EP1960767A1 - Verfahren und system zur zerstörungsfreien prüfung eines metallischen werkstücks - Google Patents
Verfahren und system zur zerstörungsfreien prüfung eines metallischen werkstücksInfo
- Publication number
- EP1960767A1 EP1960767A1 EP06818682A EP06818682A EP1960767A1 EP 1960767 A1 EP1960767 A1 EP 1960767A1 EP 06818682 A EP06818682 A EP 06818682A EP 06818682 A EP06818682 A EP 06818682A EP 1960767 A1 EP1960767 A1 EP 1960767A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic field
- workpiece
- contribution
- response signal
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/83—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
- G01N27/87—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields using probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B17/00—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
- G01B17/02—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/07—Analysing solids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2412—Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/449—Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
- G01N2291/102—Number of transducers one emitter, one receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/263—Surfaces
- G01N2291/2636—Surfaces cylindrical from inside
Definitions
- the invention relates to a method for non-destructive testing of a metallic workpiece by means of a test head having an electro-magnetic ultrasonic transducer with a magnetic field source and a magnetic field sensor.
- the invention further relates to an evaluation method for evaluating measurement data that was determined with such a test head and a test system.
- pigs with probes which have an ultrasonic transducer, can be generated with the ultrasonic waves and ultrasonic echoes can be detected.
- a transit time information of the ultrasonic wave can be determined and from this the wall thickness can be calculated. In this way, corrosion spots and other defects that lead to a reduced wall thickness can be detected.
- piezoelectric ultrasonic transducers In addition to electro-magnetic ultrasonic transducers in which ultrasound waves are generated directly in the workpiece to be tested, in the prior art piezoelectric ultrasonic transducers are known in which ultrasonic waves are generated outside the workpiece and coupled by means of a coupling means in the workpiece. Piezoelectric ultrasonic transducers have the advantage that when coupling the ultrasonic wave in the workpiece to be tested an entrance echo is formed with which the distance of the probe to the workpiece can be determined. When an electro-magnetic ultrasound transducer is used, no such input echo is produced, so that only the thickness of the workpiece, but not its distance from the test head, can be determined by a transit time evaluation.
- electro-magnetic ultrasonic transducers When using electro-magnetic ultrasonic transducers, however, it is not possible to distinguish between internal or external defects of a pipeline, since there is no entrance echo and consequently no information about the distance of the test head from the surface of the workpiece to be tested can be obtained by evaluating the ultrasound echoes.
- Another problem with the use of electro-magnetic ultrasonic transducers is that the signal-to-noise ratio drastically deteriorates with increasing distance of the probe from the workpiece, so that a runtime evaluation is usually only possible if the distance of the probe from the workpiece less than about 1 mm. If indentations have formed in a pipeline as a result of internal corrosion, the distance between the ultrasonic test head and the wall to be measured can become so great that reliable information about the wall thickness is no longer possible.
- test head with the addition of a wall thickness information in addition distance information on the distance of the probe from the workpiece can be determined, since in a region with internal errors of the distance of the probe from the wall is increased by the depth of the defect.
- EP 0677742 A1 it is proposed in EP 0677742 A1 to additionally carry out an eddy-current measurement during measurement pauses of the ultrasonic transducer.
- an alternating electromagnetic field is generated by a transmitting coil, which is influenced by the electrical conductivity, the magnetic permeability and the geometry of the workpiece to be tested.
- a magnetic field sensor which is arranged next to the transmitting coil, this alternating field can be measured and the distance from the workpiece to be tested can be determined. If the distance due to an internal error is too large for an ultrasonic echo evaluation, the wall thickness can be determined as the difference between the wall thickness of an undamaged area and the additional distance of the test head from the damaged wall.
- EP 0677742 A1 A major disadvantage of the method known from EP 0677742 A1, however, is that the time required to test a workpiece approximately doubles due to the eddy current measurements carried out between the ultrasonic measurements. In addition, there is a considerable expenditure on equipment.
- EP 0 717 842 B1 discloses a device for detecting cracks by means of an electromagnetic transient diffusion method in which magnetic quantities are measured. Separate probes for leakage flux and eddy current measurement are used, but no ultrasonic measurement.
- EP 0 276 299 B1 discloses the testing of composites by a combined application of pulsed eddy current and piezoelectrically generated ultrasound, using separate probes for eddy current and ultrasonic measurement.
- the object of the invention is therefore to show a way how to check with less effort a gas-filled pipe and thereby internal defects can be distinguished from external defects.
- an excitation pulse is transmitted to the workpiece by means of the ultrasonic transducer, a response signal is measured by means of the magnetic field sensor, a test information, preferably a transit time information of the ultrasonic wave and therefrom a wall thickness information about the thickness of the workpiece, determined by an ultrasonic echo contribution of the response signal , And based on a magnetic field contribution of the response signal, a further evaluation, a further information, in particular a wall thickness information or a distance information about the distance of the probe from the workpiece, determined.
- a test information preferably a transit time information of the ultrasonic wave and therefrom a wall thickness information about the thickness of the workpiece, determined by an ultrasonic echo contribution of the response signal .
- a further evaluation a further information, in particular a wall thickness information or a distance information about the distance of the probe from the workpiece, determined.
- An essential advantage of the method according to the invention consists in the fact that no additional measuring time for determining the wall thickness information is required by the improved signal evaluation in comparison to conventional ultrasonic measurements with electromagnetic ultrasonic transducers.
- a test head can therefore be used to test a pipeline essentially in the same time as was required in the prior art for ultrasonic wall thickness measurement, although a distinction can be made according to the invention between additional internal and external defects.
- the response signal obtained in an ultrasound echo measurement with an electromagnetic ultrasound transducer also contains a stray field contribution and an alternating field contribution as magnetic field contributions, by the evaluation of which in combination with the evaluation of the ultrasound echo. Contribution a distance information and / or wall thickness information can win.
- the stray field contribution is based on leakage flux of the magnetic field generated by the magnetic field source.
- a test head is preferably used, in which the magnetic field sensor is arranged between a magnetic north pole and a magnetic south pole of the magnetic field source on a front side of the test head, with which the test head faces the workpiece when performing the method.
- the magnetic north pole and the south magnetic pole Magnetic field source cause in this way a magnetization of the workpiece in the longitudinal direction.
- stray fields are formed, which can be detected by the magnetic field sensor of the test head. If an increased stray field contribution is detected when the ultrasound contribution disappears, this indicates an internal defect. If an increased stray field contribution occurs together with a strong ultrasound contribution, there is an external error.
- the stray field is temporally constant. Only by a movement of the probe relative to the workpiece, there is a time dependence of the stray field. Even if a pig with a test head is moved relatively quickly through a pipeline, the frequency of the measured stray field is substantially lower than the frequency of the ultrasound signal contained in the response signal. The leakage flux contribution of the response signal can therefore be determined by frequency filtering and evaluated separately in order to obtain a wall thickness information independent of the ultrasound measurement.
- test head used for the invention but in addition to the magnetic field sensor also has an excitation coil with which the excitation pulse is generated and which is arranged between the north pole and the south pole of the magnetic field source next to the magnetic field sensor.
- the magnetic field contribution of the response signal also contains an alternating field contribution of an alternating field generated by the excitation pulse from the excitation coil. Namely, to generate the excitation pulse, an alternating current flows through the excitation coil, so that an alternating magnetic field is generated which causes an alternating field contribution to the magnetic field contribution of the response signal.
- the alternating field contribution occurs practically at the same time as the excitation pulse, so that the alternating field contribution of the ultrasonic echo contribution of the response signal can be separated by a suitable choice of the temporal evaluation interval.
- a first time interval and a second time interval are therefore preferably evaluated separately, wherein the alternating field contribution is determined by evaluating the first time interval and the ultrasound echo contribution is determined by evaluating the second time interval.
- Transmitting coil (whose function is taken over here by the excitation coil) and thereby generates an alternating electromagnetic field in the
- This alternating field is influenced by the electrical conductivity ⁇ , the magnetic permeability ⁇ and the geometry of the test specimen, in particular the distance between specimen and sensor.
- an evaluation of the alternating field contribution is also possible with probes having only a single coil, which is used both as an excitation coil for generating the excitation pulse for the ultrasonic and the eddy current measurement and as a magnetic field sensor.
- the impedance of the excitation coil depends on the distance between the test head and the workpiece, so that the alternating field contribution can also be determined by an impedance measurement of the excitation coil.
- a test head is used which has a magnetic field sensor in addition to the excitation coil.
- both the stray field contribution and the alternating field contribution of the response signal are evaluated.
- An overall consideration of the evaluation results of the stray field contribution, the alternating field contribution and the ultrasonic echo contribution makes it possible to obtain a particularly comprehensive to receive information about the condition of the workpiece to be tested.
- the advantages of the described invention are essentially also achieved by a novel evaluation of the response signals measured with a test head.
- the invention therefore also relates to an evaluation method for evaluating measured data which has been determined with a test head for nondestructive testing of a metallic workpiece, wherein the test head used comprises an electro-magnetic ultrasonic transducer with a magnetic field source and a magnetic field sensor for generating an ultrasonic wave by means of the Ultrasonic transducer on the workpiece an excitation pulse was transmitted, and by means of the magnetic field sensor, a response signal was measured, - based on an ultrasonic echo contribution of the response signal test information, preferably a transit time information of the ultrasonic wave and therefrom a wall thickness information on the thickness of the workpiece is determined, and
- a further information in particular a wall thickness information or a
- Distance information about the distance of the probe from the workpiece is determined.
- the invention therefore also relates to a computer program product that can be loaded directly into the memory of a digital computer and includes software sections that perform the steps of such an expansion method when the product is run on a computer.
- the invention further relates to a computer-suitable storage medium, for example a CD, DVD or hard disk, on which such a computer program product is stored.
- a system for nondestructive testing of a metallic workpiece with the inventive method comprising a probe having an electro-magnetic ultrasonic transducer with a magnetic field source and a magnetic field sensor, a memory for storing a response signal by means of the magnetic field sensor was measured following the generation of an excitation pulse applied to the workpiece by means of the ultrasonic transducer, and an evaluation unit which is set up to evaluate the response signal by using the evaluation method according to the invention.
- FIG. 1 is a schematic representation of a test system according to the invention
- FIG. 2 shows a test head of the system shown in FIG. 1, including a field line course when testing an intact wall section;
- FIG. 1 is a schematic representation of a test system according to the invention
- FIG. 3 shows the test head according to FIG. 2 when testing a wall section with an internal fault
- FIG. 4 shows the test head according to FIG. 2 when testing a wall section with an external fault.
- Figure 1 shows a schematic diagram of a system for non-destructive testing of a metallic workpiece.
- the system comprises a test head which has an ultrasound transducer 1 with a magnetic field source 2, a magnetic field sensor 3 in the form of a coil and an excitation coil 4.
- the magnetic field sensor 3 and the excitation coil 4 are between a magnetic north pole N and a south magnetic pole S.
- the magnetic field source 2 is arranged on an end face of the test head, with which the test head in operation faces a workpiece 11 to be tested.
- the magnetic field source 2 is formed as a permanent magnet with a U-shaped pole piece.
- a workpiece to be tested is magnetized in the longitudinal direction, resulting in a substantially parallel to the surface of the workpiece 11 extending field line course.
- a magnetic field source and an electromagnet can be used.
- a magnetic field sensor 3 a coil is preferably used, but other magnetic field sensors may be suitable.
- an excitation pulse is transmitted to the workpiece by means of the electromagnetic ultrasonic transducer 1.
- the excitation coil 4 is connected for this purpose to a drive electronics 5, with which the excitation pulse is generated and transmitted to the excitation coil 4.
- the frequency of the excitation pulse corresponds to the frequency of the ultrasonic wave to be generated and is usually about 0.5 MHz to 10 MHz.
- the duration of the excitation pulse is a few oscillation cycles. For example, an excitation pulse having a frequency of 2 MHz and a duration of 1 ⁇ s to 10 ⁇ s, preferably 2 ⁇ s to 6 ⁇ s, may be used to test a pipeline.
- the control electronics 5 is preferably powered by a battery, so that the probe can be used on a pig for testing pipelines.
- the excitation pulse is transmitted from the excitation coil to the workpiece to be tested as a high-frequency alternating field.
- this alternating magnetic field causes a magnetostrictive excitation of an ultrasonic wave.
- the magnetic field generated by the magnetic field source is used to set a favorable magneto-strictive operating point. At this operating point, the magnetic field generated by the magnetic field source 2 is modulated with the excitation pulse of the excitation coil 4.
- the alternating field of the excitation coil 4 causes ultrasound generation by the Lorentz force, which acts on eddy currents induced by the excitation pulse.
- Ultrasonic excitation by Lorenz forces takes place in principle also with ferromagnetic materials, however, the magneto-strictive excitation mechanism is much more efficient, so that in practice with ferromagnetic materials the excitation over Lorenz forces is rather insignificant. Since ultrasonic excitation via Lorenz forces is less efficient than magneto-strictive ultrasonic excitation, larger voltages are required for the excitation pulse generated by the control electronics 5 in the case of non-ferromagnetic materials.
- a response signal is measured by means of the magnetic field sensor 3.
- the magnetic field sensor 3 is connected to an evaluation 6, with a pre-evaluation of the response signal is made.
- the evaluation electronics 6 comprises a preamplifier 7, a high-pass filter 8 and a low-pass filter 9.
- the response signal is first amplified by means of the preamplifier 7 and then fed to the parallel-connected inputs of the high-pass filter 8 and the low-pass filter 9.
- the high pass 8 has a cutoff frequency between 10 kHz and 500 kHz, preferably between 100 kHz and 200 kHz, so that arrive at the output of the high-pass filter 8 only those parts of the response signal whose frequency is greater than the cut-off frequency of the high-pass filter 8 and thus contain the Ultraschallallecho- contribution.
- the cut-off frequency of the low-pass filter 9 is preferably between 5 kHz and 500 kHz, preferably between 5 kHz and 100 kHz, in particular between 10 kHz and 50 kHz, so that arrive at the output of the low-pass only signal components of the response signal whose frequency is smaller than the cutoff frequency of Low pass 9 is and therefore contains the stray field contribution.
- the evaluation electronics 6 is connected to an evaluation unit 10, with which a wall thickness information about the thickness of the workpiece and a distance information about the distance of the probe from the workpiece are determined.
- the evaluation electronics 6 can also be connected to a memory to which the evaluation unit 10 can access. In this way, it is possible to arrange the evaluation unit 10 outside the test head and to realize, for example, as a PC. Measurement data obtained with the test head can be made available to the evaluation unit 10 and evaluated at any time after the measurement.
- wall thickness information about the thickness of the workpiece is transmitted on the basis of an ultrasound echo contribution.
- a second independent wall thickness information and a distance information about the distance of the test head from the workpiece is determined on the basis of a magnetic field contribution of the response signal.
- the magnetic field contribution of the response signal used for determining the further information contains a fringing field contribution which is based on the leakage flux exiting the workpiece 11 from the magnetic field source
- Low pass 9 determined by a frequency filtering of the response signal.
- the stray field component of the response signal is constant over time.
- the scatter time-dependent but its frequency is less than 10 kHz even with fast movement of the probe.
- FIGS. 2 to 4 shows an ultrasonic transducer 1 when generating an ultrasonic wave 14 in a workpiece 11.
- Examination of an intact tube wall section results in the course of the field lines shown in FIG. 2, in which the field lines run substantially within the workpiece 11 and practically no leakage flux occurs. If the thickness of the workpiece 11 is reduced by a defect 12, 13, the field lines are forced out of the workpiece 11 at the corresponding point, so that a stray field occurs, which can be detected by the magnetic field sensor 3.
- the test head 1 is located on a pig, the field line profile shown in FIG. 3 results in the case of an external defect 12 of the pipeline to be tested. In the case of an internal defect 13, the field line course illustrated in FIG. 4 results.
- a simplified test head can be used for such measurements, in which the excitation coil 4 is also used as a magnetic field sensor 3 at the same time.
- Distance information about the distance of the test head from the workpiece 11 can be determined by an eddy current measurement. For this purpose, it is necessary that a magnetic field sensor 3 is arranged next to the excitation coil 4.
- the excitation pulse is used both for ultrasonic echo measurement and for eddy current measurement.
- the response signal measured with the magnetic field sensor 3 contains, in addition to the ultrasound echo contribution, a magnetic field contribution which contains an eddy-current-dependent alternating-field contribution of an alternating field generated by the excitation pulse of the excitation coil 4.
- the strength of the alternating field contribution at the location of the magnetic field sensor 3 depends on the one hand on workpiece-independent parameters (eg current intensity of the excitation pulse, geometry and number of turns of the excitation coil) and on the other hand on workpiece-dependent parameters.
- workpiece-dependent parameters include, in particular, the distance between the workpiece and the ultrasonic transducer 1.
- the eddy current-conditioned alternating field contribution of the response signal like the ultrasound echo contribution of the response signal, has the frequency of the excitation pulse and therefore likewise lies at the output of the high pass 8. In contrast to the ultrasonic echo contribution, however, the alternating field contribution occurs virtually simultaneously with the excitation pulse. By a suitable choice of the temporal evaluation windows, therefore, the alternating field contribution of the response signal can be easily separated from the ultrasound echo contribution, which only occurs with a propagation time-dependent time delay, which depends on the wall thickness.
- a first time interval and a second time interval are preferably evaluated separately, wherein the alternating field contribution is evaluated by evaluating the first time interval and the ultrasound echo contribution is determined by evaluating the second time interval.
- a time duration of less than 3 ⁇ s, measured from the beginning of the excitation pulse is sufficient for the first time interval. Longer periods may also be selected for the first time interval, but care must be taken that no ultrasonic echo contributions are contained in the first time interval, ie the duration of the first time interval, measured from the excitation pulse, is shorter than the time duration until Occurrence of the first ultrasonic echo is.
- the splitting of the response signal into an ultrasonic echo contribution and a turbulence-related alternating field contribution is undertaken by the evaluation unit 10.
- the response signal is subdivided into an ultrasound echo contribution A and a magnetic field contribution containing an alternating field contribution B and a scattering contribution C.
- both wall thickness information about the thickness of the workpiece and distance information about the distance of the test head from the workpiece are determined.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electromagnetism (AREA)
- Probability & Statistics with Applications (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005060582A DE102005060582A1 (de) | 2005-12-17 | 2005-12-17 | Verfahren und System zur zerstörungsfreien Prüfung eines metallischen Werkstücks |
PCT/EP2006/011117 WO2007068327A1 (de) | 2005-12-17 | 2006-11-21 | Verfahren und system zur zerstörungsfreien prüfung eines metallischen werkstücks |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1960767A1 true EP1960767A1 (de) | 2008-08-27 |
EP1960767B1 EP1960767B1 (de) | 2012-06-13 |
EP1960767B8 EP1960767B8 (de) | 2012-08-22 |
Family
ID=37671193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06818682A Not-in-force EP1960767B8 (de) | 2005-12-17 | 2006-11-21 | Verfahren und System zur zerstörungsfreien, elektromagnetischen Ultraschallprüfung eines metallischen Werkstücks |
Country Status (8)
Country | Link |
---|---|
US (1) | US8146431B2 (de) |
EP (1) | EP1960767B8 (de) |
CA (1) | CA2633271C (de) |
DE (1) | DE102005060582A1 (de) |
DK (1) | DK1960767T3 (de) |
ES (1) | ES2388877T3 (de) |
NO (1) | NO340638B1 (de) |
WO (1) | WO2007068327A1 (de) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009156862A2 (en) * | 2008-06-27 | 2009-12-30 | Pii (Canada) Limited | Integrated multi-sensor non-destructive testing |
DE102010006275B4 (de) | 2010-01-26 | 2014-11-06 | Nordinkraft Ag | Verfahren und Vorrichtung zur Prüfung eines metallischen Prüfobjekts |
DE102010019477A1 (de) * | 2010-05-05 | 2011-11-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zur zerstörungsfreien Materialuntersuchung mittels Ultraschall |
DE102010023028A1 (de) * | 2010-06-08 | 2011-12-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | EMUS-Wandlersystem sowie ein Verfahren zur Erzeugung linear polarisierter Transversalwellen mit variabel vorgebbarer Polarisationsrichtung innerhalb eines Prüfkörpers |
CA2823926A1 (en) * | 2011-01-06 | 2012-07-12 | The Lubrizol Corporation | Ultrasonic measurement |
CN102901771B (zh) * | 2011-07-29 | 2016-03-09 | 中国石油天然气集团公司 | 一种油套管用缺陷定量无损检测设备 |
CN102445491B (zh) * | 2011-10-11 | 2014-07-02 | 中国人民解放军装甲兵工程学院 | 利用自发射磁信号评价再制造毛坯应力集中程度的方法 |
GB201203717D0 (en) | 2012-03-02 | 2012-04-18 | Speir Hunter Ltd | Fault detection for pipelines |
RU2516364C1 (ru) * | 2012-12-28 | 2014-05-20 | Открытое Акционерное Общество (ОАО) "Оргэнергогаз" | Комплекс дефектоскопии технологических трубопроводов |
RU2539777C1 (ru) * | 2013-06-28 | 2015-01-27 | Открытое Акционерное Общество (ОАО) "Оргэнергогаз" | Наружный сканирующий дефектоскоп |
CN103412049B (zh) * | 2013-07-15 | 2016-01-13 | 清华大学 | 一种高温注汽管道缺陷监测方法 |
RU2533754C1 (ru) * | 2013-09-25 | 2014-11-20 | Открытое Акционерное Общество (ОАО) "Оргэнергогаз" | Регулятор скорости перемещения внутритрубных инспектирующих снарядов |
DE102014101368A1 (de) | 2014-02-04 | 2015-08-06 | Rosen Swiss Ag | Inspektionsgerät zur Messung der Dicke einer Wand einer Rohrleitung |
US10175200B2 (en) * | 2014-05-30 | 2019-01-08 | Prime Photonics, Lc | Methods and systems for detecting nonuniformities in a material, component, or structure |
DE102014212499A1 (de) * | 2014-06-27 | 2015-12-31 | Institut Dr. Foerster Gmbh & Co. Kg | Verfahren und Vorrichtung zur Streuflussprüfung |
US9933392B2 (en) * | 2015-09-30 | 2018-04-03 | The Boeing Company | Apparatus, system, and method for non-destructive ultrasonic inspection |
RU2617175C1 (ru) * | 2015-10-27 | 2017-04-21 | Публичное акционерное общество "Транснефть" (ПАО "Транснефть") | Способ совмещения диагностических данных отдельных листов днища РВС с целью построения визуального образа днища РВС с привязкой диагностических данных к номерам листов и сварных швов |
US10067096B2 (en) | 2016-02-26 | 2018-09-04 | Dakont Advanced Technologies, Inc. | Apparatus, system and method for automated nondestructive inspection of metal structures |
RU2622482C1 (ru) * | 2016-04-18 | 2017-06-15 | Акционерное общество "Диаконт" | Устройство, система и способ автоматизированного неразрушающего контроля металлических конструкций |
DE102017126158A1 (de) * | 2017-11-08 | 2019-05-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Ultraschall-Bilderzeugungssystem |
CA3089556A1 (en) | 2018-02-08 | 2019-08-15 | Eddyfi Ndt Inc. | Probe for eddy current non-destructive testing |
EP3530874B1 (de) * | 2018-02-26 | 2020-10-14 | CCI Italy S.r.l. | Erosionsüberwachungssystem |
CN108761214B (zh) * | 2018-04-26 | 2023-11-17 | 天津工业大学 | 一种自适应表面磁场测量平台及测量方法 |
CN112444219B (zh) * | 2020-12-31 | 2023-07-25 | 爱德森(厦门)电子有限公司 | 一种非接触超声电磁涂层测厚方法及其检测装置 |
CN112834606B (zh) * | 2021-01-07 | 2022-11-29 | 清华大学 | 基于聚焦漏磁复合检测的内外壁缺陷识别的方法和装置 |
CN114324608B (zh) * | 2021-12-31 | 2024-08-23 | 中广核检测技术有限公司 | 全数字式非线性检测装置及方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB120789A (en) | 1917-11-29 | 1918-11-28 | Louis Christin | A New or Improved Reinforced Hollow Building Slab or the like and a Method of and Means for Producing the same. |
DE1573627C3 (de) * | 1966-08-06 | 1975-09-04 | Krautkraemer Gmbh | Ultraschall- Impuls- Echo- oder Durchstrahlungsverfahren für die zerstörungsfreie Werkstoffprüfung von elektrisch leitenden Materialien, Vorrichtung zur Durchführung des Verfahrens und Verwendungen des Verfahrens zur Ankopplungskontrolle und zur Dickenmessung des Prüflings |
US4003244A (en) * | 1975-09-30 | 1977-01-18 | Krautkramer-Branson, Incorporated | Ultrasonic pulse-echo thickness measuring apparatus |
DE2632674B2 (de) * | 1976-07-16 | 1978-06-08 | Karl Deutsch Pruef- Und Messgeraetebau, 5600 Wuppertal | Elektronische Einrichtung zur taktweisen Erfassung, Aus- und Bewertung von Impulsen bei der zerstörungsfreien Ultraschall-Werkstoffprüfung |
DE2652085A1 (de) | 1976-11-16 | 1978-05-18 | Hoesch Werke Ag | Vorrichtung zur zerstoerungsfreien werkstoffpruefung |
DE3153252C2 (de) * | 1981-07-21 | 1989-06-22 | Nukem Gmbh, 6450 Hanau, De | |
DE3128825C2 (de) | 1981-07-21 | 1985-04-18 | Nukem Gmbh, 6450 Hanau | Vorrichtung zur zerstörungsfreien Prüfung von ferromagnetischen Materialien |
US4449411A (en) * | 1982-04-22 | 1984-05-22 | Magnetic Analysis Corporation | Magnetic and ultrasonic objects testing apparatus |
US4437332A (en) * | 1982-09-30 | 1984-03-20 | Krautkramer-Branson, Inc. | Ultrasonic thickness measuring instrument |
FR2543126B3 (fr) | 1983-03-24 | 1986-01-03 | Volvic Eaux | Procede de remplissage aseptique, a froid, de recipients, en particulier en matiere synthetique - bouteilles ou analogues - par des boissons, notamment a base de jus de fruits |
DE3511076A1 (de) * | 1985-03-27 | 1986-10-09 | Kopp AG International Pipeline Services, 4450 Lingen | Molch fuer elektromagnetische pruefungen an rohrleitungswandungen aus stahl sowie verfahren hierzu |
DE3515977A1 (de) | 1985-05-03 | 1986-11-06 | Nukem Gmbh, 6450 Hanau | Verfahren und vorrichtung zur zerstoerungsfreien pruefung ferromagnetischer koerper |
DE3530525C2 (de) | 1985-08-27 | 1994-05-11 | Foerster Inst Dr Friedrich | Vorrichtung zur zerstörungsfreien Werkstoffprüfung |
US4747310A (en) * | 1986-08-12 | 1988-05-31 | Grumman Aerospace Corporation | Probe for composite analyzer tester |
US5461313A (en) * | 1993-06-21 | 1995-10-24 | Atlantic Richfield Company | Method of detecting cracks by measuring eddy current decay rate |
DE59510950D1 (de) * | 1994-04-14 | 2004-11-11 | Fraunhofer Ges Forschung | Vorrichtung und Verfahren zur Erfassung der Prüfkopfabhebung bei der zerstörungsfreien Untersuchung von metallischen Werkstoffen mit elektromagnetischen Ultraschallwandlern |
FR2718681B1 (fr) | 1994-04-15 | 1996-05-31 | Bourg Sa Cp | Machine de finition pour des feuilles imprimées. |
DE19543481C2 (de) * | 1995-11-22 | 1997-10-23 | Pipetronix Gmbh | Vorrichtung zur Prüfung von ferromagnetischen Materialien |
CN1227527C (zh) * | 2000-07-12 | 2005-11-16 | 杰富意钢铁株式会社 | 漏磁探伤法和使用漏磁探伤法的热轧钢板制造方法 |
GB2385229B (en) * | 2002-02-05 | 2005-04-20 | Pii Ltd | Electromagnetic acoustic transducers |
-
2005
- 2005-12-17 DE DE102005060582A patent/DE102005060582A1/de not_active Withdrawn
-
2006
- 2006-11-21 EP EP06818682A patent/EP1960767B8/de not_active Not-in-force
- 2006-11-21 WO PCT/EP2006/011117 patent/WO2007068327A1/de active Application Filing
- 2006-11-21 DK DK06818682.4T patent/DK1960767T3/da active
- 2006-11-21 CA CA2633271A patent/CA2633271C/en not_active Expired - Fee Related
- 2006-11-21 US US12/086,406 patent/US8146431B2/en not_active Expired - Fee Related
- 2006-11-21 ES ES06818682T patent/ES2388877T3/es active Active
-
2008
- 2008-07-16 NO NO20083176A patent/NO340638B1/no not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO2007068327A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP1960767B8 (de) | 2012-08-22 |
NO340638B1 (no) | 2017-05-22 |
DE102005060582A1 (de) | 2007-07-05 |
EP1960767B1 (de) | 2012-06-13 |
US8146431B2 (en) | 2012-04-03 |
WO2007068327A1 (de) | 2007-06-21 |
ES2388877T3 (es) | 2012-10-19 |
CA2633271C (en) | 2012-09-04 |
DK1960767T3 (da) | 2012-08-13 |
CA2633271A1 (en) | 2007-06-21 |
US20090301206A1 (en) | 2009-12-10 |
NO20083176L (no) | 2008-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1960767B1 (de) | Verfahren und System zur zerstörungsfreien, elektromagnetischen Ultraschallprüfung eines metallischen Werkstücks | |
DE102013003500B4 (de) | Verfahren zur Erfassung zeitlich veränderlicher thermomechanischer Spannungen und/oder Spannungsgradienten über die Wanddicke von metallischen Körpern | |
DE3882214T2 (de) | Verfahren zur unmittelbaren Feststellung von Korrosion auf elektrisch leitenden Behältern. | |
EP1769239B1 (de) | Verfahren zur zerstörungsfreien prüfung von rohren | |
EP0200183B1 (de) | Verfahren und Vorrichtung zur zerstörungsfreien Prüfung ferromagnetischer Körper | |
DE102007004223A1 (de) | Verfahren und Vorrichtung zur zerstörungsfreien Prüfung von Rohren, Stangen o. dgl. Fertigteilen zur Ausrüstung von Ölfeldern | |
DE102009022136A1 (de) | Vorrichtung und Verfahren für induktive Messungen | |
DE19601707A1 (de) | Verbesserung der linearen Auflösung von elektromagnetischen Instrumenten zum Prüfen eines Drahtseiles | |
WO2011138027A1 (de) | Verfahren und vorrichtung zur zerstörungsfreien materialuntersuchung mittels ultraschall | |
EP1075658B1 (de) | Verfahren und vorrichtung zur erfassung von ungleichmässigkeiten in der wanddicke unzugänglicher metallischer rohre | |
EP2213228A2 (de) | Degradations- und Integritätsmessgerät für absorbierbare Metallimplantate | |
DE102008042278A1 (de) | Verfahren zur zerstörungsfreien Ultraschalluntersuchung sowie Vorrichtung zur Durchführung des Verfahrens | |
DE3416709A1 (de) | Verfahren zur zerstoerungsfreien pruefung von werkstuecken oder bauteilen mit ultraschall und vorrichtung zur durchfuehrung des verfahrens | |
DE19513312C1 (de) | Verfahren und Vorrichtung zur zerstörungsfreien Ermittlung von Eigenschaften eines Werkstückes aus Metall | |
DE102013018114A1 (de) | Vorrichtung zur zerstörungsfreien Prüfung eines Prüfkörpers | |
DE10016468C2 (de) | Verfahren und Vorrichtung zur Laufzeitmessung von Schallimpulsen in einem magnetoelastischen Werkstück | |
DE4215358A1 (de) | Verfahren zur zerstörungsfreien Prüfung von Stahlarmierungen in Bauwerken | |
DE10109568A1 (de) | Verfahren und Vorrichtung zur kombinierten Wand- und Schichtdickenmessung | |
EP3584572B1 (de) | Prüfkopfzange zur ultraschall-riss-detektion, kit zur ultraschall-riss-detektion und verwendung der prüfkopfzange zur ultraschall-riss-detektion | |
EP2273260B1 (de) | Verbesserte zerstörungsfreie Untersuchung von Hochdruckleitungen | |
DE19520889A1 (de) | Verfahren und Meßgerät zur Erfassung der Einschubtiefe in einer Rohrverbindung | |
DE761975C (de) | Verfahren und Einrichtung zur Feststellung von Fehlstellen in festen Werkstuecken mittels Ultraschallwellen | |
DE102004063738B4 (de) | Ultraschall-Prüfeinrichtung | |
DE102005036509A1 (de) | Verfahren zur zerstörungsfreien Prüfung von Rohren auf Oberflächenfehler | |
BE1031434A1 (de) | Verfahren zur Inspektion eines metallischen Betonspannelementes einer Rohrleitung sowie Inspektionsvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080606 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20090907 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NDT SYSTEMS & SERVICES AG Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN |
|
RTI1 | Title (correction) |
Free format text: METHOD AND SYSTEM FOR NONDESTRUCTIVE ELECTROMAGNETIC TESTING OF A METALLIC WORKPIECE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD AND SYSTEM FOR NONDESTRUCTIVE, ELECTROMAGNETIC ULTRASOUND TESTING OF A METALLIC WORKPIECE |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 562205 Country of ref document: AT Kind code of ref document: T Effective date: 20120615 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006011605 Country of ref document: DE Effective date: 20120809 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006011605 Country of ref document: DE Representative=s name: JANY UND PETERSEN PATENTANWAELTE PARTNERSCHAFT, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502006011605 Country of ref document: DE Representative=s name: OLSWANG GERMANY LLP, DE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: NDT SYSTEMS & SERVICES GMBH & CO. KG Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER & PEDRAZZINI AG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: HC Ref document number: 562205 Country of ref document: AT Kind code of ref document: T Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANG, DE Effective date: 20120904 Ref country code: AT Ref legal event code: HC Ref document number: 562205 Country of ref document: AT Kind code of ref document: T Owner name: NDT SYSTEMS & SERVICES GMBH & CO. KG, DE Effective date: 20120904 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2388877 Country of ref document: ES Kind code of ref document: T3 Effective date: 20121019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120613 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120613 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120613 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120914 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120613 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120613 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120613 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121013 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121015 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120613 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130314 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006011605 Country of ref document: DE Effective date: 20130314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120913 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061121 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006011605 Country of ref document: DE Representative=s name: GLOBAL IP EUROPE PATENTANWALTSKANZLEI, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502006011605 Country of ref document: DE Ref country code: DE Ref legal event code: R082 Ref document number: 502006011605 Country of ref document: DE Representative=s name: OLSWANG GERMANY LLP, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006011605 Country of ref document: DE Representative=s name: GLOBAL IP EUROPE PATENTANWALTSKANZLEI, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502006011605 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20201126 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20201201 Year of fee payment: 15 Ref country code: CH Payment date: 20201202 Year of fee payment: 15 Ref country code: CZ Payment date: 20201105 Year of fee payment: 15 Ref country code: DE Payment date: 20201127 Year of fee payment: 15 Ref country code: AT Payment date: 20201103 Year of fee payment: 15 Ref country code: FR Payment date: 20201125 Year of fee payment: 15 Ref country code: DK Payment date: 20201125 Year of fee payment: 15 Ref country code: IT Payment date: 20201123 Year of fee payment: 15 Ref country code: SE Payment date: 20201125 Year of fee payment: 15 Ref country code: GB Payment date: 20201127 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20201127 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006011605 Country of ref document: DE Representative=s name: GLOBAL IP EUROPE PATENTANWALTSKANZLEI, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006011605 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20211201 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 562205 Country of ref document: AT Kind code of ref document: T Effective date: 20211121 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211122 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211121 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211121 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211121 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220630 |