EP1958258A1 - Resistance dans un circuit integre - Google Patents

Resistance dans un circuit integre

Info

Publication number
EP1958258A1
EP1958258A1 EP06842091A EP06842091A EP1958258A1 EP 1958258 A1 EP1958258 A1 EP 1958258A1 EP 06842091 A EP06842091 A EP 06842091A EP 06842091 A EP06842091 A EP 06842091A EP 1958258 A1 EP1958258 A1 EP 1958258A1
Authority
EP
European Patent Office
Prior art keywords
resistive
holes
layer
substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06842091A
Other languages
German (de)
English (en)
Inventor
Christine Anceau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1958258A1 publication Critical patent/EP1958258A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors

Definitions

  • the present invention relates to a resistor and more particularly to a resistor of an integrated circuit.
  • resistor commonly used in integrated circuits is a resistor in the form of a strip of polycrystalline silicon or metal (TaN) placed above a silicon wafer and insulated from the latter by an insulating layer.
  • TaN polycrystalline silicon or metal
  • Another example of known resistance consists of a portion of P or N type doped silicon formed in the upper part of a silicon wafer.
  • a disadvantage of these resistances is that the wafer surfaces used can be very large.
  • An object of the present invention is to provide a resistance structure occupying a small area of a silicon wafer.
  • the present invention further provides a method of manufacturing such a resistance.
  • the present invention provides a resistive element comprising two vertical resistive parts. shims placed in two holes formed in the upper part of a substrate and a horizontal resistive part placed in a buried cavity connecting the bottoms of the holes.
  • the present invention further provides a resistor comprising several resistive elements such as those described above connected to each other by resistive strips placed on the substrate.
  • the substrate is a silicon wafer, said resistive layer being separated from the substrate by an insulating layer such as a layer of silicon oxide.
  • the conduit is filled with a filling material such as polycrystalline silicon.
  • the resistive layer and the filling material are separated by an insulating layer such as a layer of silicon oxide.
  • the resistive layer consists of polycrystalline silicon or of a metal.
  • the present invention further provides a method of forming a resistive element in a substrate comprising the following steps: forming, by anisotropic etching, two holes in the upper part of a substrate; forming, by isotropic etching at the bottom of the holes, a cavity connecting the bottom of the two holes, the holes and the cavity constituting a conduit; and carry out a conformal deposition of a resistive layer against the walls of the duct.
  • the method comprises, prior to the conformal deposition of the resistive layer, a step of conformally depositing a first insulating layer, and further comprises a deposition step of conforming a second insulating layer covering said resistive layer, as well as a step of filling the conduit with a filling material such as polycrystalline silicon.
  • the method further comprising a step of etching the layer resistive on the surface of the substrate to form resistive strips.
  • FIGS. 1A, 2, 3, 4A and 5 are sectional views and FIGS. 1B and 4B are views from above of structures obtained during successive stages of a method of forming a resistance according to the present invention
  • Figure 6 is a sectional view of another example of resistance obtained according to a variant of the method described in connection with Figures 1 to 5;
  • Figure 7 is a top view of an example of resistance according to the present invention.
  • a resistor according to the present invention can be qualified as a three-dimensional resistor, "3D".
  • the resistor consists of a set of elementary resistive elements formed in the upper part of a substrate, such as a silicon wafer.
  • a resistive element comprises two "vertical” resistive parts, placed in two holes formed in the upper part of the substrate and a small “horizontal” resistive part placed in a buried cavity connecting the bottoms of the two holes.
  • an anisotropic etching of a substrate 1 is carried out to form pairs of holes 2a / 2b and 3a / 3b in the upper part of the substrate 1.
  • the substrate 1 is for example a silicon wafer.
  • the etching can be carried out according to a “deep” plasma etching process, better known under the English name Deep Reactive Ion Etching (DRIE).
  • DRIE Deep Reactive Ion Etching
  • the substrate 1 is polarized so that the attack of the substrate by ionized gas molecules takes place "vertically".
  • the gas mixture used may comprise a "passivating" gas which reacts with the substrate to form a thin insulating layer.
  • etching gas such as SFg
  • passivating gas such as C4F8
  • a thin insulating layer forms on the walls of the holes as they are formed.
  • Isotropic etching of the substrate 1 is then carried out, at the bottom of the holes 2a / 2b and 3a / 3b, to form "buried" cavities at the bottom of each of the holes.
  • the two holes of each pair are placed close enough so that the buried cavities formed at the bottom of each of the holes meet to form a single buried cavity.
  • the holes 2a and 2b are connected by a buried cavity 5 and the holes 3a and 3b are connected by a buried cavity 6.
  • This isotropic etching can be carried out according to a plasma etching process substantially identical to that used to form the holes, except that the substrate 1 is no longer polarized and that the amount of passivating gas is possibly less.
  • 3a and 3b in this example have a substantially cylindrical shape.
  • the holes 2a, 2b and the buried cavity 5 constitute a conduit 10.
  • the holes 3a, 3b and the buried cavity 6 constitute a conduit 11.
  • the insulating layers 20 and 22 can be obtained by a conventional thermal oxidation process or by a low pressure chemical vapor deposition process, better known by the acronym LPCVD.
  • the insulating layers 20 and 22 are for example made of silicon oxide.
  • the resistive layer 21 may consist of polycrystalline silicon, doped or undoped, or of a metal such as tantalum nitride.
  • Such resistive layers can be deposited according to an LPCVD process or according to a chemical vapor deposition process by atomic layers, better known by the English acronym of ALCVD.
  • the conduits 10 and 11 are filled with a filling material 30 such as polycrystalline silicon.
  • the filling material 30 also covers the surface of the substrate 1.
  • each strip A, B and C consists of a stack of a portion A21, B21, C21 of the resistive layer 21, of a portion A22, B22, C22 of the insulating layer 22 and of a portion A30, B30 , C30 of the filling material 30.
  • the ends of the central strip B cover the holes 2b and 3a of the conduits 10 and 11.
  • One end of the external strip A covers the hole 2a of the duct 10 and one end of the external strip B covers the hole 3b of the conduit 11.
  • the strips A, B and C are in this example aligned in top view.
  • a partial etching of the outer bands A and C is carried out on the side opposite the holes 2a and 3b.
  • An etching of the filling material 30 and of the insulating layer 21 is carried out successively in order to allow access to the ends of the resistive portions A21 and C21 of the strips A and C.
  • the resistance shown in FIG. 5 comprises two resistive elements R1 and R2 formed respectively in the conduits 10 and 11.
  • the substantially cylindrical portions of the resistive layer 21 placed in the holes 2a / 2b and 3a / 3b constitute vertical resistive parts Rla / Rlb and R2a / R2b.
  • the oblong portions of the resistive layer 21 placed in the buried cavities 5 and 6 constitute "horizontal" resistive parts RIc and R2c.
  • the insulating layer 20 is not necessary.
  • FIG. 6 illustrates a resistance obtained according to an alternative embodiment of the method described above and more particularly according to an alternative embodiment of the initial etching steps used to form the conduits 10 and 11.
  • the substrate used is a wafer SOI type, from the English word Silicon On Insulator, comprising a thick layer of silicon 50 covered with a thin insulating layer 51 itself covered with a layer of silicon 52.
  • the formation of the conduits consists, in this embodiment , to etch holes over the entire thickness of the silicon layer 52 according to an anisotropic etching process and then to extend this etching, once the holes are formed, to form buried connecting cavities between the bottom of the holes.
  • the etching of buried cavities is carried out by promoting a normally parasitic phenomenon of lateral etching by "ricochet" on the thin insulating layer 51, this phenomenon being known by the English term "notching".
  • Figure 7 is a top view of an example of resistance according to the present invention comprising a set of resistive elements formed in the upper part of a substrate, such as those described above.
  • the resistive elements are connected to each other by conductive strips placed on the substrate.
  • the conductive strips are shown in solid lines, the hole entries are represented by dotted circles placed under the ends of the conductive strips and the buried cavities are represented by dotted ovals surrounding two hole entries.
  • the resistive elements are arranged in rows L1 to L6 which comprise 5 resistive elements each, the row L1 being shown at the bottom of the figure.
  • the resistive elements of the same row are aligned, that is to say that the entries of the holes and the buried cavities in which the resistive elements are formed, are aligned with respect to each other.
  • the conductive strips connecting together resistive elements of the same row are aligned and have a substantially rectangular shape.
  • the elements of a row are connected to those of a neighboring row by a resistive connecting strip, U-shaped in this example.
  • Three resistive connecting strips connect rows L1 / L2, L3 / L4 and L5 / L6 on the left of the latter and two resistive connecting bands connect the rows L2 / L3 and L4 / L5 on the right of the latter.
  • the resistance thus has a top view in the form of a coil.
  • the straight ends of the rightmost resistive strips of the rows L1 and L6 are the ends of the coil and constitute contact pads P1 and P2 of the resistor.
  • the resistance shown in Figure 7 consists of resistive elements each having the following characteristics:
  • the surface occupied by a resistance according to the present invention is much smaller, 5 to 10 times smaller, than that occupied by a conventional resistance formed on the surface of a wafer. silicon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

L'invention concerne un élément résistif comprenant deux parties résistives verticales (R1a, R1b) placées dans deux trous formés dans la partie supérieure d'un substrat (1) et une partie résistive horizontale (RIc) formée dans une cavité enterée reliant les fonds des trous.

Description

RESISTANCE DANS UN CIRCUIT INTEGRE
Domaine de l' invention
La présente invention concerne une résistance et plus particulièrement une résistance d'un circuit intégré.
Exposé de l'art antérieur
Un exemple de résistance couramment utilisée dans les circuits intégrés est une résistance ayant la forme d'une bande de silicium polycristallin ou de métal (TaN) placée au-dessus d'une plaquette de silicium et isolée de cette dernière par une couche isolante.
Un autre exemple de résistance connue est constitué d'une portion de silicium dopée de type P ou N formée dans la partie supérieure d'une plaquette de silicium.
Un inconvénient de ces résistances est que les surfaces de plaquette utilisées peuvent être très importantes.
Résumé de l'invention
Un objet de la présente invention est de prévoir une structure de résistance occupant une faible surface d'une plaquette de silicium.
La présente invention prévoit en outre un procédé de fabrication d'une telle résistance.
Pour atteindre ces objets, la présente invention prévoit un élément résistif comprenant deux parties résistives verti- cales placées dans deux trous formés dans la partie supérieure d'un substrat et une partie résistive horizontale placée dans une cavité enterrée reliant les fonds des trous .
La présente invention prévoit en outre une résistance comprenant plusieurs éléments résistifs tels que ceux décrits ci-dessus reliés les uns aux autres par des bandes résistives placées sur le substrat .
Selon un mode de réalisation d'un élément résistif tel que celui décrit ci-dessus, les deux trous reliés par la cavité enterrée constituent un conduit, les parties résistives verti¬ cales et horizontale étant formées par une couche résistive isolée recouvrant les parois du conduit .
Selon un mode de réalisation d'un élément résistif tel que celui susmentionné, le substrat est une plaquette de sili- cium, ladite couche résistive étant séparée du substrat par une couche isolante telle qu'une couche d'oxyde de silicium.
Selon un mode de réalisation d'un élément résistif tel que celui susmentionné, le conduit est rempli d'un matériau de remplissage tel que du silicium polycristallin.
Selon un mode de réalisation d'un élément résistif tel que celui susmentionné, la couche résistive et le matériau de remplissage sont séparés par une couche isolante telle qu'une couche d'oxyde de silicium.
Selon un mode de réalisation d'un élément résistif tel que celui décrit ci-dessus, la couche résistive est constituée de silicium polycristallin ou d'un métal.
La présente invention prévoit en outre un procédé de formation d'un élément résistif dans un substrat comprenant les étapes suivantes : former, par gravure anisotrope, deux trous dans la partie supérieure d'un substrat ; former, par gravure isotrope au fond des trous, une cavité reliant le fond des deux trous, les trous et la cavité constituant un conduit ; et effectuer un dépôt conforme d'une couche résistive contre les parois du conduit . Selon un mode de mise en oeuvre du procédé susmen¬ tionné, le procédé comprend, préalablement au dépôt conforme de la couche résistive, une étape de dépôt conforme d'une première couche isolante, et comprend en outre une étape de dépôt conforme d'une seconde couche isolante recouvrant ladite couche résistive, ainsi qu'une étape de remplissage du conduit avec un matériau de remplissage tel que du silicium polycristallin.
Selon un mode de mise en oeuvre du procédé susmen¬ tionné, lors de la formation de la couche résistive contre les parois du conduit, il se forme une couche résistive en surface du substrat, le procédé comprenant en outre une étape de gravure de la couche résistive en surface du substrat pour former des bandes résistives .
Brève description des dessins
Ces objets, caractéristiques et avantages, ainsi que d' autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
les figures IA, 2, 3, 4A et 5 sont des vues en coupe et les figures IB et 4B des vues de dessus de structures obtenues lors d'étapes successives d'un procédé de formation d'une résistance selon la présente invention ;
la figure 6 est une vue en coupe d'un autre exemple de résistance obtenue selon une variante du procédé décrit en relation avec les figures 1 à 5 ; et
la figure 7 est une vue de dessus d'un exemple de résistance selon la présente invention.
Description détaillée
Par souci de clarté, de mêmes éléments ont été dési¬ gnés par de mêmes références aux différentes figures et, de plus, comme cela est habituel dans la représentation des composants semiconducteurs, les diverses figures ne sont pas tracées à l'échelle. Une résistance selon la présente invention peut être qualifiée de résistance en trois dimensions, "3D". La résistance est constituée d'un ensemble d'éléments résistifs élémentaires formés dans la partie supérieure d'un substrat, tel qu'une plaquette de silicium. Un élément résistif comprend deux parties résistives "verticales", placées dans deux trous formés dans la partie supérieure du substrat et une petite partie résistive "horizontale" placée dans une cavité enterrée reliant les fonds des deux trous .
Un procédé de réalisation d'une telle résistance est décrit ci-après en relation avec les figures 1 à 6.
Dans une étape initiale, illustrée en figures IA et IB, on effectue une gravure anisotrope d'un substrat 1 pour former des paires de trous 2a/2b et 3a/3b dans la partie supérieure du substrat 1. Le substrat 1 est par exemple une plaquette de silicium. La gravure peut être réalisée selon un procédé de gravure plasma "profond", plus connu sous le nom anglais Deep Reactive Ion Etching (DRIE) . Le substrat 1 est polarisé de façon que l'attaque du substrat par des molécules gazeuses ionisées se fasse "verticalement". Le mélange gazeux utilisé peut comprendre un gaz "passivant" qui réagit avec le substrat pour former une fine couche isolante. On utilise par exemple un mélange d'un gaz "gravant" tel que SFg et d'un gaz passivant tel que C4F8. Lorsqu'on utilise un mélange gazeux comprenant un gaz passivant, il se forme une fine couche isolante sur les parois des trous au fur et à mesure de leur formation.
On effectue ensuite une gravure isotrope du substrat 1, au fond des trous 2a/2b et 3a/3b, pour former des cavités "enterrées" au fond de chacun des trous. Les deux trous de chaque paire sont placés suffisamment proches de façon que les cavités enterrées formées au fond de chacun des trous se rejoignent pour former une unique cavité enterrée. Ainsi, les trous 2a et 2b sont reliés par une cavité enterrée 5 et les trous 3a et 3b sont reliés par une cavité enterrée 6. Cette gravure isotrope peut être réalisée selon un procédé de gravure plasma sensiblement identique à celui utilisé pour former les trous, excepté que le substrat 1 n'est plus polarisé et que la quantité de gaz passivant est éventuellement moindre.
Comme cela est visible en figure IB, les trous 2a, 2b,
3a et 3b ont dans cet exemple une forme sensiblement cylindrique. Les cavités enterrées 5 et 6, ayant une forme sensiblement ovale en vue de dessus, sont représentées en pointillés autour des paires de trous 2a/2b et 3a/3b.
On considère par la suite que les trous 2a, 2b et la cavité enterrée 5 constituent un conduit 10. De même, les trous 3a, 3b et la cavité enterrée 6 constituent un conduit 11.
A l'étape suivante, illustrée en figure 2, on effectue successivement plusieurs dépôts conformes d'une fine couche isolante 20, d'une couche résistive 21 puis d'une couche isolante 22 sur la structure précédemment obtenue. Ces trois fines couches superposées recouvrent les parois des conduits 10 et 11 ainsi que la surface supérieure du substrat 1.
Les couches isolantes 20 et 22 peuvent être obtenues par un procédé classique d'oxydation thermique ou par un procédé de dépôt chimique en phase vapeur à basse pression, plus connu par l'acronyme anglais de LPCVD. Les couches isolantes 20 et 22 sont par exemple constituées d'oxyde de silicium.
La couche résistive 21 peut être constituée de silicium polycristallin, dopée ou non dopée, ou d'un métal tel que du nitrure de tantale. De telles couches résistives peuvent être déposées selon un procédé LPCVD ou selon un procédé de dépôt chimique en phase vapeur par couches atomiques, plus connu par l ' acronyme anglais de ALCVD .
A l'étape suivante, illustrée en figure 3, on remplit les conduits 10 et 11 avec un matériau de remplissage 30 tel que du silicium polycristallin. Dans cet exemple, le matériau de remplissage 30 recouvre également la surface du substrat 1.
A l'étape suivante, illustrée en figures 4A et 4B, on effectue successivement une gravure du matériau de remplissage 30, de la couche isolante 22 et de la couche résistive 21 de façon à découvrir la surface de la couche isolante 20, tout en conservant des bandes A, B et C de ces divers matériaux. Les bandes sont ainsi isolées électriquement les unes des autres . Chaque bande A, B et C est constituée d'un empilement d'une portion A21, B21, C21 de la couche résistive 21, d'une portion A22, B22, C22 de la couche isolante 22 et d'une portion A30, B30, C30 du matériau de remplissage 30. Les extrémités de la bande centrale B recouvrent les trous 2b et 3a des conduits 10 et 11. Une extrémité de la bande extérieure A recouvre le trou 2a du conduit 10 et une extrémité de la bande extérieure B recouvre le trou 3b du conduit 11. Les bandes A, B et C sont dans cet exemple alignées en vue de dessus.
A l'étape suivante, illustrée en figure 5, on effectue une gravure partielle des bandes extérieures A et C du côté opposé aux trous 2a et 3b. On effectue successivement une gravure du matériau de remplissage 30 et de la couche isolante 21 afin de permettre un accès aux extrémités des portions résistives A21 et C21 des bandes A et C.
La résistance représentée en figure 5 comprend deux éléments résistifs Rl et R2 formés respectivement dans les conduits 10 et 11. Les portions sensiblement cylindriques de la couche résistive 21 placées dans les trous 2a/2b et 3a/3b constituent des parties résistives verticales Rla/Rlb et R2a/R2b. Les portions oblongues de la couche résistive 21 placées dans les cavités enterrées 5 et 6 constituent des parties résistives "horizontales" RIc et R2c.
On notera que dans le cas où le substrat 1 est constitué d'un matériau isolant tel que du verre, la couche isolante 20 n'est pas nécessaire.
La figure 6 illustre une résistance obtenue selon une variante de réalisation du procédé précédemment décrit et plus particulièrement selon une variante de réalisation des étapes initiales de gravure mises en oeuvre pour former les conduits 10 et 11. Dans cet exemple, le substrat utilisé est une plaquette de type SOI, de l'anglais Silicon On Insulator, comprenant une couche épaisse de silicium 50 recouverte d'une fine couche isolante 51 elle-même recouverte d'une couche de silicium 52. La formation des conduits consiste, dans ce mode de réalisation, à graver des trous sur toute l'épaisseur de la couche de silicium 52 selon un procédé de gravure anisotrope puis à prolonger cette même gravure, une fois les trous formés, pour former des cavités enterrées de liaison entre le fond des trous . La gravure des cavités enterrées s'effectue en favorisant un phénomène, normalement parasite, de gravure latérale par "ricochet" sur la fine couche isolante 51, ce phénomène étant connu sous le terme anglais de "notching" .
La figure 7 est une vue de dessus d'un exemple de résistance selon la présente invention comprenant un ensemble d'éléments résistifs formés dans la partie supérieure d'un substrat, tels que ceux décrits précédemment. Les éléments résistifs sont reliés les uns aux autres par des bandes conductrices placés sur le substrat. Les bandes conductrices, sont représentées en traits pleins, les entrées de trous sont représentées par des ronds en pointillés placés sous les extrémités des bandes conductrices et les cavités enterrées sont représentées par des ovales en pointillés entourant deux entrées de trous.
Les éléments résistifs sont agencés en rangées Ll à L6 qui comprennent 5 éléments résistifs chacune, la rangée Ll étant représentée sur le bas de la figure. Les éléments résistifs d'une même rangée sont alignés, c'est-à-dire que les entrées des trous et les cavités enterrées dans lesquelles sont formés les éléments résistifs, sont alignées les unes par rapport aux autres. De même, les bandes conductrices reliant entre eux des éléments résistifs d'une même rangée sont alignées et ont une forme sensiblement rectangulaire. Les éléments d'une rangée sont reliés à ceux d'une rangée voisine par une bande résistive de liaison, en forme de U dans cet exemple. Trois bandes résistives de liaison relient les rangées L1/L2, L3/L4 et L5/L6 sur la gauche de ces dernières et deux bandes résistives de liaison relient les rangées L2/L3 et L4/L5 sur la droite de ces dernières. La résistance a ainsi en vue de dessus la forme d'un serpentin. Les extrémités droites des bandes résistives les plus à droite des rangées Ll et L6 sont les extrémités du serpentin et constituent des plots de contact Pl et P2 de la résistance.
A titre indicatif, et non limitatif, la résistance représentée en figure 7 est constituée d'éléments résistifs présentant chacun les caractéristiques suivantes :
diamètre des trous : 1 μm ;
profondeur des trous : 50 μm ;
espace entre deux trous : 2 μm ;
diamètre maximal de la cavité enterrée : 3,5 μm ;
largeur maximale des bandes résistives : 2 μm ; et les éléments résistifs sont positionnés les uns par rapport aux autres de la façon suivante :
espace entre les trous d'éléments résistifs de rangées voisines : 4 μm ;
espace entre deux trous voisins de deux éléments résistifs successifs d'une même rangée : 4 μm .
Par ailleurs, on notera que pour une valeur de résistance donnée, la surface occupée par une résistance selon la présente invention est beaucoup plus faible, 5 à 10 fois plus faible, que celle occupée par une résistance classique formée en surface d'une plaquette de silicium.
Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, l'homme de l'art pourra imaginer diverses formes de résistances constituées d'éléments résistifs élémentaires agencés différemment.
De plus, l'homme de l'art pourra imaginer d'autres procédés de formation d'un élément résistif selon la présente invention. On pourra par exemple remplir complètement des conduits préalablement formés et isolés d'un matériau résistif tel que du silicium polycristallin.

Claims

REVENDICATIONS
1. Elément résistif comprenant deux parties résistives verticales (RIa, RIb) placées dans deux trous (2a, 2b) formés dans la partie supérieure d'un substrat (1) et une partie résistive horizontale (RIc) formée dans une cavité enterrée reliant les fonds des trous, les parties résistives verticales et horizontale étant formées par une couche résistive isolée (21) recouvrant les parois des trous et la cavité.
2. Résistance comprenant plusieurs éléments résistifs (Rl, R2) selon la revendication 1 reliés les uns aux autres par des bandes résistives placées sur le substrat et formées à partir de portions de ladite couche résistive.
3. Elément résistif selon la revendication 1, dans lequel le substrat (1) est une plaquette de silicium, ladite couche résistive (21) étant séparée du substrat par une couche isolante (20) telle qu'une couche d'oxyde de silicium.
4. Elément résistif selon la revendication 1, dans lequel les trous et la cavité sont remplis d'un matériau de remplissage (30) tel que du silicium polycristallin.
5. Elément résistif selon la revendication 4, dans lequel la couche résistive (21) et le matériau de remplissage
(30) sont séparés par une couche isolante (22) telle qu'une couche d'oxyde de silicium.
6. Elément résistif selon la revendication 1, dans lequel la couche résistive (21) est constituée de silicium polycristallin ou d'un métal.
7. Procédé de formation d'un élément résistif dans un substrat (1) comprenant les étapes suivantes :
former, par gravure anisotrope, deux trous (2a, 2b) dans la partie supérieure d'un substrat ;
former, par gravure isotrope au fond des trous, une cavité (5) reliant le fond des deux trous, les trous et la cavité constituant un conduit (10) ; et
effectuer un dépôt conforme d'une couche résistive (21) contre les parois du conduit.
8. Procédé selon la revendication 7, comprenant, préalablement au dépôt conforme de la couche résistive (21) , une étape de dépôt conforme d'une première couche isolante (20), et comprenant en outre une étape de dépôt conforme d'une seconde couche isolante (22) recouvrant ladite couche résistive, ainsi qu'une étape de remplissage du conduit avec un matériau de remplissage (30) tel que du silicium polycristallin.
9. Procédé selon la revendication 7, dans lequel, lors de la formation de la couche résistive (21) contre les parois du conduit (10) il se forme une couche résistive en surface du substrat, et comprenant en outre une étape de gravure de la couche résistive en surface du substrat pour former des bandes résistives (A21, B21) .
EP06842091A 2005-12-06 2006-12-05 Resistance dans un circuit integre Withdrawn EP1958258A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553742 2005-12-06
PCT/FR2006/051280 WO2007066037A1 (fr) 2005-12-06 2006-12-05 Resistance dans un circuit integre

Publications (1)

Publication Number Publication Date
EP1958258A1 true EP1958258A1 (fr) 2008-08-20

Family

ID=36702868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06842091A Withdrawn EP1958258A1 (fr) 2005-12-06 2006-12-05 Resistance dans un circuit integre

Country Status (4)

Country Link
US (2) US7902605B2 (fr)
EP (1) EP1958258A1 (fr)
CN (1) CN101326639B (fr)
WO (1) WO2007066037A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1958258A1 (fr) * 2005-12-06 2008-08-20 Stmicroelectronics Sa Resistance dans un circuit integre
JP2014045128A (ja) * 2012-08-28 2014-03-13 Toshiba Corp 半導体記憶装置及びその製造方法
US8754741B2 (en) * 2012-10-18 2014-06-17 Texas Instruments Incorporated High-resistance thin-film resistor and method of forming the resistor
US9064786B2 (en) 2013-03-14 2015-06-23 International Business Machines Corporation Dual three-dimensional (3D) resistor and methods of forming
JP7157027B2 (ja) * 2019-09-12 2022-10-19 株式会社東芝 半導体装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135662A (ja) 1982-02-08 1983-08-12 Seiko Epson Corp 集積回路装置
EP0391123A3 (fr) 1989-04-04 1991-09-11 Texas Instruments Incorporated Résistance et capacité en tranchée et de longueur étendue
US5049521A (en) * 1989-11-30 1991-09-17 Silicon General, Inc. Method for forming dielectrically isolated semiconductor devices with contact to the wafer substrate
JPH04328861A (ja) * 1991-04-26 1992-11-17 Texas Instr Japan Ltd 半導体集積回路装置及びその製造方法
US6332359B1 (en) * 1997-04-24 2001-12-25 Fuji Electric Co., Ltd. Semiconductor sensor chip and method for producing the chip, and semiconductor sensor and package for assembling the sensor
CN1118103C (zh) * 1998-10-21 2003-08-13 李韫言 微细加工热辐射红外传感器
US6833079B1 (en) * 2000-02-17 2004-12-21 Applied Materials Inc. Method of etching a shaped cavity
GB0103715D0 (en) * 2001-02-15 2001-04-04 Koninkl Philips Electronics Nv Semicondutor devices and their peripheral termination
DE10234735A1 (de) * 2002-07-30 2004-02-12 Infineon Technologies Ag Verfahren zum vertikalen Strukturieren von Substraten in der Halbleiterprozesstechnik mittels inkonformer Abscheidung
DE10241450A1 (de) * 2002-09-06 2004-03-18 Robert Bosch Gmbh Verfahren zur Herstellung eines Bauteils mit einem Sensorelement, insbesondere eines Verformungssensors
US7554425B2 (en) * 2003-09-10 2009-06-30 Nxp B.V. Electromechanical transducer and electrical device
US7084483B2 (en) 2004-05-25 2006-08-01 International Business Machines Corporation Trench type buried on-chip precision programmable resistor
US7718967B2 (en) * 2005-01-26 2010-05-18 Analog Devices, Inc. Die temperature sensors
EP1958258A1 (fr) * 2005-12-06 2008-08-20 Stmicroelectronics Sa Resistance dans un circuit integre
US7606056B2 (en) * 2005-12-22 2009-10-20 Stmicroelectronics S.R.L. Process for manufacturing a phase change memory array in Cu-damascene technology and phase change memory array thereby manufactured
US7615444B2 (en) * 2006-06-29 2009-11-10 Qimonda Ag Method for forming a capacitor structure
US7488682B2 (en) * 2006-10-03 2009-02-10 International Business Machines Corporation High-density 3-dimensional resistors
US7878056B2 (en) * 2007-12-19 2011-02-01 Siargo Ltd. Micromachined thermal mass flow sensor with self-cleaning capability and methods of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007066037A1 *

Also Published As

Publication number Publication date
US20110115053A1 (en) 2011-05-19
WO2007066037A1 (fr) 2007-06-14
CN101326639A (zh) 2008-12-17
CN101326639B (zh) 2014-01-22
US7902605B2 (en) 2011-03-08
US20090127658A1 (en) 2009-05-21
US8232169B2 (en) 2012-07-31

Similar Documents

Publication Publication Date Title
EP1365444B1 (fr) Condensateur en tranchées dans un substrat avec deux électrodes flottantes et indépendantes du substrat
EP1589572B1 (fr) Procédé de fabrication d'un circuit intégré comprenant l'élaboration de tranchées d'isolation creuses
EP3483889B1 (fr) Puce à mémoire non volatile embarquée à matériau à changement de phase
EP1302954B1 (fr) Réalisation d'inductance et de via dans un circuit monolithique
EP1027583B1 (fr) Structure munie de contacts electriques formes a travers le substrat de cette structure et procede d'obtention d'une telle structure
FR2930840A1 (fr) Procede de reprise de contact sur un circuit eclaire par la face arriere
EP2608253B1 (fr) Via TSV doté d'une structure de libération de contraintes et son procédé de fabrication
EP2840589B1 (fr) Procédé améliore de séparation entre une zone activé d'un substrat et sa face arrière ou une portion de sa face arrière
EP2878002B1 (fr) Procédé pour la réalisation d'une capacité
WO2007066037A1 (fr) Resistance dans un circuit integre
EP0610806B1 (fr) Capteur de mesure de pression absolue de type capacitif et procédé de fabrication d'une pluralité de tels capteurs
EP0892442B1 (fr) Procédé de fabrication d'une capacité métal-métal au sein d'un circuit intégré, et circuit intégré correspondant
FR3056824A1 (fr) Procede de fabrication d’un circuit integre a plusieurs couches actives et circuit integre correspondant
EP3913657A2 (fr) Procédé de traitement d'un circuit électronique pour un collage moléculaire hybride
EP4160694A1 (fr) Procédé de fabrication d'un circuit électronique quantique
EP2161238A1 (fr) Structure tridimensionnelle très haute densité
FR2885733A1 (fr) Structure de transistor a trois grilles
EP1180790B1 (fr) Fabrication de condensateurs à armatures métalliques
EP3537489B1 (fr) Procédé de fabrication d'un dispositif traversant
FR2917231A1 (fr) Realisation de condensateurs dotes de moyens pour diminuer les contraintes du materiau metallique de son armature inferieure
FR2830125A1 (fr) Procede de realisation d'une prise de contact en face arriere d'un composant a substrats empiles et composant equipe d'une telle prise de contact
EP4095935B1 (fr) Procédé de fabrication d'une mémoire à changement de phase
FR3056826A1 (fr) Cellule memoire a changement de phase
FR3115926A1 (fr) Circuit intégré comportant une structure capacitive du type métal-isolant-métal et procédé de fabrication correspondant
WO2023170353A1 (fr) Micro-bolometre d'imagerie infrarouge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090702