EP1945934A1 - Procede pour faire fonctionner un moteur a combustion interne - Google Patents

Procede pour faire fonctionner un moteur a combustion interne

Info

Publication number
EP1945934A1
EP1945934A1 EP06806836A EP06806836A EP1945934A1 EP 1945934 A1 EP1945934 A1 EP 1945934A1 EP 06806836 A EP06806836 A EP 06806836A EP 06806836 A EP06806836 A EP 06806836A EP 1945934 A1 EP1945934 A1 EP 1945934A1
Authority
EP
European Patent Office
Prior art keywords
injection
valve
duration
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06806836A
Other languages
German (de)
English (en)
Inventor
Wolfgang Samenfink
Andreas Kufferath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1945934A1 publication Critical patent/EP1945934A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for operating an internal combustion engine, in which the fuel passes through at least one injection valve in at least one combustion chamber and in which a characteristic curve of the injection valve is adapted.
  • the invention further relates to a computer program, an electrical storage medium, and a control and / or regulating device for an internal combustion engine.
  • this correlates to the injection valve injected fuel quantity linear with the opening time of the injector.
  • a very large linear range means a comparatively high production cost for the injection valve. This production cost is the higher the more unwanted deviations from the linearity, especially in the
  • the minimum injection duration is limited downwards.
  • an adaptation by which the characteristic curve of an injection valve is adapted to the actual conditions.
  • the smoothness at idle can be used in shift operation for such an adaptation.
  • a so-called “single cylinder lambda control” can be applied. While the first method is only suitable for very specific internal combustion engines, the second method requires a comparatively limited operating point.
  • the object of the present invention is to provide a method which also makes it possible, during normal operation of the internal combustion engine, to test the injection behavior of an injection valve.
  • the test of the injection valve for the user of the internal combustion engine scarcely or not at all, since the total injection quantity at least during a part of the test at least substantially constant and thus the torque and smoothness remain unchanged.
  • the test can be performed frequently, which increases the overall functional reliability of the internal combustion engine.
  • a deviation of a variable characterizing an actual fuel-air mixture detected by the successive reduction of the injection duration of the measuring injection, be detected by a variable characterizing a desired fuel-air mixture and the deviation or a characteristic of the variable Injector is adapted or corrected.
  • the injected fuel quantity is reliably detected in the small amount range, in the case of an individual injection valve, a deviation of the actual injected fuel quantity actually injected from the target fuel quantity, which is determined based on the applied characteristic, becomes unacceptably large.
  • the method is equally applicable to internal combustion engines
  • Intake manifold injection as suitable for internal combustion engine with direct fuel injection.
  • a general limitation of the minimum injection duration is therefore no longer necessary. This ensures a reliable and precise metering of the fuel even in the Small range facilitates, which improves the smoothness, for example, at idle and
  • Exemplary scattering have little effect.
  • the detection as to whether the actual fuel / air mixture deviates from the desired fuel / air mixture can be effected, for example, by monitoring the lambda value provided by a lambda sensor. But other methods by which the actual amount of fuel that has entered the combustion chamber can be determined can also be used.
  • the inventive method in which the deviation is quantified in the form of an error injection quantity and the characteristic curve of the injection valve is adapted accordingly.
  • the operating range of the injection valve in which the fuel can be injected with high precision, extends into the smallest amount range, since valve-individual copy variations are compensated by the adaptation of the characteristic curve.
  • the complexity in the construction of the injection valve can also be reduced since the linearity of the characteristic curve is no longer of such great importance due to the adaptation taking place in operation anyway. Also needed for the control of the injector power amplifier can be designed easier. This Everything is expressed directly in a reduction of the manufacturing costs.
  • the duration of the measuring injection at least reaches a lower limit.
  • the resolution can be increased if a total injection comprises several equally long injection-molded parts.
  • This fault may be, for example, a short circuit of a winding layer of a magnetic coil, which is an actuator of the Injection valve heard. Especially very short injection periods of an injector are particularly affected by such a short circuit.
  • Figure 1 is a schematic representation of a
  • Figure 2 is a diagram in which a characteristic of the
  • Injector of Figure 1 which combines an opening period with an injected amount of fuel
  • FIG. 3 shows a diagram which shows possible deviations of the injected fuel quantity from the characteristic curve shown in FIG. 2 with short opening periods;
  • FIG. 4 shows a flowchart for explaining the method for adapting the characteristic curve of FIG. 2;
  • FIG. 5 shows a diagram in which the opening state of the injection valve of FIG. 1 during a
  • FIG. 6 shows a diagram in which correction values for the
  • Valve characteristic of Figure 2 are plotted at different injection durations.
  • An internal combustion engine carries in FIG. 1 in its entirety the reference numeral 10. It comprises a plurality of cylinders with a plurality of combustion chambers, of which only one is shown in FIG. 1 with the reference numeral 12. Via an inlet valve 14, the combustion chamber 12 can be connected to a suction pipe 16. In the present exemplary embodiment, this fuel is injected via an injection valve 18. However, the operating principles and methods described below are also applicable to internal combustion engine with direct fuel injection, for example, gasoline direct injection. In the suction pipe 16, a throttle valve 20 is further arranged. The current flowing in the intake manifold 16 air mass is detected in the present exemplary embodiment of an air mass sensor 22.
  • the present in the combustion chamber 12 fuel-air mixture is ignited by a spark plug 24.
  • Hot combustion exhaust gases pass from the combustion chamber 12 via an exhaust valve 26 into an exhaust pipe 28.
  • a catalyst 30 is arranged and a lambda probe 32, which detects a lambda value by which the fuel-air mixture in the combustion chamber 12 is characterized.
  • a fuel quantity Q injected from the injection valve 18 into the intake manifold 16 is influenced, above all, by the injection duration ti of the injection valve 18, with constant fuel pressure.
  • the relationship between injection duration ti and injected fuel quantity Q which, as can be seen from Figure 2, is expressed by a characteristic 34, in a wide operating range of the injection valve 18 is linear.
  • the characteristic curve 34 is stored in a control and regulating device 36 (FIG
  • Injector 18 but also the throttle valve 20 and the spark plug 24 depending on various sensor signals, such as the signals of the lambda probe 32 and the air mass sensor 22, controls.
  • the injection valve 18 Due to production-related specimen scattering from one injection valve to the other, the injection valve 18 at short injection times ti or small injection quantities Q on a non-linear behavior.
  • the corresponding area is shown dotted in FIG. 2 and denoted by 38.
  • a smaller quantity of fuel Q is injected in this area than would correspond to the linear characteristic curve 34.
  • deviations in the other direction are also conceivable, that is, the injection of a larger amount of fuel, even if this is not shown explicitly in FIG.
  • the deviations dQ occurring in different copies of the same injection valve are plotted in FIG. 3 over the injection duration ti.
  • Deviations up to an injection duration ti G are less than 10%. At even smaller injection durations ti, however, the deviations are significantly greater.
  • an adaptation method for the characteristic curve 34 is used, which will now be explained in detail with reference to FIGS. 4 to 6 (this method is stored as a computer program on a storage device of the control and regulation device 36): First, the internal combustion engine is brought into a precisely defined operating state. In this, the internal combustion engine must have a certain operating temperature, an adaptation of a lambda control must be completed, it may be in the control and
  • Control device 36 must be entered no error, the voltage of a vehicle electrical system must have a certain minimum value, etc. Furthermore, the method is performed when the internal combustion engine is in idle. This "preparation" of the internal combustion engine 10 is carried out in the flowchart shown in FIG. 4 in a step 40 which directly follows the starting step 42.
  • Base injection amount and a measurement injection quantity divided This is done by dividing a total injection duration titot into a basic injection duration tiB and a measurement injection duration tiM.
  • the injection duration ti is simplified by a delay time without fuel input and an effective opening time with constant fuel input. In the delay time of the opening and closing operation of the injection valve 18 are taken into account. In the present exemplary embodiment, the delay time is set to zero for the sake of simplicity. This is also evident from FIG. 5, where a total injection with dead, a measurement injection with M, and a base injection with B are designated.
  • the total injection quantity with Qtot, the measurement injection quantity with QM and the base injection quantity with QB are designated there.
  • the injection duration tiB for introducing the base injection amount and the injection duration tiM for introducing the measurement injection quantity are for the Process start is selected in a range of the valve characteristic 34, in which it can be assumed with high probability that the deviations of the injected fuel quantity from the injection quantity according to the valve characteristic are low. In order to be able to realize this while idling, it may be necessary to increase the air charge in the combustion chamber 12. For this purpose, for example, the ignition angle can be adjusted to late.
  • the measuring injection duration tiM is now reduced by a fixed value DELTA and the base injection duration tiB is increased by the same fixed value DELTA. This is successively in a process loop or a
  • Time step n based on the values of the previous process loop or the previous time step n-1 performed.
  • a method step 48 it is checked whether the measurement injection duration tiM n is less than a limit value Gl. If so, that ends
  • Lambda value determined. From this, in turn, an error injection quantity dQ n is determined in a block 54, and from this finally in a block 56 a corresponding error injection duration dti n .
  • This is based on the following idea: By increasing the base injection duration tiB and the absolute reduction in the meter injection duration tiM in block 46, the total injection quantity Qtot would have to remain the same according to the characteristic curve 34. If the injection valve 18 thus behave according to the characteristic curve 34, the actual mixture would have to follow the setpoint Mixture correspond, the deviation d ⁇ n in block 52 should therefore be zero.
  • a smaller quantity of fuel is injected from injection valve 18 at injection times ⁇ ti G than would correspond to characteristic curve 34.
  • the actual metered injection quantity therefore drops in relation to the metering quantity QM according to characteristic curve 34.
  • the actual total injection quantity is also smaller than the total injection quantity Qtot according to characteristic curve 34.
  • the error injection duration dti n ascertained in block 56 is the injection duration by which the injection duration tiB n would have to be increased so that the actual mixture corresponds to the solute mixture.
  • a correction value VKK n is formed in 58 for the time step n, with which the valve characteristic 34 has to be corrected, so that even very small injection quantities can be injected with high precision.
  • the correction value VKK n is added to the basic injection duration tiB n in 62.
  • the meter injection duration tiM n remains unchanged in accordance with block 46. It is then checked in 64 whether the deviation d ⁇ n is now smaller than a limit value G2. If this is not the case, an iteration is triggered in block 66, by means of which the deviation of the actual mixture from the desired mixture is reduced by varying the error injection duration dti in FIG. 56 until, in 64, the lambda deviation d ⁇ n is smaller than the limit G2 is. Thereafter, in 68, the next nozzle of the characteristic 34 is increased by raising the
  • Step payer i and a return jump 46 processed.
  • the correction characteristic curve 60 shown in FIG. 6 is expanded step by step until, in 48, the measurement injection duration tiM x falls below the limit value Gl. Then, as already stated above, the method ends in 50. Thereafter, if present, the next valve characteristic can be adapted. This is especially true for internal combustion engines with direct fuel injection, where successively all cylinders can be adapted.
  • the correction characteristic curve 60 is compared with a limit curve, and when exceeded a warning message is issued and / or an entry is made in a fault memory.
  • a very large change in the linearity of the characteristic 34 in the region of small injection quantities can be an indication of an error of the injection valve 18, for example, a short circuit of a winding layer of a solenoid, which belongs to an actuator of the injection valve 18.
  • the total injection duration titot was divided into a base injection duration tiB and a single injection duration tiM in FIG. 44.
  • a plurality of equally long injection molding can be discontinued. Accordingly, in Fig. 46, the value DELTA by which the base injection duration is prolonged has had to correspond to the sum of the reductions in the individual gauge injection durations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

La présente invention concerne un moteur à combustion interne (10) dans lequel le carburant arrive dans au moins une chambre de combustion (12) par l'intermédiaire d'au moins une soupape d'injection (18). Selon cette invention, le procédé consiste (a) à diviser une injection totale en une injection de base et en au moins une injection de mesure, puis, successivement, (b) à réduire la durée d'injection de l'injection de mesure et à augmenter la durée d'injection de l'injection de base de manière qu'une quantité d'injection totale déterminée à partir d'une courbe caractéristique de soupape reste constante.
EP06806836A 2005-10-28 2006-09-26 Procede pour faire fonctionner un moteur a combustion interne Withdrawn EP1945934A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005051701A DE102005051701A1 (de) 2005-10-28 2005-10-28 Verfahren zum Betreiben einer Brennkraftmaschine
PCT/EP2006/066758 WO2007048676A1 (fr) 2005-10-28 2006-09-26 Procede pour faire fonctionner un moteur a combustion interne

Publications (1)

Publication Number Publication Date
EP1945934A1 true EP1945934A1 (fr) 2008-07-23

Family

ID=37638025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06806836A Withdrawn EP1945934A1 (fr) 2005-10-28 2006-09-26 Procede pour faire fonctionner un moteur a combustion interne

Country Status (7)

Country Link
US (1) US7881857B2 (fr)
EP (1) EP1945934A1 (fr)
JP (1) JP2009513864A (fr)
KR (1) KR20080069972A (fr)
CN (1) CN101300416B (fr)
DE (1) DE102005051701A1 (fr)
WO (1) WO2007048676A1 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006044771B4 (de) 2006-09-22 2019-03-28 Robert Bosch Gmbh Verfahren und Steuergerät zur Bestimmung eines Fehlers einer Einspritzmenge eines mit einer Ansteuerdauer angesteuerten Einspritzstellgliedes eines Verbrennungsmotors
DE102007034335A1 (de) 2007-07-24 2009-01-29 Robert Bosch Gmbh Verfahren zur Bestimmung der eingespritzten Kraftstoffmasse einer Voreinspritzung
DE102007034337A1 (de) * 2007-07-24 2009-01-29 Robert Bosch Gmbh Verfahren zur Bestimmung der eingespritzten Kraftstoffmenge
DE102007042994A1 (de) * 2007-09-10 2009-03-12 Robert Bosch Gmbh Verfahren zum Beurteilen einer Funktionsweise eines Einspritzventils bei Anlegen einer Ansteuerspannung und entsprechende Auswertevorrichtung
DE102008006327A1 (de) * 2008-01-28 2009-07-30 Robert Bosch Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
DE102008006674B4 (de) 2008-01-30 2020-08-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine mit Benzin-Direkteinspritzung
DE102008006673B4 (de) 2008-01-30 2020-08-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine mit Benzin-Direkteinspritzung
DE102008024546B3 (de) * 2008-05-21 2010-01-07 Continental Automotive Gmbh Verfahren zur injektorindividuellen Anpassung der Einspritzzeit von Kraftfahrzeugen
DE102008002121B4 (de) * 2008-05-30 2010-11-04 Robert Bosch Gmbh Verfahren und Steuergerät zur Kalibrierung eines Einspritzventils einer Brennkraftmaschine, Computerprogramm und Computergrogrammprodukt
DE102008040227A1 (de) * 2008-07-07 2010-01-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Druckwellenkompensation bei zeitlich aufeinander folgenden Einspritzungen in einem Einspritzsystem einer Brennkraftmaschine
DE102008040626A1 (de) * 2008-07-23 2010-03-11 Robert Bosch Gmbh Verfahren zur Bestimmung der eingespritzten Kraftstoffmasse einer Einzeleinspritzung und Vorrichtung zur Durchführung des Verfahrens
US8239119B2 (en) * 2009-06-02 2012-08-07 GM Global Technology Operations LLC Method and system for adapting small fuel injection quantities
US8755988B2 (en) * 2010-02-17 2014-06-17 GM Global Technology Operations LLC Method for metering a fuel mass using a controllable fuel injector
JP5187537B2 (ja) * 2010-06-25 2013-04-24 株式会社デンソー 内燃機関の燃料噴射制御装置
DE102010036485B3 (de) * 2010-07-19 2011-12-22 Ford Global Technologies, Llc. Verfahren und Vorrichtung zur Steuerung eines Verbrennungsmotors
US20120080536A1 (en) * 2010-10-05 2012-04-05 GM Global Technology Operations LLC Method for controlling a fuel injector
DE102010044165A1 (de) 2010-11-19 2012-05-24 Robert Bosch Gmbh Verfahren zur Bestimmung eines Zusammenhangs zwischen Einspritzdauer und Einspritzmenge bei einem Injektor einer Brennkraftmaschine
DE102010063344B4 (de) 2010-12-17 2023-03-23 Robert Bosch Gmbh Verfahren zum koordinierten Durchführen einer Anzahl von Injektorkalibrierungsvorgängen
DE102011083033A1 (de) * 2011-09-20 2013-03-21 Robert Bosch Gmbh Verfahren zur Beurteilung eines Einspritzverhaltens wenigstens eines Einspritzventils einer Brennkraftmaschine und Betriebsverfahren für Brennkraftmaschine
DE102011087961A1 (de) * 2011-12-08 2013-06-13 Robert Bosch Gmbh Verfahren zum Lernen einer minimalen Ansteuerdauer von Einspritzventilen eines Verbrennungsmotors
DE102012200275B4 (de) * 2012-01-11 2016-10-20 Continental Automotive Gmbh Ermitteln eines Bewegungsverhaltens eines Kraftstoffinjektors basierend auf dem Bewegungsverhalten in einem eine Mehrfacheinspritzung aufweisenden modifizierten Betriebszustand
DE102012201083A1 (de) 2012-01-25 2013-07-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP2014066136A (ja) * 2012-09-24 2014-04-17 Mazda Motor Corp エンジンの制御装置
DE102013222603A1 (de) * 2013-11-07 2015-05-07 Robert Bosch Gmbh Verfahren zum Erkennen eines Fehlers im Öffnungsverhalten eines Injektors
GB2539902B (en) * 2015-06-29 2020-07-22 Gm Global Tech Operations Llc A method of correcting a standard characteristic curve of a standard fuel injector of an internal combustion engine
DE102015214780A1 (de) 2015-08-03 2017-02-09 Continental Automotive Gmbh Verfahren zur Erkennung fehlerhafter Komponenten eines Kraftstoffeinspritzsystems
GB2533464A (en) * 2015-10-20 2016-06-22 Gm Global Tech Operations Llc Method of operating a fuel injector of an internal combustion engine
US10330040B2 (en) * 2016-06-14 2019-06-25 Ford Global Technologies, Llc Method and system for air-fuel ratio control
KR20180067335A (ko) 2016-12-12 2018-06-20 현대오트론 주식회사 인젝터 열림시간 학습영역을 결정하는 방법
JP2018193915A (ja) * 2017-05-17 2018-12-06 マツダ株式会社 ディーゼルエンジンの燃料噴射制御方法及び燃料噴射制御装置
DE102022209727B4 (de) 2022-09-16 2024-03-28 Vitesco Technologies GmbH Verfahren zum Betreiben eines Kraftstoff-Einspritzsystems eines Verbrennungsmotors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855447B2 (ja) 1998-03-31 2006-12-13 いすゞ自動車株式会社 エンジンの燃料噴射制御装置
EP1082533B1 (fr) * 1998-05-26 2002-08-28 Mecel AB Systeme et procede permettant de commander l'injection de carburant de moteurs a combustion
US6125823A (en) * 1999-05-27 2000-10-03 Detroit Diesel Corporation System and method for controlling fuel injections
EP1318288B1 (fr) * 2001-12-06 2017-09-06 Denso Corporation Système d'injection de carburant pour moteur à combustion interne
JP4089244B2 (ja) * 2002-03-01 2008-05-28 株式会社デンソー 内燃機関用噴射量制御装置
FR2851616A1 (fr) * 2003-02-21 2004-08-27 Delphi Technologies Procede de reglage de l'impulsion electrique de commande d'un injecteur
FR2857700B1 (fr) * 2003-07-16 2005-09-30 Magneti Marelli Motopropulsion Procede de determination en temps reel de la caracteristique de debit d'injecteur de carburant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007048676A1 *

Also Published As

Publication number Publication date
US20090299604A1 (en) 2009-12-03
DE102005051701A1 (de) 2007-05-03
JP2009513864A (ja) 2009-04-02
US7881857B2 (en) 2011-02-01
WO2007048676A1 (fr) 2007-05-03
CN101300416A (zh) 2008-11-05
KR20080069972A (ko) 2008-07-29
CN101300416B (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
EP1945934A1 (fr) Procede pour faire fonctionner un moteur a combustion interne
DE102007028900B4 (de) Verfahren und Vorrichtung zur Diagnose eines mit einer Kraftstoffverteilerleiste in Verbindung stehenden Einspritzventils einer Brennkraftmaschine
DE19945618B4 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
EP0828070B1 (fr) Dispositif et procédé de commande d'un moteur à combustion interne
EP1716331B1 (fr) Procede de synchronisation des cylindres en termes de quantites d'injection de carburant dans un moteur thermique
DE102008001241A1 (de) Sauerstoffsensor-Abgabekorrekturgerät für eine Brennkraftmaschine
DE10003906A1 (de) Verfahren und Vorrichtung zum Kalibrieren eines Drucksensors
DE102006019894B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102010064184A1 (de) Verfahren zum Betrieb einer Einspritzanlage für eine Brennkraftmaschine
DE102008042933B4 (de) Verfahren und Vorrichtung zum Dosieren von in einen Brennraum eines Verbrennungsmotors einzuspritzendem Kraftstoff
WO2009013058A1 (fr) Procédé de détermination de la masse de carburant injecté lors d'une pré-injection
DE102011079436B3 (de) Verfahren und Vorrichtung zur Steuerung eines variablen Ventiltriebs einer Brennkraftmaschine
DE102011006752A1 (de) Verfahren und Vorrichtung zur Steuerung eines variablen Ventiltriebs einer Brennkraftmaschine
DE102009055120B4 (de) Verfahren zum Überprüfen einer Funktion eines Aktuators bzw. eines Sensors, Verfahren zum Kalibrieren eines Aktuators bzw. eines Sensors sowie entsprechende Vorrichtung
EP1431557A2 (fr) Procédé d'équilibrage des cylindres
DE10133555A1 (de) Verfahren zum zylinderindividuellen Abgleich der Einspritzmenge bei Brennkraftmaschinen
DE102016219577B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007034337A1 (de) Verfahren zur Bestimmung der eingespritzten Kraftstoffmenge
DE102006061683A1 (de) Verfahren zur Bestimmung der eingespritzten Kraftstoffmenge
DE102005036956A1 (de) Kalibrierung eines Einspritzventils im Betrieb
DE102007058234A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102009053423A1 (de) Verfahren und Vorrichtung zur Einspritzung eines alternativen Kraftstoffes
DE102006030192A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1844228B1 (fr) Procede et dispositif permettant de commander un moteur a combustion interne
DE102004054372B3 (de) Verfahren und Vorrichtung zum Bestimmen eines Kraftstoffmassenstroms bei einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20091111

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180404