clear that the invention is industrially highly effective.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view of an example of a plasma processing apparatus employed in the present invention.
[Explanation of symbols]
2 Upper electrode 3 Material 4 Lower electrode 5 Heater unit 6 Lifter 7 Support pin 8 Gas introduction port 9 Vacuum exhaust port 10 Reaction chamber 11 Upper electrode support 12 Lower electrode support 13 Shower head 14 Applied power source

Claims (1)

陽極酸化処理を施されたアルミニウム合金製部品であって、その組成が、Mg:0.8〜3.5wt%を含有し、残部Alおよび不可避的不純物からなり、該不可避的不純物としてのSiが0.04wt%以下、Feが0.05wt%以下、Si+Feが0.06wt%以下、その他の不可避的不純物が各々0.02wt%以下であり、該部品の陽極酸化皮膜中に存在する長径サイズ5μm以上の金属間化合物の個数が1mm当たり20個以下であることを特徴とする耐電圧特性に優れた表面処理装置用部品。An anodized aluminum alloy part having a composition containing Mg: 0.8 to 3.5 wt%, the balance being Al and inevitable impurities, and Si as the inevitable impurities being 0.04 wt% or less, Fe is 0.05 wt% or less, Si + Fe is 0.06 wt% or less, and other inevitable impurities are 0.02 wt% or less, respectively. A component for a surface treatment apparatus having excellent withstand voltage characteristics, wherein the number of intermetallic compounds is 20 or less per 1 mm 2 .
JP2001038144A 2001-02-15 2001-02-15 Parts for surface treatment equipment with excellent withstand voltage characteristics Expired - Fee Related JP3855663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001038144A JP3855663B2 (en) 2001-02-15 2001-02-15 Parts for surface treatment equipment with excellent withstand voltage characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001038144A JP3855663B2 (en) 2001-02-15 2001-02-15 Parts for surface treatment equipment with excellent withstand voltage characteristics

Publications (2)

Publication Number Publication Date
JP2002241992A JP2002241992A (en) 2002-08-28
JP3855663B2 true JP3855663B2 (en) 2006-12-13

Family

ID=18901180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001038144A Expired - Fee Related JP3855663B2 (en) 2001-02-15 2001-02-15 Parts for surface treatment equipment with excellent withstand voltage characteristics

Country Status (1)

Country Link
JP (1) JP3855663B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3891815B2 (en) * 2001-10-12 2007-03-14 昭和電工株式会社 Aluminum alloy for film formation treatment, aluminum alloy material excellent in corrosion resistance and method for producing the same
JP4168066B2 (en) 2006-08-11 2008-10-22 株式会社神戸製鋼所 Aluminum alloy for anodizing treatment used in plasma processing apparatus and manufacturing method thereof, aluminum alloy member having anodized film, and plasma processing apparatus
JP4774014B2 (en) * 2007-05-21 2011-09-14 株式会社神戸製鋼所 Al or Al alloy
JP5498221B2 (en) 2009-04-08 2014-05-21 富士フイルム株式会社 Semiconductor device and solar cell using the same
JP5833987B2 (en) 2012-07-26 2015-12-16 株式会社神戸製鋼所 Aluminum alloy excellent in anodizing property and anodized aluminum alloy member
JP6190791B2 (en) * 2013-11-19 2017-08-30 株式会社神戸製鋼所 Anodized aluminum alloy member excellent in heat resistance and method for producing the same
JP6043269B2 (en) * 2013-11-19 2016-12-14 株式会社神戸製鋼所 Anodized aluminum alloy member with excellent insulation

Also Published As

Publication number Publication date
JP2002241992A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP4168066B2 (en) Aluminum alloy for anodizing treatment used in plasma processing apparatus and manufacturing method thereof, aluminum alloy member having anodized film, and plasma processing apparatus
KR100589815B1 (en) Al alloy members having excellent anti-corrosion and anti-plasma properties
CN101372731A (en) Anodized aluminum alloy material having both durability and low polluting property
JP3919996B2 (en) Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus
JP5833987B2 (en) Aluminum alloy excellent in anodizing property and anodized aluminum alloy member
KR20030010509A (en) Al alloy member having excellent corrosion resistance
KR20010078324A (en) Aluminum alloy member for chamber and heater block
TWI261947B (en) Titanium system material for fuel cell separator, and manufacturing method therefor
JP3855663B2 (en) Parts for surface treatment equipment with excellent withstand voltage characteristics
JP2721739B2 (en) Method for producing an improved anode
TW201809366A (en) Metal component and manufacturing method thereof and process chamber having the metal component
JP5758182B2 (en) Aluminum material
CN110685000B (en) High-corrosion-resistance coating, preparation method, electrolyte and application thereof
JPH07138687A (en) Aluminum alloy base material for planographic printing plate
JP5416436B2 (en) Aluminum alloy member excellent in crack resistance and corrosion resistance, method for confirming crack resistance and corrosion resistance of porous anodic oxide film, and conditions for forming porous anodic oxide film excellent in crack resistance and corrosion resistance Setting method
JPH08144089A (en) Vacuum chamber member made of aluminum or aluminum alloy
JP3920306B1 (en) Aluminum foil for electrolytic capacitors
Xiao et al. Effect of pH on corrosion behavior of Al-Mg-Si alloy in NaCl solution
JP5921951B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP4835399B2 (en) High purity aluminum alloy material
JP4105565B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP5397884B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP2002121634A (en) Aluminum alloy material for planographic plate
WO1996013625A1 (en) Surface coated aluminium material and a method for preparing it
JPH07180008A (en) Production of aluminum soft foil for electrolytic capacitor cathode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051012

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Ref document number: 3855663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees