EP1957759A2 - Verfahren zum starten einer dampfturbinenanlage - Google Patents

Verfahren zum starten einer dampfturbinenanlage

Info

Publication number
EP1957759A2
EP1957759A2 EP06763662A EP06763662A EP1957759A2 EP 1957759 A2 EP1957759 A2 EP 1957759A2 EP 06763662 A EP06763662 A EP 06763662A EP 06763662 A EP06763662 A EP 06763662A EP 1957759 A2 EP1957759 A2 EP 1957759A2
Authority
EP
European Patent Office
Prior art keywords
temperature
steam
starting
reference component
transient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06763662A
Other languages
English (en)
French (fr)
Other versions
EP1957759B1 (de
Inventor
Edwin Godebrecht
Rainer Quinkertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL06763662T priority Critical patent/PL1957759T3/pl
Priority to EP06763662.1A priority patent/EP1957759B1/de
Publication of EP1957759A2 publication Critical patent/EP1957759A2/de
Application granted granted Critical
Publication of EP1957759B1 publication Critical patent/EP1957759B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • F01D19/02Starting of machines or engines; Regulating, controlling, or safety means in connection therewith dependent on temperature of component parts, e.g. of turbine-casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting

Definitions

  • the invention relates to a method for starting a steam turbine plant, which has at least one steam turbine and at least one steam generating plant for generating the steam turbine driving steam, wherein the steam turbine plant has at least one reference component which has a starting temperature of greater than 250 0 C at a starting time, wherein the temperature of the steam and the reference component is continuously measured, wherein the reference component of the steam turbine plant is subjected to steam from the start time.
  • the steam generated in a heat recovery steam generator is initially not supplied to the steam turbine part of a steam turbine plant, but bypasses bypass stations on the turbine and fed directly to a condenser, which condenses the steam to water.
  • the condensate is then fed back as feed water to the steam generator or blown off a roof, if no diverter station is present.
  • certain steam parameters in the steam lines of the water-steam cycle or in the leading to the turbine part of the steam turbine plant steam lines, such as certain vapor pressures and temperatures are met, the steam turbine is switched on. The maintenance of these steam parameters should keep possible stresses in thick-walled components at a low level and avoid impermissible relative elongations.
  • a steam turbine is subjected to operating temperatures over a certain period of time, the thick-walled components of the steam turbine still have high outlet temperatures after night shutdowns or even after weekend shutdowns. Thick-walled components are in this case z.
  • control valves are currently kept closed in a steam turbine plant until the steam generator or boiler supplies steam at a correspondingly high temperature , These temperatures are in about 50 0 C above a
  • the object of the invention is to provide a method for starting a steam turbine plant of the type mentioned, which leads to a quick availability of the steam turbine plant.
  • This object is achieved by a method for starting a steam turbine plant having at least one steam turbine and at least one steam generating plant for generating steam driving the steam turbine, wherein the
  • Steam turbine plant having at least one reference component having a starting temperature of greater than 250 0 C at a starting time, wherein the temperature of the vapor and the reference component is continuously measured, wherein the reference component of the steam turbine plant is acted upon by steam from the start time wherein the starting temperature of the steam is lower than the temperature of the reference component and the temperature of the steam is increased with a start transient and the starting temperature and the starting transient are selected such that the
  • Temperature change per unit time of the reference component is below a predetermined threshold, the temperature of the reference component is initially lower until a minimum is reached and then higher.
  • the temperature change per unit time of the reference component is in this case at values greater than or equal to 5K / min.
  • the invention is based on the recognition that the thick-walled components of a steam turbine plant despite the high compared to the temperature of the steam
  • Output temperatures can be applied to the vapor whose temperature is below the starting temperature of individual reference components.
  • the temperature of the steam must be increased with a sufficient transient, so that the average integral temperature of the thick-walled reference components undergoes only negligible cooling.
  • a transient is a change, in particular temperature change per unit time (° K / min). Whereas a gradient is to be understood as a change, in particular a change in temperature per distance (° K / min). As a result, even relative expansion problems can be excluded.
  • the invention is therefore based on the recognition that a very fast start time of the steam turbine plant possible is, although the requirement of a steam from the boiler or boiler of about 50 Kelvin is above the starting temperature of the reference components is omitted, and is acted upon by a vapor whose temperature is lower than the starting temperature of the reference components.
  • the steam outlet temperature must be increased after applying the reference components with a sufficient and suitable starting gradient.
  • Too low a start gradient would result in too little increase in the temperature of the steam and there is a risk that the thick-walled components will over-cool.
  • the temperature of the reference component is measured at a surface of the, which faces the steam.
  • a reference component initially cools on the surface, and the components lying further in the interior cool comparatively slowly. This leads to a temperature difference in the thickness of the reference components, which can lead to thermal stresses. Therefore, it is advantageous if the temperature of the component is measured directly on the surface facing the steam.
  • the invention is based on the recognition that just a high temperature difference between the temperature of
  • the further temperature is measured at a surface of the reference component opposite to the surface acted upon by the steam.
  • the further temperature is measured substantially in the middle of the reference component. Since the thick-walled reference components of
  • the start transient is selected such that its value is greater than or equal to 5K / min.
  • the value can be constant or variable. This makes it possible to start a steam turbine plant with relatively simple procedural means.
  • the temperature of the vapor is increased after reaching a transfer limit value with a guide gradient, wherein the value of the guide gradient is lower than the value of the start gradient.
  • the invention is based on the idea that initially a cooler compared to the starting temperature of the reference component steam acts on the reference component. This leads to a cooling the steam facing surface of the reference component.
  • the starting temperature of the steam must not be too low compared to the starting temperature of the reference component.
  • the increase in the temperature of the steam must be done with a suitable transient. Too slow an increase in the temperature of the steam leads to damage to the reference components.
  • the thick-walled reference component initially cools until the temperature of the reference component reaches a minimum. After reaching this minimum, the temperature of the reference component increases. The temperature of the
  • the change of the temperature of the steam is carried out by external water injection. This provides a comparatively simple way of influencing the transient of the temperature increase.
  • the starting temperatures of the reference components are between 300 ° to 450 0 C.
  • the starting temperature of the steam is up to 150 0 C below the Output temperature.
  • the value of the start transient is greater than or equal to 5 Kelvin per minute, in particular it is 13 Kelvin per minute.
  • the value of the guiding transient is between 0 and 15 Kelvin per minute, in particular the value is 1 Kelvin per minute. The inventors have recognized that these values are suitable in today's steam turbine construction to carry out the method described above.
  • Figure 1 is a schematic representation of a gas
  • Figure 2 is a graphical representation of
  • Figure 3 shows a temporal evolution of the availability rate of the steam turbine.
  • the combined gas and steam turbine system 1 shown schematically in FIG. 1 comprises a gas turbine plant Ia and a steam turbine plant Ib.
  • the gas turbine plant Ia is equipped with a gas turbine 2, a compressor 4 and at least one combustion chamber 6 connected between the compressor 4 and the gas turbine 2.
  • a gas turbine 2 By means of the compressor 4, fresh air L is sucked in, compressed and fed via the fresh air line 8 to one or more burners of the combustion chamber 6.
  • the supplied air is mixed with supplied via a fuel line 10 liquid or gaseous fuel B and ignited the mixture.
  • the resulting combustion exhaust gases form the working medium AM of the gas turbine plant Ia, which is the Gas turbine 2 is supplied, where it performs work under relaxation and coupled to the gas turbine 2 shaft 14 drives.
  • the shaft 14 is coupled in addition to the gas turbine 2 with the air compressor 4 and a generator 12 to drive this.
  • the expanded working medium AM is discharged via an exhaust pipe 34 to a heat recovery steam generator 30 of the steam turbine plant Ib.
  • the output from the gas turbine Ia at a temperature of about 500 ° to 600 0 C working medium for generating and superheating steam is used.
  • the steam turbine plant Ib comprises, in addition to the heat recovery steam generator 30, which can be designed in particular as Zwangs trimlaufSystem, a steam turbine 20 with turbine stages 20a, 20b, 20c and a condenser 26.
  • the heat recovery steam generator 30 and the condenser 26 together with condensate lines and feedwater lines 35, 40 and with steam lines 48, 53, 64, 70, 80, 100, a steam system, which forms a steam circuit together with the steam turbine 20.
  • Water from a feedwater tank 38 is fed by means of a feedwater pump 42 to a high-pressure preheater 44, also called an economizer, and from there to an evaporator 46 connected to the economizer 44 and designed for a continuous operation.
  • the evaporator 46 is in turn connected on the output side via a steam line 48, in which a water separator 50 is connected to a superheater 52.
  • a steam line 43 the superheater 52 is connected on the output side to the steam inlet 54 of the high-pressure stage 20 a of the steam turbine 20.
  • the steam superheated by the superheater 52 drives the steam turbine before it is passed on via the steam outlet 56 of the high-pressure stage 20a to a reheater 58.
  • the steam is forwarded via a further steam line 81 to the steam inlet 60 of the medium-pressure stage 20b of the steam turbine 20, where it drives the turbine.
  • the steam outlet 62 of the medium-pressure stage 20b is connected via an overflow line 64 to the steam inlet 66 of the low-pressure stage 20c of the steam turbine 20. After flowing through the low-pressure stage 20c and the associated drives of the turbine, the cooled and expanded steam is output via the steam outlet 68 of the low-pressure stage 20c to the steam line 70, which leads it to the condenser 26.
  • the condenser 26 converts the incoming steam into condensate and transfers the condensate via the condensate line 35 by means of a condensate pump 36 to the feedwater tank 38.
  • this also includes a bypass line 100, the so-called high-pressure bypass, which branches off from the steam line 53 before it reaches the steam inlet 54 of the high-pressure stage 20a.
  • the high-pressure bypass 100 bypasses the high-pressure stage 20a and opens into the feed line 80 to the reheater 58.
  • Another bypass line, the so-called medium-pressure bypass 200 branches off the steam line 81 before it opens into the steam inlet 60 of the medium-pressure stage 20b.
  • the medium pressure bypass 200 bypasses both the intermediate pressure stage 20b and the
  • a check valve 102, 202 are installed, with which they can be shut off.
  • shut-off valves 104, 204 are installed in the steam line 53 and in the steam line 81, respectively between the branch point the bypass line 100 or 200 and the steam inlet 54 of the high-pressure stage 20a and the steam inlet 60 of the medium-pressure stage 20a.
  • a shut-off valve is located in the steam line 53, between the branch point of the bypass line 100 and the steam inlet 54 of the high-pressure stage 20 a of the steam turbine 20.
  • bypass line 100 and the shut-off valves 102, 104 serve to divert a portion of the steam to bypass the steam turbine 2 during the startup of the combined cycle power plant 1.
  • the steam turbine plant Ib is in a cooled state and a hot or warm start is to be carried out.
  • a hot start is typically referred to as a start after a night shutdown of about 8 hours, whereas a start after a weekend shutdown of about 48 hours is referred to as a warm start.
  • the thick-walled components of the steam turbine Ib still have high outlet temperatures of 300 ° to about 500 0 C.
  • the thick-walled components can also be referred to as reference components. Thick-walled components are in this case z.
  • the reference component has a starting temperature of greater than 250 0 C. In one step, the temperature of the steam and the
  • the steam turbine plant Ib is acted upon from a start time with steam.
  • the starting temperature of the steam is lower than the temperature of the reference component.
  • the temperature of the steam is then increased with a controllable start transient, wherein the starting temperature and the starting transient are selected such that the temperature change per Time unit of the reference component is below a predetermined limit, the temperature of the reference component is initially lower, until a minimum is reached and then higher.
  • FIG. 2 shows the temperature profile of the steam 205 as a function of time. Likewise, the temperature profile is shown on a steam-facing surface 202 of a thick-walled component. Also shown in FIG. 2 is a mean integral temperature 204 of the thick-walled component.
  • integral temperature 204 is meant, for example, the temperature that prevails substantially in the middle of the reference component.
  • the temperature of the steam 205 is increased with a start transient, which is constant as shown in FIG.
  • the constant start transient results in a linear progression of the temperature up to an acceptance limit value 201.
  • the temperature of the vapor 205 is increased with a guiding transient which is lower than the value of the start transient.
  • the output temperature of the thick-walled reference component has a value of greater than 250 0 C and is in this embodiment at about 500 0 C.
  • Minimum value 202 is reached. After this minimum 202, the temperature of the thick-walled component becomes higher and increases comparatively strongly up to the point of time 206, when the temperature of the vapor reaches the acceptance limit value and is subsequently increased more moderately with the guidance transient.
  • the temperature of the steam can be influenced by water injection.
  • the mean integral temperature 204 of the reference component in principle follows the course as well as the designated 203 curve of the thick-walled component. First, the temperature drops until a minimum value 204 is reached. Then the temperature rises.
  • FIG. 3 shows the availability or performance of such a gas and steam turbine plant according to the invention.
  • the dotted curves show the course of a conventional, existing according to the prior art gas and steam turbine plant.
  • the solid lines show the course of a gas and steam turbine plant, which was started by the method according to the invention.
  • the time is plotted on the X axis and the availability or the output of the steam turbine plant in percent on the Y axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Starten einer Dampfturbinenanlage (1b), die wenigstens eine Dampfturbine (20a, 20b, 20c) und wenigstens eine Dampferzeugungsanlage (30b, 30, 44, 46, 52, 50) zum Erzeugen von die Dampfturbine (20a, 20b, 20c) antreibenden Dampf aufweist, wobei die Dampfturbinenanlage (1b) zumindest ein Bezugs-Bauteil aufweist, das zu einem Startzeitpunkt eine Ausgangstemperatur von größer als 250°C aufweist, wobei die Temperatur des Dampfes und des Bezugs-Bauteils fortlaufend gemessen wird, wobei das Bezugs-Bauteil der Dampfturbineanlage (1b) ab dem Startzeitpunkt mit Dampf beaufschlagt wird. Die Starttemperatur des Dampfes ist hierbei niedriger als die Temperatur des Bezugs-Bauteils und die Temperatur des Dampfes wird mit einem Start- Transienten erhöht und die Starttemperatur wird derart gewählt, dass die Temperaturänderung pro Zeiteinheit des Bezugs-Bauteils unter einem vorgegebenen Grenzwert liegt. Die Temperatur des Bezugs-Bauteils wird zunächst niedriger bis ein Minimum erreicht wird und anschließend höher.

Description

Verfahren zum Starten einer Dampfturbinenanlage
Die Erfindung betrifft ein Verfahren zum Starten einer Dampfturbinenanlage, die wenigstens eine Dampfturbine und wenigstens eine Dampferzeugungsanlage zum Erzeugen von die Dampfturbine antreibendem Dampf aufweist, wobei die Dampfturbinenanlage zumindest ein Bezugs-Bauteil aufweist, das zu einem Startzeitpunkt eine Ausgangtemperatur von größer 2500C aufweist, wobei die Temperatur des Dampfes und des Bezugs-Bauteils fortlaufend gemessen wird, wobei das Bezugs- Bauteil der Dampfturbinenanlage ab dem Startzeitpunkt mit Dampf beaufschlagt wird.
Zum Starten einer Dampfturbinenanlage wird üblicherweise der in einem Abhitzedampferzeuger erzeugte Dampf zunächst nicht dem Dampfturbinenteil einer Dampfturbinenanlage zugeführt, sondern über Umleitstationen an der Turbine vorbeigeführt und direkt einem Kondensator zugeführt, welcher den Dampf zu Wasser kondensiert. Das Kondensat wird dann wieder als Speisewasser dem Dampferzeuger zugeführt oder über ein Dach abgeblasen, falls keine Umleitstation vorhanden ist. Erst dann, wenn bestimmte Dampfparameter in den Dampfleitungen des Wasser-Dampfkreislaufes bzw. in den zu dem Turbinenteil der Dampfturbinenanlage führenden Dampfleitungen, beispielsweise bestimmte Dampfdrücke und -temperaturen, eingehalten sind, wird die Dampfturbine zugeschaltet. Das Einhalten dieser Dampfparameter soll mögliche Spannungen in dickwandigen Bauteilen auf einem niedrigen Niveau halten und unzulässige Relativdehnungen vermeiden.
Wenn eine Dampfturbine über eine gewisse Zeit bei Betriebstemperaturen beansprucht wird, weisen die dickwandigen Bauteile der Dampfturbine nach Nachtstillständen oder auch nach Wochenendstillständen noch hohe Ausgangstemperaturen auf. Dickwandige Bauteile sind hierbei z. B. ein Ventilgehäuse oder ein Hochdruck-Teilturbinen- Gehäuse oder eine Hochdruck- bzw. Mitteldruckwelle. Nach Nachtstillständen, die etwa 8 Stunden dauern bzw. Wochenendstillständen, die etwa 48 Stunden dauern, liegen die Ausgangstemperaturen typischerweise zwischen 300° und 5000C.
Wenn die dickwandigen Bauteile einer Dampfturbinenanlage nach einem Heißstart bzw. einem Warmstart, d.h. nach einem Nachtstillstand bzw. einem Wochenendstillstand, mit dem ersten zur Verfügung stehenden Dampf, den der Dampferzeuger bzw. Kessel liefert, beaufschlagt wird, besteht die Gefahr, dass die dickwandigen Bauteile zu schnell abgekühlt werden, da in der Regel der erste Dampf eine vergleichsweise niedrige Temperatur gegenüber dem dickwandigen Bauteil aufweist.
Aus den großen Temperaturunterschieden zwischen dem Dampf und den dickwandigen Bauteilen können sehr große thermische Spannungen entstehen, die zu einer Ermüdung des Materials und dadurch zu einer Verkürzung der Lebensdauer führt.
Zudem können zwischen der Welle und dem Gehäuse unzulässig hohe Relativdehnungen auftreten, die zu einer Spielüberdrückung führen können.
Um das Risiko von zu großen Temperaturunterschieden zwischen dem Dampf und den dickwandigen Bauteilen, die zu großen thermischen Spannungen führen, gering zu halten, werden derzeit in einer Dampfturbinenanlage die Stellventile so lange geschlossen gehalten, bis der Dampferzeuger bzw. Kessel Dampf mit entsprechend hoher Temperatur liefert. Diese Temperaturen liegen in etwa 500C über einer
Ausgangstemperatur einzelner dickwandiger Bauteile. Als Nachteil wird hier die lange Wartezeit bis zur Verfügbarkeit der Dampfturbinenanlage angesehen.
Aufgabe der Erfindung ist es, ein Verfahren zum Starten einer Dampfturbinenanlage der eingangs genannten Art anzugeben, das zu einer schnellen Verfügbarkeit der Dampfturbinenanlage führt. Gelöst wird diese Aufgabe durch ein Verfahren zum Starten einer Dampfturbinenanlage, die wenigstens eine Dampfturbine und wenigstens eine Dampferzeugungsanlage zum Erzeugen von die Dampfturbine antreibendem Dampf aufweist, wobei die
Dampfturbinenanlage zumindest ein Bezugs-Bauteil aufweist, das zu einem Startzeitpunkt eine Ausgangstemperatur von größer als 2500C aufweist, wobei die Temperatur des Dampfes und des Bezugs-Bauteils fortlaufend gemessen wird, wobei das Bezugs-Bauteil der Dampfturbinenanlage ab dem Startzeitpunkt mit Dampf beaufschlagt wird, wobei die Starttemperatur des Dampfes niedriger ist als die Temperatur des Bezugs-Bauteils und die Temperatur des Dampfes mit einem Start-Transienten erhöht wird und die Starttemperatur und der Start- Transienten derart gewählt werden, dass die
Temperaturänderung pro Zeiteinheit des Bezugs-Bauteils unter einem vorgegebenen Grenzwert liegt, wobei die Temperatur des Bezugs-Bauteils zunächst niedriger wird bis ein Minimum erreicht wird und anschließend höher wird. Die Temperaturänderung pro Zeiteinheit des Bezug-Bauteils liegt hierbei bei Werten größer oder gleich 5K/min.
Die Erfindung geht von der Erkenntnis aus, dass die dickwandigen Bauteile einer Dampfturbinenanlage trotz der im Vergleich zur Temperatur des Dampfes hohen
Ausgangstemperaturen mit dem Dampf beaufschlagt werden kann, dessen Temperatur unter der Ausgangstemperatur einzelner Bezugs-Bauteile liegt. Die Temperatur des Dampfes muss hierzu mit einem hinreichenden Transienten erhöht werden, so dass die mittlere integrale Temperatur der dickwandigen Bezugs- Bauteile nur eine vernachlässigbar geringe Abkühlung erfahren unter einem Transienten ist eine Änderung, insbesondere Temperaturänderung pro Zeiteinheit zu verstehen (°K/min). Wohingegen unter einem Gradienten eine Änderung, insbesondere Temperaturänderung pro Wegstrecke (°K/min) zu verstehen ist. Dadurch können auch Relativdehnungsprobleme ausgeschlossen werden. Die Erfindung geht somit von der Erkenntnis aus, dass eine sehr schnelle Startzeit der Dampfturbinenanlage möglich ist, wenn auch das Erfordernis eines Dampfes aus dem Dampferzeuger bzw. Kessels der etwa 50 Kelvin über der Ausgangstemperatur der Bezugs-Bauteile liegt, verzichtet wird und mit einem Dampf beaufschlagt wird, dessen Temperatur unter der Ausgangstemperatur der Bezugs-Bauteile liegt. Allerdings muss die Ausgangstemperatur des Dampfes nach Beaufschlagung der Bezugs-Bauteile mit einem hinreichenden und geeigneten Start-Gradienten gesteigert werden.
Ein zu niedriger Start-Gradient würde zu einer zu geringen Erhöhung der Temperatur des Dampfes führen und dadurch besteht die Gefahr, dass sich die dickwandigen Bauteile zu sehr abkühlen.
In einer vorteilhaften Ausgestaltung wird die Temperatur des Bezugs-Bauteils an einer Oberfläche dessen gemessen, die dem Dampf zugewandt ist. Naturgemäß kühlt ein Bezugs-Bauteil zunächst an der Oberfläche ab, und die weiter innen liegenden Bauteile kühlen vergleichsweise langsam ab. Dies führt zu einem Temperaturunterschied in der Dicke der Bezugs-Bauteile, die zu thermischen Spannungen führen können. Daher ist es von Vorteil, wenn die Temperatur des Bauteils direkt an der Oberfläche gemessen wird, die dem Dampf zugewandt ist.
In einer weiteren vorteilhaften Ausgestaltung wird das
Verfahren dahingehend erweitert, dass eine weitere Temperatur an einer Stelle des Bezugs-Bauteils gemessen wird, die dem Dampf abgewandt ist, wobei die Ausgangstemperatur und der Start-Gradient derart gewählt werden, dass ein Temperaturunterschied zwischen der Temperatur an der Oberfläche und der weiteren Temperatur unter einem vorgegebenen Temperaturunterschiedsgrenzwert liegt.
Die Erfindung geht von der Erkenntnis aus, dass gerade ein hoher Temperaturunterschied zwischen der Temperatur der
Oberfläche eines Bezugs-Bauteils und der Temperatur an einer benachbarten Stelle des Bezugs-Bauteils schädlich ist. Mit der Messung von zwei Temperaturen an einem Bezugs-Bauteil, wobei die eine Temperatur an der Oberfläche gemessen wird, die dem Dampf zugewandt ist und die andere Temperatur an einer Stelle gemessen wird, die dem Dampf abgewandt ist, besteht sofort die Möglichkeit, den aufkommenden Temperaturunterschied zu erfassen, um geeignete Maßnahmen zu treffen, d.h. ggf. den Start- Transienten des Dampfes anzupassen.
Idealerweise wird die weitere Temperatur an einer Oberfläche des Bezugs-Bauteils gemessen, die der vom Dampf beaufschlagten Oberfläche gegenüberliegt.
In einer weiteren vorteilhaften Weitergestaltung wird die weitere Temperatur im Wesentlichen in der Mitte des Bezugs- Bauteils gemessen. Da die dickwandigen Bezugs-Bauteile der
Dampfturbinenanlage bei einer Temperaturerhöhung sich relativ träge verhalten, was bedeutet, dass die Temperaturerhöhung in der Wanddickenrichtung sehr langsam erfolgt, ist es von Vorteil, wenn die weitere Temperatur im wesentlichen in der Mitte des Bezugs-Bauteils gemessen wird. Dadurch ist eine sehr frühe Überwachung der Temperaturentwicklung der dickwandigen Bezugs-Bauteile möglich.
In einer weiteren vorteilhaften Ausgestaltung wird der Start- Transient derart gewählt, dass dessen Wert bei größer oder gleich 5K/min liegt. Der Wert kann konstant oder variabel sein. Dadurch ist es möglich, mit relativ einfachen verfahrenstechnischen Mitteln eine Dampfturbinenanlage zu starten.
In einer weiteren vorteilhaften Weiterbildung der Erfindung wird die Temperatur des Dampfes nach Erreichen eines Übernahmegrenzwertes mit einem Führungs-Gradienten erhöht, wobei der Wert des Führungs-Gradienten niedriger ist als der Wert des Start-Gradienten. Die Erfindung geht hierbei von dem Gedanken aus, dass zunächst ein im Vergleich zur Ausgangstemperatur des Bezugs-Bauteils kühlerer Dampf das Bezugs-Bauteil beaufschlagt. Dies führt zu einer Abkühlung der dem Dampf zugewandten Oberfläche des Bezugs-Bauteils. Die Starttemperatur des Dampfes darf hierbei nicht zu niedrig gegenüber der Starttemperatur des Bezugs-Bauteils sein. Auch muss die Erhöhung der Temperatur des Dampfes mit einem geeigneten Transienten erfolgen. Eine zu langsame Erhöhung der Temperatur des Dampfes führt zu einer Schädigung der Bezugs-Bauteile. Das dickwandige Bezugs-Bauteil kühlt sich zunächst ab, bis die Temperatur des Bezugs-Bauteils ein Minimum erreicht. Nach Erreichen dieses Minimums erhöht sich die Temperatur des Bezugs-Bauteils. Die Temperatur des
Dampfes wird anschließend mit dem Start- Transienten bis zu einem Übernahmegrenzwert erhöht. Nach Erreichen des Übernahmegrenzwertes wird die Temperatur des Dampfes mit einem Führungs- Transienten weiter erhöht, wobei der Wert des Führungs- Transienten niedriger ist als der Wert des Start- Transienten. Eine zu schnelle Erhöhung der Temperatur des Dampfes würde dazu führen, dass sich die dem Dampf zugewandten Oberfläche gegenüber der dem Dampf abgewandten Oberfläche des Bezugs-Bauteils zu schnell erwärmt und dadurch zu einem zu großen Temperaturunterschied zwischen der
Oberfläche, die dem Dampf zugewandt ist und der Oberfläche, die dem Dampf abgewandt ist, führt. Dies führt zu unterwünschten Schädigungen des Bezugs-Bauteils. Durch die Wahl eines geeigneten Führungs- Transienten, der niedriger sein muss als der Start- Transienten, ist eine Entwicklung eines zu großen Temperaturunterschiedes zwischen der dem Dampf zugewandten Seite und der dem Dampf abgewandten Seite verhindert .
In einer weiteren vorteilhaften Weiterbildung erfolgt die Änderung der Temperatur des Dampfes durch externe Wassereinspritzung. Dadurch ist eine vergleichsweise einfache Möglichkeit gegeben, den Transienten der Temperaturerhöhung zu beeinflussen.
Vorteilhafterweise liegen die Ausgangstemperaturen der Bezugs-Bauteile zwischen 300° bis 4500C. Vorteilhafterweise liegt die Starttemperatur des Dampfes bis zu 1500C unter der Ausgangstemperatur. In einer vorteilhaften Weiterbildung liegt der Wert des Start- Transienten größer oder gleich 5 Kelvin pro Minute, insbesondere liegt er bei 13 Kelvin pro Minute. Nach einer weiteren vorteilhaften Weiterbildung liegt der Wert des Führungs- Transienten zwischen 0 und 15 Kelvin pro Minute, insbesondere liegt der Wert bei 1 Kelvin pro Minute. Die Erfinder haben erkannt, dass diese Werte im heutigen Dampfturbinenbau geeignet sind, um das weiter oben beschriebene Verfahren auszuführen.
Anhand der Beschreibung und der Figuren werden Ausführungsbeispiele der Erfindung beschrieben. Dabei haben mit denselben Bezugszeichen versehene Komponenten die gleiche Funktionsweise .
Es zeigen
Figur 1 eine schematische Darstellung einer Gas- und
Dampfturbinenanlage, Figur 2 eine grafische Darstellung der
Temperaturerhöhungen, Figur 3 eine zeitliche Entwicklung der Verfügbarkeitsrate der Dampfturbine.
Die in Figur 1 schematisch dargestellte kombinierte Gas- und Dampfturbinenanlage 1 umfasst eine Gasturbinenanlage Ia sowie eine Dampfturbinenanlage Ib. Die Gasturbinenanlage Ia ist mit einer Gasturbine 2, einem Verdichter 4 sowie wenigstens einer zwischen dem Verdichter 4 und der Gasturbine 2 geschalteten Brennkammer 6 ausgestattet. Mittels des Verdichters 4 wird Frischluft L angesaugt, verdichtet und über die Frischluftleitung 8 einem oder mehreren Brennern der Brennkammer 6 zugeführt. Die zugeführte Luft wird mit über eine Brennstoffleitung 10 zugeführtem flüssigen oder gasförmigen Brennstoff B gemischt und das Gemisch entzündet. Die dabei entstehenden Verbrennungsabgase bilden das Arbeitsmedium AM der Gasturbinenanlage Ia, welches der Gasturbine 2 zugeführt wird, wo es unter Entspannung Arbeit leistet und eine mit der Gasturbine 2 gekoppelte Welle 14 antreibt. Die Welle 14 ist außer mit der Gasturbine 2 auch mit dem Luftverdichter 4 sowie einem Generator 12 gekoppelt, um diesen anzutreiben. Das entspannte Arbeitsmedium AM wird über eine Abgasleitung 34 an einen Abhitzedampferzeuger 30 der Dampfturbinenanlage Ib abgeführt. Im Abhitzedampferzeuger 30 wird das von der Gasturbine Ia mit einer Temperatur von ca. 500° bis 6000C ausgegebene Arbeitsmedium zum Erzeugen und Überhitzen von Dampf verwendet.
Die Dampfturbinenanlage Ib umfasst neben dem Abhitzedampferzeuger 30, der insbesondere als ZwangsdurchlaufSystem ausgebildet sein kann, eine Dampfturbine 20 mit Turbinenstufen 20a, 20b, 20c und einen Kondensator 26. Der Abhitzedampferzeuger 30 und der Kondensator 26 bilden zusammen mit Kondensatleitungen bzw. Speisewasserleitungen 35, 40 sowie mit Dampfleitungen 48, 53, 64, 70, 80, 100 ein Dampfsystem, welches zusammen mit der Dampfturbine 20 einen Wasserdampfkreislauf bildet.
Wasser aus einem Speisewasserbehälter 38 wird mittels einer Speisewasserpumpe 42 einem Hochdruck-Vorwärmer 44, auch Economizer genannte, zugeführt und von dort an einen ausgangsseitig mit dem Economizer 44 verbundenen, für einen Durchlaufbetrieb ausgelegten Verdampfer 46 weitergeleitet. Der Verdampfer 46 ist seinerseits ausgangsseitig über eine Dampfleitung 48, in die ein Wasserabscheider 50 geschaltet ist, an einen Überhitzer 52 angeschlossen. Über eine Dampfleitung 43 ist der Überhitzer 52 ausgangsseitig mit dem Dampfeingang 54 der Hochdruckstufe 20a der Dampfturbine 20 verbunden .
In der Hochdruckstufe 20a der Dampfturbine 20 treibt der vom Überhitzer 52 überhitzte Dampf die Dampfturbine an, bevor er über den Dampfausgang 56 der Hochdruckstufe 20a an einen Zwischenüberhitzer 58 weitergegeben wird. Nach der Überhitzung im Zwischenüberhitzer 58 wird der Dampf über eine weitere Dampfleitung 81 an den Dampfeingang 60 der Mitteldruckstufe 20b der Dampfturbine 20 weitergeleitet, wo er die Turbine antreibt.
Der Dampfausgang 62 der Mitteldruckstufe 20b ist über eine Überströmleitung 64 mit dem Dampfeinlass 66 der Niederdruckstufe 20c der Dampfturbine 20 verbunden. Nach dem Durchströmen der Niederdruckstufe 20c und den damit verbundenen Antrieben der Turbine wird der abgekühlte und entspannte Dampf über den Dampfausgang 68 der Niederdruckstufe 20c an die Dampfleitung 70 ausgegeben, die ihn zum Kondensator 26 führt.
Der Kondensator 26 wandelt den eingehenden Dampf in Kondensat um und gibt das Kondensat über die Kondensatleitung 35 mittels einer Kondensatpumpe 36 an den Speisewasserbehälter 38 weiter.
Neben den bereits genannten Elementen des Wasser-Dampf- Kreislaufs umfasst dieser außerdem eine Bypassleitung 100, die so genannte Hochdruckumleitung, die von der Dampfleitung 53 abzweigt, bevor diese den Dampfeinlass 54 der Hochdruckstufe 20a erreicht. Die Hochdruckumleitung 100 umgeht die Hochdruckstufe 20a und mündet in die Zuleitung 80 zum Zwischenüberhitzer 58. Eine weitere Bypassleitung, die so genannte Mitteldruckumleitung 200, zweigt von der Dampfleitung 81, bevor diese in den Dampfeinlass 60 der Mitteldruckstufe 20b mündet. Die Mitteldruckumleitung 200 umgeht sowohl die Mittedruckstufe 20b als auch die
Niederdruckstufe 20c und mündet in die zum Kondensator 26 führende Dampfleitung 70.
In die Hochdruckumleitung 100 und die Mitteldruckumleitung 200 sind ein Absperrventil 102, 202 eingebaut, mit welchen sie sich absperren lassen. Ebenso befinden sich Absperrventile 104, 204 in der Dampfleitung 53 bzw. in der Dampfleitung 81, und zwar jeweils zwischen dem Abzweigpunkt der Bypassleitung 100 bzw. 200 und dem Dampfeinlass 54 der Hochdruckstufe 20a bzw. dem Dampfeinlass 60 der Mitteldruckstufe 20a.
Ein Absperrventil befindet sich in der Dampfleitung 53, und zwar zwischen dem Abzweigpunkt der Bypassleitung 100 und dem Dampfeinlass 54 der Hochdruckstufe 20a der Dampfturbine 20.
Die Bypassleitung 100 und die Absperrventile 102, 104 dienen dazu, während des Anfahrens der Gas- und Dampfturbinenanlage 1 einen Teil des Dampfes zur Umgehung der Dampfturbine 2 umzuleiten.
Zu Beginn des Verfahrens liegt die Dampfturbinenanlage Ib in einem abgekühlten Zustand vor und es soll ein Heiß- bzw. Warmstart durchgeführt werden. Unter einem Heißstart wird typischerweise ein Start nach einem Nachtstillstand von etwa 8 Stunden bezeichnet, wohingegen ein Start nach einem Wochenendstillstand von etwa 48 Stunden als Warmstart bezeichnet wird. Die dickwandigen Bauteile der Dampfturbine Ib weisen dabei noch hohe Ausgangstemperaturen von 300° bis ca. 5000C auf. Die dickwandigen Bauteile können auch als Bezugs-Bauteile bezeichnet werden. Dickwandige Bauteile sind hierbei z. B. Ventil- und Hochdruck-Gehäuse, Hochdruck- und Mitteldruck-Wellen. Es sind aber auch andere dickwandige Bauteile denkbar.
Zumindest hat zu einem Startzeitpunkt das Bezugs-Bauteil eine Ausgangstemperatur von größer als 2500C. In einem Verfahrensschritt wird die Temperatur des Dampfes und des
Bezugs-Bauteils fortlaufend gemessen. Die Dampfturbinenanlage Ib wird ab einem Startzeitpunkt mit Dampf beaufschlagt.
Die Starttemperatur des Dampfes ist dabei niedriger als die Temperatur des Bezugs-Bauteils. Die Temperatur des Dampfes wird anschließend mit einem regelbaren Start- Transienten erhöht, wobei die Starttemperatur und der Starttransient derart gewählt werden, dass die Temperaturänderung pro Zeiteinheit des Bezugs-Bauteils unter einem vorgegebenen Grenzwert liegt, wobei die Temperatur des Bezugs-Bauteils zunächst niedriger wird, bis ein Minimum erreicht ist und anschließend höher wird.
In der Figur 2 ist der Temperaturverlauf des Dampfes 205 in Abhängigkeit der Zeit dargestellt. Ebenso ist der Temperaturverlauf an einer dem Dampf zugewandten Oberfläche 202 eines dickwandigen Bauteils dargestellt. Ebenso dargestellt wird in Figur 2 eine mittlere integrale Temperatur 204 des dickwandigen Bauteils.
Unter der mittleren integralen Temperatur 204 ist zum Beispiel die Temperatur gemeint, die im Wesentlichen in der Mitte des Bezugs-Bauteils herrscht.
Nach dem Startzeitpunkt 200 wird die Temperatur des Dampfes 205 mit einem Start- Transienten, der wie in der in Figur 2 dargestellt, konstant ist, erhöht. Der konstante Start- Transient führt zu einem linearen Verlauf der Temperatur bis zu einem Übernahmegrenzwert 201. Ab dem Übernahmegrenzwert 201 erfolgt die Erhöhung der Temperatur des Dampfes 205 mit einem Führungs- Transienten, der niedriger ist als der Wert des Start- Transienten. Die Ausgangstemperatur des dickwandigen Bezugs-Bauteiles weist einen Wert von größer 2500C auf und liegt in diesem Ausführungsbeispiel bei ca. 5000C. Durch die Beaufschlagung des dickwandigen Bauteils mit Dampf, dessen Temperatur niedriger ist als die Temperatur des dickwandigen Bauteiles, wird die Temperatur der Oberfläche des dickwandigen Bauteils zunächst niedriger, bis ein
Minimalwert 202 erreicht wird. Nach diesem Minimum 202 wird die Temperatur des dickwandigen Bauteils höher und steigt vergleichsweise stark an bis zu dem Zeitpunkt 206, bei dem die Temperatur des Dampfes den Übernahmegrenzwert erreicht und anschließend mit dem Führungs- Transienten moderater erhöht wird. Die Temperatur des Dampfes kann hierzu durch Wassereinspritzung beeinflusst werden. Die mittlere integrale Temperatur 204 des Bezugs-Bauteiles folgt prinzipiell ebenso dem Verlauf wie die mit 203 bezeichnete Kurve des dickwandigen Bauteils. Zunächst sinkt die Temperatur bis ein Minimalwert 204 erreicht wird. Anschließend steigt die Temperatur an.
In der Figur 3 ist die Verfügbarkeit bzw. Leistung solch einer erfindungsgemäßen Gas- und Dampfturbinenanlage zu sehen. Die gepunktet dargestellten Kurven zeigen den Verlauf einer herkömmlichen, gemäß dem Stand der Technik vorhandenen Gas- und Dampfturbinenanlage. Die durchgezogenen Linien zeigen den Verlauf einer Gas- und Dampfturbinenanlage, die mit dem erfindungsgemäßen Verfahren gestartet wurde. Auf der X-Achse ist die Zeit aufgetragen und auf der Y-Achse die Verfügbarkeit bzw. die Leistung der Dampfturbinenanlage in Prozent. Die Kurven 300 und 301 zeigen den Verlauf für eine Gasturbinenanlage (CT = Combustion Turbine) und die Kurven 400 und 401 zeigen den Verlauf für eine Dampfturbinenanlage (ST = Steam Turbine) . Zu erkennen ist, dass bei einer herkömmlichen Gas- und Dampfturbinenanlage eine Verfügbarkeit von 30% relativ früh, aber eine 100%ige Verfügbarkeit erst nach einer Zeit tl, die in dem ausgewählten Beispiel bei ca. 50 Minuten liegt, erreicht wird. Bei der erfindungsgemäßen Anlage liegt eine Verfügbarkeit von ca. 30% ebenfalls relativ früh vor, nämlich zu einem Zeitpunkt t2, der bei ca. 10 Minuten liegt. Eine 100%ige Verfügbarkeit liegt hier allerdings schon nach einem Zeitpunkt t3 vor, der bei dem ausgewählten Beispiel bei ca. 30 Minuten liegt.

Claims

Patentansprüche
1. Verfahren zum Starten einer Dampfturbinenanlage (Ib), die wenigstens eine Dampfturbine (20a, 20b, 20c) und wenigstens eine Dampferzeugungsanlage (30b, 30, 44, 46,
52, 50) zum Erzeugen von die Dampfturbine (20a, 20b, 20c) antreibendem Dampf aufweist, wobei die Dampfturbinenanlage (Ib) zumindest ein Bezugs- Bauteil aufweist, das zu einem Startzeitpunkt eine
Ausgangstemperatur von größer als 2500C aufweist, wobei die Temperatur des Dampfes und des Bezugs-Bauteils fortlaufend gemessen wird, wobei das Bezugs-Bauteil der Dampfturbinenanlage (Ib) ab dem Startzeitpunkt mit Dampf beaufschlagt wird,
dadurch gekennzeichnet, dass
die Starttemperatur des Dampfes niedriger ist als die Temperatur des Bezugs-Bauteils und die Temperatur des Dampfes mit einem Start- Transienten erhöht wird und die Starttemperatur und der Start- Transient derart gewählt werden, dass die Temperaturänderung pro Zeiteinheit des Bezugs-Bauteils unter einem vorgegebenen
Grenzwert liegt, wobei die Temperatur des Bezugs-Bauteils zunächst niedriger wird bis ein Minimum erreicht wird und anschließend höher wird.
2. Verfahren nach Anspruch 1, bei dem die Temperatur des Bezugs-Bauteils an dessen Oberfläche gemessen wird, die dem Dampf zugewandt ist.
3. Verfahren nach Anspruch 2, bei dem eine weitere Temperatur an einer Stelle des Bezugs-Bauteil gemessen wird, die dem Dampf abgewandt ist, wobei die Starttemperatur und der Start- Transient derart gewählt werden, dass ein Temperatur-Unterschied zwischen der Temperatur an der Oberfläche und der weiteren Temperatur unter einem vorgegebenen Temperaturunterschiedsgrenzwert liegt.
4. Verfahren nach Anspruch 3, bei dem die weitere Temperatur an einer Oberfläche des Bezugs-Bauteils gemessen wird, die der vom Dampf beaufschlagten Oberfläche gegenüber liegt.
5. Verfahren nach Anspruch 3, bei dem die weitere Temperatur im Wesentlichen in der Mitte der Dicke des Bezugs-Bauteils gemessen wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Start- Transient konstant ist.
7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Temperatur des Dampfes nach Erreichen eines Übernahmegrenzwertes (201) mit einem Führungs- Transienten erhöht wird, wobei der Wert des Führungs- Transienten niedriger ist als der Wert des Start- Transienten.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Änderung der Temperatur des Dampfes durch externe Wassereinspritzung erfolgt.
9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Ausgangstemperaturen der Bauteile zwischen 3000C bis 4000C liegen.
10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Start-Temperatur des Dampfes bis zu 150 K unter der Ausgangstemperatur liegt.
11. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Start- Transient Werte größer oder gleich 5 K/min, insbesondere 13 K/min, annimmt.
12. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Führungs- Transient Werte zwischen 0 und 15 K/min, insbesondere 1 K/min, annimmt.
EP06763662.1A 2005-07-14 2006-06-13 Verfahren zum starten einer dampfturbinenanlage Active EP1957759B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL06763662T PL1957759T3 (pl) 2005-07-14 2006-06-13 Sposób uruchamiania instalacji turbin parowych
EP06763662.1A EP1957759B1 (de) 2005-07-14 2006-06-13 Verfahren zum starten einer dampfturbinenanlage

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05015350A EP1744020A1 (de) 2005-07-14 2005-07-14 Verfahren zum Starten einer Dampfturbinenanlage
PCT/EP2006/063135 WO2007006617A2 (de) 2005-07-14 2006-06-13 Verfahren zum starten einer dampfturbinenanlage
EP06763662.1A EP1957759B1 (de) 2005-07-14 2006-06-13 Verfahren zum starten einer dampfturbinenanlage

Publications (2)

Publication Number Publication Date
EP1957759A2 true EP1957759A2 (de) 2008-08-20
EP1957759B1 EP1957759B1 (de) 2016-09-14

Family

ID=35311816

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05015350A Withdrawn EP1744020A1 (de) 2005-07-14 2005-07-14 Verfahren zum Starten einer Dampfturbinenanlage
EP06763662.1A Active EP1957759B1 (de) 2005-07-14 2006-06-13 Verfahren zum starten einer dampfturbinenanlage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05015350A Withdrawn EP1744020A1 (de) 2005-07-14 2005-07-14 Verfahren zum Starten einer Dampfturbinenanlage

Country Status (10)

Country Link
US (1) US7805941B2 (de)
EP (2) EP1744020A1 (de)
JP (1) JP4762310B2 (de)
CN (1) CN101305163B (de)
BR (1) BRPI0613011A2 (de)
CA (1) CA2615001C (de)
ES (1) ES2607357T3 (de)
PL (1) PL1957759T3 (de)
RU (1) RU2370653C1 (de)
WO (1) WO2007006617A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20110498A1 (it) 2011-03-28 2012-09-29 Stamicarbon Metodo per l avviamento di un impianto termico a ciclo combinato per la produzione di energia elettrica da una condizione di impianto fermo ad una condizione di impianto in marcia.
AU2013202965B2 (en) 2013-03-15 2016-07-21 Takeda Pharmaceutical Company Limited Improved method for producing factor h from a plasma precipitation fraction
AU2013203048A1 (en) 2013-03-15 2014-10-02 Baxalta GmbH Isolation of factor h from fraction i paste
JP6092723B2 (ja) 2013-06-25 2017-03-08 三菱日立パワーシステムズ株式会社 蒸気タービンプラントの起動制御装置
DE102014211976A1 (de) * 2014-06-23 2015-12-24 Siemens Aktiengesellschaft Verfahren zum Anfahren eines Dampfturbinensystems
JP2018529719A (ja) 2015-09-30 2018-10-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Alk陰性がんを処置するためのpd−1系結合アンタゴニストおよびalk阻害剤の組合せ
DK4019019T3 (da) 2016-05-20 2024-05-06 Biohaven Therapeutics Ltd Anvendelse af riluzol, riluzolprodrugs eller riluzolanaloger med immunterapier til cancerbehandling
US10577962B2 (en) 2016-09-07 2020-03-03 General Electric Company Turbomachine temperature control system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358450A (en) * 1965-12-21 1967-12-19 Combustion Eng Method and apparatus for steam turbine startup
SE376961B (de) * 1967-09-11 1975-06-16 Svenska Maskinverken Ab
US3524592A (en) * 1968-02-27 1970-08-18 Kaelle Regulatorer Ab Device for introducing cooling water into a conduit for superheated steam
US4208882A (en) * 1977-12-15 1980-06-24 General Electric Company Start-up attemperator
JPS5532916A (en) * 1978-08-25 1980-03-07 Hitachi Ltd Method of making temperature of steam turbine metal of combined plant constant and its device
US4226086A (en) * 1979-05-21 1980-10-07 Westinghouse Electric Corp. Automatic restart control for a power plant boiler
US4320625A (en) * 1980-04-30 1982-03-23 General Electric Company Method and apparatus for thermal stress controlled loading of steam turbines
JPS5847105A (ja) * 1981-09-11 1983-03-18 Toshiba Corp コンバインドプラントの起動装置
US4455836A (en) * 1981-09-25 1984-06-26 Westinghouse Electric Corp. Turbine high pressure bypass temperature control system and method
US4589255A (en) * 1984-10-25 1986-05-20 Westinghouse Electric Corp. Adaptive temperature control system for the supply of steam to a steam turbine
US5046318A (en) * 1990-03-05 1991-09-10 Westinghouse Electric Corp. Turbine power plant automatic control system
US5018356A (en) * 1990-10-10 1991-05-28 Westinghouse Electric Corp. Temperature control of a steam turbine steam to minimize thermal stresses
JPH06341301A (ja) * 1993-05-31 1994-12-13 Mitsubishi Heavy Ind Ltd 蒸気タービンの熱応力制御方法
US5433079A (en) * 1994-03-08 1995-07-18 General Electric Company Automated steam turbine startup method and apparatus therefor
JPH09177505A (ja) * 1995-12-22 1997-07-08 Toshiba Corp 蒸気タービンのウオーミング並びにクーリング蒸気制御装置及び制御方法
CN1318737C (zh) * 2000-05-31 2007-05-30 西门子公司 用于运行包括若干无负载或小负载缸的蒸汽轮机的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007006617A3 *

Also Published As

Publication number Publication date
JP2009501292A (ja) 2009-01-15
BRPI0613011A2 (pt) 2010-12-14
EP1957759B1 (de) 2016-09-14
RU2370653C1 (ru) 2009-10-20
PL1957759T3 (pl) 2017-04-28
US7805941B2 (en) 2010-10-05
CN101305163B (zh) 2012-11-14
WO2007006617A3 (de) 2008-06-26
CN101305163A (zh) 2008-11-12
US20090126365A1 (en) 2009-05-21
JP4762310B2 (ja) 2011-08-31
WO2007006617A2 (de) 2007-01-18
CA2615001C (en) 2012-05-08
EP1744020A1 (de) 2007-01-17
CA2615001A1 (en) 2007-01-18
ES2607357T3 (es) 2017-03-30

Similar Documents

Publication Publication Date Title
EP1957759B1 (de) Verfahren zum starten einer dampfturbinenanlage
DE102008037410B4 (de) Superkritischen Dampf verwendender kombinierter Kreisprozess und Verfahren
DE69832740T2 (de) Gasturbinenanlage
EP2603672B1 (de) Abhitzedampferzeuger
DE60126721T2 (de) Kombiniertes Kreislaufsystem mit Gasturbine
DE69313607T2 (de) Methode zum Anfahren einer kalten Dampfturbine in einem Kombikraftwerk
DE60029510T2 (de) Dampfkühlungssystem für den Ausgleichkolben einer Dampfturbine und dazugehörige Methode
EP1866521B1 (de) Verfahren zum starten einer gas- und dampfturbinenanlage
DE3782314T2 (de) Sperrdamppfsystem fuer eine dampfturbine.
EP2480762B1 (de) Kraftwerksanlage mit Überlast-Regelventil
CH623888A5 (de)
DE19544226B4 (de) Kombianlage mit Mehrdruckkessel
CH702677B1 (de) Kombikraftwerk mit Kombikraftwerksanfahrsystem.
EP1998014A2 (de) Verfahren zum Betreiben einer mehrstufigen Dampfturbine
WO2013072183A2 (de) Verfahren zum betrieb einer gas- und dampfturbinenanlage für die frequenzstützung
EP3420202B1 (de) Kondensatrezirkulation
DE4446862C2 (de) Verfahren zur Kühlung des Kühlmittels einer Gasturbine und Vorrichtung zur Durchführung des Verfahrens
EP2556218B1 (de) Verfahren zum schnellen zuschalten eines dampferzeugers
EP3810907B1 (de) Abgasrezirkulation in gas- und dampfturbinenanlagen
DE60126556T2 (de) Dampfkühlungsvorrichtung für eine Gasturbine
EP3011144B1 (de) Verfahren und vorrichtung zur regelung der eindüsung von wasser in den rauchgaskanal einer gas- und dampfturbinenanlage
CH621186A5 (en) Steam-generator installation heated by waste gas
EP2138677B1 (de) Gas- und Dampfturbinenanlage
EP3850194B1 (de) Dampfturbine und verfahren zum betreiben derselben
DE2550059A1 (de) Sicherheitssystem fuer eine dampfturbinenanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080115

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160419

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 829246

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015155

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170116

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015155

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

26N No opposition filed

Effective date: 20170615

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170613

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170613

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 829246

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180605

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180719

Year of fee payment: 14

Ref country code: GB

Payment date: 20180614

Year of fee payment: 13

Ref country code: IT

Payment date: 20180627

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180910

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190613

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006015155

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240627

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240523

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240625

Year of fee payment: 19