EP0700340B1 - Process for producing print rolls made of a metallic core cylinder and a plasma-sprayed copper or copper alloy coating - Google Patents

Process for producing print rolls made of a metallic core cylinder and a plasma-sprayed copper or copper alloy coating Download PDF

Info

Publication number
EP0700340B1
EP0700340B1 EP94915549A EP94915549A EP0700340B1 EP 0700340 B1 EP0700340 B1 EP 0700340B1 EP 94915549 A EP94915549 A EP 94915549A EP 94915549 A EP94915549 A EP 94915549A EP 0700340 B1 EP0700340 B1 EP 0700340B1
Authority
EP
European Patent Office
Prior art keywords
copper
cylinder
copper alloy
plasma
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94915549A
Other languages
German (de)
French (fr)
Other versions
EP0700340A1 (en
Inventor
Heinrich Kühn
Dieter Jaculi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0700340A1 publication Critical patent/EP0700340A1/en
Application granted granted Critical
Publication of EP0700340B1 publication Critical patent/EP0700340B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/16Curved printing plates, especially cylinders
    • B41N1/20Curved printing plates, especially cylinders made of metal or similar inorganic compounds, e.g. plasma coated ceramics, carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention relates to a method for producing printing rollers with a core cylinder made of metal and a plasma-sprayed homogeneous, low-oxide and adhesive copper or copper alloy coating made of powdery materials.
  • copper-coated metal cylinders are of particular technical importance and can be found e.g. use as a gravure cylinder.
  • the copper layer can be machined and engraved either chemically, mechanically or using laser technology.
  • Electrochemical deposition is known for the application of copper for the stated purpose.
  • the environmental protection costs for the wastewater produced increase the cost of this process.
  • the production times for e.g. a layer thickness of 1 mm is about 8 to 12 hours and can be shortened in the interests of flexible production.
  • the coating must be homogeneous and mechanically workable so that the surface quality is comparable to galvanic copper coatings. It must be possible to insert the engravings for printing rollers into this surface without loss of quality.
  • the metallic base cylinder is preferably made of steel.
  • Other metals and metal alloys e.g. Aluminum or high-strength aluminum alloys can be used.
  • the basic cylinder can also be made with chemically or electrochemically deposited metals such as nickel, copper, etc. be coated.
  • the surface of the printing cylinder is first subjected to a roughening process.
  • a roughening of the surface with sandblasting devices can preferably be provided, with mineral blasting material such as aluminum oxide, electro-corundum, silicon carbide, zirconium corundum, etc., being suitable as the abrasive.
  • Preferred blasting conditions are a blasting pressure in the range from 2 to 6 bar, a grain size in the range from 0.1 to 1.5 mm, preferably 0.5 to 1.2 mm, a distance from the nozzle to the nozzle treating surface in the range of 90 to 150 mm and a movement of the nozzle across the treated surface at a speed in the range of 0.5 to 1 m / sec.
  • the micro surface roughness R a of the base body treated in this way is in the range from 5 to 15 ⁇ m, measured according to DIN 4768. The macro structure remains unchanged.
  • the roughening process is expediently followed by a cleaning process using compressed air or in a cleaning bath, if appropriate with the assistance of ultrasound.
  • the cleaning process ensures within the scope of the invention that any contaminants still present on the surface are effectively removed.
  • Copper and copper alloys are applied according to the invention by thermal spraying of powdery, spherical, microfine material with a particle diameter D 50 of 6 to 12 ⁇ m, which is determined by the Cilas laser diffraction analysis method.
  • the phosphorus content of the copper or copper alloy is in the range from 0.08 to 0.15% by weight and is determined photometrically, while the oxygen content is in the range from 0.2 to 0.3% and is determined by hot extraction in an inert gas stream.
  • a phosphorus content of preferably 0.10 to 0.12% by weight as a deoxidizer has positive effects on the oxidation behavior of the applied copper layer.
  • copper alloys can also be used, such as copper-zinc, copper-tin, copper-aluminum, copper-nickel or copper-nickel-zinc, which can additionally contain further alloy components such as iron, manganese, silicon or lead.
  • an inert gas or an inert gas mixture is used as the plasma gas, preferably argon in an amount in the range from 30 to 60 l / min.
  • the micro-grain of the application material means that the plasma torch can be operated at low electrical power.
  • the preferred electrical power of the plasma torch is 10 to 15 kW, particularly preferably 12 kW.
  • the burner is moved past the rotationally symmetrical base body at a distance in the range from 40 to 100 mm, preferably from 40 to 70 mm, at a speed of 10 to 100 mm / min. Under such conditions, an application rate in the range of 2 to 8 kg / h is achieved.
  • the pressure rollers provided for the coating are preferably cooled during the coating process in order to keep the oxide formation low and to prevent residual stresses both in the coating and in the base body.
  • CO 2 is preferably used in a finely crystalline form at a high pressure of approximately 40 to 60 bar.
  • Layers applied by the process according to the invention can have a layer thickness in the range from 50 to 2000 ⁇ m, preferably from 100 to 1000 ⁇ m in a single operation, the thickness uniformity fluctuating only by 5 to 10%.
  • the application in one layer means that the layer has no oxidic intermediate layers.
  • FIG. 1 shows a schematic illustration according to which the coating method according to the invention can be carried out.
  • the plasma torch 1, into which the plasma gas 2 is introduced, is shown in detail with reference numerals.
  • the copper powder 3 is placed in a metering device 4, is introduced into the hot gas jet with a powder carrier gas 5 and is then deposited on the metallic surface 6.
  • the rotationally symmetrical body is set in rotation by a device 7.
  • carbonic acid 8 is used for cooling and non-sticking Particles emitted through fine crystals.
  • the plasma torch 1 is guided along the coating body in a transition with respect to the longitudinal axis by a movement device 9. After this process, the metallic body is coated with a copper layer 10.
  • the coated metallic cylinders obtained by the production process according to the invention are particularly well suited for mechanical processing for use as engraved printing rollers, in particular the non-engraved, polished, shadow-free surface having a roughness R a ⁇ 0.1 mm (DIN 4768 ) having.
  • the closed surface can be galvanically or chemically coated with metals such as Nickel, chrome, copper and others and provided with metal alloys.
  • the surface of a steel pressure cylinder with a diameter of 113.2 mm and a length of 375 mm was roughened to apply the copper layer by sandblasting.
  • Electro corundum was used as the blasting agent, an aluminum oxide powder with a proportion of 3% titanium dioxide and a grain size in the range from 1 to 1.2 mm.
  • the jet pressure was 2.5 bar with a jet spacing of 120 mm and with a jet nozzle diameter of 8 mm. After roughening, the surface was cleaned with cleaned compressed air.
  • the surface of the base body treated in this way was coated by plasma spraying with a copper powder with a grain size D 50 in the range from 8 to 10 ⁇ m.
  • Argon was used as the plasma gas.
  • the burner output was 12 kW and the burner was at a distance of 60 mm at one speed of 22 mm / min over the rotating base body at a speed of 320 rpm.
  • the surface of the base body was cooled in the area of the plasma flame with CO 2 under a pressure of 60 bar and non-adherent material was removed by blasting with CO 2 particles.
  • the copper layer produced in this way had a layer thickness of 1 mm.
  • the copper surface could be machined very well with polycrystalline diamond. After a reduction in diameter of 0.15 mm, a pore-free surface having a roughness R a was achieved of 0.3 mm.
  • the surface quality of the subsequent finishing by diamond film lapping was R a ⁇ 0.04 mm.
  • the roughness was measured according to DIN 4768.
  • the shape deviation of the finished cylinder was 0.01 mm, while its position deviation was 0.01 mm, in each case in accordance with DIN ISO 1101.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A process is disclosed for producing print rolls made of a metallic core cylinder and a plasma-sprayed copper or copper alloy coating which may be easily shaped by mechanical means into an only slightly rough, homogeneous closed surface into which high quality engravings may be incorporated. The process is characterised in that finely ground copper or a copper alloy powder with particles having a mean diameter of 12 νm or less is applied by plasma spraying on the surface of the roll by means of a low power plasma torch, without oxidized intermediate layers.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Druckwalzen mit einem Kernzylinder aus Metall und einer plasmagespritzten homogenen, oxidarmen und haftfesten Kupfer- oder Kupferlegierungsauflage aus pulverförmigen Werkstoffen.The invention relates to a method for producing printing rollers with a core cylinder made of metal and a plasma-sprayed homogeneous, low-oxide and adhesive copper or copper alloy coating made of powdery materials.

Auf dem Gebiet der Drucktechnik sind kupferbeschichtete Metallzylinder von besonderer technischer Bedeutung und finden z.B. als Tiefdruckzylinder Verwendung. Die Kupferschicht läßt sich mechanisch bearbeiten und entweder chemisch, mechanisch oder mit Hilfe der Lasertechnik gravieren.In the field of printing technology, copper-coated metal cylinders are of particular technical importance and can be found e.g. use as a gravure cylinder. The copper layer can be machined and engraved either chemically, mechanically or using laser technology.

Für das Aufbringen von Kupfer für den genannten Zweck ist die elektrochemische Abscheidung bekannt. Die Umweltschutzaufwendungen für das dabei anfallende Abwasser verteuern dieses Verfahren aber in zunehmender Form. Die Produktionszeiten für z.B. eine Schichtdicke von 1 mm betragen etwa 8 bis 12 Stunden und sind in Sinne einer flexiblen Fertigung zu verkürzen.Electrochemical deposition is known for the application of copper for the stated purpose. However, the environmental protection costs for the wastewater produced increase the cost of this process. The production times for e.g. a layer thickness of 1 mm is about 8 to 12 hours and can be shortened in the interests of flexible production.

Kupferlegierungen lassen sich galvanisch nur sehr schwer mit konstant gleichbleibender Legierungszusammensetzung auf einem Zylinderkörper abscheiden. Ferner müssen für die einzelnen Legierungsarten unterschiedliche Elektrolytbäder verwendet werden. Unterschiedliche Metalle oder Legierungen des Grundzylinders bedürfen einer getrennten Vorbehandlung vor der galvanischen Auftragung.It is very difficult to electroplate copper alloys on a cylinder body with a constant alloy composition. Furthermore, different electrolyte baths must be used for the individual types of alloy. Different metals or alloys of the base cylinder require separate pretreatment before galvanic application.

Das Aufbringen von Kupfer durch Flamm- oder Plasmaspritzen auf metallische Körper zum Zwecke der Herstellung einer lötbaren Verbindung oder zur Verbesserung des elektrischen Übergangswiderstands sind bekannt. Die bisher erzeugten grobfladigen Schichten sind in ihrer Zusammensetzung inhomogen und für eine hochwertige Gravur für Druckzylinder ungeeignet. Die geeigneteren Spritzprozesse unter Vakuum, Schutzgaskammern und Schutzgasummantelungen sind in technischer Hinsicht sehr aufwendig.The application of copper by flame or plasma spraying to metallic bodies for the purpose of producing a solderable connection or to improve the electrical contact resistance is known. The coarse-layered layers produced to date are inhomogeneous in their composition and unsuitable for high-quality engraving for printing cylinders. The more suitable spraying processes under vacuum, protective gas chambers and Protective gas jackets are very complex from a technical point of view.

Aus US-A-4 503 769 ist ein Druckzylinder bekannt, bei dem auf einen dünnen Kunststoffhohlzylinder Zink- und Kupferschichten aufgebracht wurden.From US-A-4 503 769 a printing cylinder is known in which zinc and copper layers have been applied to a thin hollow plastic cylinder.

Aufgabe der vorliegenden Erfindung war es daher ein Verfahren bereitzustellen, welches es ermöglicht, daß auf einen metallischen Grundkörper mit einem einzigen Verfahren Kupfer- wie Kupferlegierungsbeschichtungen mit geringeren Entsorgungskosten und hoher Produktivität unabhängig von der chemischen Zusammensetzung des metallischen Grundkörpers aufgebracht werden können. Die Beschichtung muß homogen und mechanisch so bearbeitbar sein, daß die Oberflächenbeschaffenheit vergleichbar mit galvanischen Kupferbeschichtungen ist. In diese Oberfläche muß es möglich sein, die Gravuren für Druckwalzen ohne Qualitätsverluste einzubringen.It was therefore an object of the present invention to provide a process which makes it possible to apply copper and copper alloy coatings to a metallic base body in a single process, with lower disposal costs and high productivity, regardless of the chemical composition of the metallic base body. The coating must be homogeneous and mechanically workable so that the surface quality is comparable to galvanic copper coatings. It must be possible to insert the engravings for printing rollers into this surface without loss of quality.

Gelöst wird diese Aufgabe durch ein Verfahren nach Anspruch 1, dessen nährere Ausgestaltungen in den Ansprüchen 2 bis 9 angegeben sind. Nach der Beschichtung wird die Schicht zu einer geschlossenen homogenen Oberfläche mechanisch bearbeitet und die Gravuren mit hoher Güte eingebracht.This object is achieved by a method according to claim 1, the more detailed embodiments of which are given in claims 2 to 9. After coating, the layer is mechanically processed into a closed, homogeneous surface and the engravings are made with high quality.

Der metallische Grundzylinder besteht vorzugsweise aus Stahl. Es können auch andere Metalle und Metall-Legierungen z.B. Aluminium oder hochfeste Aluminiumlegierungen verwendet werden.The metallic base cylinder is preferably made of steel. Other metals and metal alloys e.g. Aluminum or high-strength aluminum alloys can be used.

Zusätzlich kann der Grundzylinder auch mit chemisch oder elektrochemisch abgeschiedenen Metallen wie Nickel, Kupfer u.a. beschichtet sein.In addition, the basic cylinder can also be made with chemically or electrochemically deposited metals such as nickel, copper, etc. be coated.

Nach einer zweckmäßigen Ausgestaltung des erfindungsgemäßen Verfahrens wird die Oberfläche des Druckzylinders zunächst einem Aufrauhprozeß unterzogen. Vorzugsweise kann hierzu eine Aufrauhung der Oberfläche mit Sandstrahlgeräten vorgesehen sein, wobei als Strahlmittel vorzugsweise mineralisches Strahlgut wie Aluminiumoxid, Elektrokorund, Siliciumcarbid, Zirkonkorund u.a. in Frage kommen. Bevorzugte Strahlbedingungen sind dabei ein Strahldruck im Bereich von 2 bis 6 bar, eine Korngröße im Bereich von 0,1 bis 1,5 mm, bevorzugt 0,5 bis 1,2 mm, ein Abstand der Düse zu der zu behandelnden Oberfläche im Bereich von 90 bis 150 mm und eine Bewegung der Düse über die behandelte Oberfläche hinweg mit einer Geschwindigkeit im Bereich von 0,5 bis 1 m/sec. Die Mikrooberflächenrauheit Ra des auf diese Weise behandelten Grundkörpers liegt im Bereich von 5 bis 15 µm, gemessen nach DIN 4768. Die Makrostruktur bleibt unverändert.According to an expedient embodiment of the method according to the invention, the surface of the printing cylinder is first subjected to a roughening process. For this purpose, a roughening of the surface with sandblasting devices can preferably be provided, with mineral blasting material such as aluminum oxide, electro-corundum, silicon carbide, zirconium corundum, etc., being suitable as the abrasive. Preferred blasting conditions are a blasting pressure in the range from 2 to 6 bar, a grain size in the range from 0.1 to 1.5 mm, preferably 0.5 to 1.2 mm, a distance from the nozzle to the nozzle treating surface in the range of 90 to 150 mm and a movement of the nozzle across the treated surface at a speed in the range of 0.5 to 1 m / sec. The micro surface roughness R a of the base body treated in this way is in the range from 5 to 15 μm, measured according to DIN 4768. The macro structure remains unchanged.

Zweckmäßigerweise folgt dem Aufrauhprozeß ein Reinigungsprozeß durch Druckluft oder in einem Reinigungsbad, gegebenenfalls mit Unterstützung durch Ultraschall. Durch den Reinigungsprozess wird im Rahmen der Erfindung sichergestellt, daß eventuell noch vorhandene Verunreinigungen an der Oberfläche wirksam entfernt werden.The roughening process is expediently followed by a cleaning process using compressed air or in a cleaning bath, if appropriate with the assistance of ultrasound. The cleaning process ensures within the scope of the invention that any contaminants still present on the surface are effectively removed.

Das Auftragen von Kupfer und Kupferlegierungen erfolgt erfindungsgemäß durch thermisches Spritzen von pulverförmigem, kugeligem, mikrofeinem Werkstoff mit einem Teilchendurchmesser D50 von 6 bis 12 µm, der nach der Analysenmethode Laserbeugung Cilas bestimmt wird. Der Phosphorgehalt des Kupfers oder der Kupferlegierung liegt im Bereich von 0,08 bis 0,15 Gew.-% und wird fotometrisch bestimmt, während der Sauerstoffgehalt im Bereich von 0,2 bis 0,3 % liegt und durch Heißextraktion im Inertgasstrom bestimmt wird. Überraschend zeigte sich, daß ein Phosphorgehalt von vorzugsweise 0,10 bis 0,12 Gew.-% als Desoxidationsmittel positive Auswirkungen auf das Oxidationsverhalten der aufgetragenen Kupferschicht ausübt. Neben reinem Kupfer können auch Kupferlegierungen verwendet werden, wie z.B. Kupfer-Zink, Kupfer-Zinn, Kupfer-Aluminium, Kupfer-Nickel oder Kupfer-Nickel-Zink, die zusätzlich weitere Legierungsbestandteile wie z.B. Eisen, Mangan, Silizium oder Blei enthalten können.Copper and copper alloys are applied according to the invention by thermal spraying of powdery, spherical, microfine material with a particle diameter D 50 of 6 to 12 μm, which is determined by the Cilas laser diffraction analysis method. The phosphorus content of the copper or copper alloy is in the range from 0.08 to 0.15% by weight and is determined photometrically, while the oxygen content is in the range from 0.2 to 0.3% and is determined by hot extraction in an inert gas stream. Surprisingly, it was found that a phosphorus content of preferably 0.10 to 0.12% by weight as a deoxidizer has positive effects on the oxidation behavior of the applied copper layer. In addition to pure copper, copper alloys can also be used, such as copper-zinc, copper-tin, copper-aluminum, copper-nickel or copper-nickel-zinc, which can additionally contain further alloy components such as iron, manganese, silicon or lead.

Bei dem Plasmaspritzverfahren wird als Plasmagas ein Inertgas oder eine Inertgasmischung verwendet, vorzugsweise Argon in einer Menge im Bereich von 30 bis 60 l/min. Die Mikrokörnung des Auftragswerkstoffes bewirkt, daß der Plasmabrenner bei niedriger elektrischer Leistung betrieben werden kann. Die bevorzugte elektrische Leistung des Plasmabrenners beträgt 10 bis 15 kW, besonders bevorzugt 12 kW. Der Brenner wird an dem rotationssymmetrischen Grundkörper in einem Abstand im Bereich von 40 bis 100 mm, vorzugsweise von 40 bis 70 mm, mit einer Geschwindigkeit von 10 bis 100 mm/min vorbeibewegt. Unter derartigen Bedingungen wird eine Auftragsrate im Bereich von 2 bis 8 kg/h erreicht.In the plasma spraying process, an inert gas or an inert gas mixture is used as the plasma gas, preferably argon in an amount in the range from 30 to 60 l / min. The micro-grain of the application material means that the plasma torch can be operated at low electrical power. The preferred electrical power of the plasma torch is 10 to 15 kW, particularly preferably 12 kW. The burner is moved past the rotationally symmetrical base body at a distance in the range from 40 to 100 mm, preferably from 40 to 70 mm, at a speed of 10 to 100 mm / min. Under such conditions, an application rate in the range of 2 to 8 kg / h is achieved.

Die zur Beschichtung vorgesehenen Druckwalzen werden während des Beschichtungsvorgangs, um die Oxidbildung gering zu halten und um Eigenspannungen sowohl in der Beschichtung, als auch im Grundkörper vorzubeugen, vorzugweise gekühlt. Zu diesem Zweck wird bevorzugt CO2 in fein kristalliner Form bei einem hohen Druck von circa 40 bis 60 bar eingesetzt. Es ist zwar bekannt, daß CO2 zur Kühlung beim thermischen Spritzen Verwendung findet, jedoch ist es für den Fachmann überraschend, daß gleichzeitig ein Strahlen der Oberfläche durch die bei der Entspannung entstehenden feinen CO2-Partikel stattfindet, wodurch erreicht wird, daß eine Einbettung stark oxidierter, störender Kleinstpartikel in die Beschichtung unterbunden wird.The pressure rollers provided for the coating are preferably cooled during the coating process in order to keep the oxide formation low and to prevent residual stresses both in the coating and in the base body. For this purpose, CO 2 is preferably used in a finely crystalline form at a high pressure of approximately 40 to 60 bar. Although it is known that CO 2 is used for cooling in thermal spraying, it is surprising for the person skilled in the art that at the same time the surface is radiated by the fine CO 2 particles formed during the relaxation, whereby an embedding is achieved strongly oxidized, disruptive small particles in the coating is prevented.

Nach dem erfindungsgemäßen Verfahren aufgetragene Schichten können in einem einzigen Arbeitsgang eine Schichtdicke im Bereich von 50 bis 2000 µm aufweisen, vorzugsweise von 100 bis 1000 µm, wobei die Dickengleichmäßigkeit nur noch um 5 bis 10 % schwankt. Die Auftragung in einer Lage bewirkt, daß die Schicht keine oxidischen Zwischenlagen aufweist.Layers applied by the process according to the invention can have a layer thickness in the range from 50 to 2000 μm, preferably from 100 to 1000 μm in a single operation, the thickness uniformity fluctuating only by 5 to 10%. The application in one layer means that the layer has no oxidic intermediate layers.

Die Figur 1 zeigt eine schematische Darstellung, nach der das erfindungsgemäße Beschichtungsverfahren durchgeführt werden kann. Im einzelnen sind mit Bezugszeichen der Plasmabrenner 1 dargestellt, in den das Plasmagas 2 eingeleitet wird. Das Kupferpulver 3 wird in einer Dosiervorrichtung 4 vorgelegt, mit einem Pulverträgergas 5 in den heißen Gasstrahl eingegeben und schlägt sich dann auf die metallische Oberfläche 6 nieder. Der rotationssymmetrische Körper wird durch eine Vorrichtung 7 in Rotation versetzt. Nach Beginn des Beschichtungsprozesses wird mit Kohlensäure 8 gekühlt und nichthaftende Partikel durch feine Kristalle abgestrahlt. Der Plasmabrenner 1 wird durch eine Bewegungseinrichtung 9 in einem Übergang bezogen auf die Längsachse an dem Beschichtungskörper entlang geführt. Der metallische Körper ist nach diesem Prozeß mit einer Kupferschicht 10 überzogen. FIG. 1 shows a schematic illustration according to which the coating method according to the invention can be carried out. The plasma torch 1, into which the plasma gas 2 is introduced, is shown in detail with reference numerals. The copper powder 3 is placed in a metering device 4, is introduced into the hot gas jet with a powder carrier gas 5 and is then deposited on the metallic surface 6. The rotationally symmetrical body is set in rotation by a device 7. After the start of the coating process, carbonic acid 8 is used for cooling and non-sticking Particles emitted through fine crystals. The plasma torch 1 is guided along the coating body in a transition with respect to the longitudinal axis by a movement device 9. After this process, the metallic body is coated with a copper layer 10.

Überraschend zeigte sich, daß sich die nach dem erfindungsgemäßen Herstellverfahren erhaltenen beschichteten metallischen Zylinder besonders gut zur mechanischen Bearbeitung für die Verwendung als gravierte Druckwalzen eignen, wobei insbesondere die nicht gravierte, polierte, schattenfreie Oberfläche eine Rauheit Ra ≤ 0,1 mm (DIN 4768) aufweist.Surprisingly, it was found that the coated metallic cylinders obtained by the production process according to the invention are particularly well suited for mechanical processing for use as engraved printing rollers, in particular the non-engraved, polished, shadow-free surface having a roughness R a ≤ 0.1 mm (DIN 4768 ) having.

Die geschlossene Oberfläche läßt sich galvanisch oder chemisch mit Metallen wie z.B. Nickel, Chrom, Kupfer u.a. sowie mit Metallegierungen versehen.The closed surface can be galvanically or chemically coated with metals such as Nickel, chrome, copper and others and provided with metal alloys.

Die Erfindung soll nachfolgend anhand eines Ausführungsbeispiels näher beschrieben werden, ohne aber auf die konkret beschriebene Ausführungsform beschränkt zu sein.The invention is to be described in more detail below with the aid of an exemplary embodiment, but without being restricted to the specifically described embodiment.

Beispiel 1example 1

Die Oberfläche eines Druckzylinders aus Stahl mit einem Durchmesser von 113,2 mm und einer Länge von 375 mm wurde zur Auftragung der Kupferschicht durch Sandstrahlen aufgerauht. Als Strahlmittel wurde Elektrokorund verwendet, ein Aluminiumoxidpulver mit einem Anteil von 3 % Titandioxid und einer Korngröße im Bereich von 1 bis 1,2 mm. Der Strahldruck betrug 2,5 bar bei einem Strahlabstand von 120 mm und bei einem Strahldüsendurchmesser von 8 mm. Nach dem Aufrauhen wurde die Oberfläche mit gereinigter Druckluft gereinigt.The surface of a steel pressure cylinder with a diameter of 113.2 mm and a length of 375 mm was roughened to apply the copper layer by sandblasting. Electro corundum was used as the blasting agent, an aluminum oxide powder with a proportion of 3% titanium dioxide and a grain size in the range from 1 to 1.2 mm. The jet pressure was 2.5 bar with a jet spacing of 120 mm and with a jet nozzle diameter of 8 mm. After roughening, the surface was cleaned with cleaned compressed air.

Die so behandelte Oberfläche des Grundkörpers wurde durch Plasmaspritzen mit einem Kupferpulver mit einer Korngröße D50 im Bereich von 8 bis 10 µm beschichtet. Als Plasmagas wurde Argon verwendet. Die Brennerleistung betrug 12 kW und der Brenner wurde in einem Abstand von 60 mm mit einer Geschwindigkeit von 22 mm/min über den mit einer Drehzahl von 320 U/min rotierenden Grundkörper hinwegbewegt. Die Oberfläche des Grundkörpers wurde dabei im Bereich der Plasmaflamme mit CO2 unter einem Druck von 60 bar gekühlt und nicht haftendes Material durch Strahlen mit CO2-Partikeln entfernt.The surface of the base body treated in this way was coated by plasma spraying with a copper powder with a grain size D 50 in the range from 8 to 10 μm. Argon was used as the plasma gas. The burner output was 12 kW and the burner was at a distance of 60 mm at one speed of 22 mm / min over the rotating base body at a speed of 320 rpm. The surface of the base body was cooled in the area of the plasma flame with CO 2 under a pressure of 60 bar and non-adherent material was removed by blasting with CO 2 particles.

Die so hergestellte Kupferschicht hatte eine Schichtdicke von 1 mm. Die Kupferoberfläche ließ sich mechanisch sehr gut mit polykristallinem Diamant bearbeiten. Nach einer Durchmesserverringerung von 0,15 mm wurde eine porenfreie Oberfläche mit einer Rauheit Ra von 0,3 mm erreicht. Die Oberflächengüte der anschließenden Endbearbeitung durch Diamantfilm-Läppen betrug Ra < 0,04 mm. Die Rauheiten wurden gemessen nach DIN 4768. Die Formabweichung des fertigen Zylinders betrug 0,01 mm, während seine Lageabweichung 0,01 mm betrug, jeweils im Einklang mit DIN ISO 1101.The copper layer produced in this way had a layer thickness of 1 mm. The copper surface could be machined very well with polycrystalline diamond. After a reduction in diameter of 0.15 mm, a pore-free surface having a roughness R a was achieved of 0.3 mm. The surface quality of the subsequent finishing by diamond film lapping was R a <0.04 mm. The roughness was measured according to DIN 4768. The shape deviation of the finished cylinder was 0.01 mm, while its position deviation was 0.01 mm, in each case in accordance with DIN ISO 1101.

Claims (12)

  1. A process for producing printing rolls made of a metallic core cylinder and a plasma-sprayed coating of elemental copper or a copper alloy, which can be machined to give a homogeneous, closed surface with a low level of roughness and into which high-quality engravings can then be introduced, in which process fine-grained copper or copper alloy powder having a mean particle diameter ≤ 12 µm is applied to the surface of the cylinder by plasma spraying at an electrical power of the plasma torch of up to 15 kW, without oxide intermediate layers.
  2. The process as claimed in claim 1, wherein a metallic body made of steel, high-strength aluminum alloys or other metals or alloys is used as the core cylinder.
  3. The process as claimed in any of claims 1 or 2, wherein the core cylinder is coated with an electro-deposited or chemical coating, preferably made of nickel, copper or a copper alloy, prior to plasma spraying.
  4. The process as claimed in any of claims 1 to 3, wherein the metallic surface is subjected to a roughening process by sand blasting with mineral blasting material, such as aluminum oxide, electro-corundum, silicon carbide or zirconia-corundum prior to plasma spraying and is then cleaned using purified compressed air or in an aqueous cleaning bath, optionally with the assistance of ultrasonics.
  5. The process as claimed in any of claims 1 to 4, wherein the copper or copper alloy powder has a spherical form and has a particle size D50 in the range from 8 to 12 µm, it being possible to alloy one or more elements of the metals zinc, tin, nickel, manganese, silicon, aluminum, lead or others to the copper as alloying constituents.
  6. The process as claimed in one of claims 1 to 5, wherein copper or copper alloy powder with deoxidizing additives, preferably phosphorus, in an amount in the range from 0.08 to 0.15% by weight, based on the overall weight of the powder, is used.
  7. The process as claimed in one of claims 1 to 6, wherein the cylinder is cooled during the plasma spraying and wherein simultaneously metal vapours and unmelted particles are removed from the surface of the cylinder.
  8. The process as claimed in claim 7, wherein CO2 in finely crystalline or gaseous form is used at a pressure in the range from 40 to 60 bar for the purpose of cooling and removing the metal vapours and unmelted particles.
  9. The process as claimed in one of claims 1 to 8, wherein the copper or copper alloy coating is applied in one operation with a layer thickness in the range from 50 to 2000 µm, without oxide intermediate layers.
  10. A metal cylinder coated with copper or a copper alloy, produced by a process as claimed in one of claims 1 to 9, wherein its outer surface is machined by turning and polishing and constitutes a homogeneous, closed surface with a surface roughness Ra in the range <0.04 mm.
  11. Cylinder as claimed in claim 10, wherein its outer surface bears engravings which are applied using laser technology or by a chemical or mechanical method.
  12. The use of a metal cylinder coated with copper or with copper alloy as claimed in claim 10 or 11 as an impression cylinder for intaglio printing or as an applicator roller for inks, glues and other preparations in the printing, paper, sheet or other industries.
EP94915549A 1993-05-12 1994-04-27 Process for producing print rolls made of a metallic core cylinder and a plasma-sprayed copper or copper alloy coating Expired - Lifetime EP0700340B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4315813A DE4315813A1 (en) 1993-05-12 1993-05-12 Process for the production of printing rollers from a metallic core cylinder and a copper or copper alloy coating
DE4315813 1993-05-12
PCT/EP1994/001322 WO1994026534A1 (en) 1993-05-12 1994-04-27 Process for producing print rolls made of a metallic core cylinder and a plasma-sprayed copper or copper alloy coating

Publications (2)

Publication Number Publication Date
EP0700340A1 EP0700340A1 (en) 1996-03-13
EP0700340B1 true EP0700340B1 (en) 1997-08-13

Family

ID=6487875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94915549A Expired - Lifetime EP0700340B1 (en) 1993-05-12 1994-04-27 Process for producing print rolls made of a metallic core cylinder and a plasma-sprayed copper or copper alloy coating

Country Status (3)

Country Link
EP (1) EP0700340B1 (en)
DE (2) DE4315813A1 (en)
WO (1) WO1994026534A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2719544B1 (en) 2012-10-10 2015-12-16 Artio Sarl Method of manufacturing rotogravure cylinders

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59602394D1 (en) * 1995-03-17 1999-08-12 Hoechst Ag THERMAL APPLICATION METHOD FOR THIN CERAMIC LAYERS AND DEVICE FOR APPLYING
DE19610015C2 (en) * 1996-03-14 1999-12-02 Hoechst Ag Thermal application process for thin ceramic layers and device for application
DE19611735A1 (en) * 1996-03-25 1997-10-02 Air Liquide Gmbh Thermal treatment of substrates
DE19653911C2 (en) * 1996-12-21 2003-03-27 Roland Man Druckmasch Printing machine roller with a color-friendly coating on the roll surface of the roller core, in particular ink roller
DE19705671A1 (en) * 1997-02-14 1998-08-20 Heidelberger Druckmasch Ag Printing machine with a corrosion-protected printing unit cylinder
DE19740245A1 (en) * 1997-09-12 1999-03-18 Heidelberger Druckmasch Ag Thermal spray process for carrier body and device for carrying out the process
DE19814689B4 (en) * 1998-04-01 2006-05-24 Voith Paper Patent Gmbh Apparatus for applying a liquid or pasty application medium to a moving material web, in particular of paper or cardboard
DE19837598C2 (en) * 1998-06-15 2001-10-31 Schrage Gmbh Metallspritz Und Component, component from several welded components and method for the production of components and components
DE19837945A1 (en) 1998-08-21 2000-02-24 Asea Brown Boveri Circuit arrangement and method for its manufacture
US7645490B2 (en) * 2001-12-20 2010-01-12 Atlas Roofing Corporation Method and composition for coating mat and articles produced therewith
MXPA04006100A (en) 2001-12-20 2005-05-16 Atlas Roofing Corp Method and composition for coating mat and articles produced therewith.
DE10214989A1 (en) * 2002-04-04 2003-10-30 Georg Frommeyer Pressure cylinder used in a printing machine comprises a surface coating made from either a pure nickel layer, a mixed crystal alloy, composite layers or multiple layer systems for engraving a stepped ensemble
DE102004014308A1 (en) * 2004-03-24 2005-10-20 Roland Man Druckmasch Rollers and cylinders with a steel core for offset printing presses
US7353605B2 (en) * 2004-07-30 2008-04-08 Eastman Kodak Company Method for producing a metallic core for use in cylinder sleeves for an electrophotographic process
AU2006326928B2 (en) * 2005-12-23 2012-04-19 Commonwealth Scientific And Industrial Research Organisation Manufacture of printing cylinders
EP1985459A3 (en) * 2007-04-23 2009-07-29 Mdc Max Daetwyler AG Manufacture of intaglio printing formes
DE102007044653A1 (en) * 2007-09-18 2009-03-19 Hell Gravure Systems Gmbh & Co. Kg Direct laser engraving of metal sheet on metal carrier, for rotogravure printing, employs sheet made from surface-treated copper or brass alloy
GR1007354B (en) * 2009-12-15 2011-07-20 Icr Ιωαννου Αβεε, Manufacture of an aluminium deep-printing cylinder
US9731496B2 (en) * 2013-08-29 2017-08-15 Paramount International Services Ltd. Method of manufacturing rotogravure cylinders
CN109367236A (en) * 2018-12-06 2019-02-22 东莞市上运激光制版有限公司 A kind of ceramic roller and preparation method thereof solving the problems, such as printing line weight unevenness

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841901A (en) * 1973-07-06 1974-10-15 Metco Inc Aluminum-and molybdenum-coated nickel, copper or iron core flame spray materials
US4503769A (en) * 1982-06-21 1985-03-12 Armotek Industries, Inc. Metal coated thin wall plastic printing cylinder for rotogravure printing
DE3821658A1 (en) * 1988-06-27 1989-12-28 Thyssen Guss Ag Process for producing corrosion-resistant and wear-resistant layers on printing press cylinders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2719544B1 (en) 2012-10-10 2015-12-16 Artio Sarl Method of manufacturing rotogravure cylinders

Also Published As

Publication number Publication date
DE59403741D1 (en) 1997-09-18
EP0700340A1 (en) 1996-03-13
DE4315813A1 (en) 1994-11-17
WO1994026534A1 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
EP0700340B1 (en) Process for producing print rolls made of a metallic core cylinder and a plasma-sprayed copper or copper alloy coating
EP0623466B1 (en) Printing roller with a sleeve of hot, wound fibre-reinforced, thermoplastic material and a plasma-sprayed copper, or copper alloy coating
RU2414518C2 (en) Element out of magnesium alloy and procedure for its fabrication
EP2054536B1 (en) Process for coating a hot- or cold-rolled steel strip containing 6 - 30% by weight of mn with a metallic protective layer
EP1970473B1 (en) Electropolishing method for titanium
EP2892690B1 (en) Method and blasting means for producing a satinized finish on an aluminium substrate
EP0054165A2 (en) Laminated printing cylinder
EP0411322A1 (en) Method of forming wear resistant surfaces on aluminium-silicon alloy workpieces
EP0473973B1 (en) Process for the treatment of intaglio printing plates
DE4443092A1 (en) Corrosion-resistant metal material and process for its manufacture
WO2007101512A1 (en) Roll for metal processing, in particular a continuous casting roll, and method of producing such a roll
DE69619106T2 (en) HOMOGENEOUS COOLING SUBSTRATE
EP0090268A2 (en) Process for anodising aluminium products and aluminised parts
DE19810382C1 (en) Flame spray process for the pretreatment and coating of surfaces and application of the process
EP0815280B1 (en) Thermal deposition method for depositing thin ceramic layers and an associated device
EP3872230A1 (en) Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
DE4204527C2 (en) Method of making a shielded transport container for irradiated nuclear reactor fuel elements
EP0220252B1 (en) Cr2o3 protective coating and process for its manufacture
DE3821658C2 (en)
DE2837030C2 (en) Process for the manufacture of rolled sheet
DE3701728A1 (en) METHOD FOR APPLYING OXALATUE COATINGS ON STAINLESS STEEL
EP0590594B1 (en) Treatment of metallic surfaces to improve their adhesive force and their corrosion properties
DE10258531B3 (en) Production of a steel with a corrosion protection coating used in the production of an automobile chassis comprises annealing the steel, treating the surface of the steel using high energy, and coating the surface of the steel
DE2110520A1 (en) Method of making coated cemented carbide articles
DE19924589A1 (en) Hard material layers stripping from hard metal substrates, e.g. tool and machine component scrap, involves using a solution of an oxidizing mineral acid and a hydrogen halide compound

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE

17Q First examination report despatched

Effective date: 19960503

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JACULI, DIETER

Inventor name: KUEHN, HEINRICH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REF Corresponds to:

Ref document number: 59403741

Country of ref document: DE

Date of ref document: 19970918

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030331

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103