EP1963455A1 - Verbundmaterial, insbesondere mehrschichtmaterial sowie kleber- oder bondmaterial - Google Patents

Verbundmaterial, insbesondere mehrschichtmaterial sowie kleber- oder bondmaterial

Info

Publication number
EP1963455A1
EP1963455A1 EP06820829A EP06820829A EP1963455A1 EP 1963455 A1 EP1963455 A1 EP 1963455A1 EP 06820829 A EP06820829 A EP 06820829A EP 06820829 A EP06820829 A EP 06820829A EP 1963455 A1 EP1963455 A1 EP 1963455A1
Authority
EP
European Patent Office
Prior art keywords
material according
matrix
nanofiber
composite material
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06820829A
Other languages
English (en)
French (fr)
Inventor
Xinhe Tang
Ka Chun Tse
Ernst Hammel
Ben Zhong Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rogers Germany GmbH
Original Assignee
Electrovac AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrovac AG filed Critical Electrovac AG
Publication of EP1963455A1 publication Critical patent/EP1963455A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/208Magnetic, paramagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0251Non-conductive microfibers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/104Using magnetic force, e.g. to align particles or for a temporary connection during processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24132Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in different layers or components parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer

Definitions

  • Composite material in particular multi-layer material and adhesive or
  • the invention relates to a composite material according to the preamble of claim 1 and in particular to a composite material consisting of a ceramic layer and at least one provided on this ceramic layer metallization or metal layer.
  • the invention further relates to an adhesive or bonding material according to the preamble of claim 18.
  • the production of composite materials is also known as printed circuit boards in the form of metal-ceramic substrates according to the so-called DCB process.
  • DCB direct copper-bond-technology
  • the metallization required for the formation of traces, terminals, etc., on a ceramic e.g. on an aluminum-oxide-ceramic by means of the so-called "direct copper-bond-technology" (DCB) applied, using the metallization forming metal or copper foils or metal or copper sheets having on their surface sides a Layer or a coating (reflow layer) of a chemical compound of the metal and a reactive gas, preferably oxygen.
  • DCB direct copper-bond-technology
  • this layer or coating forms a eutectic with a melting temperature below the melting temperature of the metal (eg copper), so that by laying the film on the ceramic and by heating all the layers they can be joined together, by melting the metal or copper substantially only in the region of the reflow layer or oxide layer.
  • the metal eg copper
  • This DCB method then has, for example, the following method steps: > Oxidizing a copper foil so that a uniform copper oxide layer results;
  • Ceramic material In this method, which is used especially for the production of metal-ceramic substrates, at a temperature between about 800 - 1000 0 C, a connection between a metal foil, such as copper foil, and a ceramic substrate, such as aluminum nitride ceramic, using a Brazing produced, which in addition to a main component such as copper, silver and / or gold also contains an active metal.
  • This active metal which is, for example, at least one element of the group Hf, Ti, Zr, Nb, Ce, establishes a chemical bond between the solder and the ceramic, while the bond between the solder and the metal is a metallic braze joint ,
  • Object of the present invention is to show a composite material which can be made particularly simple and inexpensive, while maintaining the best possible thermal properties.
  • a composite material according to claim 1 is formed.
  • An adhesive or bonding material is the subject of patent claim 18.
  • the composite material according to the invention is preferably a multilayer material and preferably a circuit board for electrical circuits, modules, etc. suitable multilayer material consisting of a plate-shaped on at least one surface side of an electrically insulating material consisting of support or substrate and at least one of a metal or copper plate or metal or copper foil formed metallization, which is connected via the composite material to the substrate.
  • the composite material according to the invention has the advantage of a simple and inexpensive production. Furthermore, a compensation of different coefficients of thermal expansion of the materials of the metallization and of the substrate is achieved via the layer formed by the adhesive or bonding agent. In particular, with appropriate orientation of at least part of the nanofiber material in the bonding layer parallel or approximately parallel to the joined surfaces, an effect compensating the thermal expansion of the metallization can be achieved.
  • Multi-layer material according to the invention 3 is a schematic representation of a measuring arrangement for determining the thermal behavior of a thermal paste formed as an adhesive or a thermal adhesive according to the invention; 4 schematically shows an arrangement for preparing different samples; Fig. 5 shows the thermal resistance measured on different samples; FIG. 6 shows a comparison of the thermal resistance measured with the device of FIG. 3 for different material connections or multilayer materials.
  • 1 is a multilayer material which is suitable, for example, as a printed circuit board for electrical circuits or modules.
  • the multi-layer material consists of a plate-shaped carrier or substrate 2, which in this embodiment is made entirely of an electrically insulating material, for. B. from a
  • Ceramics such as As alumina ceramic, aluminum nitride ceramic, silicon nitride ceramic, etc.
  • Other materials are conceivable for the substrate 2, for example, plastic, for. B. epoxy-based, etc.
  • This metallization 3 is connected in a planar manner to the substrate 2 via an adhesive or bonding layer 4 formed by an adhesive or a bonding material.
  • the substrate 2 is provided on both surface sides with the metallization 3.
  • multilayer material 1 is symmetrical, at least as regards the type and sequence of the individual layers, relative to a center plane of substrate 2.
  • metallization 3 it is possible to provide metallization 3 only on one surface side of substrate 2.
  • the metallization 3 is then structured correspondingly on one side of the substrate 2 using the customary known etching and masking techniques.
  • the substrate 2 itself multi-layered, consisting of a metallic support layer 2.1 z. B. of aluminum and an insulating layer 2.2 on the surface sides of the plate-shaped substrate 2, specifically where a metallization 3 is connected via a bonding layer 4.
  • a peculiarity of the multi-layer product 1 is that the bonding layer 4 contains in a matrix suitable as an adhesive, for example in an epoxy resin matrix, carbon nanofiber material or carbon nanofiber or nanotube, so that an extremely low thermal resistance Rth (.degree. W) or vice versa, a high thermal conductivity 1 / Rth result, so a
  • Multilayer material 1 with a substrate 2 of an alumina ceramic with respect to the thermal conductivity or the thermal resistance between the upper and lower metallization 3 is quite comparable to a multilayer material, in which the metallizations are applied to the ceramic substrate using the so-called DCB method , as will be explained in more detail below.
  • the matrix contains about 5 to 30% by weight of nanofiber material based on the total weight of the adhesive or bonding material.
  • a nanofiber material is one under the
  • Polyrograf III commercially available carbon nanofiber used, which is also baked before being mixed into the matrix, if appropriate, also before a pretreatment at 3000 ° C.
  • the matrix used is an epoxy-based, for example polyester A solvent is used to obtain an optimum incorporation of the nanofiber material into the matrix material, triethylene glycol monobutyl ether being particularly suitable for this purpose.
  • FIG. 3 shows a schematic representation of an arrangement for measuring the thermal resistance caused by the bonding layer 4.
  • the arrangement consists of an upper heating plate 5, from a subsequent to this heating plate and with this for heat transfer optimally connected measuring plate 6 and from a lower measuring plate 7.
  • temperature sensors or sensors 6.1 and 7.1 are provided with the aid of which the temperature of these plates is accurately recorded and as measured values to a measuring or evaluation electronics can be forwarded.
  • the heating plate 5 is electrically operated, for example, with a heating voltage of 60 volts and with a constant heating current of, for example, 2.7 amps, so that during the measurement of the hot plate 5, a well-defined, constant amount of heat is generated.
  • the respective test piece 8 is arranged, which consists of two copper plates 9 and 10, which are connected to each other via the cured bonding layer 4.
  • the measuring plates 6 and 7 and the adjacent plates 9 and 10 each have a layer 1 1 or 12 of a conventional, in particular also known in terms of their properties Thermal compound provided.
  • FIG. 5 shows in a graph the thermal resistance Rth determined in the measurement in ° K / W for various samples, namely:
  • Position A when lying on one another, not connected by the bonding layer 4
  • Position B - E in each case with plates 9 and 10 connected to one another via the bonding layer 4, however: Position B: without further temperature treatment;
  • Position C when treating sample 8 for 2.8 days at one
  • Position D when treating the sample 8 for 6 days at a temperature of 120 0 C;
  • Position E when treating Sample 8 for 1 day at 160 ° C.
  • FIG. 5 shows that the thermal conductivity of the bonding layer 4 improves with a longer temperature influence, obviously by further hardening of this layer.
  • the measurements also showed that the thermal resistance Rth measured at each sample 8 was only initial, i. slightly decreases in an initial phase of each measurement, obviously due to inertia of the measuring system, but then remains constant at the end of this initial phase.
  • FIG. 6 shows in comparison the thermal resistance of a copper-ceramic multilayer material.
  • the thermal resistance Rth ( 0 KfW) of a sample in which the upper plate 9 made of copper rests without connection against the lower plate 10 made of ceramic (alumina ceramic).
  • the positions B and D relate to measurements in which the upper plate 9 made of copper through the bonding layer 4 with the lower plate 10 made of ceramic, namely position B - at a treatment of the sample 8 for 3 days at a temperature of 150 0 C and
  • the position C shows in comparison the thermal resistance of a DCB substrate.
  • the position E is the thermal resistance measured with the measuring device of FIG. 3, which results without the sample 8, ie. H. at immediately above the layers
  • the thermal conductivity of the bonding layer 4 can be substantially increased by the fact that the nanofibers of the nanofiber material used are optimally chosen with respect to their length, ie these fibers or at least a majority of these fibers have a length between 1 and 100 ⁇ , preferably 10 ⁇ and / or thereby in that the nanofiber material is pretreated and then optimally integrated into the matrix forming the bonding material by this pretreatment.
  • This length corresponds to the surface irregularities which are usually present in the case of ceramic substrates and / or copper foils, so that these irregularities can be bridged optimally with nanofibers of these lengths.
  • a further improvement in the thermal conductivity of the bonding layers 4 and thus an improvement in the thermal properties of the multilayer material 1 is achieved by orienting the nanofibers or nanotubes at least for the most part in the direction of the heat flow, for example by virtue of the nanofibers or nanotubes being introduced into the substrate before introduction the matrix is ferromagnetic, d. H.
  • the nanofibers or nanotubes being introduced into the substrate before introduction the matrix is ferromagnetic, d. H.
  • an optimal alignment of the nonofibers or nanotubes takes place by an external magnetic field (arrow H) in such a way that these nanofibers or nanotubes with their longitudinal extent are perpendicular or at least approximately perpendicular to the surface sides of the substrate 2 and the adjacent ones Metallization 3 are oriented in the bonding layer 4. After the bonding layer 4 has cured, the nanofibres or nanotubes are fixed in this orientation.
  • the application of the ferromagnetic material or the nanoparticles of this material to the nanofiber material or the nanofibers or nanotubes takes place by using a suitable surface-adhesion-layer-forming polymer, for example using polyanilines.
  • a further improvement of the thermal properties of the multilayer material 1 can be achieved by a compression of the bonding layer 4 after curing, for example by hooking (HI P method) or by a treatment in a vacuum, so possibly present in the respective bonding layer 4 bubbles or to close cavities.
  • the heat-conducting adhesive or the bonding material can be used not only for the production of multilayer materials or substrates, but also generally for all applications in which an adhesive bond between two components is required with simultaneous optimal heat transfer.
  • the bonding material is also electrically conductive, so it can be used optimally as an electrically conductive adhesive, ie everywhere where an electrical connection is required or required by gluing, for example, when assembling printed circuit boards with components, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Composite Materials (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Bei einem Mehrschichtmaterial sind wenigstens zwei Komponenten über eine Klebeverbindung miteinander verbunden. Die Klebeverbindung ist von einer Nanofasermaterial enthaltenden Kleber- oder Bondschicht gebildet, die das Nanofasermaterial in einer als Kleber geeigneten Matrix enthält.

Description

Verbundmaterial, insbesondere Mehrschichtmaterial sowie Kleber- oder
Bondmaterial
Die Erfindung bezieht sich auf ein Verbundmaterial gemäß Oberbegriff Patentanspruch 1 und dabei insbesondere auf ein Verbundmaterial bestehend aus einer Keramikschicht und aus wenigstens einer auf dieser Keramikschicht vorgesehenen Metallisierung oder Metallschicht. Die Erfindung bezieht sich weiterhin auf ein Kleber- oder Bondmaterial gemäß Oberbegriff Patentanspruch 18.
Bekannt ist die Herstellung von Verbundmaterialien auch als Leiterplatten in Form von Metall-Keramik-Substraten nach dem sogenannten DCB-Prozess. Hierbei wird die für die Erzeugung von Leiterbahnen, Anschlüssen usw. benötigte Metallisierung auf einer Keramik, z.B. auf einer Aluminium-Oxid-Keramik mit Hilfe des sogenannten „DCB- Verfahrens" (Direct-Copper-Bond-Technology) aufgebracht, und zwar unter Verwendung von die Metallisierung bildenden Metall- bzw. Kupferfolien oder Metallbzw. Kupferblechen, die an ihren Oberflächenseiten eine Schicht oder einen Überzug (Aufschmelzschicht) aus einer chemischen Verbindung aus dem Metall und einem reaktiven Gas , bevorzugt Sauerstoff aufweisen.
Bei diesem beispielsweise in der US-PS 37 44 120 oder in der DE-PS 23 19 854 beschriebenen Verfahren bildet diese Schicht oder dieser Überzug (Aufschmelzschicht) ein Eutektikum mit einer Schmelztemperatur unter der Schmelztemperatur des Metalls (z.B. Kupfers), so dass durch Auflegen der Folie auf die Keramik und durch Erhitzen sämtlicher Schichten diese miteinander verbunden werden können, und zwar durch Aufschmelzen des Metalls bzw. Kupfers im wesentlichen nur im Bereich der Aufschmelzschicht bzw. Oxidschicht.
Dieses DCB-Verfahren weist dann z.B. folgende Verfahrensschritte auf: > Oxidieren einer Kupferfolie derart, dass sich eine gleichmäßige Kupferoxidschicht ergibt;
> Auflegen des Kupferfolie auf die Keramikschicht;
> Erhitzen des Verbundes auf eine Prozesstemperatur zwischen etwa 1025 bis 10830C, z.B. auf ca. 1071 0C;
> Abkühlen auf Raumtemperatur.
Bekannt ist auch das sogenannte Aktivlot-Verfahren (DE 22 13 115; EP-A-153 618) zum Verbinden von Metallisierungen bildenden Metallschichten oder Metallfolien, insbesondere auch von Kupferschichten oder Kupferfolien mit dem jeweiligen
Keramikmaterial. Bei diesem Verfahren, welches speziell zum Herstellen von Metall- Keramik-Substraten verwendet wird, wird bei einer Temperatur zwischen ca. 800 - 10000C eine Verbindung zwischen einer Metallfolie, beispielsweise Kupferfolie, und einem Keramiksubstrat, beispielsweise Aluminiumnitrid-Keramik, unter Verwendung eines Hartlots hergestellt, welches zusätzlich zu einer Hauptkomponente, wie Kupfer, Silber und/oder Gold auch ein Aktivmetall enthält. Dieses Aktivmetall, welches beispielsweise wenigstens ein Element der Gruppe Hf, Ti, Zr, Nb, Ce ist, stellt durch chemische Reaktion eine Verbindung zwischen dem Lot und der Keramik her, während die Verbindung zwischen dem Lot und dem Metall eine metallische Hartlöt- Verbindung ist.
Aufgabe der vorliegenden Erfindung ist es, ein Verbundmaterial aufzuzeigen, welches besonders einfach und preiswert gefertigt werden kann, und zwar unter Beibehaltung möglichst optimaler thermischer Eigenschaften. Zur Lösung dieser Aufgabe ist ein Verbundmaterial entsprechend dem Patentanspruch 1 ausgebildet. Ein Kleber- oder Bondmaterial ist Gegenstand des Patentanspruchs 18.
Das erfindungsgemäße Verbundmaterial ist bevorzugt ein Mehrschichtmaterial und dabei vorzugsweise ein als Leiterplatte für elektrische Schaltkreise, Module usw. geeignetes Mehrschichtmaterial bestehend aus einem plattenförmigen zumindest an einer Oberflächenseite aus einem elektrisch isolierenden Werkstoff bestehenden Träger oder Substrat sowie aus wenigstens einer von einer Metall- oder Kupferplatte bzw. Metall- oder Kupferfolie gebildeten Metallisierung, die über das Verbundmaterial mit dem Substrat verbunden ist.
Das erfindungsgemäße Verbundmaterial weist den Vorteil einer einfachen und preiswerten Fertigung auf. Weiterhin wird über die von dem Kleber oder Bondmittel gebildete Schicht auch ein Ausgleich unterschiedlicher Temperaturausdehnungskoeffizienten der Materialien der Metallisierung und des Substrates erreicht. Insbesondere bei entsprechender Orientierung zumindest eines Teils des Nanofasermaterials in der Bond-Schicht parallel oder annähernd parallel zu den verbundenen Flächen lässt sich ein die thermische Ausdehnung der Metallisierung kompensierender Effekt erreichen.
Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. Die Erfindung wird im Folgenden anhand der Figuren an einem Ausführungsbeispiel näher erläutert. Es zeigen:
Fig. 1 und 2 in vereinfachter Darstellung jeweils einen Schnitt durch ein
Mehrschichtmaterial gemäß der Erfindung; Fig. 3 in schematischer Darstellung eine Messanordnung zur Bestimmung des thermischen Verhaltens einer als Kleber ausgebildeten Wärmeleitpaste bzw. eines Wärmeleitklebers gemäß der Erfindung; Fig. 4 schematisch eine Anordnung zur Vorbereitung unterschiedlicher Proben; Fig. 5 den Wärmewiderstand, gemessen an verschiedenen Proben; Fig. 6 einen Vergleich des mit der Vorrichtung der Figur 3 gemessenen thermischen Widerstandes bei verschiedenen Materialverbindungen bzw. Mehrschichtmaterialien. In der Figur 1 ist 1 ein Mehrschicht-Material, welches beispielsweise als Leiterplatte für elektrische Schaltkreise oder Module geeignet ist. Das Mehrschichtmaterial besteht einem plattenförmigen Träger oder Substrat 2, welches bei dieser Ausführungsform insgesamt aus einem elektrisch isolierenden Werkstoff gefertigt ist, z. B. aus einer
Keramik, wie z. B. Aluminiumoxid-Keramik, Aluminiumnitrid-Keramik, Siliziumnitrid- Keramik usw. Auch andere Werkstoffe sind für das Substrat 2 denkbar, beispielsweise Kunststoff, z. B. auf Epoxy-Basis usw.
Auf einer Oberflächenseite des Substrates 2 ist flächig eine von einer dünnen Metallplatte oder Folie, beispielsweise von einer Kupferplatte oder Kupferfolie gebildete Metallisierung 3 vorgesehen. Diese Metallisierung 3 ist über eine von einem Kleber oder einem Bondmaterial gebildete Kleber- oder Bondschicht 4 flächig mit dem Substrat 2 verbunden. Bei der dargestellten Ausführungsform ist das Substrat 2 an beiden Oberflächenseiten mit der Metallisierung 3 versehen. Das Verbund- oder
Mehrschicht-Material 1 ist dadurch zumindest hinsichtlich Art und Folge der einzelnen Schichten symmetrisch bezogen auf eine Mittelebene des Substrates 2. Grundsätzlich ist es aber möglich die Metallisierung 3 nur an einer Oberflächenseite des Substrats 2 vorzusehen. Zur Herstellung der Leiterbahnen, Kontaktflächen usw. ist dann zumindest die Metallisierung 3 an einer Seite des Substrates 2 unter Verwendung der üblichen bekannten Ätz- und Maskierungstechniken entsprechend strukturiert.
Wie in der Figur 2 dargestellt, ist es weiterhin auch möglich das Substrat 2 selbst mehrschichtig auszubilden, und zwar bestehend aus einer metallischen Tragschicht 2.1 z. B. aus Aluminium und einer isolierenden Schicht 2.2 an den Oberflächenseiten des plattenförmigen Substrates 2, und zwar dort wo über eine Bondschicht 4 eine Metallisierung 3 anschließt. Eine Besonderheit des Mehrschichtproduktes 1 besteht darin, dass die Bondschicht 4 ■ in einer als Kleber geeigneten Matrix, beispielsweise in einer Epoxydharz-Matrix, Kohlenstoffnanofasermaterial bzw. Kohlenstoffnanofasem oder -nanotubes enthält, sodass sich für die Bondschicht ein extrem niedriger Wärmewiderstand Rth (°K/W) bzw. umgekehrt eine hohe Wärmeleitfähigkeit 1/Rth ergeben, also ein
Mehrschichtmaterial 1 mit einem Substrat 2 aus einer Aluminiumoxyd-Keramik bezüglich der thermischen Leitfähigkeit bzw. des thermischen Widerstandes zwischen der oberen und unteren Metallisierung 3 durchaus vergleichbar mit einem Mehrschichtmaterial ist, bei dem die Metallisierungen unter Verwendung des sogenannten DCB-Verfahrens auf das Keramiksubstrat aufgebracht sind, wie dies nachstehend noch näher erläutert wird. Die Matrix enthält bezogen auf das Gesamtgewicht des Klebers oder Bondmaterials etwa 5 bis 30 Gewichts% an Nanofasermaterial.
Bei einer bevorzugten Ausführungsform wird als Nanofasermaterial eine unter der
Bezeichnung „Pyrograf III" im Handel erhältliche Carbon-Nanofaser verwendet. Diese wird vor dem Einmischen in die Matrix, gfs. auch vor einer Vorbehandlung bei 30000C ausgeheizt. Als Matrix wird eine solche auf Epoxy-Basis, beispielsweise Polyester verwendet. Um u.a. ein optimales Einbinden des Nanofasermaterials in das Matrixmaterial zu erhalten, wird ein Lösungsmittel verwendet. Hierfür eignet sich insbesondere triethyleneglykol monobutylether.
Die Figur 3 zeigt in schematischer Darstellung eine Anordnung zur Messung des durch die Bondschicht 4 bedingten thermischen Widerstandes. Die Anordnung besteht aus einer oberen Heizplatte 5, aus einer an diese Heizplatte anschließenden und mit dieser für eine Wärmeübertragung optimal verbundenen Messplatte 6 sowie aus einer unteren Messplatte 7. An den Messplatten 6 und 7 sind Temperaturfühler bzw. -Sensoren 6.1 bzw. 7.1 vorgesehen, mit deren Hilfe die Temperatur dieser Platten exakt erfasst und als Messwerte an eine Mess- oder Auswertelektronik weitergeleitet werden können. Die Heizplatte 5 wird elektrisch betrieben, und zwar beispielsweise mit einer Heizspannung von 60 Volt und mit einem konstanten Heizstrom von beispielsweise 2,7 Ampere, sodass während des Messvorgangs von der Heizplatte 5 eine genau definierte, konstante Wärmemenge erzeugt wird.
Zwischen den beiden Messplatten 6 und 7 ist der jeweilige Prüfling 8 angeordnet, der aus zwei Kupferplatten 9 und 10 besteht, die über die ausgehärtete Bondschicht 4 miteinander verbunden sind. Um einen möglichst verlustfreien Wärmeübergang zwischen dem Prüfling 8 und den Messplatten 6 und 7 zu erreichen, ist zwischen den Messplatten 6 und 7 und den benachbarten Platten 9 und 10 jeweils eine Schicht 1 1 bzw. 12 aus einer herkömmlichen, insbesondere auch hinsichtlich ihrer Eigenschaften bekannten Wärmeleitpaste vorgesehen.
Der thermische Widerstand Rth ist dabei, wie folgt, definiert: Rth (°K/W) = (T1 - T2) / Leistung des Heizers 5 in W. Die thermische Leitfähigkeit ist dann 1/Rth.
Die Figur 5 zeigt in einer Graphik den bei der Messung ermittelten Wärmewiderstand Rth in °K/W für verschiedene Proben, und zwar:
Position A: bei aufeinander liegenden, nicht durch die Bondschicht 4 verbundenen
Platten 9 und 10; Position B - E: jeweils bei über die Bondschicht 4 miteinander verbundenen Platten 9 und 10, jedoch: Position B: ohne weitere Temperaturbehandlung;
Position C: bei einer Behandlung der Probe 8 über 2,8 Tage bei einer
Temperatur von 120 0C;
Position D: bei einer Behandlung der Probe 8 über 6 Tage bei einer Temperatur von 120 0C; Position E: bei einer Behandlung der Probe 8 über 1 Tag bei 160 0C.
Die Figur 5 zeigt, dass sich die thermische Leitfähigkeit der Bondschicht 4 bei einer längeren Temperatureinwirkung verbessert, offensichtlich durch weiteres Aushärten dieser Schicht. Die Messungen haben weiterhin ergeben, dass der an der jeweiligen Probe 8 gemessene thermische Widerstand Rth nur anfänglich, d.h. in einer Anfangsphase jeder Messung leicht abnimmt, und zwar offensichtlich bedingt durch Trägheit des Messsystems, dann nach Ablauf dieser Anfangsphase aber konstant bleibt.
Die Figur 6 zeigt im Vergleich den thermischen Widerstand eines Kupfer-Keramik- Mehrschichtmaterials. Für diese Messung wurden anstelle der Proben 8 mit den beiden Kupferplatten 9 und 10 Proben verwendet, bei denen die untere Kupferplatte
10 durch eine Keramikplatte oder durch ein Keramiksubstrat gleicher Größe ersetzt ist. Dargestellt ist in der Figur 6 in der Position A der thermische Widerstand Rth (0KfW) einer Probe, bei der die obere Platte 9 aus Kupfer ohne Verbindung gegen die untere Platte 10 aus Keramik (Aluminiumoxid-Keramik) anliegt. Die Positionen B und D betreffen Messungen, bei denen die obere Platte 9 aus Kupfer über die Bondschicht 4 mit der unteren Platte 10 aus Keramik verbunden ist, und zwar Position B - bei einer Behandlung der Probe 8 über 3 Tage bei einer Temperatur von 150 0C und
Position D - ohne eine weitere Behandlung der Probe 8.
Die Position C zeigt im Vergleich den thermischen Widerstand eines DCB-Substrates. Die Position E ist der mit der Messvorrichtung der Figur 3 gemessene thermische Widerstand, der sich ohne die Probe 8 ergibt, d. h. bei unmittelbar über die Schichten
11 und 12 gegeneinander anliegenden Messplatten 6 und 7.
Es versteht sich, dass bei allen Messungen jeweils Platten 9 und 10 gleicher Größe verwendet wurden. Die thermische Leitfähigkeit der Bondschicht 4 kann wesentlich dadurch gesteigert werden, dass die Nanofasern des verwendeten Nanofasermaterials hinsichtlich ihrer Länge optimal gewählt werden, d. h. diese Fasern oder zumindest ein Großteil dieser Fasern eine Länge zwischen 1 und 100 μ, vorzugsweise 10μ aufweist und/oder aber dadurch, dass das Nanofasermaterial vorbehandelt und durch diese Vorbehandlung dann in die das Bondmaterial bildende Matrix optimal eingebunden wird. Diese Länge entspricht den üblicherweise bei Keramiksubstraten und/oder Kupferfolien vorhandenen Oberflächenunebenheiten, so dass diese Unebenheiten mit Nanofasern dieser Längen möglichst optimal überbrückt werden können.
Eine weitere Verbesserung der thermischen Leitfähigkeit der Bondschichten 4 und damit eine Verbesserung der thermischen Eigenschaften des Mehrschichtmaterials 1 wird dadurch erreicht, dass die Nanofasern oder Nanotubes zumindest zum Großteil in Richtung des Wärmeflusses orientiert werden, beispielsweise dadurch, dass die Nanofasern oder Nanotubes vor dem Einbringen in die Matrix ferromagnetisch ausgebildet, d. h. beispielsweise mit Nanopartikeln aus einem ferromagnetischen Material überzogen werden. Beim Herstellen des Mehrschichtmaterials 1 erfolgt dann durch ein äußeres Magnetfeld (Pfeil H) ein optimales Ausrichten der Nonofasern bzw. Nanotubes in der Weise, dass diese Nanofasern bzw. Nanotubes mit ihrer Längserstreckung senkrecht oder zumindest annähernd senkrecht zu den Oberflächenseiten des Substrates 2 und der benachbarten Metallisierung 3 in der Bondschicht 4 orientiert sind. Nach dem Aushärten der Bondschicht 4 sind die Nanofasern bzw. Nanotubes in dieser Orientierung fixiert.
Das Aufbringen des ferromagnetischen Materials bzw. der Nanopartikel aus diesem Material auf das Nanofasermaterial bzw. die Nanofasern oder Nanotubes erfolgt unter Verwendung eines geeigneten, eine Oberflächenhaftschicht bildenden Polymers, beispielsweise unter Verwendung von Polyaniline. Eine weitere Verbesserung der thermischen Eigenschaften des Mehrschichtmaterials 1 lässt sich durch eine Kompression der Bondschicht 4 nach dem Aushärten erreichen, und zwar beispielsweise durch Hippen (H I P- Verfahren) oder durch eine Behandlung im Vakuum, um so eventuell in der jeweiligen Bondschicht 4 vorhandene Blasen oder Hohlräume zu schließen.
Die Erfindung wurde voranstehend an einem Ausführungsbeispiel beschrieben. Es versteht sich, dass zahlreiche Änderungen sowie Abwandlungen möglich sind, ohne das dadurch der der Erfindung zugrunde liegende Erfindungsgedanke verlassen wird.
Insbesondere kann der Wärmeleitkleber bzw. das Bondmaterial nicht nur für die Herstellung von Mehrschichtmaterialien bzw. -Substraten, sondern auch generell für alle Anwendungen eingesetzt werden, bei denen eine klebende Verbindung zwischen zwei Komponenten bei gleichzeitiger optimaler Wärmeübertragung erforderlich ist.
Durch das Nanofasermaterial auf Kohlenstoffbasis ist das Bondmaterial auch elektrisch leitend, es kann somit in optimaler Weise auch als elektrisch leitender Kleber, d. h. überall dort eingesetzt werde, wo eine elektrische Verbindung durch Kleben gewünscht oder erforderlich ist, beispielsweise beim Bestücken von Leiterplatten mit Bauteilen usw.
Bezugszeichenliste
1 Mehrschichtmaterial 2 Substrat
2.1 Trägermaterial
2.2 Isolierschicht
3 Metallisierung
4 Kleber- oder Bondschicht 5 Heizplatte
6, 7 Messplatte
8 Probe
9, 10 Platte
1 1 , 12 Schicht aus Wärmeleitpaste

Claims

Patentansprüche
1. Verbundmaterial, insbesondere Mehrschichtmaterial, bestehend aus wenigstens zwei Komponenten (2, 3), die an einander benachbarten und für eine Wärmeübertragung vorgesehenen Flächen durch eine Klebeverbindung (4) miteinander verbunden sind, dadurch gekennzeichnet, dass die Klebeverbindung von einer Nanofasermaterial enthaltenden Kleber- oder Bondschicht (4) gebildet ist, die das Nanofasermaterial in einer als Kleber geeigneten Kunststoff-Matrix enthält.
2. Verbundmaterial nach Anspruch 1, dadurch gekennzeichnet, dass die Bondschicht (4) aus einer Matrix auf Epoxy-Basis besteht.
3. Verbundmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Nanofasermaterial bzw. die dieses Material bildenden Nanofasern oder
Nanotubes zumindest zum Großteil in einer Achsrichtung senkrecht zu den einander benachbarten Flächen orientiert sind.
4. Verbundmaterial nach Anspruch 3, dadurch gekennzeichnet, dass das Nanofasermaterial bzw. die dieses Material bildenden Nanofasern oder
Nanotubes für das Ausrichten bzw. Orientieren durch ein äußeres Magnetfeld ferromagnetisch ausgebildet sind.
5. Verbundmaterial nach Anspruch 4, dadurch gekennzeichnet, dass das Nanofasermaterial bzw. die dieses Material bildenden Nanofasern und/oder
Nanotubes mit Nanopartikeln ferromagnetisch sind, beispielsweise mit einem ferromagnetischen Material, z.B. mit Fe2θ3 versehen bzw. beschichtet sind.
6. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Matrix eine Matrix auf Epoxy-Basis ist.
7. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Matrixkomponente Polyester ist.
8. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Matrix bezogen auf das Gesamtgewicht 5 - 30 Gewichts% Nanofasermaterial enthält.
9. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Nanofasern der Bezeichnung „Pyrograf IM" verwendet werden.
10. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Nanofasermaterial vor dem Einbringen in die Matrix in einer Vorbehandlung bei 30000C ausgeheizt wurde.
11. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einbringen des Nanofasermaterials in die Matrix unter
Verwendung eines Lösungsmittel, beispielsweise unter Verwendung von Triethyleneglykol Monobutylether erfolgt.
12. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Komponente des Verbundmaterials zumindest an der mit der weiteren Komponente verbundenen Oberfläche aus einem elektrisch isolierenden Material und die weitere Komponente aus Metall, beispielsweise aus Kupfer besteht.
13. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die eine Komponente ein plattenförmiger Träger oder ein plattenförmiges Substrat (2) ist, und dass auf das Substrat (2) beidseitig jeweils über eine Bondschicht (4) eine Metallschicht (3) aufgebracht ist.
14. Verbundmaterial nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die eine Komponente ein Keramik-Substrat, beispielsweise ein Substrat aus einer Aluminiumoxid, Aluminiumnitrid und/oder Siliziumnitrid-Keramik ist.
15. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Nanofasermaterial zumindest an seiner Oberfläche chemisch vorbehandelt ist.
16. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens eine Klebeschicht (4) nach dem Aushärten durch Kompression, beispielsweise durch Hippen oder durch Behandlung im Vakuum verdichtet ist.
17. Verbundmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Nanofasermaterial solches auf Carbon- odr
Kunststoffbasis ist.
18. Kleber oder Bondmaterial zum klebenden Verbinden von wenigstens zwei einander benachbarten und für eine Wärmeübertragung bestimmten Flächen, bestehend aus einer als Kleber geeigneten Matrix, dadurch gekennzeichnet, dass die Matrix Nanofasermaterial enthält.
19. Bondmaterial nach Anspruch 18, dadurch gekennzeichnet, dass die Matrix eine Matrix auf Epoxy-Basis ist.
20. Bondmaterial nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass die Matrixkomponente Polyester ist.
21. Bondmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Matrix bezogen auf das Gesamtgewicht 5 - 30 Gewichts% Nanofasermaterial enthält.
22. Bondmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Nanofasern der Bezeichnung „Pyrograf IM" verwendet werden.
23. Bondmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Nanofasermaterial vor dem Einbringen in die Matrix in einer Vorbehandlung bei 30000C ausgeheizt wurde.
24. Bondmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einbringen des Nanofasermaterials in die Matrix unter
Verwendung eines Lösungsmittel, beispielsweise unter Verwendung von Triethyleneglykol Monobutylether erfolgt.
25. Bondmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Nanofasermaterial mit einem ferromagnetischen
Material versehen, beispielsweise beschichtet ist.
26. Bondmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Nanofasermaterial zumindest an seiner Oberfläche chemisch vorbehandelt ist.
27. Bondmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Nanofasermaterial solches auf Carbon- odr Kunststoffbasis ist.
EP06820829A 2005-12-23 2006-08-10 Verbundmaterial, insbesondere mehrschichtmaterial sowie kleber- oder bondmaterial Withdrawn EP1963455A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510062181 DE102005062181A1 (de) 2005-12-23 2005-12-23 Verbundmaterial
PCT/IB2006/003030 WO2007072126A1 (de) 2005-12-23 2006-08-10 Verbundmaterial, insbesondere mehrschichtmaterial sowie kleber- oder bondmaterial

Publications (1)

Publication Number Publication Date
EP1963455A1 true EP1963455A1 (de) 2008-09-03

Family

ID=37845109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06820829A Withdrawn EP1963455A1 (de) 2005-12-23 2006-08-10 Verbundmaterial, insbesondere mehrschichtmaterial sowie kleber- oder bondmaterial

Country Status (6)

Country Link
US (2) US8119220B2 (de)
EP (1) EP1963455A1 (de)
JP (1) JP5343283B2 (de)
CN (1) CN101341225B (de)
DE (2) DE102005063403A1 (de)
WO (1) WO2007072126A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006037185A1 (de) * 2005-09-27 2007-03-29 Electrovac Ag Verfahren zur Behandlung von Nanofasermaterial sowie Zusammensetzung aus Nanofasermaterial
DE102007039901A1 (de) * 2007-08-23 2008-10-16 Siemens Ag Thermisches und elektrisches Kontaktmaterial mit mindestens zwei Materialbestandteilen und Verwendung des Kontaktmaterials
DE102007062458B4 (de) 2007-12-22 2011-05-19 Schaal Engineering Gmbh Antriebseinrichtung für eine Presse
DE102009041574A1 (de) * 2008-10-29 2010-05-12 Electrovac Ag Verbundmaterial, Verfahren zum Herstellen eines Verbundmaterials sowie Kleber oder Bondmaterial
CN102325739B (zh) * 2009-02-20 2013-12-04 日本碍子株式会社 陶瓷-金属接合体及其制法
US9469790B2 (en) * 2009-09-29 2016-10-18 The Boeing Company Adhesive compositions comprising electrically insulating-coated carbon-based particles and methods for their use and preparation
DE102010002447A1 (de) 2010-02-26 2011-09-01 Tutech Innovation Gmbh Klebstoff mit anisotroper elektrischer Leitfähigkeit sowie Verfahren zu dessen Herstellung und Verwendung
US9696122B2 (en) 2011-06-30 2017-07-04 Imi Systems Ltd. Antiballistic article and method of producing same
CN102501548A (zh) * 2011-10-25 2012-06-20 华南理工大学 一种高韧性抗冲击陶瓷基层状复合材料及其制备方法
DE102012102611B4 (de) * 2012-02-15 2017-07-27 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
CN103436066B (zh) * 2012-04-13 2017-02-15 普罗旺斯科技(深圳)有限公司 一种散热涂层、散热片及制造方法
IL230775B (en) 2014-02-02 2018-12-31 Imi Systems Ltd Pre-stressed curved ceramic panels/tiles and a method for their production
WO2015132969A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 絶縁基板及び半導体装置
TWI653312B (zh) * 2014-03-11 2019-03-11 日商味之素股份有限公司 接著薄膜
DE102015107223B4 (de) 2015-05-08 2020-10-08 Rogers Germany Gmbh Verbundmaterial und Verfahren zu seiner Herstellung
DE102015116901A1 (de) 2015-10-05 2017-04-06 Technische Universität Darmstadt Verfahren zur Herstellung einer Isolatorplatte, Isolatorplatte und elektrochemische Messvorrichtung
DE102017216878A1 (de) * 2017-09-25 2019-03-28 Robert Bosch Gmbh Verfahren zum Herstellen eines Klebstoffs und einer Klebung, insbesondere in Form einer Kleberschicht innerhalb einer Batteriezelle
US20190116657A1 (en) * 2017-10-18 2019-04-18 Stryke Industries, LLC Thermally enhanced printed circuit board architecture for high power electronics

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2647589B2 (ja) * 1992-01-27 1997-08-27 矢崎総業株式会社 電磁波遮蔽用複合シート
US6103812A (en) * 1997-11-06 2000-08-15 Lambda Technologies, Inc. Microwave curable adhesive
US6265466B1 (en) * 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
JP2001279215A (ja) 2000-03-24 2001-10-10 Three M Innovative Properties Co 異方導電性接着剤組成物およびそれから形成された異方導電性接着フィルム
JP2002146672A (ja) * 2000-11-06 2002-05-22 Polymatech Co Ltd 熱伝導性充填剤及び熱伝導性接着剤並びに半導体装置
US6607857B2 (en) * 2001-05-31 2003-08-19 General Motors Corporation Fuel cell separator plate having controlled fiber orientation and method of manufacture
GB0122281D0 (en) * 2001-09-14 2001-11-07 Ici Plc A container for roller-applied paint and its use in coating procedures for rough surfaces
EP1457509B1 (de) * 2003-03-11 2006-06-28 hanse chemie AG Polymere Epoxidharz-Zusammensetzung
ATE331748T1 (de) * 2003-03-11 2006-07-15 Hanse Chemie Ag Polymere epoxidharz-zusammensetzung
US7157848B2 (en) * 2003-06-06 2007-01-02 Electrovac Fabrikation Elektrotechnischer Spezialartikel Gmbh Field emission backlight for liquid crystal television
ATE519712T1 (de) 2003-06-16 2011-08-15 Univ Rice William M Seitenwandfunktionalisierung von carbonnanoröhrchen mit hydroxyterminierten moleküleinheiten
WO2005047370A2 (en) * 2003-10-15 2005-05-26 Michigan State University Bio-based epoxy, their nanocomposites and methods for making those
JP2005132953A (ja) * 2003-10-30 2005-05-26 Bussan Nanotech Research Institute Inc 一成分硬化性樹脂組成物
JP4625249B2 (ja) * 2003-11-28 2011-02-02 協立化学産業株式会社 絶縁膜の形成方法および電子装置の製造方法
US20060025515A1 (en) * 2004-07-27 2006-02-02 Mainstream Engineering Corp. Nanotube composites and methods for producing
JP4817772B2 (ja) * 2004-09-14 2011-11-16 昭和電工株式会社 導電性樹脂組成物、その製造方法及び用途
US20060081819A1 (en) * 2004-10-14 2006-04-20 Yi Li Modified electrically conductive adhesives
TWI323901B (en) * 2004-11-26 2010-04-21 Hon Hai Prec Ind Co Ltd Anisotropic conductive material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007072126A1 *

Also Published As

Publication number Publication date
US8304054B2 (en) 2012-11-06
WO2007072126A1 (de) 2007-06-28
JP2009520612A (ja) 2009-05-28
JP5343283B2 (ja) 2013-11-13
US8119220B2 (en) 2012-02-21
CN101341225A (zh) 2009-01-07
CN101341225B (zh) 2013-05-15
DE102005063403A1 (de) 2007-09-06
US20100227114A1 (en) 2010-09-09
DE102005062181A1 (de) 2007-07-05
US20120031653A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
EP1963455A1 (de) Verbundmaterial, insbesondere mehrschichtmaterial sowie kleber- oder bondmaterial
DE102010049499B4 (de) Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines solchen Substrates
DE69008963T2 (de) Elektronisches Schaltungssubstrat.
EP1929083B1 (de) Mehrschichtmaterial
EP2352709A2 (de) Verbundmaterial, verfahren zum herstellen eines verbundmaterials sowie kleber oder bondmaterial
EP1774841B1 (de) Verfahren zum herstellen eines metall-keramik-substrates
DE202013012790U1 (de) Metall-Keramik-Substrat und elektrische oder elektronische Schaltung oder Schaltungsmodule
DE102009018541A1 (de) Kontaktierungsmittel und Verfahren zur Kontaktierung elektrischer Bauteile
WO1991005455A1 (de) Verbundanordnung mit leiterplatte
DE102018203971A1 (de) Temperatursensorelement
DE102013102637B4 (de) Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines derartigen Metall-Keramik-Substrates und Anordnung von derartigen Metall-Keramik-Substraten
DE4103294A1 (de) Verfahren zum herstellen von elektrisch leitenden durchkontaktierungen in keramiksubstraten
DE102011076773A1 (de) Verfahren zur Herstellung einer integrierten Schaltung
WO2003024711A2 (de) Verfahren zur herstellung eines keramischen substrats und keramisches substrat
DE102015107223B4 (de) Verbundmaterial und Verfahren zu seiner Herstellung
WO2021175542A1 (de) Temperatursensorverbund und verfahren zur herstellung eines temperatursensorverbundes
WO2018220044A1 (de) Elektrische komponente und verfahren zu deren herstellung
DE202018001393U1 (de) Temperatursensorelement
DE3924140A1 (de) Chip-kondensator mit anschluessen sowie verfahren zu seiner herstellung
WO2019174968A1 (de) Temperatursensorelement
DE102013226294A1 (de) Widerstandsbauelement, dessen Herstellung und Verwendung
EP3317888B1 (de) Verfahren zur herstellung eines elektrischen bauelements
DE102015115611A1 (de) Verfahren zum Herstellen von elektronischen Modulen
DE19640650A1 (de) Wärmeerzeugende Baugruppe mit wärmeleitender Verbindungsschicht zwischen Wärmequelle und Wärmesenke
EP0477881A2 (de) Keramisches elektrisches Bauelement mit Anschlussmetallisierungen zur elektrischen Kontaktierung mittels Leitkleber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080521

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090526

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CURAMIK ELECTRONICS GMBH

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROGERS GERMANY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170301