EP1942730A1 - Polyalkoxylat-haltige feste pflanzenschutzmittel, verfahren zu ihrer herstellung und ihre verwendung - Google Patents

Polyalkoxylat-haltige feste pflanzenschutzmittel, verfahren zu ihrer herstellung und ihre verwendung

Info

Publication number
EP1942730A1
EP1942730A1 EP06807635A EP06807635A EP1942730A1 EP 1942730 A1 EP1942730 A1 EP 1942730A1 EP 06807635 A EP06807635 A EP 06807635A EP 06807635 A EP06807635 A EP 06807635A EP 1942730 A1 EP1942730 A1 EP 1942730A1
Authority
EP
European Patent Office
Prior art keywords
composition according
weight
fluid
molecular weight
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06807635A
Other languages
English (en)
French (fr)
Inventor
Reiner Kober
Reinhold Stadler
Karl-Otto Westphalen
Thomas Christen
Michael Krapp
Karl-Friedrich Jäger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1942730A1 publication Critical patent/EP1942730A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the invention relates to solid plant protection products with liquid or low-melting polyalkoxylates, to processes for their preparation and to the use of the plant protection agents for the treatment of plants and their habitat, and to corresponding processes, and also spray mixtures which contain such a plant protection agent.
  • Plant pests can not only cause crop failure on a large scale, endangering human nutrition, but also destroy the vegetative parts of perennial crops, sustainably disrupting agricultural land and whole ecosystems.
  • Plant pests belong to different groups of organisms. Among higher animals, there are numerous important pests, especially among insects and mites, and nematodes and snails; Vertebrates such as mammals and birds are of lesser importance in industrialized countries today. Many groups of microbes, including fungi, bacteria including mycoplasmas, viruses and viroids, can cause crop failure and loss of value; Even basically edible products are often no longer available for aesthetic reasons. Finally, weeds, which compete with crops for scarce habitat and other resources, are also pests in the wider sense.
  • Parasitic fungi are of particular importance as pests. Mildew is feared in horticulture, ergot (Claviceps) endangers humans and animals by its toxic alkaloids, and historical damage to the European potato stocks by Phytophthora infestans in the mid-19th century, which led to famine and political unrest.
  • plant protection products substances and substance mixtures are summarized, which can be used for the specific fight of plant pests.They can be divided into target organisms (insecticides, fungicides, herbicides, etc.), according to the type of action (feeding toxins, contact poisons, quenching agents, etc.) or chemi
  • target organisms insecticides, fungicides, herbicides, etc.
  • type of action feeding toxins, contact poisons, quenching agents, etc.
  • chemi chemi
  • plant-damaging fungi due to the resistance of fungal spores and the absence of natural
  • the only effective measure is to combine control with care, and to maximize the effect of fungicides locally so as not to harm symbiotic fungi (mycorrhizal fungi) in other places.
  • Plant protection products can be pure substances, but compositions are advantageous in many cases.
  • Such compositions may contain, in addition to or directly to the pests acting substance or substances (hereinafter referred to as crop protection agent) different types of accompanying and auxiliary substances that enhance the desired effect in different ways (in the literature then mostly “additives”, “Adjuvants”, “accelerators”, “boosters” or “enhancers”), which may simplify handling, increase the shelf life or otherwise improve the product's properties one or more excipients.
  • pesticides are dissolved, emulsified or dispersed in an aqueous medium so as to obtain the aqueous spray mixture known as "tank mix", which is then applied to the plants or their habitat by the so-called spraying method - be selected to obtain a suitable tank mix.
  • effect-promoting additives is generally based on their interfacial activity against the hydrophobic plant surface, which improves the contact of the spray mixture with the plant surface.
  • wetting agents, spreaders, and permeabilizers which naturally overlap
  • additive without physical details is used to denote enhancers of agrochemical active substances, in particular pesticides.
  • Nonionic, hydrophobic alkoxylates are known as suitable additives for various crop protection agents, especially fungicides.
  • liquid pesticides are used primarily in liquid formulations, which include solutions, emulsions, suspensions, suspoemulsions and other forms.
  • EP 707445 B1 shows relatively stable suspoemulsions.
  • liquid pesticides have a number of disadvantages: there is a risk of leakage and seepage in the soil during use. Storage and transport are more complicated because the solvent must be transported along or be stored, and containers for liquid pesticides - such as containers or canisters - cause disposal problems, since a simple combustion is generally not possible. The stability of liquid pesticides against heat, cold and shear forces and thus their storage stability is low and requires expensive emulsifier and stabilizer additives.
  • Solid pesticides especially those based on non-dusting solid granules, offer significant advantages over liquid pesticides in terms of application, storage, transport, stability and disposal of packaging.
  • conventional solid pesticides can only absorb small amounts of liquid, oil-like or low-melting additives, such as the alkoxylates, as otherwise they would cause sticking and clumping of the granules.
  • liquid, oil-like or low-melting additives such as the alkoxylates
  • sorbents also called “carriers”
  • mineral especially silicate-based, additives which improve the mechanical properties of the composition and prevent the granules from clumping during the process
  • mineral sorbents have a tendency to form very fine-grained powders and dusts, which in turn causes problems during production and processing and in particular necessitates expensive safety technology, especially in the field of respiratory protection in that the solid constituents can also develop undesired effects after application.
  • No. 6,239,115 B1 describes granules with the active ingredient polyoxin and naphthalenesulfonic acid-formaldehyde condensates as dispersants.
  • typically only 2% of polyoxyethylene alkyl ethers were incorporated into the granules.
  • DE 102 17 201 describes low-dust granules with up to 9% of alkyl sulfonates and / or polyglycols.
  • the polyglycols are generally not suitable enhancers because they are purely water-soluble and not surface-active.
  • GB 1291251 describes granules with only up to 5% of anionic and nonionic surfactants, but up to 50% of calcium lignosulfonates.
  • EP 843 964 B1 essentially describes extrusion granules with up to 10% of tristyrylphenyl polyethoxylates, mineral carrier systems ("carriers") being used as in US Pat. No. 6,416,775 B1, for example, diatomaceous earth is disclosed in US Pat. No. 6,416,775 B1 or also in US Pat (Diatomaceous earth), in particular Celite products, used as sorbing agents.
  • carriers mineral carrier systems
  • WO 93/05652 a solution for the production of herbicidal granules with so-called activators is shown. If fatty alcohol ethoxylates are used, then in the granules high levels of mineral sorbents or carriers based on silicate. The latter have the above-mentioned disadvantages.
  • liquid or low-melting polyalkoxylates combined in suitable amounts with relatively high molecular weight sulfonates, are capable of yielding advantageous solid pesticides, in particular granules.
  • An object of the present invention is therefore a crop protection agent comprising a solid pesticide which: a) liquid or low melting polyalkoxylate; and b) a carrier based on high molecular weight sulfonate, wherein
  • the weight ratio of liquid or low melting polyalkoxylate to crop protection agent is at least 1: 2;
  • the plant protection agent according to the invention therefore comprises in addition to the active ingredient (component (e)) basically two components:
  • polyalkoxylate component which is liquid or low melting by itself and consists of a polyalkoxylate or a mixture of several polyalkoxylates
  • an inherently solid support component comprising one or more higher molecular weight sulfonates.
  • the proportion of liquid or low-melting polyalkoxylate based on the amount of active ingredient is at least 0.5, preferably at least 1 and in particular at least 2.
  • the level of liquid or low melting polyalkoxylate is at least 15 percent by weight, based on the total weight of the composition, and at least 30 percent, based on the total weight of the higher molecular weight sulfonates.
  • the proportion of liquid or low-melting polyalkoxylate may also be greater than the proportion of higher molecular weight sulfonate, but at most up to a weight ratio of 3: 1.
  • the carrier component (b) usually comprises predominantly higher molecular weight sulfonate.
  • liquid refers to the liquid state of matter at normal pressure and a temperature in the range from 20 to 30 ° C.
  • a low-melting polyalkoxylate generally has a melting point of less than 40 ° C., in particular less than 30 ° C.
  • the polyalkoxylate to be used is olefinic.
  • the term "oily” refers to a viscous, greasy, greasy physical consistency; chemically, the substance may be lipophilic, hydrophilic, or amphiphilic. "As a rule, the polyalkoxylates are amphiphilic.
  • the polyalkoxylates according to the invention basically comprise a hydrophobic or lipophilic part and one or more polymeric alkoxylate parts (polyalkoxylate or macrogol parts), the or each individual polyalkoxylate part being linked for example via an amide, ether or ester bond with the hydrophobic or lipophilic part is linked.
  • polymer is composed of at least two, in particular at least three, more particularly from 3 to 1000, low molecular weight units These units may all be identical to one another, resulting in a monotone polymer or comprising at least two different alkylene oxide species.
  • each case a plurality of alkylene oxide units of one type as a block, so that the structural elements of the polymer are at least two different alkylene oxide blocks, each consisting of a monotonic series of identical alkylene oxide units (block polymer or block copolymer
  • block polymer or block copolymer If such block alkoxylates are used, it is preferred that the alkylene oxide part be composed of 2 or 3 and in particular 2 blocks. mentag. If the polyalkoxylate part comprises various blocks, then those which are closer to the hydrophobic or lipophilic part are referred to as "proximal", the more remote ones are referred to as “distal” and the terminal ones are termed “terminal.”
  • polyalkoxylates can be found among the alkoxylated fatty alcohols, alkoxylated fatty acid esters, alkoxylated fatty amines, alkoxylated glycerides, alkoxylated sorbitan esters, alkoxylated alkylphenols and alkoxylated di- and tristyrylphenyls, the alkylphenols preferably being alkylated several times, in particular twice or three times.
  • the polyalkoxylates may also be end-group modified, i. the terminal OH group of the alkoxylate part is modified, for example etherified or esterified.
  • Suitable end-group-modified polyalkoxylates include in particular alkylated, alkenylated or arylated polyalkoxylates, preferably those having a methyl or tert-butyl group or a phenyl group, or polyalkoxylate esters, e.g. Mono- or diphosphate esters or sulfate esters, and their salts, for example the alkali metal or alkaline earth metal salts.
  • Such end group modification can be carried out for example with dialkyl sulfate, Ci_io-alkyl halide or phenyl halide.
  • At least part of the alcohol polyalkoxylates to be used is known per se.
  • WO 01/77276 and US Pat. No. 6,057,284 and EP 0 906 150 describe suitable alcohol polyalkoxylates.
  • the description of these alcohol polyalkoxylates in these references is hereby incorporated by reference, whereby the alcohol polyalkoxylates disclosed therein and also their preparation are part of the present disclosure.
  • alcohol polyalkoxylates are present under alcohol polyalkoxylates according to the formula (I)
  • R 6 is an organic radical
  • R 7 is an aliphatic hydrocarbon radical having 3 to 100 carbon atoms
  • n, p independently of one another represent an integer from 2 to 6, preferably 2, 3, 4 or 5;
  • x, y, z independently represent a number from 0 to 1000;
  • x + y + z corresponds to a value of 2 to 1000.
  • the aliphatic hydrocarbon radical is usually hydrophobic or lipophilic, whereby the alcohol polyalkoxylates get their oil-like properties.
  • R 7 is a branched or linear hydrocarbon radical having 3 to 30 and preferably 5 to 24 carbon atoms, which may be saturated (in particular C 3-3 o-alkyl) or unsaturated (in particular C 3 _ 3 o-alkenyl).
  • the organic radical (R 6 ) typically contributes less than 10% and preferably less than 5% to the molecular weight of the alcohol polyalkoxylate of the formula (I) and is preferably hydrogen, alkyl, preferably di-alkyl, particularly preferably methyl or tert-butyl, alkenyl, preferably C 2-io-alkenyl, acyl, especially acetyl, propionyl, butyryl or benzoyl, aryl, particularly phenyl, or an inorganic acid group, in particular phosphate, diphosphate or sulfate.
  • the alcohol polyalkoxylates to be used according to the invention are ethoxylated or have at least one ethylene oxide block.
  • ethylene oxide blocks are combined in particular with propylene oxide or pentylene oxide blocks.
  • the ratio of EO to PO (x to y) is preferably 1: 1 to 4: 1 and in particular 1: 5: 1 to 3: 1.
  • the degree of ethoxylation (value of x) is generally 1 to 20, preferably 2 to 15 and in particular 4 to 10
  • the degree of propoxylation (value of y) is generally 1 to 20, preferably 1 to 8 and in particular 2 to 5.
  • the total degree of alkoxylation, ie the sum of EO and PO units, is generally 2 to 40, preferably 3 to 25 and in particular 6 to 15.
  • the ratio of EO to PeO (x to y) is preferably 2: 1 to 25: 1 and in particular 4: 1 to 15: 1.
  • the degree of ethoxylation (value of x) is generally 1 to 50, preferably 4 to 25 and in particular 6 to 15, the degree of pentoxylation (value of y) is generally 0.5 to 20, preferably 0.5 to 4 and in particular 0.5 to 2.
  • Theylonalkoxyl michsgrad, ie the sum of EO and PeO units is usually 1.5 to 70, preferably 4.5 to 29 and especially 6.5 to 17.
  • these are EO-type alcohol polyalkoxylates in which the EO block is bound distally and another polyalkoxylate block is interposed between it and the alkyl moiety.
  • the degree of ethoxylation (value of y) is generally 1 to 20, preferably 2 to 15 and in particular 4 to 10
  • the degree of propoxylation (value of x) is generally 0.5 to 10, preferably 0.5 to 6 and in particular 1 to 4.
  • the Strategicalkoxyl istsgrad, ie the sum of EO and PO units, is usually 1, 5 to 30, preferably 2.5 to 21 and especially 5 to 14.
  • These are alcohol polyalkoxylates of the PeO type.
  • the degree of pentoxylation (value of x) is generally 0.5 to 20, preferably 0.5 to 4 and in particular 0.5 to 2
  • the degree of ethoxylation (value of y) is usually 3 to 50, preferably 4 to 25 and in particular 5 to 15.
  • the Automatalkoxyl istsgrad, ie the sum of EO and PeO units is usually 3.5 to 70, preferably 4.5 to 45 and in particular 5.5 to 17.
  • the alcohol polyalkoxylates are not end-group-modified, ie R 6 is hydrogen.
  • the alcohol moiety of the alcohol polyalkoxylates is based on known alcohols or alcohol mixtures having 5 to 30, preferably 8 to 20 and in particular 9 to 15 carbon atoms.
  • fatty alcohols having about 8 to 20 carbon atoms may be mentioned here.
  • Many of these fatty alcohols are known to be used for the preparation of nonionic and anionic surfactants, for which the alcohols of a corresponding functionalization, e.g. by alkoxylation or glycosidation.
  • the alcohol part can be straight-chain, branched or cyclic. If it is linear, particular mention should be made of alcohols having 14 to 20, for example 16 to 18, carbon atoms. If it is branched, so has a particular embodiment, according to the
  • Main chain of the alcohol moiety usually 1 to 4 branches, wherein also alcohols with higher or lower degree of branching can be used in combination with other Alko- holalkoxylaten as long as the average number of branches of the mixture in the specified range.
  • the alcohol part can be saturated or unsaturated. If it is unsaturated, it has, according to a particular embodiment, a double bond.
  • the branches of the alcohol part independently of each other have 1 to 10, preferably 1 to 6 and in particular 1 to 4 carbon atoms. Particular branches are methyl, ethyl, n-propyl or isopropyl groups.
  • Suitable alcohols and in particular fatty alcohols are both from natural sources, for example by recovery and required or if desired, by hydrolysis, transesterification and / or hydrogenation of glycerides and fatty acids, as well as by a synthetic route, for. B. by construction of educts with a lower number of carbon atoms available. So you get z.
  • the alkoxylation results from the reaction with suitable alkylene oxides.
  • suitable alkylene oxides Depending on the chosen for the reaction amounts of alkylene oxide (s) and the reaction conditions, the respective degree of alkoxylation results. This is usually a statistical average as the number of alkylene oxide units of the alcohol polyalkoxylates resulting from the reaction varies.
  • alcohol polyalkoxylates can be bestimmmt by the molar ratio of alcohol to alkylene oxide.
  • Alcohol polyalkoxylates having from about 2 to 100, preferably from about 2 to 50, in particular from 3 to 30, especially from 4 to 20 and especially from 5 to 15, alkylene oxide units are preferred.
  • reaction of the alcohols or alcohol mixtures with the alkylene oxide (s) is carried out by customary methods known to the person skilled in the art and in conventional formulations.
  • the alkoxylation reaction can be catalyzed by strong bases such as alkali hydroxides and alkaline earth hydroxides, Brönsted acids or Lewis acids such as AICI 3 , BF 3, etc.
  • strong bases such as alkali hydroxides and alkaline earth hydroxides, Brönsted acids or Lewis acids such as AICI 3 , BF 3, etc.
  • catalysts such as hydrotalcite or DMC can be used.
  • the alkoxylation is preferably carried out at temperatures in the range of about 80 to 250 ° C, preferably about 100 to 220 ° C.
  • the pressure is preferably between ambient pressure and 600 bar.
  • the alkylene oxide may be an inert gas admixture, e.g. From about 5 to 60%.
  • the alcohol polyalkoxylates to be used according to the invention are based on primary, a-branched alcohols of the formula
  • R 10 , R 11 are independently hydrogen or dC 26 alkyl.
  • R 10 and R 11 independently of one another are C 1 -C 6 -alkyl and in particular C 2 -C 4 -alkyl.
  • alcohol polyalkoxylates are used whose alcohol part is 2-propylheptanol.
  • These include, in particular, alcohol polyalkoxylates of the formula (I) in which R 7 is a 2-propylheptyl radical, ie R 10 and R 11 in formula (IV) are each n-propyl.
  • Such alcohols are also referred to as Guerbet alcohols. These can be obtained, for example, by dimerization of corresponding primary alcohols (eg R 10 11 -
  • CH 2 CH 2 OH at elevated temperature, for example 180 to 300 ° C, in the presence of an alkaline condensing agent such as potassium hydroxide, are obtained.
  • an alkaline condensing agent such as potassium hydroxide
  • EO-type alkoxylates are used.
  • ethoxylates whose degree of ethoxylation is 2 to 50, preferably 2 to 20 and in particular about 3 to 10.
  • ethoxylated 2-propylheptanols should be mentioned.
  • alcohol polyalkoxylates are used whose alcohol part is a C 13 -oxo alcohol.
  • Ci 3 2 hydrocarbons are obtainable by hydroformylation and subsequent hydrogenation of unsaturated Ci, in particular by hydrogenation of hydroformylated trimerbutene or by hydrogenation of hydroformylated dimerhexene.
  • C 3 -oxo alcohol usually referred to an alcohol mixture whose main component is at least one branched Ci3-alcohol (isotridecanol) is formed from.
  • Such alcohols include, in particular Ci 3 tetramethylnonanols, for example, 2,4,6,8-tetramethyl 1-nonanol or 3,4,6,8-tetramethyl-1-nonanol and also ethyldimethylnonanols such as 5-ethyl-4,7-dimethyl-1-nonanol.
  • Suitable C 3 alcohol mixtures can generally be obtained by hydrogenation of hydroformylated trimeric butene. In particular, you can
  • the buttrimerization preceding hydrogenation may be by homogeneous or heterogeneous catalysis.
  • C 13 is in one or more separation steps - alcohol mixtures by hydroformylation and hydrogenation of suitable C 2 olefin fraction isolated (step 2).
  • Suitable separation devices are the usual apparatuses known to the person skilled in the art.
  • the Ci3 alcohol mixture according to the invention for use as component (a) can be obtained pure by customary purification methods known to the person skilled in the art, in particular by fractional distillation.
  • Ci invention alcohol mixtures generally have an average degree of branching of from 1 to 4., preferably from 2.0 to 2.5, and particularly 2.1 to 2.3 (based on trimeric butene) or 1, 3 to 1 , 8 and in particular 1, 4 to 1, 6 (based on dimer hexene).
  • the degree of branching is defined as the number of methyl groups in a molecule of the alcohol minus 1.
  • the mean degree of branching is the statistical mean of the degrees of branching of the molecules of a sample.
  • the average number of methyl groups in the molecules of a sample can easily be determined by 1 H NMR spectroscopy. For this, the signal area corresponding to the methyl protons in the 1 H-NMR spectrum of a sample is divided by 3 and related to the divided by two signal surface of the methylene protons in the CH 2 -OH group.
  • the degree of ethoxylation of the present invention to be used ethoxylated Ci 3 - oxo alcohols is generally from 1 to 50, preferably 3 to 20 and especially 3 to 10, especially 4 to 10 and preferably 5 to 10 degrees.
  • the degrees of alkoxylation of the EO / PO block alkoxides to be used according to the invention depend on the arrangement of the blocks. If the PeO blocks are arranged terminally, then the ratio of EO units to PeO units is generally at least 1, preferably 1: 1 to 4: 1 and in particular 1, 5: 1 to 3: 1.
  • the degree of ethoxylation is generally 1 to 20, preferably 2 to 15 and especially 4 to 10, the degree of propoxylation usually 1 to 20, preferably 1 to 8 and in particular 2 to 5.
  • Theylonalkoxyl michsgrad ie the sum of EO and As a rule, PO units are from 2 to 40, preferably from 3 to 25, and in particular from 6 to 15. If the EO blocks are arranged terminally, however, the ratio of PO blocks to EO blocks is less critical and is generally 1 : 10 to 3: 1, preferably 1: 1, 5 to 1: 6.
  • the degree of ethoxylation is generally 1 to 20, preferably 2 to 15 and in particular 4 to 10, the degree of propoxylation is usually 0.5 to 10, preferably 0.5 to 6 and in particular 1 to 4.
  • Thenikalkoxyl michsgrad is usually 1.5 to 30, preferably 2.5 to 21 and especially 5 to 14.
  • alcohol polyalkoxylates are used whose alcohol part is a Cio-oxo-alcohol.
  • C 10 -oxoalcohol is analogous to the already explained term “C 3 -oxoalcohol” for C 10 -alcohol mixtures, the main component of which is formed from at least one branched C 10 -alcohol (iso-decanol).
  • C 0 can be obtained by hydrogenation of hydroformylated trimeric propene alcohol mixtures.
  • the degree of ethoxylation of the present invention to be used ethoxylated Ci 0 - oxo alcohols is generally from 2 to 50, preferably 2 to 20 and especially 2 to 10, especially 3 to 10 and especially 3 to 10.
  • the degrees of alkoxylation of the EO / PeO block alkoxylates to be used according to the invention depend on the arrangement of the blocks. If the PO blocks are arranged terminally, then the ratio of EO units to PO units is generally at least 1, preferably 2: 1 to 25: 1 and in particular 4: 1 to 15: 1.
  • the degree of ethoxylation is generally 1 to 50, preferably 4 to 25 and especially 6 to 15, the Pentoxyl michsgrad usually 0.5 to 20, preferably 0.5 to 4 and in particular 0.5 to 2.
  • Thenikalkoxyltechniksgrad, d , H. the sum of EO and PeO units is generally 1.5 to 70, preferably 4.5 to 29 and in particular 6.5 to 17.
  • the ratio of PeO blocks is less critical to EO blocks and is usually 1: 50 to 1: 3, preferably 1: 25 to 1: 5.
  • the degree of ethoxylation is generally 3 to 50, preferably 4 to 25 and in particular 5 to 15, the degree of pentoxylation usually 0.5 to 20, preferably 0.5 to 4 and in particular 0.5 to 2.
  • Theylonalkoxyl istsgrad amounts to usually 3.5 to 70, preferably 4.5 to 45 and in particular 5.5 to 17.
  • the alkoxylates to be used according to the invention generally have a relatively low contact angle. Particular preference is given to alkoxylates whose contact angle is less than 120 ° and preferably less than 100 °, if this is determined by a ner 2 wt .-% alkoxylate-containing, aqueous solution is determined on a paraffin surface in a conventional manner.
  • the surface-active properties of the polyalkoxylates depend on one aspect of the type and distribution of the polyalkoxylate grouping.
  • the surface tension, which can be determined by the pendant drop method, of the polyalkoxylates to be used according to the invention is preferably in a range of 25 to 70 mN / m and in particular 28 to 50 mN / m for a solution containing 0.1% by weight of polyalkoxylate, in a range of 25 up to 70 mN / m and in particular 28 to 45 mN / m for a 0.5 wt .-% polyalkoxylate-containing solution.
  • Polyalkoxylates preferably to be used according to the invention therefore qualify as amphiphilic substances.
  • Typical commercial products of the formula (I) are familiar to the person skilled in the art. They are z. BASF offers them under the common brand name of "Lutensole", whereby, depending on the basic alcohol, Lutensole of the series A, AO, AT, ON, AP and FA is differentiated For example, “Lutensol AO 8" is a C13-15 oxo-alcohol with eight EO units. "Lutensol ED” stands for a range of alkoxylated amines.
  • polyalkoxylates are products of the company Akzo, z.
  • “Ethylan SN 120” is a CIO 12 alcohol with ten EO units
  • “Ethylan 4 S” is a C 2- 14 Alcohol with four EO units.
  • polyalkoxylates according to the invention are also the "NP" products from Akzo (formerly Witco) based on nonylphenols
  • Nonylphenol alkoxylates or analogous monoalkylphenol alkoxylates and their derivatives are not preferred for use in Europe, since European regulatory authorities assess them critically with respect to their potential endocrine disrupting effects, in which case non-critical di- or polyalkyl-substituted aryl or polyarylalkoxylates are preferred for Europe.
  • polyalkoxylates are castor oil ethoxylates (ricineal oil EO ⁇ ), z. B. products of Akzo's "Emulphon CO” or “Emulphon EL” product series, such as “Emulphon CO 150" with 15 EO units, or “E” products.
  • thomee “series based on coconut oil amines or tallow oil amines (" tallow oil amines "), eg. B. "Ethomee C / 25", a coconut fatty amine with 25 EO units.
  • Alkoxylates according to the invention also include so-called “narrow range” products.
  • the term “narrow ranks” here refers to a narrower distribution of the number of EO units. These include z.
  • sorbitan ester ethoxylates eg. B. "Armotan AL 69-66 POE (30) sorbitan monotallate", ie an esterified with sorbitol and then ethoxylated unsaturated fatty acid.
  • component (a) It is also possible to use mixtures of different polyalkoxylates as component (a).
  • the agent contains at least 20 wt .-%, preferably at least 25 wt .-% and in particular at least 30 wt .-% alkoxylate.
  • the agent contains at most 70% by weight, preferably at most 60% by weight and in particular at most 45% by weight. Alkoxylate.
  • carrier component (b) it is generally possible to use solid, relatively high molecular weight, for example polymeric or macromolecular, organic sulfonates.
  • sulfonate here stands for a salt which is composed of sulfonate anions and suitable cations.
  • the higher molecular weight sulfonate is water-soluble.
  • the sulfonates according to the invention can be introduced in dissolved form, preferably as aqueous concentrates, in the preparation of the solid pesticides, whereby they function particularly effectively as carriers of component (a) ,
  • Suitable higher molecular weight sulfonates generally have a weight-average molecular weight (determined by gel permeation calibrated by means of polystyrenesulfonates). Chromatography) of at least about 1 kDa, preferably of at least about 2.5 and in particular of at least about 5 kDa, for example a weight average molecular weight of about 6-7 kDa (eg "Tamol NN" series), or of about 20 kDa (eg "Tamar NH” series).
  • suitable higher molecular weight sulfonates have, for example, a number average molecular weight (as determined by polystyrene sulfonate calibrated gel permeation chromatography) of about 1 kDa (eg, "Tamol NN” series), or about 2 kDa (eg. B. "Tamol NH” series), so that the polydispersion index of suitable higher molecular weight sulfonates usually in a range of about 2 to 20 and preferably in a range of 5 to 15, for example at about 6 (z. Eg "Tamol NN” series), or about 20 (eg "Tamol NH” series).
  • a number average molecular weight as determined by polystyrene sulfonate calibrated gel permeation chromatography
  • suitable higher molecular weight sulfonates are, for example, a bulk density of about 450 - about 550 g / 1 for solids or a density of about 1, 17 - about 1, 23 g / ml and a viscosity of about 20 - approx . 80 mPa s ⁇ for liquids as well as a neutral to alkaline behavior (pH in aqueous solution ca. 7-10).
  • lignosulfonates are used.
  • Lignosulfonates are prepared from lignin, which in turn is produced in plants, especially woody plants, by polymerization from three types of phenylpropanol monomers:
  • the first step in the construction of the macromolecular lignin structure is the enzymatic dehydrogenation of these monomers to form phenoxyl radicals. Possible coupling reactions between these radicals result in a three-dimensional, amorphous polymer which, unlike most other biopolymers, does not have regularly ordered or repeating units. For this reason, no defined lignin structure can be named, although various models for an "average" structure have been proposed.
  • Lignins from softwoods, deciduous trees and grasses differ in their content of guaiacyl (3-methoxy-4-hydroxyphenyl), syringyl (3,5-dimethoxy-4-hydroxyphenyl) and 4-hydroxyphenyl -Units.
  • Coniferous lignins consist mainly of coniferyl alcohol, while hardwood lignins consist of guaiacyl and syringyl units in various ratios, with deciduous trees having a much more variable lignin composition than softwoods.
  • the methoxyl content of typical hardwood lignins varies between 1.20 and 1.52 methoxyl groups per phenylpropane unit.
  • Herbaceous plant lignins generally have a low content of syringylpropanes, with a ratio of methoxyl: Cg units below 1.
  • the composition of lignin also depends on age, e.g. For poplars, the ratio of syringyl to guaiacyl in mature xylem is higher than in younger xy- lers or phloem, and of the morphological place of lignin in cell wall.
  • age e.g. For poplars, the ratio of syringyl to guaiacyl in mature xylem is higher than in younger xy- lers or phloem, and of the morphological place of lignin in cell wall.
  • the lignin in the secondary cell wall of fibrous cells consists mainly of syringyl units, while in mid-lobes and cell angles of the fibers, it mainly comprises guaiacyl units.
  • Lignin from wood under tension in deciduous trees in the upper parts of branches and branches, contains more syringylpropane units than lignin from normal wood; wood under pressure, in coniferous trees in the lower parts of the branches and branches, however, is richer in 4-hydroxyphenyl units.
  • More than two thirds of the phenylpropane units in lignin are linked by ether bonds, the rest by carbon-carbon bonds.
  • lignin The chemical behavior of lignin is determined mainly by the presence of phenolic, benzylic and carbonylic hydroxyl groups, the frequency of which may vary depending on the factors mentioned above and the isolation method.
  • Lignosulfonates are formed as by-products of pulp production under the influence of sulphurous acid, which causes sulphonation and a degree of demethylation of the lignins.
  • sulphurous acid which causes sulphonation and a degree of demethylation of the lignins.
  • lignins Like the lignins, they are diverse in structure and composition. In water, they are soluble in the entire pH range, but insoluble in ethanol, acetone and other common organic solvents.
  • Lignosulfonates are only slightly surface-active. They have little tendency to reduce the interfacial tension between liquids and are not suitable for reducing the surface tension of the water or for micelle formation. As dispersing agents, they can function by adsorption / desorption and charge formation of substrates. However, their surface activity can be increased by incorporation of long-chain alkylamines into the lignin structure.
  • lignosulfonates Methods for the isolation and purification of lignosulfonates are familiar to the person skilled in the art.
  • the Howard process precipitates calcium lignosulfonates by adding excess lime to spent sulfite leaching.
  • Lignin sulfonates can also be isolated by forming insoluble quaternary ammonium salts with long-chain amines.
  • ultrafiltration and ion exchange chromatography can be used to purify lignosulfonates.
  • Lignosulfonate series useful in the present invention are commercially available under various trade names, e.g. Ameri-Bond, Dynasperse, KeNg, Lignosol, Marasperse, Norlig (Daishowa Chemicals), Lignosite (Georgia Pacific), Reax (MEAD Westvaco), Wafolin, Wafex, Wargotan, Wanin, Wargonin (Holmens), Vanillex (Nippon Paper), Vanisperse , Vanicell, Ultrazine, Ufoxane (Borregaard), Serla-Bondex, Serla-Con, Serla-Pon, Serla-Sol (Serlachius), Collex, Zewa (Wadhof-Holmes), Raylig (ITT Rayonier).
  • trade names e.g. Ameri-Bond, Dynasperse, KeNg, Lignosol, Marasperse, Norlig (Daishowa Chemicals), Lignosite (
  • synthetic polymeric sulfonates are used as component (b). It is again particularly preferred in this case if the higher molecular weight sulfonate is a condensation product based on a sulfonated aromatic, an aldehyde and / or ketone, and optionally a compound selected from undulfonated aromatics, urea and urea derivatives.
  • the sulfonated aromatic is selected from naphthalenesulfonic acids, indansulfonic acids, tetralinsulfonic acids, phenolsulfonic acids, di- and polyhydroxybenzenesulfonic acids, sulfonated ditolyl ethers, sulfomethylated 4,4'-dihydroxydiphenylsulfones, sulfonated diphenylmethane, sulfonated biphenyl, sulfonated hydroxybiphenyl, sulfonated terpenyl and benzenesulfonic acids.
  • aldehyde and / or the ketone is / are selected from aliphatic C 1 -C 5 -aldehydes or C 3 -C 5 -ketones. Again, it is particularly preferred if the aliphatic CrC 5 aldehyde is formaldehyde.
  • non-sulfonated aromatic is chosen from phenol, cresol and dihydroxydiphenylmethane. It is further particularly preferred if the urea derivative is selected from dimethylolurea, melamine and guanidine.
  • the condensation product comprises repeat units of the formula (IIa):
  • R 8 is hydrogen, one or more hydroxyl groups, or one or more C 1-8 alkyl radicals
  • q1 corresponds to a value of 100 to 10 10
  • A is methylene, 1, 1-ethylene or a group of the formulas
  • A is methylene. It is also preferred, when R 8 is hydrogen -4 alkyl or up to 3 Ci -8 alkyl radicals, for example 1 or 2 Ci.
  • the condensation product comprises repeat units of the formula (III):
  • R 9 is hydrogen, one or more hydroxyl groups or one or more d- ⁇ -alkyl radicals
  • q2 corresponds to a value of 100 to 10 10 ;
  • A is methylene, 1, 1-ethylene or a group of the formulas
  • R 9 is a hydroxyl group.
  • the sulfonate is selected from condensation products of phenolsulfonic acid, formaldehyde and urea.
  • condensation products comprise repeat units of the formula (IIIa):
  • q2 corresponds to a value of 100 to 10 10 .
  • a further embodiment of relatively high molecular weight sulfonates is provided by copolymers CP composed of ethylenically unsaturated monomers M, wherein the monomers M ⁇ ) constituting the copolymer CP comprise at least one monoethylenically unsaturated monomer M1 which has at least one sulfonic acid group, and ß) comprise at least one neutral, monoethylenically unsaturated monomer M2.
  • copolymers CP are usually so-called random copolymers, i. the monomers M1 and M2 are randomly distributed along the polymer chain. In principle, alternating copolymers CP and block copolymers CP are also suitable.
  • the monomers M constituting the copolymer CP comprise at least one monoethylenically unsaturated monomer M1 which has at least one sulfonic acid group.
  • the proportion of the monomers M1 in the monomers M is generally 1 to 90% by weight, frequently 1 to 80% by weight, in particular 2 to 70% by weight and especially 5 to 60% by weight on the total monomers M out.
  • Suitable monomers M1 are in principle all monoethylenically unsaturated monomers which have at least one sulfonic acid group.
  • the monomers M1 can be present both in their acid form and in the salt form.
  • the specified parts by weight refer to the acid form.
  • Examples of monomers M1 are styrenesulfonic acid, vinylsulfonic acid, allylsulfonic acid, methallylsulfonic acid and the monomers defined by the following general formula V and the salts of the abovementioned monomers.
  • n 0, 1, 2 or 3, in particular 1 or 2;
  • X is O or NR 15;
  • R 12 is hydrogen or methyl
  • R 13 , R 14 independently of one another are hydrogen or C 1 -C 4 -alkyl, in particular hydrogen or methyl and R 15 is hydrogen or C 1 -C 4 -alkyl, in particular hydrogen.
  • Examples of monomers M1 of the general formula (V) are 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamido-2-methylpropanesulfonic acid, 2-acrylamidoethanesulfonic acid, 2-methacrylamidoethanesulfonic acid, 2-acryloxethanesulfonic acid, 2-methacryloxethanesulfonic acid, 3 -Acryloxypropanesulfonic acid and 2-methacryloxypropanesulfonic acid.
  • the monomers CP constituting the copolymer CP comprise at least one neutral monoethylenically unsaturated monomer M2.
  • Neutral means that the monomers M2 have no functional group which reacts acidically or basicly in the aqueous or is present in ionic form.
  • the total amount of the monomers M2 usually makes 10 to 99 wt .-%, often 20 to 99 wt .-%, in particular 30 to 98 wt .-% and especially 40 to 95 wt .-%, based on the total weight of the monomers M.
  • Examples of monomers M2 are those with limited water solubility, e.g. B. a water solubility below 50 g / l and especially below 30 g / l (at 20 ° C and 1013 mbar) and those having an increased water solubility, e.g. a water solubility ⁇ 50 g / l, in particular ⁇ 80 g / l (at 20 ° C and 1013 mbar).
  • Monomers with limited water solubility are also referred to below as monomers M2a.
  • Monomers with increased water solubility are also referred to below as monomers M2b.
  • Examples of monomers M2a are vinylaromatic monomers such as styrene and styrene derivatives such as ⁇ -methylstyrene, vinyltoluene, ortho-, meta- and para-methylstyrene, ethylvinylbenzene, vinylnaphthalene, vinylxylene and the corresponding halogenated vinylaromatic monomers, ⁇ -olefins having 2 to 12 C atoms such as ethene, propene, 1-butene, 1-pentene, 1-hexene, isobutene, diisobutene and the like, dienes such as butadiene and isoprene, vinyl esters of aliphatic C 1 -C 8 -carboxylic acids such as vinyl acetate, vinyl propionate, Vinyl laurate and vinyl stearate, vinyl halides such as vinyl chloride, vinyl fluoride, vinylidene chloride, vinylidene fluoride, mono-
  • the monomers M2a selected from vinylaromatic monomers, esters of acrylic acid with C 2 -C 0 alkanols, such as ethyl acrylate, n-butyl acrylate, 2-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, esters of acrylic acid are preferred with C 4 -Cio cycloalkanols such as cyclohexyl acrylate, esters of acrylic acid with phenyl-dC 4 - alkanols such as benzyl acrylate, 2-phenylethyl acrylate and 1-phenylethyl acrylate, esters of acrylic acid with phenoxy-dC 4 alkanols such as 2-phenoxyethyl, the esters of methacrylic acid C 1 -C 10 -alkanols, in particular with C 1 -C 6 -alkanols, such
  • Neutral monoethylenically unsaturated monomers having increased water solubility or even water miscibility are known to the person skilled in the art, for example from Ullmann's Encyclopedia of Industrial Chemistry, "Polyacrylates", 5th ed. On CD-ROM, Wiley-VCH, Weinheim 1997.
  • Typical monomers M2b are hydroxylated C 2 -C 4 -alkyl esters of monoethylenically unsaturated monocarboxylic acids, in particular of acrylic acid and of methacrylic acid, such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl methacrylate, furthermore amides of monoethylenically unsaturated monocarboxylic acids such as acrylamide, methacrylamide, furthermore acrylonitrile and methacrylonitrile, N-vinyllactams such as N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylamides of aliphatic dC 4 -mono
  • the monomers M2b are selected from hydroxy-CrC 4 alkyl esters of acrylic acid and of methacrylic acid, acrylamide, methacrylamide, acrylonitrile, N-vinyl lactams, said hydroxy-C 2 -C 4 alkyl esters of acrylic acid and methacrylic acid particularly preferred ,
  • the monomers M2b comprise at least 80% by weight, based on the total amount of the monomers M2b, of at least one hydroxy-C 2 -C 4 -alkyl ester of acrylic acid and / or methacrylic acid.
  • the monomers M2 comprise at least one of the abovementioned monomers M2a, which has a solubility below 50 g / l and especially below 30 g / l at 20 ° C. in water.
  • the proportion of monomers M2a to the copolymer CP constituent monomers M is typically in the range of 10 to 99 wt .-%, often in the range of 20 to 99 wt .-%, in particular in the range of 30 to 98 wt .-% and especially in the range from 40 to 95% by weight, based on the total weight of monomers M.
  • the monomer M2a is sole or nearly sole monomer M2 and constitutes at least 95% by weight and in particular at least 99% by weight of the monomers M2.
  • the monomers M2 comprise, in addition to the monomer M2a, at least one monomer M2b which has a solubility of at least 50 g / l and especially at least 80 g / l at 20 ° C in water.
  • the monomers M constituting the copolymer CP include, in addition to the monomer M1, both at least one of the aforementioned monomers M2a, in particular at least one of the preferred monomers M2a and at least one of the aforementioned monomers M2b, in particular at least one of the monomers mentioned as preferred M2b.
  • the total amount of the monomers M1 + M2b is 90% by weight, in particular 80% by weight and especially 70% by weight, based on the total amount of the monomers M, in particular in the range of 10 to 90 wt .-%, in particular in the range of 20 to 80 wt .-% and especially in the range of 30 to 70% by weight, based on the total amount of the monomers M.
  • the monomers M2a often at least 10 wt .-%, in particular at least 20 wt .-% and especially at least 30 wt .-%, for example 10 to 90 wt .-%, in particular 20 to 80 wt .-%, and especially 30 to 70 Wt .-%, based on the total amount of the monomers M, from.
  • the monomers M1 preferably make 1 to 80% by weight, in particular 2 to 70% by weight and particularly preferably 5 to 60% by weight, the monomers M2a preferably 10 to 90% by weight. , in particular 20 to 80 wt .-% and particularly preferably 30 to 70 wt .-%, and the monomers M2b preferably 5 to 89 wt .-%, in particular 10 to 78 wt .-% and particularly preferably 20 to 65 Gew. %, based on the total amount of monomers M out.
  • copolymers CP whose constituent monomers M as monomers M1 comprise at least one monomer of the formula (V), as monomers M2a at least one selected from esters of acrylic acid with C 2 -C 10 -alkanols and esters of methacrylic acid with C 1 -C 10 -alkanols Monomer and as monomer M2b at least one monomer selected from hydroxy-C 2 -C 4 -alkyl esters of acrylic acid and methacrylic acid.
  • V monomer of the formula (V)
  • monomers M2a at least one selected from esters of acrylic acid with C 2 -C 10 -alkanols and esters of methacrylic acid with C 1 -C 10 -alkanols
  • monomer M2b at least one monomer selected from hydroxy-C 2 -C 4 -alkyl esters of acrylic acid and methacrylic acid.
  • the monomers M which constitute the copolymer may also comprise further monomers M3 other than the monomers M1 and M2.
  • the proportion of the monomers M3 in the total amount of the monomers M is preferably not more than 40 wt .-%, in particular not more than 20 wt .-% of.
  • the monomers comprise no or not more than 3% by weight, especially not more than 1% by weight of monomers M3 other than monomers M1 and M2.
  • the monomers M3 include monoethylenically unsaturated monomers having at least one carboxylic acid group, in particular monoethylenically unsaturated mono- and dicarboxylic acids having 3 to 6 carbon atoms (monomers M3a) such as acrylic acid, methacrylic acid, vinylacetic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid and the like, and Anhydrides of the aforementioned monoethylenically unsaturated dicarboxylic acids, wherein the proportion of the monomers M3a usually 20 wt .-% and in particular 10 wt .-%, based on the total amount of monomer M does not exceed.
  • monomers M3a such as acrylic acid, methacrylic acid, vinylacetic acid, crotonic acid, fumaric acid, maleic acid, itaconic acid and the like
  • Anhydrides of the aforementioned monoethylenically unsaturated dicarboxylic acids wherein the proportion of
  • the monomers M3 furthermore include polyethylenically unsaturated monomers (M3b).
  • the proportion of such monomers M3 will generally be not more than 2% by weight and in particular not more than 0.5% by weight, based on the total amount of monomers M.
  • vinyl and allyl esters of monoethylenically unsaturated carboxylic acids such as allyl acrylate and allyl methacrylate
  • di- and polyacrylates of diol polyols such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, butanediol diacrylate, butanediol dimethacrylate, hexanediol diacrylate, hexanediol dimethacrylate, triethylene glycol diacrylate, triethylene glycol trimethacrylate, tris (hydroxymethyl) ethane triacrylate and trimethacrylate, pentaerythritol triacrylate and trimethacrylate, and allyl and methallyl esters of polyfunctional carboxylic acids, such as diallyl maleate, diallyl fumarate, diallyl phthalate.
  • Typical monomers M3b are also compounds such as divinylbenzene, di-vinylurea, diallylurea, triallyl cyanurate, N, N'-divinyl and N, N'-diallylimidazolidin-2-one, as well as methylenebisacrylamide and methylenebismethacrylamide.
  • copolymers CP which have a number average molecular weight M n in the range from 1000 to 500,000 daltons, in particular 2,000 to 50,000 daltons and especially 5,000 to 20,000 daltons are also preferred.
  • the weight-average molecular weight is often in the range of 2,000 to 1,000,000 daltons, in particular 4,000 to 100,000 daltons and especially 10,000 to 50,000 daltons.
  • the ratio MJM n is often in the range of 1, 1: 1 to 10: 1, in particular in the range of 1, 2: 1 to 5: 1.
  • PMMA polymethylmethacrylate
  • the copolymer of the invention will have a glass transition temperature T g in the range of -80 to 160 ° C and often in the range of -40 ° C to + 100 ° C.
  • the glass transition temperature T g is understood here to be the midpoint temperature determined by differential thermal analysis (DSC) in accordance with ASTM D 3418-82 (compare Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A 21, VCH Weinheim 1992, page 169 and Zosel , Paint and varnish 82 (1976), pp. 125-134, see also DIN 53765).
  • copolymers CP according to the invention are known from PCT / EP 04/01 1797 or can be prepared by conventional methods by radical polymerization of the monomers M.
  • the polymerization can be carried out by free radical polymerization or by controlled radical polymerization.
  • the polymerization is carried out using one or more initiators and can be carried out as a solution polymerization, as an emulsion polymerization, as a suspension polymerization or as a precipitation polymerization or in bulk.
  • the polymerization can be carried out as a batch reaction, in a semicontinuous or continuous procedure.
  • the reaction times are generally in the range between 1 and 12 hours.
  • the temperature range in which the reactions can be carried out is generally from 20 to 200 ° C, preferably from 40 to 120 ° C.
  • the polymerization pressure is of minor importance and can be in the range of atmospheric pressure or slight negative pressure, for. > 800 mbar or at overpressure, e.g. to 10 bar, with higher or lower pressures can also be applied.
  • initiators for the radical polymerization customary radical-forming substances are used. Preference is given to initiators from the group of the azo compounds, the peroxide compounds or the hydroperoxide compounds. Examples which may be mentioned are acetyl peroxide, benzoyl peroxide, lauroyl peroxide, tert-butyl peroxy-isobutyrate, caproyl peroxide, cumene hydroperoxide, 2,2'-azobis-isobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis [2 -methyl-N - (- 2-hydroxyethyl) propionamide, 1,1'-azobis (1-cyclohexanecarbonitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (N, Particular preference is given to azobisisobutyronitrile (AIBN).
  • AIBN azobisisobutyronitrile
  • the initiator is customarily employed in an amount of 0.02 to 5% by weight and in particular 0.05 to 3% by weight, based on the amount of .alpha Monomers M.
  • the optimum amount of initiator naturally depends on the initiator system used and can be determined by the person skilled in the art in routine experiments be submitted in the reaction vessel.
  • the main amount of the initiator in particular at least 80%, z. B. 80 to 100% of the initiator in the course of the polymerization in the polymerization reactor.
  • the molecular weight of the copolymers CP by adding regulators in a small amount, for. B. 0.01 to 5 wt .-%, based on the polymerizing monomers M can be adjusted.
  • Particularly suitable regulators are organic thio compounds, e.g. Mercapto alcohols such as mercaptoethanol, mercaptocarboxylic acids such as thioglycolic acid, mercaptopropionic acid, alkyl mercaptans such as dodecyl mercaptan, furthermore allyl alcohols and aldehydes into consideration.
  • the preparation of the copolymers CP is carried out by free-radical solution polymerization in a solvent.
  • solvents are water, alcohols, such as. Methanol, ethanol, n-propanol and isopropanol, dipolar aprotic solvents, e.g. B.
  • N-alkyl lactams such as N-methylpyrrolidone (NMP), N-ethylpyrrolidone, wieterhin dimethyl sulfoxide (DMSO), N, N-dialkylamides of aliphatic carboxylic acids such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide, further aromatic, aliphati - and cycloaliphatic hydrocarbons which may be halogenated, such as hexane, chlorobenzene, toluene or benzene.
  • Preferred solvents are isopropanol, methanol, toluene, DMF, NMP, DMSO and hexane, particularly preferred is DMF.
  • the sulfonates contain cations in stoichiometric amount.
  • suitable cations are alkali metal cations such as Na + or K + , alkaline earth metal ions such as Ca 2+ and Mg 2+ , furthermore ammonium ions such as NH 4 + , tetraalkylammonium cations such as tetramethylammonium, tetraethylammonium and tetrabutylammonium, furthermore protonated primary, secondary and tertiary amines, especially such that 1, 2 or 3 radicals selected from -C 2 -alkyl groups and hydroxyethyl carry, for example, the protonated forms of mono-, di- and tributylamine, propylamine, min Diisopropyla-, hexylamine, dodecylamine, oleylamine, stearylamine, ethoxylated oleylamine , eth
  • the sulfonate is an ammonium, alkali metal, alkaline earth metal or transition metal sulfonate. It is particularly preferred in each case when the alkali metal is sodium or potassium, the alkaline earth metal is calcium or magnesium and the transition metal is copper.
  • component (b) It is also possible to use mixtures of different sulfonates as component (b).
  • Suitable sulfonates are familiar to the expert and z. B. under the name “Toram and” Setamol "available from BASF.
  • sulfonic acid-containing polymers which are in principle suitable as component (b) are also mentioned in EP 707445.
  • the crop protection agent contains at least 15% by weight, preferably at least 25% by weight and in particular at least 30% by weight, of relatively high molecular weight sulphonate.
  • the crop protection agent contains at most 80 wt .-%, preferably at most 70 wt .-% and in particular at most 55 wt .-% higher molecular weight sulfonate.
  • the crop protection agents according to the invention contain relatively high amounts of polyalkoxylate. Based on the amount of higher molecular weight sulfonate, it is preferred that the weight ratio of liquid or low melting polyalkoxylate to higher molecular weight sulfonate is at least 3:10, preferably at least 1: 3, and more preferably 1: 2. However, the ratio of liquid or low melting polyalkoxylate to higher molecular weight sulfonate should not be more than 3: 1, preferably not more than 2: 1.
  • part of the sulfonate in the carrier component (b) may be replaced by inorganic solid.
  • Suitable inorganic solids in the carrier component (b) are, in particular, those which are normally used in solid pesticides to take in liquid or low-melting, in particular oily, auxiliaries, such as the present invention These are in particular inorganic solids which are able to adsorb said excipients (sorbents) Suitable inorganic solids are generally sparingly soluble in water or insoluble in water, ie for dissolving a part of inorganic substances At least 100 solids, generally at least 1000 and in particular at least 10000 parts of water, are required at 20 ° C. The sparingly soluble or even water-insoluble inorganic solids may, however, be water-swellable.
  • the inorganic solids include, in particular, aluminum oxide-based substances, in particular aluminum oxide and bauxite, silicon dioxide-based substances, in particular silicates and silicate minerals, especially diatomaceous earths (kieselguhr, diatomite), silicic acids, pyrophyllite, talc, mica and clays such as kaolinite, bentonite, montmorillonite and attapulgite.
  • some inorganic salts such as alkaline earth metal carbonates, in particular calcium carbonates (lime, chalk) and magnesium carbonates and calcium magnesium carbonates, and alkaline earth metal sulfates, in particular calcium sulfates (for example, gypsum) come into question.
  • silicates are the products of the Sipernat series (Degussa), in particular Sipernat 22S or 5OS, which can typically be used for this purpose.
  • the proportion of the abovementioned inorganic solids which are suitable as component (b2) can, however, according to the invention, be chosen to be comparatively low, since essentially the relatively high molecular weight sulfonates function as carriers of the polyalkoxylates. In addition, avoiding high levels of inorganic solids, there are further advantages.
  • the weight-based proportion of the higher molecular weight sulfonate to the component (b) is usually greater than the weight-based proportion of inorganic solid;
  • the weight ratio of higher molecular weight sulfonate to inorganic solid is preferably at least 2, preferably at least 5 and in particular at least 10.
  • the agent as a whole contains less than 10% by weight, in particular less than 5% by weight, of aluminum-based substances, and it is particularly preferred if the agent as a whole is substantially free of aluminum-based substances. It is also preferred if the agent contains less than 5% by weight in total, in particular less than 2% by weight of diatomaceous earth, and particularly preferred if the agent as a whole is substantially free of diatomaceous earths. It is also preferred that the agent contains less than 5% by weight in total, more preferably less than 1% by weight of kaolinite, and particularly preferred when the agent as a whole is substantially free of kaolinite. It is also preferred if the agent contains less than 5% by weight in total, in particular less than 1% by weight of bentonites, and particularly preferred if the agent as a whole is substantially free of bentonites.
  • the agent contains less than 7.5% by weight in total, more preferably less than 1.5% by weight of clays, and particularly preferred if the agent is substantially free of clays.
  • the agent contains less than 15% by weight in total, in particular less than 2% by weight of silicon dioxide-based substances, and particularly preferred if the agent is substantially free of silicon dioxide-based substances.
  • the agent contains in total less than 15% by weight, in particular less than 10% by weight and particularly preferably less than 5% by weight of the following inorganic solids: aluminum oxide-based substances, in particular aluminum oxide and bauxite, silicon dioxide-based substances, in particular Silicates and silicate minerals, especially diatomaceous earths (kieselguhr, diatomite), silicic acids, pyrophyllite, talc, mica and clays such as kaolinite, bentonite, montmorillonite and attapulgite.
  • aluminum oxide-based substances in particular aluminum oxide and bauxite
  • silicon dioxide-based substances in particular Silicates and silicate minerals, especially diatomaceous earths (kieselguhr, diatomite), silicic acids, pyrophyllite, talc, mica and clays such as kaolinite, bentonite, montmorillonite and attapulgite.
  • the agent contains less than 1% by weight total of sorbents, and particularly preferred when the agent as a whole is substantially free of sorbents.
  • the agent contains less than 5% by weight, in particular less than 1% by weight, of calcium carbonate, and particularly preferably if the agent as a whole is substantially free of calcium carbonate. Furthermore, it is also preferred if the agent in total less than 5 wt .-%, in particular we- containing less than 1% by weight of magnesium carbonate, and particularly preferred when the agent as a whole is substantially free of magnesium carbonate.
  • the agent contains in total less than 10% by weight, in particular less than 5% by weight and particularly preferably less than 1% by weight of the following inorganic solids: alkali metal and alkaline earth metal carbonates, in particular calcium carbonates (lime , Chalk) and magnesium carbonates and calcium magnesium carbonates, and alkali and alkaline earth metal sulfates, in particular calcium sulfates (eg gypsum).
  • alkali metal and alkaline earth metal carbonates in particular calcium carbonates (lime , Chalk) and magnesium carbonates and calcium magnesium carbonates
  • alkali and alkaline earth metal sulfates in particular calcium sulfates (eg gypsum).
  • the agent has a total of at most 15% by weight, preferably at most 10% by weight and in particular at most 5% by weight, eg. B. contains at most 1 wt .-% inorganic solid, and in particular when the carrier component (b) is substantially free of inorganic solid.
  • the present invention relates to a crop protection agent which, in addition to components a) and b), may comprise further auxiliaries as component c).
  • component (c) can serve many purposes. In general, therefore, component (c) consists of a combination of several substances with different functions and properties. The choice of suitable auxiliaries is carried out according to the requirements usually by a person skilled in the art.
  • surfactant refers to surfactants such as surfactants, dispersants, emulsifiers or wetting agents. In principle, anionic, cationic, amphoteric and nonionic surfactants are useful.
  • anionic surfactants examples include butyl alcohol, octyl octyl octyl octyl octyl octyl octyl octyl octyl octyl octyl octyl octyl octyl octyl octyl octyl-N
  • Carboxylates in particular alkali, alkaline earth and ammonium salts of fatty acids; glutamates; - Sarcosinates, e.g. Natriumlauroylsarkosinat;
  • Alkyl phosphates e.g., mono- and diphosphoric acid alkyl esters; Sulfate; - Monomeric sulfonates, especially alkyl and alkylarylsulfonates, especially
  • Protein hydrolysates and depleted lignin-sulphite waste liquors Protein hydrolysates and depleted lignin-sulphite waste liquors.
  • the cationic surfactants include, for example
  • Quaternary ammonium salts in particular alkyltrimethylammonium and di- alkyldimethylammonium halides and alkyl sulfates and pyridine and imidazoline derivatives, in particular alkylpyridinium halides.
  • the nonionic surfactants include in particular
  • Glycerol esters such as glycerol monostearate
  • Sugar surfactants in particular sorbitol esters, such as, for example, sorbitan fatty acid esters (sorbitan monooleate, sorbitan tristearate), and esters of monofunctional or polyfunctional alcohols, such as alkyl (poly) glycosides and N-alkylgluconamides; - alkylmethyl sulfoxides; - Alkyldimethylphosphinoxide, such as Tetradecyldimethylphosphino- xid;
  • AB - di-, tri- and multiblock polymers of the type (AB) x, ABA and BAB, e.g. Polystyrene block polyethylene oxide, and AB comb polymers, e.g. Polymethacrylate comb-polyethylene oxide and in particular ethylene oxide-propylene oxide block copolymers or their end-capped derivatives.
  • amphoteric surfactants examples include:
  • Phospholipids such as. As lecithin or chemically modified lecithins, - amino acid surfactants, z. N-lauryl glutamate, and homosurfactants and copolymers, e.g. Polyvinylpyrrolidone, polyacrylic acids in the form of their salts, polyvinyl alcohol, polypropylene oxide, polyethylene oxide, maleic anhydride-isobutene copolymers and vinylpyrrolidone-vinyl acetate copolymers.
  • Suitable wetting agents include: dioctylsulfosuccinate (eg "Pelex OTP”), dialkylsulfonimide (“Leophen RBD”), diisobutylnaphthalenesulfonate (“Nekal BX”), various alkylalkynols (“Surfynol", Bisterfeld), alkylarylphenol ethers - Phosphate ester (“Phospholan PNP”) and polyethylene glycol (“Pluriol”) and combinations of these substances.
  • Pelex OTP dialkylsulfonimide
  • Nekal BX diisobutylnaphthalenesulfonate
  • Nakal BX various alkylalkynols
  • Surfynol alkylarylphenol ethers - Phosphate ester
  • Phospholan PNP polyethylene glycol
  • Pluriol polyethylene glycol
  • the proportion of the surface-active auxiliary component (d) in the total weight of the composition is generally up to 25% by weight, preferably up to 20% by weight, especially up to 15% by weight, and especially up to 10 wt .-%, based on the total mass of the composition.
  • Such surface-active auxiliary components are z. T. contained in drug suspensions and preconcentrates, which are used in combination with the ingredients of the invention. Alternatively, they may be added separately in a suitable step of preparing the agent.
  • the antifoams include, in particular, those of the silicone type, for example, sold by the company Wacker Silicon SL and the like.
  • the anti-settling agents, retention aids, pH buffers and antidriping agents comprise a variety of possible substances. They are familiar to the expert.
  • antidusting agents As antidusting agents, supporting substances, polymers for improving the structure of granules, means for powdering, or polymeric flow improvers for granules Such agents are described in the prior art and familiar to those skilled in. Hydrophilic fumed silicas such as the Aerosil Brands (Degussa) can also act as auxiliaries and / or flow improvers ("antiblocking agents").
  • the proportion of the surface-active auxiliary component (c2) in the total weight of the composition is - if present - usually up to 15 wt .-%, preferably up to 10 wt .-% and in particular up to 5 wt .-%, based on the total mass of the agent.
  • Preferred chelating agents are heavy metal and especially transition metal complexing compounds, e.g. B. EDTA and its derivatives.
  • the proportion of component (c3) in the total weight of the composition is generally 0.001 to 0.5% by weight, preferably 0.005 to 0.2% by weight and in particular 0.01 to 0.1% by weight. %.
  • the agent contains a total of at most 60% by weight, preferably at most 45% by weight and in particular at most 30% by weight of further adjuvant (c).
  • the weight ratio of (a) and (b) to (c) is at least 3, preferably at least 5.
  • the present invention relates to a solid pesticide which, in addition to the components a), b) and optionally c) as component d) may comprise water-soluble inorganic salt.
  • An inorganic salt is water-soluble if less than 20 parts of water, in particular less than 10 parts of water, are required to dissolve one part of inorganic salt at 20 ° C.
  • Suitable water-soluble inorganic salt of component (d) are, in particular, those which are suitable for agricultural use, for example minerals and trace elements which can be used in plants.
  • Suitable water-soluble inorganic salts are found especially among alkali metal, and ammonium salts, particularly preferably sodium, potassium and ammonium sulfates, chlorides, carbonates, nitrates and phosphates, more preferably ammonium sulfate and ammonium hydrogen sulfate, and mixtures thereof.
  • component (d) consists essentially of ammonium sulfate.
  • the proportion of component (d) in the total weight of the composition can be up to 65% by weight.
  • their proportion of the total weight of the agent up to 50 wt .-%, preferably up to 28.5 wt .-% and particularly preferably up to 25 wt .-%, z. B. 0 wt .-% - 17.5 wt .-%.
  • Component (d) is particularly suitable as a solid basis for fluidized bed and fluidized bed granules. Accordingly, the water-soluble inorganic salt can serve as a core for the shaping process during the fluidized bed drying, since in the fluidized bed drying no de noi / o formation of defined particles from the fluid phase is possible without presenting a solid core attachment, or a fluidized bed process without the addition of solid cores does not lead to useful particle size distributions.
  • solid pesticides with relatively low proportions of component (d) represent a preferred embodiment.
  • the proportion of component (d) in the total agent is up to 0 to 10% by weight, preferably 0 to 5% by weight. and in particular 0 to 2 wt .-%, z. B. 0 wt .-% - 1 wt .-%.
  • the still present water-soluble inorganic salts one in the sense of the task of particular importance in the rule not. Typically, they are often included in the manufacturing process, ie they are incorporated together with other components of the invention.
  • the agent contains less than 5% by weight in total, more preferably less than 2% by weight of sodium chloride, and particularly preferred when the agent as a whole is substantially free of sodium chloride.
  • the agent contains less than 5% by weight in total, in particular less than 2% by weight of potassium chloride, and particularly preferably if the agent is substantially free of potassium chloride altogether.
  • the agent contains less than 5% by weight in total, in particular less than 2% by weight, of sodium carbonate, and particularly preferably if the agent as a whole is substantially free of sodium carbonate.
  • the agent contains less than 5% by weight in total, in particular less than 2% by weight of potassium hydrogen phosphate, and particularly preferred if the agent as a whole is substantially free from potassium hydrogen phosphate.
  • the agent contains less than 10% by weight in total, in particular less than 5% by weight and particularly preferably less than 1% by weight of the following water-soluble inorganic solids: alkali metal and alkaline earth metal halides, in particular sodium chloride and potassium chloride , Alkali metal sulfates, eg Sodium sulfate, alkali metal carbonates, e.g. Sodium carbonate, and alkali and alkaline earth metal phosphates, in particular potassium hydrogen phosphate.
  • alkali metal and alkaline earth metal halides in particular sodium chloride and potassium chloride
  • Alkali metal sulfates eg Sodium sulfate
  • alkali metal carbonates e.g. Sodium carbonate
  • alkali and alkaline earth metal phosphates in particular potassium hydrogen phosphate.
  • plant protection agent (pesticide) of the component (e) may be referred to any substance whose purpose or effect is to prevent the infestation of a plant by any pest or repel the pest, deter, destroy or otherwise caused by him To reduce damage.
  • plant pests may belong to different groups of animals; Among the higher animals, insects and mites in particular contain many important pests, as well as nematodes and snails; Vertebrates such as mammals and birds are of secondary importance in industrialized countries today. Numerous groups of microbes including fungi, bacteria including mycoplasmas, viruses and viroids include pests, and also weeds that compete with crops for scarce habitat and other resources may be counted among the pests in the broader sense.
  • pesticides include avicides, acaricides, desiccants, bactericides, chemosterilizers, defoliants, edible inhibitors, fungicides, herbicides, herbicidal safetics, insect attractants, insecticides, insect repellents, molluscicides, nematicides, mating disrupters, plant activators, plant growth regulators, rodenticides, mammalian quenchers, synergists , Bird deterrents and virucides.
  • pesticides include, in particular, acylalanic fungicides, acylamino acid fungicides, aliphatic amide organothiophosphate insecticides, aliphatic organothiophosphate insecticides, aliphatic nitrogen fungicides, amide fungicides, amide herbicides, anilide fungicides, anilide herbicides, inorganic fungicides, inorganic herbicides, inorganic rodenticides, antiauxins, antibiotic acaricides , antibiotics, fungicides, antibiotics herbicides, antibiotics insecticides, Antibiotikanematizide, Aromaten Acidfungizide, AromatenLiterenherbizide, arsenic herbicides, Arseninsektizi- de, Arylalaninherbizide, Aryloxyphenoxypropionchureherbizide, auxins Avermectina- carizide, Avermectininsektizide, Benz
  • the pesticide for use according to the invention is selected in particular from fungicides (e1), herbicides (e2) and insecticides (e3).
  • Fungicides include, for example, aliphatic nitrogen fungicides such as butylamine, cadmoxanil, dodicin, dodine, guazatine, iminoctadine; Amide fungicides, such as carpropamide, chloraniformethane, cyflufenamid, diclocymet, ethaboxam, fenoxanil, flumetover, fumaretpyr, mandipropamide, penthiopyrad, prochloraz, quinazamide, silthiofam, triforine; in particular acylamino acid fungicides, such as benalaxyl, benalaxyl-M, furalaxyl, meta-laxyl, metalaxyl-M, pefurazoate; Anilide fungicides, such as benalaxyl, benalaxyl-M, boscalid, carboxin, fenhexamide, metalaxy
  • fungicides (e1) include:
  • acylalanines such as benalaxyl, metalaxyl, ofurace, oxadixyl;
  • amine derivatives such as aldimorph, dodine, dodemorph, fenpropimorph, fenpropidin, guazatine, iminoctadine, spiroxamine, tridemorph;
  • Anilinopyrimidines such as pyrimethanil, mepanipyrimycinprodinil; 4. Antibiotics such as cycloheximides, griseofulvin, kasugamycin, natamycin, polyoxine and streptomycin;
  • Azoles azaconazole, bitertanol, bromoconazole, cyproconazole, dichlobutrazole, diffenoconazole, dinitroconazole, epoxiconazole, fenbuconazole, fluquinconazole, flulazole, flutriafol, ketoconazole, hexaconazole, metconazole, myclobutanil, pencanolazole, propiconazole, prothioconazole, tebuconazole, Tetraconazole, triadimefon,
  • dicarboximides such as iprodione, myclozoline, procymidone, vinclozolin;
  • Dithiocarbamates Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamate, Thiram, Ziram, Zineb; 8. heterocyclic compounds, such as anilazine, benomyl, boscalid, carbendazine, carboxin, oxycarboxine, cyazofamide, dazomet, dithianone, famoxadone, fenamidone, fenarimol, fuberidazole, flutolanil, furametpyr, isoprothiolanes, mepronil, nuarimol, probenazole, proquinazide, pyrifenox, Pyroquilon, quinoxyfen, silthiofam, thiabendazole, thiflucamide, thiophenate-methyl, tiadinil, tricyclamole, triforine;
  • heterocyclic compounds such as anilazine, benomyl, bo
  • Nitrophenyl derivatives such as binapacryl, dinocap, dinobutone, nitrophthalic-isopropyl; 10. phenylpyrroles such as fenpiclonil and fludioxonil;
  • Fungicides not belonging to any other class such as acibenzolar-S-methyl, benzothiavalicarb, carpropamid, chlorothalonil, cyflufenamid, cymoxanil, diclomethine, diclocymet, diethofencarb, edifenphos, ethaboxam, fenhexamid, fentin-
  • strobilurins as described in WO03 / 075663, e.g. Azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxy-strobin, pyraclostrobin and trifloxystrobin;
  • Sulfonates such as captafol, captan, dichlofluanid, folpet, tolylfluanid;
  • cinnamides and their analogues such as dimethomorph, flumetover, flumorph;
  • 6-Aryl- [1,2,4] triazolo [1,5-a] -pyrimidines e.g. in WO98 / 46608, WO99 / 41255 or WO03 / 004465, e.g. 5-chloro-7- (4-methylpiperidin-1-yl) -6- (2, 4,
  • Amide fungicides such as cyclofenamide, and (Z) -N- [ ⁇ - (cyclopropylmethoxyimino) -2,3-difluoro-6- (difluoromethoxy) benzyl] -2-phenylacetamide.
  • Herbicides (e2) include, for example, amide herbicides such as allidochlor, beflubutamide, benzadox, benzipram, bromobutide, cafenstrole, CDEA, chlorthiamide, cyprazole, dimethenamid, dimethenamid-P, diphenamid, epronaz, etnipromide, fentrazamide, flupoxam, fomesafen, halosafen, isocarbamide, Isoxaben, napropamide, naptalam, pethoxamide, propyzamide, quinone amide, tebutam; in particular anilide herbicides such as chloranocryl, cisanilide, clomeprop, cypromide, diflufenican, etobenzanide, fenasulam, flufenacet, flufenican, mefenacet, mefluidide, metamifop
  • herbicides (e2) include:
  • 1,1,3,4-thiadiazole such as buthidazoleandzyprazole
  • Amides such as allidochlor, benzoylprop-ethyl, bromobutide, chlorthiamide, dimepiperate, dimethenamid, diphenamid, etobenzanide, flamprop, flamprop-methyl, fosamine, isoxaben, metazachlor, monalid, naptalam, pronamide, propanil,
  • aminotriazole such as amitrole
  • anilides such as anilofos, mefenacet, pentanochlor
  • Aryloxycarboxylic acids such as 2,4-D, 2,4-DB, Clomeprop, dichlorprop, dichloroprop-P, fenoprop, fluroxypyr, MCPA, MCPB, mecoprop, mecoprop-P, napramides, napropanilides, triclopyr;
  • benzoic acids such as chloroamben, dicamba
  • Bleaching agents such as clomazone, diflufenican, fluorochloridone, flupoxam, fluridone, carbutilates, pyrazolates, sulcotrione, mesotrione;
  • carbamates such as asulam, carbetamides, chlorobufam, chlorpropham, desmedipham, phenmedipham, vernolates;
  • quinolates such as chinclorac, chinmerac
  • dichloropropionic acids such as dalapon
  • Dihydrobenzofurans such as ethofumesate
  • dihydrofuran-3-ones such as flurtamone
  • dinitroanilines such as Benefin, Butraline, Dinitramine, Ethalfluralin, Fluchloralin, Isopropaline, Nitralin, Oryzalin, Pendimethalin, Prodiamine, Profluralin, Trifluralin;
  • dinitrophenols such as bromofenoxime, dinoseb, dinoseb acetates, dinoterb, DNOC, minoterb acetate; 16. diphenyl ethers such as aciflurofen, acifluorfen-sodium, aclonifen, bifenox, chloronitrofen, difenoxurane, ethoxyfen, fluorodifen, fluoroglycofen-ethyl, fomesafen, furyloxyfen, lactofen, nitrofen, nitrofluorfen, oxyfluorfen;
  • ureas such as benzthiazuron, DCU, diflufenzopyr, methabenzthiazuron;
  • Imidazolinones such as imazamethapyr, imazapyr, imazaquin, imazethabenz-methyl, imazethapyr, imazapic, imazamox;
  • oxadiazole such as methazole, oxadiargyl, oxadiazon
  • Oxiranes such as Tridiphan
  • phenol such as bromoxynil, loxynil
  • phenoxyphenoxypropionic acid esters such as clodinafop, cyhalofop-butyl, diclofop-methyl, fenoxaprop-ethyl, fenoxaprop-p-ethyl, fenthiaprop-ethyl,
  • phenylacetic acids such as chlorfenac
  • phenylureas such as buturon, chlorotoluron, chlorbromuron, chloroxuron, dimermuron, diuron, fenuron, isoproturon, linuron, monolinuron, monuron, metobenzuron, metobromuron, metoxuron, neburon;
  • phenylpropionic acids such as chlorophenprop-methyl
  • Ppi-active compounds such as benzofenap, flumichlorac, flumiclorac-pentyl, flumioxazine, flumipropyne, flupropacil, pyrazoxyfen, sulfentrazone, thidiazimine;
  • pyrazole such as Nipyraclofen
  • pyridazines such as chloridazon, maleichydrazides, norflurazon, pyridate
  • pyridinecarboxylates such as clopyralid, dithiopyr, picloram, thiazopyr;
  • pyrimidyl ethers such as pyrithiobac-acid, pyrithiobac-sodium, KIH-2023, KIH-6127;
  • sulfonamides such as flumetsulam, metosulam;
  • Sulfonylureas such as amidosulfuron, azimsulfuron, bensulfuron-methyl, chlorofuron-ethyl, chlorosulfuron, cinosulfuron, cyclosulfamuron, ethoxysulfuron, ethametsulfuron-methyl, flazasulfuron, flupyrsulfuron-methyl, foramsulfuron, halosulfuron-methyl, imazosulfuron, idosulfuron, metsulfuron-methyl , Nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron-ethyl, rimsulfu- ron, sulfometuron-methyl, sulfosulfuron, thifensulfuron-methyl, triasulfuron, tribenuron-methyl, triflusulfuron-methyl, tritosulfuron;
  • thiadiazolylureas such as ethidimuron, tebuthiuron, thiazafluron;
  • triazines such as ametryn, atrazines, atraton, cyanazines, cyprazines, desmetryn, dipropetryn, isomethiozine, propazines, promethryn, prometon, sebuthylazine,
  • triazole carboxamides such as triazofenamide
  • uracils such as bromacil, butafenacil, lenacil, terbacil;
  • Cyclohexenone-type plant protection products such as alloxydim, clethodim, cloxydim, cycloxydim, sethoxydim and tralkoxydim.
  • Particularly preferred cyclohexenone-type plant protectants include teprolaxydim (cf., AGROW, No.243, 11.3.95, p.21, caloxydim) and 2- (1- [2- ⁇ 4-chlorophenoxy ⁇ -propyloxyimino] -butyl) -3- hydroxy-5- (2h-tetrahydrothiopyran-3-yl) -2-cyclohexen-1-one, and a particularly preferred sulphonylurea herbicidally active compound is N - (((4-methoxy-6- [trifluoromethyl] -1) , 3, 5-triazin-2-yl) amino) carbonyl) -2- (trifluoromethyl) benzenesulfonamide.
  • teprolaxydim cf., AGROW, No.243, 11.3.95, p.21, caloxydim
  • Insecticides include, for example, antibiotic insecticides such as allosamidin, thurin giensin; in particular macrocyclic lactone insecticides such as spinosad; in particular vermectin insecticides, such as abamectin, doramectin, emamectin, eprinomectin, ivermectin, selamectin; and milbemycin insecticides such as lepimectin, milbemectin, milbemycin oxime, moxidectin; Arsenic insecticides, such as calcium arsenate, copper acetarsenite, copper arsenate, lead arsenate, potassium arsenite, sodium arsenite; herbal insecticides, such as anaba- sin, azadirachtin, D-limonene, nicotine, pyrethrins, cinerine E, cinerine I, cinerine II, jasminin I, jasmolin
  • insecticides (e3) comprise:
  • Organophosphates such as azinphos-methyl, azinphos-ethyl, chlorpyrifos, chlorpyrofos-methyl, chlorfenvinphos, diazinon, dimethylvinphos, dioxabenzofos, disulphon, ethion, EPN, fenitrothion, fenthion, heptenophos, isoxathione, malathion, methidathion, methyl Parathion, paraoxon, parathion, phenthoate, phosalone, phosmet, phorate, phoxim, pirimiphos-methyl, profenofos, prothiofos, primipos-ethyl, pyraclofos, pyridaphenthione, sulprofos, triazophos, trichlorfon, tetrachlorovinphos, vamidothion;
  • Carbamates such as alanycarb, benfuracarb, bendiocarb, carbaryl, carbofuran, bosulfan, fenoxycarb, furathiocarb, indoxacarb, methiocarb, pirimicarb, propoxur, thiodicarb, triazamate;
  • A) chitin synthesis inhibitors e.g. B. benzoylureas, such as chlorofluorazuron, di-flubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, norvaluron, teflubenzuron, triflumuron; Buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; B) ecdysone antagonists such as halofenozide, methoxyfenozide, tebufenozide;
  • Juvenoids such as pyriproxyfen, methoprene
  • neonicotinoids such as flonicamide, clothianidin, dinotefuran, imidacloprid, thiomethoxam, nithiazines, acetamiprid, thiacloprid; 6.
  • Other insecticides not included in any of the classes mentioned, such as abominectin, acequinocyl, acetamiprid, azadirachtin, bensultap, bifenazate, cartap, chlorfenapyr, diafenthiuron, dinetofuran, diofenolan, emamectin, ethiprole, fenazaquin, fipronil, hydramethylnone, Imidacloprid, indoxacarb, isoprocarb, metolcarb, pyridaben, pymetrozine, spinosad, tebufenpyrad, thiamethoxam, xmc and xy
  • salts in particular agriculturally usable salts.
  • the crop protection agent is a fungicide.
  • the fungicide is an active substance from the group of strobilurins or triazoles, in particular a strobilurin selected from azo xystrobin, pyraclostrobin, dimoxystrobin, trifloxystrobin, fluoxystrobin, picoxystrobin and orysastrobin or a triazole selected from epoxiconazole, metconazole, Tebu - conazole, flusilazole, fluquinconazole, triticonazole, propiconazole, penconazole, cyprocinazole and prothioconazole.
  • a strobilurin selected from azo xystrobin, pyraclostrobin, dimoxystrobin, trifloxystrobin, fluoxystrobin, picoxystrobin and orysastrobin
  • a triazole selected from epoxiconazole, metconazole, Tebu - conazole, flusilazole, fluquinconazole, triticonazole,
  • Particularly preferred according to the invention is the use of epoxiconazole.
  • plant protection active ingredients eg, epoxiconazole
  • plant protection active ingredients include isomeric forms of this compound. Particular mention may be made of stereoisomers, such as enantiomers or diastereoisomers of the formulas.
  • stereoisomers such as enantiomers or diastereoisomers of the formulas.
  • substantially pure isomers belonging to the compounds of formulas and their isomer mixtures eg. B. stereoisomer mixtures.
  • Agents with a higher proportion of the biologically more active stereoisomer than the optical antipode are generally preferred, particularly preferably isomerically pure active ingredients.
  • the proportion of the active ingredient component (e) in the total weight of the agent is usually more than 1 wt .-%, preferably more than 2 wt .-% and in particular more than 2.5 wt .-% of.
  • the proportion of component (e) in the total weight of the composition is usually less than 50% by weight, preferably less than 40% by weight and in particular less than 35% by weight, based on the total weight of the composition ,
  • the agent is substantially anhydrous, in particular having a water content of less than 5% and especially less than 2% of the total weight.
  • the agent is less hygroscopic, it being preferred if its moisture absorption at 65% humidity less than 20 wt .-%, preferably less than 15 wt .-%, and in particular less than 10 wt. % is.
  • the agent is a particulate solid, in particular a granulate or a powder.
  • the granules are coarse-grained.
  • the granules are selected from water-dispersible granules (WG) and water-soluble granules (SG), which may in particular be fluidized-bed granules (WSG).
  • WG water-dispersible granules
  • SG water-soluble granules
  • WSG fluidized-bed granules
  • the powder is a dry flowable (DF) powder, in particular a pourable or pourable powder, more preferably a powder having a particle size in the range of 1 to 200 .mu.m, preferably in the Range from 2 to 150 microns and in particular in the range of 5 to 100 microns, determined by the method CIPAC MT 59 ("dry sieve test").
  • the agent is essentially dust-free, determined by method CIPAC MT 171 ("dustiness of granular formulations").
  • the agent is essentially storage-stable, in particular does not stick to it during storage, in particular does not adhere to it for at least eight weeks 'storage, preferably at least twelve weeks' storage at a temperature in the range from -10 ° C. to 40 ° C.
  • Method CIPAC MT 172 flowability of water
  • the agent is dispersible in water, determined by the method CIPAC MT 174 ("dispersibility of water dispersible granules").
  • Another object of the present invention is a process for the preparation of a solid crop protection agent according to the invention.
  • Figure 1 is a schematic representation of possible production routes.
  • the production of the solid pesticide can be carried out by reacting a fluid comprising at least a portion of the ingredients. id Vietnamese mixture removed fluid and the at least partially freed from the fluid solids. If necessary, the remaining ingredients may be presented prior to removal of the fluid and / or added after removal of the fluid.
  • the template is preferably carried out as a solid.
  • the additive may be in the form of a fluid-containing mixture, after which fluid is removed again and the solid which has been at least partially freed from the fluid is recovered.
  • the fluid is preferably a solvent for one or more ingredients, especially water. As part of a multi-stage process, various fluids can be used.
  • the fluid-containing mixture comprises at least part of components (a) and (b). In general, it is even expedient for such a fluid-containing mixture to contain the total amount of components (a) and (b). According to a further preferred embodiment, the fluid-containing mixture comprises at least a part of component (e). In general, it is even expedient that such a fluid-containing mixture contains the total amount of component (e).
  • the solid pesticides it is possible in principle to proceed by (i) removing fluid from a fluid-containing mixture comprising components (a), (b) and (e); (ii) a solid comprising components (a) and (b), e.g. supplying a solid previously containing solids (a) and (b) previously at least partially exempt from the fluid, adding a fluid-containing mixture comprising a component (e) and removing fluid; or (iii) a solid comprising component (e), e.g. presenting a solid previously comprising fluid (s) previously at least partially exempt, adding a fluid-containing mixture comprising components (a) and (b), and removing fluid.
  • a solid comprising components (a) and (b) is obtainable by removing fluid from a fluid-containing mixture comprising at least a portion of components (a) and (b) and recovering the solid at least partially freed from the fluid.
  • Powder or granules containing at least 5% by weight, preferably at least 10% by weight and in particular at least 15% by weight of crop protection active ingredient are preferred as the solid comprising component (e).
  • Such solids are obtainable, for example, by adding at least part of the components (E) fluid containing fluid removed and wins the at least partially freed from the fluid solids.
  • conventional solid formulations of crop protection active ingredients for example SGs, WGs, DFs or WSGs.
  • Concentrates containing at least 5% by weight, preferably at least 10% by weight and in particular at least 15% by weight of crop protection active ingredient are preferred as the fluid-containing mixture of at least part of component (e).
  • component (e) especially common liquid formulations of Chaschutzwirk- substances are mentioned.
  • a liquid concentrate in particular a single-phase concentrate, a multiphase concentrate, a suspension concentrate (SC) or a concentrate in the form of a suspoemulsion (SE).
  • the addition is carried out by spraying, in particular in the fluidized bed or fluidized bed process or by drum coating.
  • the preparation of the agent is preferably carried out by the fastest possible removal of the fluid, ie in particular by drying as quickly as possible, the usable methods are basically known from the prior art.
  • the removal of fluid is hereafter referred to as "drying.” It is important that the removal of the fluid at local (molecular to supermolecular) scale be rapid enough, which aids in the formation of the solids of the present invention Insofar as the optionally used feedstocks permit this and practical considerations make it desirable, they are comparatively slow, for example by sequentially applying a large number of very thin layers in the fluidized bed process, each of which is rapidly dried by itself.
  • fluid should be withdrawn up to or slightly above the point at which solids according to the invention are formed.
  • Substantially further removal of the fluid is basically possible, but not always expedient, since, according to experience, too low a residual moisture can impair the mechanical stability and solution properties of many granules ("dead drying") Too extensive drying may lead to unwanted rearrangement and crosslinking reactions within the granules, which is ideal for a particular process product Degree of drying is due to the complexity of the system of many factors (including the desired properties and the intended use of the granules, the composition of the material, in the practical implementation of the most favorable process parameters, etc.) dependent and largely empirical to determine.
  • the removal of the fluid by convection drying takes place.
  • methods are preferred in which the material to be dried is sprayed in a fluid or pasty state. This includes, in particular, spray drying, in which a fluid-containing material is sprayed (entry), fluid is removed in the gas stream, and the material which has been partially or completely freed from the fluid is recovered as a particulate discharge.
  • the spray processes also include fluidized bed processes in which a solid, preferably particulate material is presented (“receiver”), a fluid-containing material is sprayed (“entry”), fluid is removed in the gas stream, with particulate material initially introduced and sprayed Associate material with each other, and one wins the partially or completely released from the fluid material in association with the submitted particulate material as a particulate "discharge”.
  • Method C Another suitable drying method is freeze-drying (Method C). This method is also familiar to the person skilled in the art.
  • the respective process product usually the discharge, can be used directly according to the invention or in turn can be used as a template in further process steps for the preparation of the particular application form.
  • the drying is carried out by spray-drying, e.g. using a so-called spray tower (method A).
  • agents according to the invention e.g. water-soluble granules (SGs), from the components (a), (b) and optionally (c) prepared by mixing suitable fluid-containing mixtures of (a), (b) and optionally (c), z. B. aqueous concentrates, spray-dried (method A1).
  • the product discharge takes place here continuously.
  • agents according to the invention for example water-soluble granules (SGs) or dry flowable granules, are used (DFs), from the components (a), (b) and optionally (c) and (e) produced by (a), (b) and optionally (c) and (e) comprising fluid-containing mixtures of eg spray-dried aqueous concentrates (method A2), wherein component (e) is preferably used in the form of concentrates, for example SL, SC or SE concentrates.
  • the product discharge takes place here continuously.
  • a component (b2) it can be added in the process as a slurry or dispersion to the mixtures of components (a), (b1) and, if appropriate, (c) before spray drying (so-called. Co-spray drying).
  • component (d) Ingredients which are attributable to component (d) are in many cases incorporated together with the other components, for example in the form of commercial products.
  • the drying takes place in the fluidized bed or fluidized bed process (process B).
  • the product discharge is preferably carried out batchwise (batch process or "batch process").
  • a suitable particulate material carrier nuclei
  • a single, few, or many layers may be applied to the cores, taking into account that each one may be applied to the cores
  • the choice of the number and thickness of the layers is due to the complexity of the system of many factors (including, for example, desired properties and use of the granules, composition of the registered material , in the practical implementation cheapest Pro zessparame- ter etc.) and to determine them largely empirically.
  • agents according to the invention for example water-soluble granules (SGs), are prepared by initially introducing particulate material (carrier nuclei) based on component (d) and components (a), (b) and optionally (c) comprehensive fluid-containing mixtures, eg aqueous concentrates, enters (method B 1).
  • agents according to the invention are prepared by initially introducing at least one solid comprising components (a), (b) and optionally (c), in particulate form, and Subsequently, one or more, the component (e) and optionally other parts of (c) comprising fluid-containing mixtures, preferably in the form of concentrates, for example, SL, SC or SE concentrates, registered (method B2).
  • suitable particles can previously z. B. by one of the methods A1, B1 or C.
  • carrier cores based on component (d) are initially charged, so that the material submitted comprises at least components (a), (b), (d) and, if appropriate, (c).
  • agents according to the invention are prepared by initially introducing carrier cores based on component (d) and then adding one or more, at least components (a), (b), (e) and / or optionally (c) comprising, fluid-containing mixtures, eg aqueous concentrates, are registered (method B3).
  • agents according to the invention are prepared by dissolving a solid with plant protective activity, i. a solid comprising at least component (e) and optionally (c), in particular granules, e.g. B. as a discharge of the method B2, presents and one or more, at least the components (a) and (b) and optionally further parts of (c) comprising fluid-containing mixtures, e.g. aqueous concentrates, enters (method B4).
  • solid pesticides in particular coarse pesticide granules are obtained which are dispersed in stable aqueous active ingredient preparations (water-dispersible granules) or dissolve (water-soluble granules) and moreover do not dust.
  • the solid pesticides thus obtained are stable on storage.
  • Another object of the present invention is therefore the pesticides, in particular fungicidal, insecticidal or herbicidal, treatment of plants and their habitats with a plant protection agent according to the invention or the use of the disclosed pesticides for pesticides, in particular fungicidal, insecticidal or herbicidal, treatment of Plants and their habitats.
  • the solid pesticides according to the invention are generally used by the user, e.g. the farmer or gardener, in a basically known manner by dissolving, dispersing or emulsifying in water in a ready-to-use administration form, e.g. processed into a spray mixture (tank mix method).
  • the application of the spray mixtures applied can be carried out in a generally known manner by spraying, in particular by spraying, for example with a mobile spraying machine, by means of very finely distributing nozzles.
  • spraying in particular by spraying, for example with a mobile spraying machine, by means of very finely distributing nozzles.
  • the devices and working techniques still used for this purpose are known to the person skilled in the art.
  • the treatment of plants and their habitats in the spray process is preferred if the production of the spray mixture to be applied by dissolving, dispersing or emulsifying, and even more particularly preferred if the dissolving, dispersing or emulsifying takes place in the tank mix process.
  • Another object of the present invention is a spray mixture containing a plant protection agent according to the invention for the pesticidal treatment of plants.
  • the spray mixture contains 0.0001 to 10 wt .-%, preferably 0.001 to 1 wt .-% and in particular 0.01 to 0.5 wt .-% crop protection agent. This corresponds to about 0.01 to 5 wt .-%, preferably 0.05 to 3 wt .-% and in particular 0.1 to 2 wt .-% of inventive plant protection product.
  • V3 or V4 made and rated.
  • the respective ingredients were added in a 250 ml round bottom flask with stirring at RT or by gentle warming to 50 ° C with water and dissolved. Subsequently, the round bottom flask was placed in a bath of dry ice and acetone and the mixture froze at about -70 to -78 ° C to a solid mass. Alternatively, liquid nitrogen or liquid air was used for freezing. The freezing lasted usually only a few minutes.
  • the ingredients are dissolved in water and a portion of this amount in about 1 - 2 mm layer height in a Petri dish.
  • the Petri dish is placed on a hot plate to constant weight and dried at 100 ° C, the aqueous mixture by free evaporation of water at atmospheric pressure.
  • Method V3 Preparation by means of rotary evaporation The ingredients are dissolved in water and evaporated on a rotary evaporator at 60 ° C and 100 to about 50 mbar.
  • Table 1 below shows information on ingredients, quantities, production processes and evaluation for some formulations.
  • Spatula remain firm and crumbly and not prone to greasy effects.
  • the ingredients were dissolved in water and, under the conditions given in the following Table 2, in a spray tower from Niro-Reiholb (disk tower; he: 6 m; Diameter: 1 m; Two-fluid nozzle with circulating gas system, cyclone and filter system; Use of nitrogen; Jet gas mass flow: 11.5 kg / h; Nozzle gas pres- sure: 2.7 bar; Product inlet temperature. 20 ° C) spray-dried.
  • Niro-Reiholb disk tower; he: 6 m; Diameter: 1 m; Two-fluid nozzle with circulating gas system, cyclone and filter system; Use of nitrogen; Jet gas mass flow: 11.5 kg / h; Nozzle gas pres- sure: 2.7 bar; Product inlet temperature. 20 ° C) spray-dried.
  • the residual moistures of the solid formulations obtained were 2.1% (Example 33), 1.7% (Example 34) and 1.5% (Example 36).
  • Examples 1 and 2 Epoxiconazole-based pesticides Two plant protection products based on an epoxiconazole suspension concentrate (epoxiconazole SC) were prepared and evaluated according to method V4 or V5.
  • a WSG laboratory system (model Turbojet) from Wilsontlin is fluidized at 70 ° C. with about 80 in the stream of nitrogen with 1.5 kg of the mixture from example 33. Thereafter, 2.5 kg Epoxiconazol SC are sprayed on the three floor nozzles of the plant within 45 minutes, to obtain a coarse-grained granules with good dispersing properties. The calculated on 2.0 kg granule discharge was actually about 1, 9 kg with an active ingredient content of about 19% Epoxicoanzol and 38% polyalkoxylate (Wettol LF 700).
  • the crop protection agents according to the invention are dust-free, fast-wetting, easily dispersible, non-hygroscopic or hardly hygroscopic granules with good storage stability.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft feste Pflanzenschutzmittel, die: a) flüssiges oder niedrigschmelzendes Polyalkoxylat; und b) einen Träger auf der Basis höhermolekularen Sulfonats umfassen, wobei (i) das Gewichtsverhältnis von flüssigem oder niedrigschmelzendem Polyalkoxylat zu Pflanzenschutzwirkstoff wenigstens 1:2 beträgt; (ii) der auf das Gesamtgewicht der höhermolekularen Sulfonate bezogene Anteil an flüssigem oder niedrigschmelzendem Polyalkoxylat wenigstens 30 Gew.-% beträgt; und (iii) das Gewichtsverhältnis von flüssigem oder niedrigschmelzendem Polyalkoxylat zu höhermolekularem Sulfonat höchstens 3:1 beträgt. Die Erfindung betrifft auch Verfahren zu ihrer Herstellung und die Verwendung der Pflanzenschutzmittel zur Behandlung von Pflanzen und ihres Habitats sowie entsprechende Verfahren, und auch Spritzbrühen, die ein solches Pflanzenschutzmittel enthalten.

Description

Polyalkoxylat-haltige feste Pflanzenschutzmittel, Verfahren zu ihrer Herstellung und ihre Verwendung
Die Erfindung betrifft feste Pflanzenschutzmittel mit flüssigen oder niedrigschmelzen- den Polyalkoxylaten, Verfahren zu ihrer Herstellung und die Verwendung der Pflanzenschutzmittel zur Behandlung von Pflanzen und ihres Habitats sowie entsprechende Verfahren, und auch Spritzbrühen, die ein solches Pflanzenschutzmittel enthalten.
Weltweit wird Jahr für Jahr ein beträchtlicher Teil der Agrarproduktion durch Pflanzen- Schädlinge im weitesten Sinne vernichtet. Pflanzenschädlinge können nicht nur in großem Maßstab zu Ernteausfällen führen, die die menschliche Ernährung gefährden, sondern auch die vegetativen Teile ausdauernder Nutzpflanzen zerstören und dadurch agrarische Nutzflächen und ganze Ökosysteme nachhaltig stören.
Pflanzenschädlinge gehören zu verschiedenen Gruppen von Lebewesen. Unter höheren Tieren sind insbesondere unter Insekten und Milben zahlreiche wichtige Schädlinge zu finden, ferner unter Nematoden und Schnecken; Wirbeltiere wie Säuger und Vögel sind in den Industrieländern heute von geringerer Bedeutung. Zahlreiche Gruppen von Mikroben, darunter Pilze, Bakterien einschließlich der Mykoplasmen, Viren und Viroide können Ernteausfälle und Wertverlust verursachen; selbst grundsätzlich noch essbare Produkte sind oftmals aus ästhetischen Gründen nicht mehr verkäuflich. Schließlich gehören auch Unkräuter, die mit den Nutzpflanzen um knappen Lebensraum und andere Ressourcen konkurrieren, zu den Schädlingen im weiteren Sinne.
Parasitischen Pilzen kommt als Schädlingen eine besondere Bedeutung zu. Mehltau ist im Gartenbau gefürchtet, Mutterkorn (Claviceps) gefährdet Mensch und Tier durch seine toxischen Alkaloide, und historische Bedeutung erlangte die Schädigung der europäischen Kartoffelbestände durch Phytophthora infestans in der Mitte des 19. Jahrhunderts, die zu Hungersnöten und politischen Unruhen führte.
Unter dem Oberbegriff „Pflanzenschutzmittel" werden Substanzen und Substanzgemische zusammengefasst, die sich zur spezifischen Bekämpfung von Pflanzenschädlingen einsetzen lassen. Sie lassen sich nach Zielorganismen (Insektizide, Fungizide, Herbizide etc.), nach Wirkart (Fraßgifte, Kontaktgifte, Abschreckmittel etc.) oder chemi- scher Struktur klassifizieren. Insbesondere gegen pflanzenschädliche Pilze ist aufgrund der Widerstandsfähigkeit der Pilzsporen und des Fehlens natürlicher Feinde die che- mische Bekämpfung die einzige wirksame Maßnahme, wobei darauf zu achten ist, die Wirkung der Fungizide lokal zu maximieren, um nicht an anderen Orten symbiotische Pilze (Mykorrhizapilze) zu schädigen.
Pflanzenschutzmittel können Reinsubstanzen sein, doch sind Zusammensetzungen in vielen Fällen vorteilhaft. Solche Zusammensetzungen können neben der oder den unmittelbar auf die Schädlinge einwirkenden Substanz bzw. Substanzen (nachfolgend als Pflanzenschutzwirkstoff bezeichnet) verschiedene Arten von Begleit- und Hilfssubstan- zen enthalten, die auf unterschiedliche Weise die gewünschte Wirkung verstärken (im Schrifttum dann meist „Additive", „Adjuvantien", „Akzeleratoren", „Booster" oder „En- hancer" genannt), die Handhabung vereinfachen, die Lagerfähigkeit erhöhen oder anderweitig die Eigenschaften des Produktes verbessern können. Nachfolgend wird mit einem Pflanzenschutzmittel stets eine Kombination aus einem oder mehreren Pflanzenschutzwirkstoffen und einem oder mehreren Hilfsstoffen bezeichnet.
Typischerweise werden Pflanzenschutzmittel in wässrigem Medium aufgelöst, emul- giert oder dispergiert, um so die als „Tankmix" bezeichnete wässrige Spritzbrühe zu erhalten, die dann im sogenannten Spritzverfahren auf die Pflanzen bzw. ihren Lebensraum ausgebracht wird. Die Begleit- und Hilfssubstanzen müssen entsprechend aus- gewählt sein, um einen geeigneten Tankmix zu erhalten.
Die Wirkung wirkungsfördender Additive beruht im allgemeinen auf ihrer Grenzflächenaktivität gegenüber der hydrophoben Pflanzenoberfläche, die den Kontakt der Spritzbrühe mit der Pflanzenoberfläche verbessert. Im Detail wird zwischen Netzmitteln („Wettern"), Tropfenspreizmitteln („Spreadern") und durchlässigkeitssteigernden Substanzen („Penetratoren") unterschieden, wobei diese Gruppen sich naturgemäß überlappen. Nachfolgend wird der allgemeine Begriff Additiv ohne Berücksichtigung physikalischer Details zur Bezeichnung von Hilfsmitteln zur Wirkungssteigerung von agro- technischen Wirkstoffen, insbesondere Pflanzenschutzstoffen, verwendet.
Nichtionische, hydrophobe Alkoxylate sind bekannt als geeignete Additive für verschiedene Pflanzenschutzwirkstoffe, vor allem Fungizide.
Derartige Alkoxylate werden vor allem in Flüssigformulierungen eingesetzt, zu denen Lösungen, Emulsionen, Suspensionen, Suspoemulsionen und andere Formen gehören. Beispielsweise sind in EP 707445 B1 relativ stabile Suspoemulsionen dargestellt. Flüssige Pflanzenschutzmittel weisen jedoch eine Reihe von Nachteilen auf: Bei der Anwendung besteht die Gefahr des Auslaufens und Versickerns im Erdreich. Lagerung und Transport sind aufwendiger, da das Lösungsmittel mittransportiert bzw. mitgelagert werden muss, und Gebinde für flüssige Pflanzenschutzmittel - etwa Container oder Kanister - bereiten Entsorgungsprobleme, da eine einfache Verbrennung im allgemeinen nicht möglich ist. Die Stabilität von flüssigen Pflanzenschutzmitteln gegen Hitze, Kälte und Scherkräfte und damit ihre Lagerstabilität ist gering und erfordert kostspielige Emulgator- und Stabilisatorzusätze. Hinzu kommt, dass sich viele Wirkstoffe bzw. Wirkstoffkombinationen nur schlecht in Flüssigform formulieren lassen, da sie zu Kristallisation und/oder Entmischung neigen. Die Lösungsmittel als solche sind oftmals leicht entflammbar, hautreizend oder von unangenehmem Geruch; wird Wasser als Lösungsmittel verwendet, ergibt sich bei längerer Lagerung häufig das Problem hydrolytischen Wirkstoffabbaus.
Feste Pflanzenschutzmittel, insbesondere solche auf Basis nichtstaubender Feststoffgranulate, bieten gegenüber flüssigen Pflanzenschutzmitteln erhebliche Vorteile, was Anwendung, Lagerung, Transport, Stabilität und Entsorgung von Verpackungen betrifft. Häufig nachteilig ist jedoch die niedrige Schmelztemperatur der oben angesprochenen Alkoxylate, die bei Einarbeitung in feste Pflanzenschutzmittel zu Problemen führt. So können herkömmliche feste Pflanzenschutzmittel nur geringe Mengen flüssiger, ölarti- ger oder niedrigschmelzender Additive, wie sie die Alkoxylate darstellen, aufnehmen, da sonst Verklebung und Verklumpung der Granulate resultieren. Typischerweise können ohne Beeinträchtigung der Lagerstabilität lediglich weniger als 15 Gew.-% an sol- chen Additiven zugesetzt werden.
Der verwendbare Anteil an Additiven kann traditionell durch Verwendung von Sorben- tien, auch „Carrier" genannt, auf mineralischer Basis, speziell Silikatbasis, erhöht werden. Indem sie die Additive binden, verbessern sie die mechanischen Eigenschaften der Zusammensetzung und verhindern ein Verklumpen des Granulats während der Lagerung. Mineralische Sorbentien haben jedoch eine Neigung zur Bildung sehr feinkörniger Pulver und Stäube, was bei der Herstellung und Verarbeitung wiederum Probleme aufwirft und insbesondere aufwendige Sicherheitstechnik speziell im Bereich des Atemschutzes erforderlich macht. Die Gesundheitsgefährdung durch feinkörnige Mine- ralstäube ist bekannt. Hinzu kommt, dass die festen Bestandteile auch nach dem Ausbringen unerwünschte Wirkungen entfalten können. US 6,239,1 15 B1 beschreibt Granulate mit dem Wirkstoff Polyoxin und Naphthalinsul- fonsäure-Formaldehyd-Kondensaten als Dispergiermittel. Hier wurden typischerweise aber nur 2% an Polyoxyethylenalkylethern in die Granulate eingearbeitet.
DE 102 17 201 beschreibt staubarme Granulate mit bis zu 9% an Alkylsulfonaten und/oder Polyglykolen. Die Polyglykole sind allgemein keine geeigneten Wirkungsverstärker, da sie rein wasserlöslich und nicht oberflächenaktiv sind.
GB 1291251 beschreibt Granulate mit lediglich bis zu 5% an anionischen und nichtionischen Tensiden, aber bis zu 50% an Calciumligninsulfonaten.
Der Einbau von oberflächenaktiven und wirkungssteigernden Hilfsmitteln kann z. B. auch über Schmelzextrudate (Verfahren der „melt extrusion") erfolgen. Beispiele dazu liefert WO 93/25074, wobei praktisch ausnahmslos Carbowax (PEG 8000) als sogenannter „Binder" Verwendung findet. PEGs, d. h. Polyethylenglykole, sind im allgemeinen sehr hydrophil, also sehr gut wasserlöslich.
EP 843 964 B1 beschreibt im wesentlichen Extrusionsgranulate mit bis zu 10% an Tri- styrylphenylpolyethoxylaten, wobei wie bei der US 6,416,775 B1 mineralische Trägersysteme („Carrier") verwendet werden. So werden in der US 6,416,775 B1 oder auch in der US 6,375,969 B1 Diatomeenerden (Kieselgur), insbesondere Celite-Produkte, als sorbierende Agenzien verwendet.
In DE 696 24 381 T2, WO 97/24173 oder EP 880 402 B1 werden Granulate aus Ligninsulfonaten mit relativ geringen Anteilen an Di- und Tristyrylphenolethoxylaten beschrieben.
Einen Weg zur Herstellung von Granulaten mit hohen Anteilen an flüssigen amphi- philen oberflächenaktiven Additiven beschreiben z. B. WO 99/56543 und WO
99/08518. Hier werden sogenannte Clathrate aus Harnstoffderivaten und polysiloxan- derivatisierten Alkoholethoxylaten beschrieben. Dadurch sollen sich Pulver oder Granulate mit bis zu 30% an oberflächenaktiven Hilfsmitteln herstellen lassen.
Gemäß WO 93/05652 wird eine Lösung zur Herstellung von herbiziden Granulaten mit sogenannten Aktivatoren aufgezeigt. Werden Fettalkoholethoxylate verwendet, so fin- den sich in den Granulaten hohe Anteile an mineralischen Sorbentien bzw. Trägern auf Silikatbasis. Letztere besitzen die oben aufgezeigten Nachteile.
Zusammenfassend lässt sich sagen, dass der Stand der Technik keine Möglichkeit aufzeigt, hohe Anteile an flüssigen oder niedrigschmelzenden Additiven in feste Formulierungen einzuarbeiten, ohne auf mineralische Trägersysteme zurückgreifen zu müssen. Es bestand daher die Aufgabe, feste Pflanzenschutzmittel mit hohen Anteilen an solchen Additiven zur Verfügung zu stellen.
Überraschend wurde nun gefunden, dass flüssige oder niedrigschmelzende Polyalk- oxylate, in geeigneten Mengen mit höhermolekularen Sulfonaten kombiniert, imstande sind, vorteilhafte feste Pflanzenschutzmittel, insbesondere Granulate, zu liefern.
Ein Gegenstand der vorliegenden Erfindung ist daher ein Pflanzenschutzwirkstoff um- fassendes festes Pflanzenschutzmittel, das: a) flüssiges oder niedrigschmelzendes Polyalkoxylat; und b) einen Träger auf der Basis höhermolekularen Sulfonats umfasst, wobei
(i) das Gewichtsverhältnis von flüssigem oder niedrigschmelzendem Polyalko- xylat zu Pflanzenschutzwirkstoff wenigstens 1 :2 beträgt;
(ii) der auf das Gesamtgewicht des höhermolekularen Sulfonats bezogene Anteil an flüssigem oder niedrigschmelzendem Polyalkoxylat wenigstens 30 Gew.-% beträgt; und
(iii) das Gewichtsverhältnis von flüssigem oder niedrigschmelzendem Polyal- koxylat zu höhermolekularem Sulfonat höchstens 3:1 beträgt.
Das erfindungsgemäße Pflanzenschutzmittel umfasst daher zusätzlich zum Wirkstoff (Komponente (e)) grundsätzlich zwei Komponenten:
(a) eine Polyalkoxylat-Komponente, die für sich genommen flüssig oder niedrigschmelzend ist und aus einem Polyalkoxylat oder einem Gemisch aus mehreren Polyalkoxylaten besteht; und
(b) eine für sich genommen feste Trägerkomponente, die ein oder mehrere höhermolekulare Sulfonate umfasst. Hierbei beträgt der auf die Wirkstoffmenge bezogene Anteil an flüssigem oder niedrigschmelzendem Polyalkoxylat wenigstens 0,5, vorzugsweise wenigstens 1 und insbesondere wenigstens 2.
Einem weiteren Aspekt zufolge beträgt der Anteil an flüssigem oder niedrigschmelzendem Polyalkoxylat wenigstens 15 Gew.-%, auf das Gesamtgewicht des Mittels bezogen, und wenigstens 30%, auf das Gesamtgewicht der höhermolekularen Sulfonate bezogen. Dabei kann der Anteil an flüssigem oder niedrigschmelzendem Polyalkoxylat auch größer sein als der Anteil an höhermolekularem Sulfonat, höchstens aber bis zu einem Gewichtsverhältnis von 3:1. Die Trägerkomponente (b) umfasst in der Regel zum überwiegenden Teil höhermolekulares Sulfonat.
Der Begriff „flüssig" bezeichnet den flüssigen Aggregatzustand bei Normaldruck und einer Temperatur im Bereich von 20 bis 30°C. Ein niedrigschmelzendes Polyalkoxylat besitzt in der Regel einen Schmelzpunkt von weniger als 40°C, insbesondere von weniger als 30°C.
Gemäß einer besonderen Ausführungsform ist das zu verwendende Polyalkoxylat ölar- tig. Hierbei bezeichnet der Begriff „ölartig" eine viskose, klebrig-schmierige physikali- sehe Konsistenz; chemisch gesehen kann die Substanz lipophil, hydrophil oder amphi- phil sein. In der Regel sind die Polyalkoxylate amphiphil.
Die erfindnungsgemäßen Polyalkoxylate umfassen grundsätzlich einen hydrophoben bzw. lipophilen Teil und einen oder mehrere polymere Alkoxylatteile (Polyalkoxylat- oder Makrogol-Teile), wobei der bzw. jeder einzelne Polyalkoxylatteil beispielsweise über eine Amid-, Ether- oder Esterbindung mit dem hydrophoben bzw. lipophilen Teil verknüpft ist. „Polymer" bedeutet hierbei aus mindestens zwei, insbesondere mindestens drei, ganz besonders von 3 bis 1000, niedermolekularen Einheiten zusammengesetzt. Diese Einheiten können untereinander entweder alle gleichartig sein, so dass sich ein monotones Polymer ergibt, oder wenigstens zwei verschiedenen Alkylenoxyd- arten umfassen. Im letzteren Fall ist es bevorzugt, jeweils mehrere Alkylenoxid-Einhei- ten einer Art als Block anzuordnen, so dass sich als Strukturelemente des Polymers wenigstens zwei unterschiedliche Alkylenoxid-Blöcke ergeben, deren jeder aus einer monotonen Folge gleichartiger Alkylenoxid-Einheiten besteht (Blockpolymer oder Blockcopolymer). Sofern derartige Blockalkoxylate verwendet werden, ist es bevorzugt, dass sich der Alkylenoxid-Teil aus 2 oder 3 und insbesondere aus 2 Blöcken zusam- mensetzt. Umfasst der Polyalkoxylatteil verschiedenartige Blöcke, so werden die dem hydrophoben bzw. lipophilen Teil näher liegenden als „proximal", die ferner liegenden als „distal" und die endständigen als „terminal" bezeichnet. Als erfindungsgemäße AIk- oxylatmonomere zu nennen sind hier insbesondere Ethylenoxid (EO), Propylenoxid (PO), Butylenoxid (BO), Pentylenoxid (PeO) und Hexylenoxid (HO).
Besondere Polyalkoxylate finden sich unter den alkoxylierten Fettalkoholen, alkoxy- lierten Fettsäureestern, alkoxylierten Fettaminen, alkoxylierten Glyceriden, alkoxylierten Sorbitanestern, alkoxylierten Alkylphenolen und alkoxylierten Di- und Tristyrylphe- nolen, wobei die Alkylphenole bevorzugt mehrfach, insbesondere zweifach oder dreifach, alkyliert sind. Ferner können die Polyalkoxylate auch endgruppenmodifiziert sein, d.h. die endständige OH-Gruppe des Alkoxylatteils ist modifiziert, beispielsweise ve- rethert oder verestert. Zu geeigneten endgruppenmodifizierten Polyalkoxylaten gehören insbesondere alkylierte, alkenylierte oder arylierte Polyalkoxylate, vorzugsweise solche mit einer Methyl- oder tert-Butylgruppe oder einer Phenylgruppe, oder Polyalko- xylatester, z.B. Mono- oder Diphosphatester oder Sulfatester, sowie deren Salze, beispielsweise die Alkali- oder Erdalkalisalze. Eine solche Endgruppenmodifizierung kann beispielsweise mit Dialkylsulfat, Ci_io-Alkylhalogenid oder Phenylhalogenid erfolgen.
Zumindest ein Teil der zu verwendenden Alkoholpolyalkoxylate ist an sich bekannt. Beispielsweise beschreiben die WO 01/77276 sowie die US 6,057,284 bzw. EP 0 906 150 geeignete Alkoholpolyalkoxylate. Auf die Beschreibung dieser Alkoholpolyalkoxylate in diesen Druckschriften wird hiermit ausdrücklich Bezug genommen, womit die darin offenbarten Alkoholpolyalkoxylate selbst und auch deren Herstellung Teil der vorliegenden Offenbarung sind.
In einer weiteren besonderen Ausführungsform sind Alkoholpolyalkoxylate unter Alko- holpolyalkoxylaten gemäß der Formel (I)
R7-O-(CmH2mO)x-(CnH2nO)y-(CpH2pO)z-R6 (I)
ausgewählt, worin
R6 für einen organischen Rest steht; R7 für einen aliphatischen Kohlenwasserstoffrest mit 3 bis 100 Kohlenstoffatomen steht
m, n, p unabhängig voneinander für eine ganze Zahl von 2 bis 6, vorzugs- weise für 2, 3, 4 oder 5 stehen;
x, y, z unabhängig voneinander für eine Zahl von 0 bis 1000 stehen; und
x + y + z einem Wert von 2 bis 1000 entspricht.
Der aliphatische Kohlenwasserstoffrest ist in der Regel hydrophob bzw. lipophil, wodurch die Alkoholpolyalkoxylate ihre ölartigen Eigenschaften erhalten. Insbesondere steht R7 für einen verzweigtes oder linearen Kohlenwasserstoff rest mit 3 bis 30 und vorzugsweise 5 bis 24 Kohlenstoffatomen, der gesättigt (insbesondere C3-3o-Alkyl) oder ungesättigt (insbesondere C3_3o-Alkenyl) sein kann.
Der organische Rest (R6) trägt typischerweise weniger als 10% und bevorzugt weniger als 5% zur Molekülmasse des Alkoholpolyalkoxylats der Formel (I) bei und steht vor- zugswesie für Wasserstoff, Alkyl, bevorzugt d.-io-Alkyl, besonders bevorzugt Methyl oder tert-Butyl, Alkenyl, bevorzugt C2-io-Alkenyl, Acyl, insbesondere Acetyl, Propionyl, Butyryl oder Benzyol, Aryl, insbesondere Phenyl, oder für eine anorganische Säuregruppe, insbesondere Phosphat, Diphosphat oder Sulfat.
Einem Aspekt zufolge ist es bevorzugt, dass die erfindungsgemäß zu verwendenden Alkoholpolyalkoxylate ethoxyliert sind bzw. wenigstens einen Ethylenoxid-Block aufweisen. Einem weiteren Aspekt zufolge werden Ethylenoxid-Blöcke insbesondere mit Propylenoxid- oder Pentylenoxid-Blöcken kombiniert.
Gemäß einer besonderen Ausführungsform werden Alkoholpolyalkoxylate der Formel (I) verwendet, worin m = 2 und x > 0 ist. Hierbei handelt es sich um Alkoholpolyalkoxylate vom EO-Typ, zu denen vor allem Alkoholethoxylate (m = 2; x > 0; y, z = 0) und Alkoholpolyalkoxylate mit einem proximalen EO-Block gehören (m = 2; x > 0; y und/oder z > 0).
Nochmals eine besondere Ausführungsform der Alkoholpolyalkoxylaten mit einem proximalen EO-Block stellen solche mit einem terminalen Block aus anderen Monomeren dar (n > 2; y > 0). Unter diesen sind vor allem EO-PO-Blockalkoxylate (n = 3; y > 0; z = 0) zu nennen. Bevorzugt sind EO-PO-Blockalkoxylate, bei denen das Verhältnis von EO zu PO (x zu y) vorzugsweise 1 :1 bis 4:1 und insbesondere 1 ,5:1 bis 3:1 beträgt. Dabei beträgt der Ethoxylierungsgrad (Wert von x) in der Regel 1 bis 20, vorzugsweise 2 bis 15 und insbesondere 4 bis 10, der Propoxylierungsgrad (Wert von y) in der Regel 1 bis 20, vorzugsweise 1 bis 8 und insbesondere 2 bis 5. Der Gesamtalkoxylie- rungsgrad, d.h. die Summe aus EO- und PO-Einheiten, beträgt in der Regel 2 bis 40, vorzugsweise 3 bis 25 und insbesondere 6 bis 15.
Unter den besonders bevorzugten Alkoholpolyalkoxylaten mit einem proximalen EO- Block sind außerdem EO-PeO-Blockalkoxylate (n = 5; y > 0; z = 0) zu nennen. Bevorzugt sind hierbei EO-PeO-Blockalkoxylate, bei denen das Verhältnis von EO zu PeO (x zu y) vorzugsweise 2 : 1 bis 25 : 1 und insbesondere 4 : 1 bis 15 : 1 beträgt. Dabei beträgt der Ethoxylierungsgrad (Wert von x) in der Regel 1 bis 50, vorzugsweise 4 bis 25 und insbesondere 6 bis 15, der Pentoxylierungsgrad (Wert von y) in der Regel 0,5 bis 20, vorzugsweise 0,5 bis 4 und insbesondere 0,5 bis 2. Der Gesamtalkoxylierungsgrad, d.h. die Summe aus EO- und PeO-Einheiten, beträgt in der Regel 1 ,5 bis 70, vorzugsweise 4,5 bis 29 und insbesondere 6,5 bis 17.
Gemäß einer weiteren besonderen Ausführungsform werden Alkoholpolyalkoxylate der Formel (I) verwendet, worin n = 2, die Werte von m, x und y jeweils größer als Null sind und z = 0 ist. Auch hierbei handelt es sich um Alkoholpolyalkoxylate vom EO-Typ, bei denen der EO-Block allerdings distal gebunden ist und zwischen ihm und dem Alkylteil ein weiterer Polyalkoxylatblock eingefügt ist. Zu diesen gehören vor allem PO-EO- Blockalkoxylate und PeO-EO-Blockalkoxylate (n = 2; x > 0; y > 0; m = 5; z = 0).
Nochmals eine besondere Ausführungsform solcher Alkoholpolyalkoxylate mit distalem EO-Block stellen PO-EO-Blockalkoxylate (n = 2; x > 0; y > 0; m = 3; z = 0) dar, bei denen das Verhältnis von PO zu EO (x zu y) vorzugsweise 1 :10 bis 3:1 und insbesondere 1 ,5:1 bis 1 :6 beträgt. Dabei beträgt der Ethoxylierungsgrad (Wert von y) in der Regel 1 bis 20, vorzugsweise 2 bis 15 und insbesondere 4 bis 10, der Propoxylierungsgrad (Wert von x) in der Regel 0,5 bis 10, vorzugsweise 0,5 bis 6 und insbesondere 1 bis 4. Der Gesamtalkoxylierungsgrad, d.h. die Summe aus EO- und PO-Einheiten, beträgt in der Regel 1 ,5 bis 30, vorzugsweise 2,5 bis 21 und insbesondere 5 bis 14. Gemäß einer anderen besonderen Ausführungsform werden Alkoholpolyalkoxylate der Formel (I) verwendet, worin m = 5 und x > 0 ist. Hierbei handelt es sich um Alkoholpolyalkoxylate vom PeO-Typ. Besonders bevorzugt sind hierbei PeO-EO-Blockalkoxylate (n = 2; y > 0; z = 0), bei denen das Verhältnis von PeO zu EO (x zu y) 1 : 50 bis 1 : 3 und insbesondere 1 : 25 bis 1 : 5 beträgt. Dabei beträgt der Pentoxylierungsgrad (Wert von x) in der Regel 0,5 bis 20, vorzugsweise 0,5 bis 4 und insbesondere 0,5 bis 2, der Ethoxylierungsgrad (Wert von y) in der Regel 3 bis 50, vorzugsweise 4 bis 25 und insbesondere 5 bis 15. Der Gesamtalkoxylierungsgrad, d.h. die Summe aus EO- und PeO-Einheiten beträgt in der Regel 3,5 bis 70, vorzugsweise 4,5 bis 45 und insbeson- dere 5,5 bis 17.
Gemäß einer besonderen Ausführungsform sind die Alkoholpolyalkoxylate nicht end- gruppenmodifiziert, d.h. R6 ist Wasserstoff.
Gemäß einer bevorzugten Ausführungsform der Erfindung basiert der Alkoholteil der Alkoholpolyalkoxylate auf an sich bekannten Alkoholen oder Alkoholgemischen mit 5 bis 30, vorzugsweise 8 bis 20 und insbesondere 9 bis 15 Kohlenstoffatomen. Hier sind insbesondere Fettalkohole mit etwa 8 bis 20 Kohlenstoffatomen zu nennen. Viele dieser Fettalkohole werden bekanntermaßen zur Herstellung von nichtionischen und an- ionischen Tensiden eingesetzt, wozu die Alkohole einer entsprechenden Funktionali- sierung, z.B. durch Alkoxylierung oder Glykosidierung, unterworfen werden.
Der Alkoholteil kann geradkettig, verzweigt oder cyclisch sein. Ist er linear, so sind insbesondere Alkohole mit 14 bis 20, beispielsweise mit 16 bis 18 Kohlenstoffatomen zu nennen. Ist er verzweigt, so weist einer besonderen Ausführungsform zufolge die
Hauptkette des Alkoholteils in der Regel 1 bis 4 Verzweigungen auf, wobei auch Alkohole mit höherem oder niedrigerem Verzweigungsgrad im Gemisch mit weiteren Alko- holalkoxylaten verwendet werden können, solange die mittlere Zahl der Verzweigungen des Gemisches im angegebenen Bereich liegt.
Der Alkoholteil kann gesättigt oder ungesättigt sein. Ist er ungesättigt, so weist er einer besonderen Ausführungsform zufolge eine Doppelbindung auf. Im Allgemeinen weisen die Verzweigungen des Alkoholteils unabhängig voneinander jeweils 1 bis 10, vorzugsweise 1 bis 6 und insbesondere 1 bis 4 Kohlenstoffatome auf. Besondere Verzweigun- gen sind Methyl-, Ethyl-, n-Propyl- oder Isopropyl-Gruppen. Geeignete Alkohole und insbesondere Fettalkohole sind sowohl aus nativen Quellen, z.B. durch Gewinnung und erforderlichen- bzw. gewünschtenfalls durch Hydrolyse, Umesterung und/oder Hydrierung von Glyceriden und Fettsäuren, als auch auf synthetischem Weg, z. B. durch Aufbau aus Edukten mit einer geringeren Zahl an Kohlen- stoffatomen erhältlich. So erhält man z. B. nach dem SHOP-Prozess (Shell Higher Ole- fine Process) ausgehend von Ethen Olefinfraktionen mit einer für die Weiterverarbeitung zu Tensiden geeigneten Kohlenstoffanzahl. Die Funktionalisierung der Olefine zu den entsprechenden Alkoholen erfolgt dabei z. B. durch Hydroformylierung und Hydrierung.
Die Alkoxylierung ergibt sich aus der Umsetzung mit geeigneten Alkylenoxiden. In Abhängigkeit von den für die Umsetzung gewählten Einsatzmengen an Alkylenoxid(en) sowie den Reaktionsbedingungen ergibt sich der jeweilige Alkoxylierungsgrad. Hierbei handelt es sich in der Regel um einen statistischen Mittelwert, da die Anzahl von Alky- lenoxid-Einheiten der aus der Umsetzung resultierenden Alkoholpolyalkoxylate variiert.
Der Alkoxylierungsgrad, d.h. die mittlere Kettenlänge der Polyetherketten erfindungsgemäß zu verwendender Alkoholpolyalkoxylate kann durch das Molmengenverhältnis von Alkohol zu Alkylenoxid bestimmmt werden. Bevorzugt sind Alkoholpolyalkoxylate mit etwa 2 bis 100, bevorzugt etwa 2 bis 50, insbesondere 3 bis 30, vor allem 4 bis 20 und besonders 5 bis 15 Alkylenoxideinheiten.
Die Umsetzung der Alkohole bzw. Alkoholgemische mit dem/den Alkylenoxid(en) erfolgt nach üblichen, dem Fachmann bekannten Verfahren und in dafür üblichen Appa- raturen.
Die Alkoxylierungsreaktion kann durch starke Basen, wie Alkalihydroxide und Erdalka- lihydroxide, Brönstedsäuren oder Lewissäuren, wie AICI3, BF3 etc. katalysiert werden. Für eng verteilte Alkoholalkoxylate können Katalysatoren wie Hydrotalcit oder DMC verwendet werden.
Die Alkoxylierung erfolgt vorzugsweise bei Temperaturen im Bereich von etwa 80 bis 250°C, bevorzugt etwa 100 bis 220°C. Der Druck liegt vorzugsweise zwischen Umgebungsdruck und 600 bar. Gewünschtenfalls kann das Alkylenoxid eine Inertgasbeimi- schung, z. B. von etwa 5 bis 60%, enthalten. Gemäß einer bevorzugten Ausführungsform basieren die erfindungsgemäß zu verwendenden Alkoholpolyalkoxylate auf primären, a-verzweigten Alkoholen der Formel
(IV),
worin
R10, R11 unabhängig voneinander für Wasserstoff oder d-C26-Alkyl stehen.
Vorzugsweise stehen R10 und R11 unabhängig voneinander für d-C6-Alkyl und insbesondere für C2-C4-Alkyl.
Gemäß einer besonderen Ausführungsform werden Alkoholpolyalkoxylate verwendet, deren Alkoholteil 2-Propylheptanol ist. Hierzu gehören insbesondere Alkoholpolyalkoxylate der Formel (I), worin R7 für einen 2-Propylheptyl-Rest steht, d.h. R10 und R11 in Formel (IV) bedeuten jeweils n-Propyl.
Derartige Alkohole werden auch als Guerbet-Alkohole bezeichnet. Diese können bei- spielsweise durch Dimerisierung entsprechender primärer Alkohole (z.B. R10 11-
CH2CH2OH) bei erhöhter Temperatur, beispielsweise 180 bis 300°C, in Gegenwart eines alkalischen Kondensationsmittels, wie Kaliumhydroxid, erhalten werden. Im Rahmen dieser bevorzugten Ausführungsform auf Basis von Guebert-Alkoholen kommen vor allem Alkoxylate vom EO-Typ zur Anwendung. Insbesondere bevorzugt sind Ethoxylate, deren Ethoxylierungsgrad 2 bis 50, vorzugsweise 2 bis 20 und insbesondere etwa 3 bis 10 beträgt. Hiervon sind vor allem die entsprechend ethoxylierten 2- Propylheptanole zu nennen.
Gemäß einer weiteren besonderen Ausführungsform werden Alkoholpolyalkoxylate verwendet, deren Alkoholteil ein Ci3-Oxoalkohol ist.
Besonders bevorzugt ist es, wenn diese Ci3-Oxoalkohole durch Hydroformylierung und nachfolgende Hydrierung von ungesättigten Ci2-Kohlenwasserstoffen erhältlich sind, insbesondere durch Hydrierung von hydroformyliertem Trimerbuten oder durch Hydrierung von hydroformyliertem Dimerhexen.
Der Begriff „Ci3-Oxoalkohol" bezeichnet in der Regel ein Alkoholgemisch, dessen Hauptkomponente aus wenigstens einem verzweigten Ci3-Alkohol (Isotridecanol) gebildet wird. Zu derartigen Ci3-Alkoholen gehören insbesondere Tetramethylnonanole, beispielsweise 2,4,6,8-Tetramethyl-1-nonanol oder 3,4,6,8-Tetramethyl-1-nonanol sowie ferner Ethyldimethylnonanole wie 5-Ethyl-4,7-dimethyl-1-nonanol.
Geeignete Ci3-Alkoholgemische sind allgemein erhältlich durch Hydrierung von hydroformyliertem Trimerbuten. Insbesondere kann man
1 ) Butene zur Oligomerisierung mit einem geeigneten Katalysator in Kontakt bringen, 2) aus dem Reaktionsgemisch eine Ci2-Olefinfraktion isolieren,
3) die Ci2-Olefinfraktion durch Umsetzung mit Kohlenmonoxid und Wasserstoff in Gegenwart eines geeigneten Katalysators hydroformylieren und
4) hydrieren.
Die der Hydrierung vorangehende Butentrimerisierung kann mittels homogener oder heterogener Katalyse erfolgen.
Aus dem Reaktionsaustrag der beschriebenen Oligomerisierungsreaktion wird in einem oder mehreren Trennschritten zunächst eine dann zur Darstellung verwendbarer C13- Alkoholgemische durch Hydroformylierung und Hydrierung geeignete Ci2-Olefinfraktion isoliert (Verfahrensschritt 2). Geeignete Trennvorrichtungen sind die üblichen, dem Fachmann bekannten Apparaturen.
Zur Herstellung eines erfindungsgemäßen Alkoholgemisches wird die so isolierte Ci2- Olefinfraktion zu Ci3-Aldehyden hydroformyliert (Verfahrensschritt 3) und anschließend zu Ci3-Alkoholen hydriert (Verfahrensschritt 4). Dabei kann die Herstellung der Alkoholgemische einstufig oder in zwei separaten Reaktionsschritten erfolgen.
Eine Übersicht über Hydroformylierungsverfahren und geeignete Katalysatoren findet sich in Beller et al., Journal of Molecular Catalysis A 104 (1995), S. 17-85. Zur Hydrierung werden die bei der Hydroformylierung erhaltenen Reaktionsgemische mit Wasserstoff in Gegenwart eines Hydrierkatalysators umgesetzt.
Weitere geeignete Ci3-Alkoholgemische sind dadurch erhältlich, dass man
1 ) ein C4-Olefin-Gemisch der Metathese unterwirft,
2) aus dem Metathesegemisch Olefine mit 6 C-Atomen abtrennt,
3) die abgetrennten Olefine einzeln oder im Gemisch einer Dimerisierung zu Olefin- gemischen mit 12 C-Atomen unterzieht, und 4) das so erhaltene Olefingemisch, gegebenenfalls nach einer Fraktionierung, der Derivatisierung zu einem Gemisch von Ci3-Oxoalkoholen unterwirft.
Aus dem nach der Hydrierung erhaltenen Gemisch kann nach üblichen, dem Fachmann bekannten Reinigungsverfahren, insbesondere durch fraktionierte Destillation, das erfindungsgemäße Ci3-Alkoholgemisch zur Verwendung als Komponente (a) rein gewonnen werden.
Erfindungsgemäße Ci3-Alkoholgemische weisen in der Regel einen mittleren Verzweigungsgrad von 1 bis 4 auf, vorzugsweise von 2,0 bis 2,5 und insbesondere 2,1 bis 2,3 (auf Basis von Trimerbuten) bzw. von 1 ,3 bis 1 ,8 und insbesondere 1 ,4 bis 1 ,6 (auf Basis von Dimerhexen). Als Verzweigungsgrad ist die Zahl der Methylgruppen in einem Molekül des Alkohols abzüglich 1 definiert. Der mittlere Verzweigungsgrad ist der statistische Mittelwert der Verzweigungsgrade der Moleküle einer Probe. Die mittlere Zahl der Methylgruppen in den Molekülen einer Probe kann leicht 1H-NMR-spektroskopisch ermittelt werden. Hierzu wird die den Methylprotonen entsprechende Signalfläche im 1 H-NMR-Spektrum einer Probe durch 3 dividiert und zu der durch zwei dividierten Signalfläche der Methylenprotonen in der CH2-OH-Gruppe ins Verhältnis gesetzt.
Im Rahmen dieser besonderen Ausführungsform auf Basis von Ci3-Oxoalkoholen sind insbesondere diejenigen Alkoholalkoxylate bevorzugt, die entweder ethoxyliert oder Blockalkoxylate vom EO/PO-Typ sind.
Der Ethoxylierungsgrad der erfindungsgemäß zu verwendenden ethoxylierten Ci3- Oxoalkohole beträgt in der Regel 1 bis 50, vorzugsweise 3 bis 20 und insbesondere 3 bis 10, vor allem 4 bis 10 und besonders 5 bis 10. Die Alkoxylierungsgrade der erfindungsgemäß zu verwendenden EO/PO-Blockalkoxy- late hängen von der Anordnung der Blöcke ab. Sind die PeO-Blöcke terminal angeordnet, so beträgt das Verhältnis von EO-Einheiten zu PeO-Einheiten in der Regel wenigstens 1 , vorzugsweise 1 :1 bis 4:1 und insbesondere 1 ,5:1 bis 3:1. Dabei beträgt der Ethoxylierungsgrad in der Regel 1 bis 20, vorzugsweise 2 bis 15 und insbesondere 4 bis 10, der Propoxylierungsgrad in der Regel 1 bis 20, vorzugsweise 1 bis 8 und insbesondere 2 bis 5. Der Gesamtalkoxylierungsgrad, d.h. die Summe aus EO- und PO- Einheiten beträgt in der Regel 2 bis 40, vorzugsweise 3 bis 25 und insbesondere 6 bis 15. Sind die EO-Blöcke hingegen terminal angeordnet, so ist das Verhältnis von PO- Blöcken zu EO-Blöcken weniger kritisch und beträgt in der Regel 1 :10 bis 3:1 , vorzugsweise 1 :1 ,5 bis 1 :6. Dabei beträgt der Ethoxylierungsgrad in der Regel 1 bis 20, vorzugsweise 2 bis 15 und insbesondere 4 bis 10, der Propoxylierungsgrad in der Regel 0,5 bis 10, vorzugsweise 0,5 bis 6 und insbesondere 1 bis 4. Der Gesamtalkoxylierungsgrad beträgt in der Regel 1 ,5 bis 30, vorzugsweise 2,5 bis 21 und insbesondere 5 bis 14.
Gemäß einer weiteren besonderen Ausführungsform werden Alkoholpolyalkoxylate verwendet, deren Alkoholteil ein Cio-Oxoalkohol ist. Der Begriff "C10-Oxoalkohol" steht in Analogie zu dem bereits erläuterten Begriff "Ci3-Oxoalkohol" für Cio-Alkoholgemi- sehe, dessen Hauptkomponente aus wenigstens einem verzweigten Cio-Alkohol (Iso- decanol) gebildet wird.
Besonders bevorzugt ist es, wenn geeignete Ci0-Alkoholgemische durch Hydrierung von hydroformyliertem Trimerpropen erhalten werden.
Insbesondere kann man
1 ) Propene zwecks Oligomerisierung mit einem geeigneten Katalysator in Kontakt bringen,
2) aus dem Reaktionsgemisch eine C9-Olefinfraktion isolieren, 3) die Cg-Olefinfraktion durch Umsetzung mit Kohlenmonoxid und Wasserstoff in
Gegenwart eines geeigneten Katalysators hydroformylieren und 4) hydrieren.
Besondere Ausführungsformen dieser Vorgehensweise ergeben sich in Analogie zu den oben für die Hydrierung von hydroformyliertem Trimerbuten beschriebenen Ausgestaltungen. Im Rahmen dieser Ausführungsform auf Basis von Cio-Oxoalkoholen sind insbesondere diejenigen Alkoholpolyalkoxylate bevorzugt, die entweder ethoxyliert oder Blockalk- oxylate vom EO/PeO-Typ sind.
Der Ethoxylierungsgrad der erfindungsgemäß zu verwendenden ethoxylierten Ci0- Oxoalkohole beträgt in der Regel 2 bis 50, vorzugsweise 2 bis 20 und insbesondere 2 bis 10, vor allem 3 bis 10 und besonders 3 bis 10.
Die Alkoxylierungsgrade der erfindungsgemäß zu verwendenden EO/PeO-Blockalk- oxylate hängen von der Anordnung der Blöcke ab. Sind die PO-Blöcke terminal angeordnet, so beträgt das Verhältnis von EO-Einheiten zu PO-Einheiten in der Regel wenigstens 1 , vorzugsweise 2:1 bis 25:1 und insbesondere 4:1 bis 15:1. Dabei beträgt der Ethoxylierungsgrad in der Regel 1 bis 50, vorzugsweise 4 bis 25 und insbesondere 6 bis 15, der Pentoxylierungsgrad in der Regel 0,5 bis 20, vorzugsweise 0,5 bis 4 und insbesondere 0,5 bis 2. Der Gesamtalkoxylierungsgrad, d. h. die Summe aus EO- und PeO-Einheiten beträgt in der Regel 1 ,5 bis 70, vorzugsweise 4,5 bis 29 und insbesondere 6,5 bis 17. Sind die EO-Blöcke hingegen terminal angeordnet, so ist das Verhältnis von PeO-Blöcken zu EO-Blöcken weniger kritisch und beträgt in der Regel 1 :50 bis 1 :3, vorzugsweise 1 :25 bis 1 :5. Dabei beträgt der Ethoxylierungsgrad in der Regel 3 bis 50, vorzugsweise 4 bis 25 und insbesondere 5 bis 15, der Pentoxylierungsgrad in der Regel 0,5 bis 20, vorzugsweise 0,5 bis 4 und insbesondere 0,5 bis 2. Der Gesamtalkoxylierungsgrad beträgt in der Regel 3,5 bis 70, vorzugsweise 4,5 bis 45 und insbesondere 5,5 bis 17.
Aus den vorstehenden Ausführungen folgt, dass insbesondere die erfindungsgemäß zu verwendenden Ci3-Oxoalkohole bzw. Cio-Oxoalkohole auf Olefinen basieren, die bereits verzweigt sind. Mit anderen Worten, Verzweigungen sind nicht nur auf die Hydro- formylierungsreaktion zurückzuführen, wie es bei der Hydroformylierung geradkettiger Olefine der Fall wäre. Deshalb ist der Verzweigungsgrad erfindungsgemäß zu verwendender Alkoxylate in der Regel größer als 1.
Die erfindungsgemäß zu verwendenden Alkoxylate weisen in der Regel einen relativ geringen Kontaktwinkel auf. Besonders bevorzugt sind Alkoxylate, deren Kontaktwinkel weniger als 120° und vorzugsweise weniger als 100° beträgt, wenn dieser anhand ei- ner 2 Gew.-% Alkoxylat enthaltenden, wässrigen Lösung auf einer Paraffinoberfläche in an sich bekannter Art und Weise bestimmt wird.
Die oberflächenaktiven Eigenschaften der Polyalkoxylate hängen einem Aspekt zufolge von Art und Verteilung der Polyalkoxylat-Gruppierung ab. Die nach der Pendant Drop Methode bestimmbare Oberflächenspannung erfindungsgemäß zu verwendender Polyalkoxylate liegt vorzugsweise in einem Bereich von 25 bis 70 mN/m und insbesondere 28 bis 50 mN/m für eine 0,1 Gew.-% Polyalkoxylat enthaltende Lösung, in einem Bereich von 25 bis 70 mN/m und insbesonden 28 bis 45 mN/m für eine 0,5 Gew.-% PoIy- alkoxylat enthaltende Lösung. Erfindungsgemäß bevorzugt zu verwendende Polyalkoxylate qualifizieren daher als amphiphile Substanzen.
Typische Handelsprodukte der Formel (I) sind dem Fachmann geläufig. Sie werden z. B. von der Fa. BASF unter dem gemeinsamen Markennamen der „Lutensole" angebo- ten, wobei man je nach Basisalkohol Lutensole der Serien A, AO, AT, ON, AP und FA unterscheidet. Weiterhin hinzugefügte Zahlen geben den Ethoxylierungsgrad an. So ist z. B. „Lutensol AO 8" ein C13-15-Oxoalkohol mit acht EO-Einheiten. „Lutensol ED" steht für eine Reihe alkoxylierter Amine.
Weitere Beispiele für erfindungsgemäße Polyalkoxylate sind Produkte der Fa. Akzo, z. B. die „Ethylan"-Reihe auf der Basis linearer oder verzweigter Alkohole. So ist z. B. „Ethylan SN 120" ein Cio-12-Alkohol mit zehn EO-Einheiten, und „Ethylan 4 S" ein Ci2- 14-Alkohol mit vier EO-Einheiten.
Weitere Beispiele für erfindungsgemäße Polyalkoxylate sind ferner die „NP"-Produkte der Fa. Akzo (vormals Fa. Witco) auf der Basis von Nonylphenolen. Nonylphenolalko- xylate oder analoge Monoalkylphenolalkoxylate und deren Derivate sind für den Einsatz in Europa nicht bevorzugt, da europäische Zulassungsbehörden sie bezüglich ihrer potentiellen endokrinen Wirkungen sehr kritisch beurteilen. Diesbezüglich sind für Europa unkritische di- oder polyalkylsubstituierte Aryl- oder Polyarylalkoxylate bevorzugt.
Weitere Beispiele für erfindungsgemäße Polyalkoxylate sind Castor Oil-Ethoxylate (Ri- zinusöl-EOχ), z. B. Produkte der „Emulphon CO"- oder „Emulphon EL"-Produktreihen von Akzo, wie etwa „Emulphon CO 150" mit 15 EO-Einheiten, oder Produkte der „E- thomee"-Reihe auf der Basis von Kokosölaminen oder Talgfettaminen („tallow oil ami- nes"), z. B. „Ethomee C/25", ein Kokosfettamin mit 25 EO-Einheiten.
Erfindungsgemäße Alkoxylate umfasen auch sogenannte „narrow range"-Produkte. Der Ausdruck „narrow ränge" bezieht sich hierbei auf eine engere Verteilung der Anzahl der EO-Einheiten. Hierzu gehören z. B. Produkte der „Berol"-Reihe von Akzo.
Erfindungsgemäß sind ferner Sorbitanester-Ethoxylate, z. B. „Armotan AL 69-66 POE(30) Sorbitan-monotallate", also eine mit Sorbitol veresterte und anschließend ethoxylierte ungesättigte Fettsäure.
Es können auch Gemische verschiedener Polyalkoxylate als Komponente (a) eingesetzt werden.
Gemäß einer besonderen Ausführungsform der Erfindung enthält das Mittel wenigstens 20 Gew.-%, vorzugsweise wenigstens 25 Gew.-% und insbesondere wenigstens 30 Gew.-% Alkoxylat.
Gemäß einer weiteren besonderen Ausführungsform der Erfindung enthält das Mittel höchstens 70 Gew.-%, vorzugsweise höchstens 60 Gew.-% und insbesondere höchstens 45 Gew.-%. Alkoxylat.
Als Trägerkomponente (b) können allgemein feste, höhermolekulare, beispielsweise polymere oder makromolekulare, organische Sulfonate verwendet werden. Der Begriff Sulfonat steht hier für ein Salz, das sich aus Sulfonat-Anionen und geeigneten Kationen zusammensetzt.
Besonders bevorzugt ist es hierbei, wenn das höhermolekulare Sulfonat wasserlöslich ist. Damit können die erfindungsgemäßen Sulfonate, im Gegensatz zu typischen in der Regel auf wasserunlöslichen anorganischen Feststoffen basierenden Carriern, in gelöster Form, bevorzugt als wässrige Konzentrate, bei der Herstellung der festen Pflanzenschutzmittel eingetragen werden, wodurch sie besonders effektiv als Träger der Komponente (a) fungieren.
Geeignete höhermolekulare Sulfonate weisen in der Regel ein gewichtsmittleres Molekulargewicht (bestimmt durch mittels Polystyrolsulfonaten kalibrierte Gelpermeations- Chromatographie) von wenigstens ca. 1 kDa, vorzugsweise von wenigstens ca. 2,5 und insbesondere von wenigstens ca. 5 kDa, beispielsweise ein gewichtsmittleres Molekulargewicht von ca. 6 - 7 kDa (z. B. „Tamol NN"-Reihe), oder von ca. 20 kDa (z. B. „Ta- mol NH"-Reihe) auf. Einem weiteren Aspekt zufolge weisen geeignete höhermolekula- re Sulfonate weisen beispielsweise ein zahlenmittleres Molekulargewicht (bestimmt durch mittels Polystyrolsulfonaten kalibrierte Gelpermeationschromatographie) von ca. 1 kDa (z. B. „Tamol NN"-Reihe), oder von ca. 2 kDa (z. B. „Tamol NH"-Reihe) auf, so dass der Polydispersionsindex geeigneter höhermolekularer Sulfonate in der Regel in einem Berich von ca. 2 bis 20 und vorzugsweise in einem Bereich von 5 bis 15, bei- spielsweise bei ca. 6 (z. B. „Tamol NN"-Reihe), oder bei ca. 20 (z. B. „Tamol NH"-Rei- he) liegt. Weitere Eigenschaften geeigneter höhermolekularer Sulfonate sind beispielsweise eine Schüttdichte von ca. 450 - ca. 550 g / 1 für Feststoffe bzw. eine Dichte von ca. 1 ,17 - ca. 1 ,23 g / ml und eine Viskosität von ca. 20 - ca. 80 mPa s für Flüssigkeiten sowie ein neutrales bis alkalisches Verhalten (pH-Wert in wässriger Lösung ca. 7 - 10).
Gemäß einer bevorzugten Ausführungsform der Erfindung werden Ligninsulfonate eingesetzt.
Ligninsulfonate werden aus Lignin dargestellt, das wiederum in Pflanzen, speziell holzigen Pflanzen, durch Polymerisation aus drei Arten von Phenylpropanol- Monomeren entsteht:
A) 3-(4-Hydroxyphenyl)-2-propen-1-ol (p-Cumarylalkohol), B) 3-(3-methoxy-4-hydroxyphenyl)-2-propen-1-ol (Coniferylalkohol),
C) 3-(3,5-dimethoxy-4-hydroxyphenyl)-2-propen-1 -ol (Sinapylalkohol).
Der erste Schritt im Aufbau der makromolekularen Ligninstruktur besteht in enzy- matischer Dehydrierung dieser Monomere, wobei Phenoxylradikale entstehen. Zu- fällige Kopplungsreaktionen zwischen diesen Radikalen führen zu einem dreidimensionalen, amorphen Polymer, das im Gegensatz zu den meisten anderen Biopolymeren keine regelmäßig geordneten oder wiederholten Einheiten aufweist. Aus diesem Grund kann keine definierte Ligninstruktur genannt werden, obwohl diverse Modelle für eine "durchschnittliche" Struktur vorgeschlagen worden sind. Da die Monomere des Lignins neun Kohlenstoffatome enthalten, werden die Analysedaten oft in Cg-Formeln ausgedrückt, z.B. C9H827(OCH3)o97 für Lignin aus Picea abies, und C9H87029(OCHs)1 58 für Lignin aus Eucalyptus regnans.
Die Uneinheitlichkeit des Lignins zwischen Pflanzen verschiedener Taxa, ebenso wie zwischen den verschiedenen Geweben, Zellen und Zellwandschichten einer jeden Spezies, ist dem Fachmann geläufig. Lignine aus Nadelhölzer, Laubhölzern und Gräsern unterscheiden sich im Hinblick auf ihren Gehalt an Guaiacyl- (3-meth- oxy-4-hydroxyphenyl-), Syringyl- (3,5-dimethoxy-4-hydroxyphenyl-) and 4-Hydroxy- phenyl-Einheiten. Lignine aus Nadelhölzern bestehen hauptsächlich aus Coniferyl- alkohol, während Laubholzlignine aus Guaiacyl- und Syringyleinheiten in verschiedenen Verhältnissen bestehen, wobei bei Laubhölzern die Zusammensetzung des Lignins wesentlich variabler ist als bei Nadelhölzern. Der Methoxylgehalt typischer Laubholzlignine schwankt zwischen 1 ,20 und 1 ,52 Methoxylgruppen pro Phenyl- propaneinheit. Lignine aus krautigen Pflanzen haben im allgemeinen einen niedri- gen Gehalt an Syringylpropanen, mit einem Verhältnis von Methoxyl : Cg-Einheiten unter 1.
Die Zusammensetzung des Lignins hängt auch vom Alter ab, z.B. ist bei Pappeln das Verhältnis von Syringyl zu Guaiacyl im reifen Xylem höher als im jüngeren Xy- lern oder Phloem, und von dem morphologischen Platz des Lignins in Zellwand. Zum Beispiel besteht bei der Birke das Lignin in der sekundären Zellwand von Faserzellen hauptsächlich aus Syringyleinheiten, während das in Mittellamellen und Zellwinkeln der Fasern hauptsächlich Guaiacyleinheiten umfaßt. Lignin aus unter Spannung stehendem Holz, bei Laubbäumen in den oberen Teilen der Zweige und Äste, umfasst mehr Syringylpropaneinheiten als das Lignin aus normalem Holz; unter Druck stehendes Holz, bei Nadelbäumen in den unteren Teilen der Zweige und Äste, ist hingegen reicher an 4-Hydroxyphenyleinheiten.
Mehr als zwei Drittel der Phenylpropaneinheiten im Lignin sind durch Ether- bindungen verknüpft, der Rest durch Kohlenstoff-Kohlenstoff-Bindungen.
Das chemische Verhalten des Lignins wird hauptsächlich durch die Gegenwart phenolischer, benzylischer und carbonylischer Hydroxylgruppen bestimmt, deren Häufigkeit in Abhängigkeit von den oben genannten Faktoren und dem Isolationsverfahren schwanken kann. Ligninsulfonate entstehen als Nebenprodukte der Zellstoffherstellung unter dem Einfluss schwefliger Säure, die Sulfonierung und ein gewisses Maß an Demethylie- rung der Lignine bewirkt. Wie die Lignine sind sie in Struktur und Zusammensetzung vielfältig. In Wasser sind sie im gesamten pH-Bereich löslich, in Ethanol, Aze- ton und anderen gängigen organischen Lösungsmitteln hingegen unlöslich. Typisch für Nadelholzligninsulfonate ist die folgende Cg-Formel: C9H85O25(OCH3)O85(SO3H)04 ; e280 = 3.0 x 103 L (Cg-Masseneinheit)"1 cm"1 ; λmax = 280 nm ; Phenolhydroxylgehalt 0.5 meq./g.
Ligninsulfonate sind nur wenig oberflächenaktiv. Sie haben nur eine geringe Neigung, die Zwischenflächenspannung zwischen Flüssigkeiten zu verringern, und eignen sich nicht zur Verringerung der Oberflächenspannung des Wassers oder zur Micellenbildung. Als Dispersionsmittel können sie durch Adsorption/Desorption und Ladungsbildung of Substraten fungieren. Ihre Oberflächenaktivität kann jedoch durch Einfügen langkettiger Alkylamine in die Ligninstruktur gesteigert werden.
Methoden zur Isolation und Reinigung von Ligninsulfonaten sind dem Fachmann geläufig. Beim Howard-Verfahren werden Calciumligninsulfonate durch Zusatz eines Überschusses an Kalk zu verbrauchter Sulfitablaugung gefällt. Ligninsulfona- te können auch durch Bildung unlöslicher quaternärer Ammoniumsalze mit langket- tigen Aminen isoliert werden. Im Industriemaßstab können Ultrafiltration and lonen- austauschchromatographie zur Aufreinigung von Ligninsulfonaten verwendet werden.
Erfindungsgemäß verwendbare Ligninsulfonat-Serien sind unter verschiedenen Handelsnamen kommerziell erhältlich, wie z.B. Ameri-Bond, Dynasperse, KeNg, Lignosol, Marasperse, Norlig (Daishowa Chemicals), Lignosite (Georgia Pacific), Reax (MEAD Westvaco), Wafolin, Wafex, Wargotan, Wanin, Wargonin (Holmens), Vanillex (Nippon Paper), Vanisperse, Vanicell, Ultrazine, Ufoxane (Borregaard), Serla-Bondex, Serla- Con, Serla-Pon, Serla-Sol (Serlachius), Collex, Zewa (Wadhof-Holmes), Raylig (ITT Rayonier).
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung werden synthetische polymere Sulfonate als Komponente (b) eingesetzt. Nochmals besonders bevorzugt ist es hierbei, wenn das höhermolekulare Sulfonat ein Kondensationsprodukt auf Basis eines sulfonierten Aromaten, eines Aldehyds und/oder Ketons, und gegebenenfalls einer unter nichtsulfonierten Aromaten, Harnstoff und Harnstoffderivaten ausgewählten Verbindung ist.
Insbesondere bevorzugt ist es hierbei, wenn der sulfonierte Aromat ausgewählt ist unter Naphthalinsulfonsäuren, Indansulfonsäuren, Tetralinsulfonsäuren, Phenol- sulfonsäuren, Di- und Polyhydroxybenzolsulfonsäuren, sulfonierten Ditolylethern, sulfomethylierten 4,4'-Dihydroxydiphenylsulfonen, sulfoniertem Diphenylmethan, sulfoniertem Biphenyl, sulfoniertem Hydroxybiphenyl, sulfoniertem Terpenyl und Benzolsulfonsäuren.
Insbesondere bevorzugt ist es auch, wenn der Aldehyd und/oder das Keton ausgewählt ist/sind unter aliphatischen Ci-Cs-Aldehyden bzw. C3-C5-Ketonen. Nochmals besonders bevorzugt ist es hierbei, wenn der aliphatische CrC5-Aldehyd Formaldehyd ist.
Insbesondere bevorzugt ist es weiterhin, wenn der nichtsulfonierte Aromat ausgewählt ist unter Phenol, Kresol und Dihydroxydiphenylmethan. Insbesondere bevorzugt ist es ferner, wenn das Harnstoffderivat ausgewählt ist unter Dimethylolharnstoff, Melamin und Guanidin.
In einer besonderen Ausführungsform umfasst das Kondensationsprodukt Wiederholungseinheiten gemäß Formel (IIa):
und/oder Formel (IIb):
(IIb)
und/oder Formel (Mc)
worin
R8 für Wasserstoff, eine oder mehrere Hydroxylgruppen oder einen oder mehrere Ci- 8-Alkylreste steht;
q1 einem Wert von 100 bis 10 10 entspricht; und
A für Methylen-, 1 ,1 -Ethylen- oder eine Gruppe der Formeln
-CH2-NH-CO-NH-CH2- , -CH-NH-CO-NH-CH-
CH '3, C ^H1 3, steht. In obigen Formeln sind die Positionen der Bindungen nicht festgelegt.
Vorzugsweise steht A für Methylen. Ebenfalls bevorzugt ist es, wenn R8 für Wasserstoff oder bis zu 3 Ci-8-Alkylreste, beispielsweise für 1 oder 2 Ci-4-Alkylreste steht.
Solche Kondensationsprodukte und die Verfahren und Geräte zu ihrer Herstellung sind dem Fachmann an sich geläufig.
In einer weiteren besonderen Ausführungsform umfasst das Kondensationsprodukt Wiederholungseinheiten gemäß Formel (III):
worin R9 für Wasserstoff, eine oder mehrere Hydroxylgruppen oder einen oder mehrere d-β-Alkylreste steht;
q2 einem Wert von 100 bis 1010 entspricht;
A für Methylen-, 1 ,1-Ethylen- oder eine Gruppe der Formeln
-CH2-NH-CO-NH-CH2- , -CH-NH-CO-NH-CH-
I I
CH3 CH3 steht. In obigen Formeln sind die Positionen der Bindungen nicht festgelegt.
Bevorzugt ist es, wenn R9 für eine Hydroxylgruppe steht.
In einer weiteren besonderen Ausführungsform ist das Sulfonat ausgewählt unter Kondensationsprodukten aus Phenolsulfonsäure, Formaldehyd und Harnstoff. Vorzugsweise umfassen solche Kondensationsprodukte Wiederholungseinheiten ge- maß Formel (lila):
worin
q2 einem Wert von 100 bis 1010 entspricht.
Auch solche Kondensationsprodukte und die Verfahren und Geräte zu ihrer Herstellung sind dem Fachmann an sich geläufig.
Eine weitere Ausgestaltung höhermolekularer Sulfonate bieten aus ethylenisch ungesättigten Monomeren M aufgebaute Copolymere CP, wobei die das Copolymer CP konstituierenden Monomere M α) wenigstens ein monoethylenisch ungesättigtes Monomer M1 , das wenigstens eine Sulfonsäuregruppe aufweist, und ß) wenigstens ein neutrales, monoethylenisch ungesättigtes Monomer M2 umfassen.
Bei den Copolymeren CP handelt es sich in der Regel um sogenannte statistische Co- polymere, d.h. die Monomere M1 und M2 sind statistisch entlang der Polymerkette verteilt. Grundsätzlich geeignet sind auch alternierende Copolymere CP sowie Block- copolymere CP.
Die das Copolymer CP konstituierenden Monomere M umfassen erfindungsgemäß wenigstens ein monoethylenisch ungesättigtes Monomer M1 , das wenigstens eine SuI- fonsäuregruppe aufweist. Der Anteil der Monomere M1 an den Monomeren M macht dabei in der Regel 1 bis 90 Gew.-%, häufig 1 bis 80 Gew.-%, insbesondere 2 bis 70 Gew.-% und speziell 5 bis 60 Gew.-%, bezogen auf die Gesamtmenge Monomere M aus.
Als Monomere M1 kommen dabei grundsätzlich alle monoethylenisch ungesättigten Monomere in Betracht, die wenigstens eine Sulfonsäuregruppe aufweisen. Die Monomere M1 können sowohl in ihrer Säureform als auch in der Salzform vorliegen. Die angegebenen Gewichtsteile beziehen sich dabei auf die Säureform.
Beispiel für Monomere M1 sind Styrolsulfonsäure, Vinylsulfonsäure, Allylsulfonsäure, Methallylsulfonsäure sowie die durch die folgende allgemeine Formel V definierten Monomere und die Salze der vorgenannten Monomere.
In Formel V bedeuten: n 0, 1 , 2 oder 3, insbesondere 1 oder 2;
X O oder NR15;
R12 Wasserstoff oder Methyl;
R13, R14 unabhängig voneinander Wasserstoff oder d-C4-Alkyl, insbesondere Was- serstoff oder Methyl und R15 Wasserstoff oder CrC4-Alkyl, insbesondere Wasserstoff.
Beispiele für Monomere M1 der allgemeinen Formel (V) sind 2-Acrylamido-2-methyl- propansulfonsäure, 2-Methacrylamido-2-methylpropansulfonsäure, 2-Acrylamidoethan- sulfonsäure, 2-Methacrylamidoethansulfonsäure, 2-Acryloxethansulfonsäure, 2-Meth- acryloxethansulfonsäure, 3-Acryloxypropansulfonsäure und 2-Methacryloxypropan- sulfonsäure.
Neben den Monomeren M1 umfassen die das Copolymer CP konstituierenden Mono- mere M wenigstens ein neutrales monoethylenisch ungesättigtes Monomer M2. Neutral bedeutet, dass die Monomere M2 keine funktionelle Gruppe aufweisen, die im wässri- gen sauer oder basisch reagiert oder in ionischer Form vorliegt. Die Gesamtmenge der Monomere M2 macht in der Regel 10 bis 99 Gew.-%, häufig 20 bis 99 Gew.-%, insbesondere 30 bis 98 Gew.-% und speziell 40 bis 95 Gew.-%, bezogen auf das Gesamt- gewicht der Monomere M aus.
Beispiele für Monomere M2 sind solche mit begrenzter Wasserlöslichkeit, z. B. einer Wasserlöslichkeit unterhalb 50 g/l und insbesondere unterhalb 30 g/l (bei 20°C und 1013 mbar) und solche mit einer erhöhten Wasserlöslichkeit, z.B. einer Wasserlöslich- keit ≥ 50 g/l, insbesondere ≥ 80g/l (bei 20°C und 1013 mbar). Monomere mit begrenzter Wasserlöslichkeit werden im Folgenden auch als Monomere M2a bezeichnet. Monomere mit erhöhter Wasserlöslichkeit werden im Folgenden auch als Monomere M2b bezeichnet.
Beispiele für Monomere M2a sind vinylaromatische Monomere wie Styrol und Styrol- derivate wie α-Methylstyrol, Vinyltoluol, ortho-, meta- und para-Methylstyrol, Ethylvinyl- benzol, Vinylnaphthalin, Vinylxylol sowie die entsprechenden halogenierten vinylaro- matischen Monomere, α-Olefine mit 2 bis 12 C-Atomen wie Ethen, Propen, 1 -Buten, 1- Penten, 1-Hexen, Isobuten, Diisobuten und dergleichen, Diene wie Butadien und Iso- pren, Vinylester aliphatischer Ci-Ci8-Carbonsäuren wie Vinylacetat, Vinylpropionat, Vi- nyllaurat und Vinylstearat, Vinylhalogenide wie Vinylchlorid, Vinylfluorid, Vinylidenchlo- rid, Vinylidenfluorid, Mono- und Di-d-C24-Alkylester von monoethylenisch ungesättigten Mono- und Dicarbonsäuren z.B. der Acrylsäure, der Methacrylsäure, der Fumar- säure, der Maleinsäure oder der Itaconsäure, Mono- und Di-C5-Ci2-Cycloalkylester der vorgenannten monoethylenisch ungesättigten Mono- und Dicarbonsäuren, Mono- und Diester der vorgenannten monoethylenisch ungesättigten Mono- und Dicarbonsäuren mit Phenyl-Ci-C4-alkanolen oder Phenoxy-Ci-C4-alkanolen, weiterhin monoethylenisch ungesättigte Ether insbesondere d-C2o-Alkylvinylether wie Ethylvinylether, Methylvinyl- ether, n-Butyl-vinylether, Octadecylvinylether, Triethylenglykolvinylmethylether, Vinyl- isobutylether, Vinyl-(2-ethylhexyl)ether, Vinylpropylether, Vinylisopropylether, Vinyl- dodecylether, Vinyl-tert-butylether.
Bevorzugt sind die Monomere M2a ausgewählt unter vinylaromatischen Monomeren, Estern der Acrylsäure mit C2-Ci0-Alkanolen, wie Ethylacrylat, n-Butylacrylat, 2-Butyl- acrylat, Isobutylacrylat, tert.-Butylacrylat, 2-Ethylhexylacrylat, Estern der Acrylsäure mit C4-Cio-Cycloalkanolen wie Cyclohexylacrylat, Estern der Acrylsäure mit Phenyl-d-C4- alkanolen wie Benzylacrylat, 2-Phenylethylacrylat und 1-Phenylethylacrylat, Estern der Acrylsäure mit Phenoxy-d-C4-alkanolen wie 2-Phenoxyethylacrylat, den Estern der Methacrylsäure mit d-Cio-Alkanolen, insbesondere mit d-C6-Alkanolen, wie Methyl- methacrylat, Ethylmethacrylat, n-Butylmethacrylat, 2-Butylmethacrylat, Isobutylmeth- acrylat, tert.-Butylmethacrylat, 2-Ethylhexylmethacrylat, Estern der Methacrylsäure mit C4-Cio-Cycloalkanolen wie Cyclohexylmethacrylat, Estern der Methacrylsäure mit Phe- nyl-CrC4-alkanolen wie Benzylmethacrylat, 2-Phenylethylmethacrylat und 1-Phenyl- ethylmethacrylat, und Estern der Methacrylsäure mit Phenoxy-d-C4-alkanolen wie 2- Phenoxyethylmethacrylat. In einer besonders bevorzugten Ausführungsform umfassen die Monomere M2a zu wenigstens 80%, bezogen auf die Gesamtmenge der Monomere M2a und insbesondere ausschließlich Ester der Acrylsäure und/oder der Methacrylsäure mit Ci-C6-Alkanolen.
Neutrale monoethylenisch ungesättigte Monomere mit erhöhter Wasserlöslichkeit oder gar Wassermischbarkeit sind dem Fachmann bekannt, z.B. aus Ullmann's Encyclope- dia of Industrial Chemistry, "Polyacrylates", 5th ed. on CD-ROM, Wiley-VCH, Weinheim 1997. Typische Monomere M2b sind Hydroxy-C2-C4-alkylester monoethylenisch ungesättigter Monocarbonsäuren, insbesondere der Acrylsäure und der Methacrylsäure wie 2-Hydroxyethylacrylat, 2-Hydroxypropylacrylat, 3-Hydroxypropylacrylat, 2-Hydroxy- butylacrylat, 4-Hydroxybutylacrylat, 2-Hydroxyethylmethacrylat, 2-Hydroxypropylmeth- acrylat, 3-Hydroxypropylmethacrylat, 2-Hydroxybutylmethacrylat, 4-Hydroxybutylmeth- acrylat, weiterhin Amide monoethylenisch ungesättigter Monocarbonsäuren wie Acryl- amid, Methacrylamid, weiterhin Acrylnitril und Methacrylnitril, N-Vinyllactame wie N-Vi- nylpyrrolidon, N-Vinylcaprolactam, N-Vinylamide aliphatischer d-C4-Monocarbonsäu- ren wie N-Vinylformamid, N-Vinylacetamid, monoethylenisch ungesättigte, harnstoff- gruppentragende Monomere wie N-Vinyl- und N-Allylharnstoff sowie Derivate des Imi- dazolidin-2-ons, z.B. N-Vinyl- und N-Allylimidazolidin-2-on, N-Vinyloxyethylimidazolidin- 2-on, N-Allyloxyethylimidazolidin-2-on N-(2-Acrylamidoethyl)imidazolidin-2-on, N-(2- Acryloxyethyl)imidazolidin-2-on, N-(2-Methacrylamidoethyl)imidazolidin-2-on, N-(2- Methacryloxyethyl)imidazolidin-2-on (= Ureidomethacrylat), N-[2-(Acryloxyacetamido)- ethyl]imidazolidin-2-on, N-[2-(2-Acryloxyacetamido)ethyl]imidazolidin-2-onN-[2-(2-Meth- acryloxyacetamido)ethyl]imidazolidin-2-on; und dergleichen. Vorzugsweise sind die Monomere M2b ausgewählt unter Hydroxy-CrC4-alkylestern der Acrylsäure und der Methacrylsäure, Acrylamid, Methacrylamid, Acrylnitril, N-Vinyllactamen, wobei die Hyd- roxy-C2-C4-alkylester der Acrylsäure und der Methacrylsäure besonders bevorzugt sind. Insbesondere umfassen die Monomere M2b zu wenigstens 80 Gew.-%, bezogen auf die Gesamtmenge der Monomere M2b wenigstens einen Hydroxy-C2-C4-alkylester der Acrylsäure und/oder der Methacrylsäure.
Vorzugsweise umfassen die Monomere M2 wenigstens eines der vorgenannten Mono- mer M2a, das bei 20°C in Wasser eine Löslichkeit unterhalb 50 g/l und insbesondere unterhalb 30 g/l aufweist. Der Anteil der Monomere M2a an den das Copolymer CP konstituierenden Monomeren M liegt typischerweise im Bereich von 10 bis 99 Gew.-%, häufig im Bereich von 20 bis 99 Gew.-%, insbesondere im Bereich von 30 bis 98 Gew.- % und speziell im Bereich von 40 bis 95 Gew.-%, bezogen auf das Gesamtgewicht der Monomere M.
In einer ersten bevorzugten Ausführungsform der Erfindung ist das Monomer M2a alleiniges oder nahezu alleiniges Monomer M2 und macht wenigstens 95 Gew.-% und insbesondere wenigstens 99 Gew.-% der Monomere M2 aus.
In einer zweiten bevorzugten Ausführungsform der Erfindung umfassen die Monomere M2 neben dem Monomer M2a wenigstens ein Monomer M2b, das bei 20°C in Wasser eine Löslichkeit von wenigstens 50 g/l und insbesondere wenigstens 80 g/l aufweist. Dementsprechend umfassen die das Copolymer CP konstituierenden Monomere M ne- ben dem Monomer M1 sowohl wenigstens eines der zuvor genannten Monomere M2a, insbesondere wenigstens eines der als bevorzugt genannten Monomere M2a und wenigstens eines der zuvor genannten Monomere M2b, insbesondere wenigstens eines der als bevorzugt genannten Monomere M2b.
Häufig wird die Gesamtmenge der Monomere M1 + M2b 90 Gew.-%, insbesondere 80 Gew.-% und speziell 70 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, nicht überschreiten und liegt insbesondere im Bereich von 10 bis 90 Gew.-%, insbesondere im Bereich von 20 bis 80 Gew.-% und speziell im Bereich von 30 bis 70 Gew.- %, bezogen auf die Gesamtmenge der Monomere M. Dementsprechend machen die Monomere M2a häufig wenigstens 10 Gew.-%, insbesondere wenigstens 20 Gew.-% und speziell wenigstens 30 Gew.-%, z.B. 10 bis 90 Gew.-%, insbesondere 20 bis 80 Gew.-%, und speziell 30 bis 70 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, aus.
In dieser zweiten, besonders bevorzugten Ausführungsform machen die Monomere M1 vorzugsweise 1 bis 80 Gew.-%, insbesondere 2 bis 70 Gew.-% und besonders bevorzugt 5 bis 60 Gew.-%, die Monomere M2a vorzugsweise 10 bis 90 Gew.-%, insbesondere 20 bis 80 Gew.-% und besonders bevorzugt 30 bis 70 Gew.-%, und die Monomere M2b vorzugsweise 5 bis 89 Gew.-%, insbesondere 10 bis 78 Gew.-% und besonders bevorzugt 20 bis 65 Gew.-%, bezogen auf die Gesamtmenge der Monomere M aus. Hierunter besonders bevorzugt sind Copolymere CP, deren konstituierende Monomere M als Monomere M1 wenigstens ein Monomer der Formel (V), als Monomere M2a wenigstens ein unter Estern der Acrylsäure mit C2-Cio-Alkanolen und Estern der Methacrylsäure mit d-Cio-Alkanolen ausgewähltes Monomer und als Monomere M2b wenigstens ein unter Hydroxy-C2-C4-alkylestern der Acrylsäure und der Methacrylsäure ausgewähltes Monomer umfassen.
Daneben können die das Copolymer konstituierenden Monomere M noch weitere, von den Monomeren M1 und M2 verschiedene Monomere M3 umfassen. Der Anteil der Monomere M3 an der Gesamtmenge der Monomere M macht vorzugsweise nicht mehr als 40 Gew.-%, insbesondere nicht mehr als 20 Gew.-% aus. In einer bevorzugten Ausführungsform umfassen die Monomere keine oder nicht mehr als 3 Gew.-%, speziell nicht mehr als 1 Gew.-% von den Monomeren M1 und M2 verschiedene Monomere M3.
Zu den Monomeren M3 zählen monoethylenisch ungesättigte Monomere mit wenigstens einer Carbonsäuregruppe, insbesondere monoethylenisch ungesättigte Mono- und Dicarbonsäuren mit 3 bis 6 C-Atomen (Monomere M3a) wie Acrylsäure, Methacrylsäure, Vinylessigsäure, Crotonsäure, Fumarsäure, Maleinsäure, Itaconsäure und dergleichen, und die Anhydride der vorgenannten monoethylenisch ungesättigten Dicar- bonsäuren, wobei der Anteil der Monomere M3a in der Regel 20 Gew.-% und insbesondere 10 Gew.-%, bezogen auf die Gesamtmonomermenge M nicht überschreitet. Zu den Monomere M3 zählen weiterhin mehrfach ethylenisch ungesättigte Monomere (M3b). Der Anteil derartiger Monomere M3 wird in der Regel nicht mehr als 2 Gew.-% und insbesondere nicht mehr als 0,5 Gew.-%, bezogen auf die Gesamtmonomermen- ge M betragen Beispiele hierfür sind Vinyl- und Allylester monoethylenisch ungesättigter Carbonsäuren wie Allylacrylat und Allylmethacrylat, Di- und Polyacrylate von Dioder Polyolen wie Ethylenglykoldiacrylat, Ethylenglykoldimethacrylat, Butandioldiacryl- at, Butandioldimethacrylat, Hexandioldiacrylat, Hexandioldimethacrylat, Triethylengly- koldiacrylat, Triethylenglykoltrimethacrylat, Tris(hydroxymethyl)ethantriacrylat und — tri— methacrylat, Pentaerythrittriacrylat und -trimethacrylat, ferner die AIIyI- und Methallyl- ester von polyfunktionellen Carbonsäuren, wie Diallylmaleat, Diallylfumarat, Diallyl- phthalat. Typische Monomere M3b sind auch Verbindungen, wie Divinylbenzol, Di- vinylharnstoff, Diallylharnstoff, Triallylcyanurat, N,N'-Divinyl- und N,N'-Diallyl- imidazolidin-2-on, sowie Methylenbisacrylamid und Methylenbismethacrylamid.
Erfindungsgemäß sind weiterhin Copolymere CP bevorzugt, die ein zahlenmittleres Molekulargewicht Mn im Bereich von 1000 bis 500000 Dalton, insbesondere 2000 bis 50000 Dalton und speziell 5000 bis 20000 Dalton aufweisen. Das gewichtsmittlere Molekulargewicht liegt häufig im Bereich von 2000 bis 1000000 Dalton, insbesondere 4000 bis 100000 Dalton und speziell 10000 bis 50000 Dalton. Das Verhältnis MJMn liegt häufig im Bereich von 1 ,1 :1 bis 10:1 , insbesondere im Bereich von 1 ,2:1 bis 5:1. Die Molmassen Mw und Mn sowie die Uneinheitlichkeit der Polymere werden durch Größenausschlusschromatographie (= Gelpermeationschromatographie oder kurz GPC) bestimmt. Als Kalibrationsmaterial können handelsübliche Polymethylmethacylat (PMMA)-Eichsätze verwendet werden.
In der Regel wird das erfindungsgemäße Copolymerisat eine Glasübergangstemperatur Tg im Bereich von -80 bis 160°C und häufig im Bereich von -40°C bis +100°C aufweisen. Unter der Glasübergangstemperatur Tg wird hier die gemäß ASTM D 3418-82 durch Differentialthermoanalyse (DSC) ermittelte „midpoint temperature" verstanden (vgl. Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A 21 , VCH Weinheim 1992, S. 169 sowie Zosel, Farbe und Lack 82 (1976), S. 125-134, siehe auch DIN 53765).
In diesem Zusammenhang erweist es sich als hilfreich, die Glasübergangstemperatur T9 des Copolymeren CP mit Hilfe der Gleichung von Fox (T. G. Fox, Bull. Am. Phys. Soc. (Ser. II) 1 , 123 [1956] und Ullmanns Enzyklopädie der technischen Chemie, Weinheim (1980), S. 17-18) anhand der Glasübergangstemperatur der jeweiligen Homo- polymere der das Polymer konstituierenden Monomere M abzuschätzen. Letztere sind z. B. aus Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, Vol. A 21 (1992) S. 169 oder aus J. Brandrup, E.H. Immergut, Polymer Handbook 3rd ed., J. Wiley, New York 1989 bekannt.
Die erfindungsgemäßen Copolymere CP sind zum Teil aus der PCT/EP 04/01 1797 bekannt oder können nach üblichen Methoden durch radikalische Polymerisation der Mo- nomere M hergestellt werden. Die Polymerisation kann durch freie radikalische Polymerisation oder durch kontrollierte radikalische Polymerisationsverfahren erfolgen. Die Polymerisation erfolgt unter Einsatz eines oder mehrerer Initiatoren und kann als Lösungspolymerisation, als Emulsionspolymerisation, als Suspensionspolymerisation oder als Fällungspolymerisation oder auch in Substanz durchgeführt werden. Die Po- lymerisation kann als Batchreaktion, in semikontinuierlicher oder kontinuierlicher Fahrweise durchgeführt werden.
Die Reaktionszeiten liegen im allgemeinen im Bereich zwischen 1 und 12 Stunden. Der Temperaturbereich, in dem die Reaktionen durchgeführt werden können, reicht im allgemeinen von 20 bis 200°C, bevorzugt von 40 bis 120°C. Der Polymerisationsdruck ist von untergeordneter Bedeutung und kann im Bereich von Normaldruck oder leichtem Unterdruck, z. B. > 800 mbar oder bei Überdruck, z.B. bis 10 bar liegen, wobei höhere oder niedrigere Drücke ebenfalls angewendet werden können.
Als Initiatoren für die radikalische Polymerisation werden übliche radikalbildende Substanzen eingesetzt. Bevorzugt sind Initiatoren aus der Gruppe der Azoverbindungen, der Peroxidverbindungen oder der Hydroperoxidverbindungen. Beispielsweise seien genannt Acetylperoxid, Benzoylperoxid, Lauroylperoxid, tert-Butylperoxy-isobutyrat, Caproylperoxid, Cumolhydroperoxid, 2,2'-Azobis-isobutyronitril, 2,2'-Azobis(2-methyl- butyronitril), 2,2'-Azobis[2-methyl-N-(-2-hydroxyethyl)propionamid, 1 ,1 '-Azobis(1-cyclo- hexancarbonitril), 2,2'-Azobis(2,4-dimethylvaleronitril), 2,2'-Azobis(N,N'-dimethyleniso- butyroamidin. Besonders bevorzugt ist Azobisisobutyronitril (AIBN). Üblicherweise setzt man den Initiator in einer Menge von 0,02 bis 5 Gew.-% und insbesondere 0,05 bis 3 Gew.-%, bezogen auf die Menge der Monomere M ein. Die optimale Menge an Initiator hängt naturgemäß von dem eingesetzten Initiatorsystem ab und kann vom Fachmann in Routineexperimenten ermittelt werden. Der Initiator kann teilweise oder vollständig im Reaktionsgefäß vorgelegt werden. Vorzugsweise gibt man die Hauptmenge des Initiators, insbesondere wenigstens 80%, z. B. 80 bis 100% des Initiators im Verlauf der Polymerisation in den Polymerisationsreaktor.
Selbstverständlich kann das Molekulargewicht der Copolymere CP durch Zugabe von Reglern in einer geringen Menge, z. B. 0,01 bis 5 Gew.-%, bezogen auf die polymeri- sierenden Monomere M, eingestellt werden. Als Regler kommen insbesondere organische Thioverbindungen z.B. Mercaptoalkohole wie Mercaptoethanol, Mercaptocarbon- säuren wie Thioglykolsäure, Mercaptopropionsäure, Alkylmerkaptane wie Dodecylmer- captan, ferner Allylalkohole und Aldehyde in Betracht.
Insbesondere erfolgt die Herstellung der Copolymere CP durch radikalische Lösungspolymerisation in einem Lösungsmittel. Beispiele für Lösungsmittel sind Wasser, Alkohole, wie z. B. Methanol, Ethanol, n-Propanol und Isopropanol, dipolar-aprotische Lö- sungsmittel, z. B. N-Alkyllactame wie N-Methylpyrrolidon (NMP), N-Ethylpyrrolidon, wieterhin Dimethylsulfoxid (DMSO), N,N-Dialkylamide aliphatischer Carbonsäuren wie N,N-Dimethylformamid (DMF), N,N-Dimethylacetamid, weiterhin aromatische, aliphati- sche und cycloaliphatische Kohlenwasserstoffe, die halogeniert sein können wie Hexan, Chlorbenzol, Toluol oder Benzol. Bevorzugte Lösungsmittel sind Isopropanol, Me- thanol, Toluol, DMF, NMP, DMSO und Hexan, besonders bevorzugt ist DMF.
Als Salze enthalten die Sulfonate Kationen in stöchiometrischer Menge. Beispiele für geeignete Kationen sind Alkalimetallkationen wie Na+ oder K+, Erdalkalimetallionen wie Ca2+ und Mg2+, weiterhin Ammoniumionen wie NH4 +, Tetraalkylammoniumkationen wie Tetramethylammonium, Tetraethylammonium und Tetrabutylammonium, weiterhin pro- tonierte primäre, sekundäre und tertiäre Amine, insbesondere solche, die 1 , 2 oder 3 Reste, ausgewählt unter CrC2o-Alkylgruppen und Hydroxyethylgruppen tragen, z.B. die protonierten Formen von Mono-, Di- und Tributylamin, Propylamin, Diisopropyla- min, Hexylamin, Dodecylamin, Oleylamin, Stearylamin, ethoxiliertes Oleylamin, ethoxi- liertes Stearylamin, Ethanolamin, Diethanolamin, Triethanolamin oder von N1N- Dimethylethanolamin.
In einer bevorzugten Ausführungsform der Erfindung ist das Sulfonat ein Ammonium-, Alkalimetall-, Erdalkalimetall- oder Übergangsmetallsulfonat. Besonders bevorzugt ist es hierbei jeweils, wenn das Alkalimetall Natrium oder Kalium, das Erdalkalimetall Calcium oder Magnesium ist und das Übergangsmetall Kupfer ist.
Es können auch Gemische verschiedener Sulfonate als Komponente (b) eingesetzt werden.
Geeignete Sulfonate sind dem Fachmann geläufig und z. B. unter dem Namen „Ta- mor und „Setamol" von der Fa. BASF erhältlich.
Beispiele für sulfonsäurehaltige Polymere, die sich grundsätzlich als Komponente (b) eignen, nennt auch EP 707445.
Insbesondere bevorzugt ist es hierbei, wenn das Pflanzenschutzmittel wenigstens 15 Gew.-%, vorzugsweise wenigstens 25 Gew.-% und insbesondere wenigstens 30 Gew.- % höhermolekulares Sulfonat enthält.
Insbesondere bevorzugt ist es hierbei auch, wenn das Pflanzenschutzmittel höchstens 80 Gew.-%, vorzugsweise höchstens 70 Gew.-% und insbesondere höchstens 55 Gew.-% höhermolekulares Sulfonat enthält.
Die erfindungsgemäßen Pflanzenschutzmittel enthalten relativ hohe Mengen an PoIy- alkoxylat. Bezogen auf die Menge an höhermolekularem Sulfonat ist es bevorzugt, dass das Gewichtsverhältnis von flüssigem oder niedrigschmelzendem Polyalkoxylat zu höhermolekularem Sulfonat mindestens 3 : 10, bevorzugt mindestens 1 : 3 und be- sonders bevorzugt 1 : 2 beträgt. Allerdings sollte das Verhältnis von flüssigem oder niedrigschmelzenden Polyalkoxylat zu höhermolekularem Sulfonat nicht mehr als 3 : 1 , bevorzugt nicht mehr als 2 : 1 betragen.
In einer Ausführungsform der Erfindung kann ein Teil des Sulfonats in der Träger- komponente (b) durch anorganischen Feststoff ersetzt sein. In dieser Ausführungsform umfasst die Komponente (b) neben dem höhermolekularen Sulfonat (b1 ) noch anorganischen Feststoff (b2).
Als anorganische Feststoffe in der Trägerkomponente (b) kommen insbesondere sol- che in Frage, die in festen Pflanzenschutzmitteln üblicherweise zur Aufnahme flüssiger oder niedrigschmelzender, insbesondere öliger Hilfsstoffe, wie der erfindungsgemäßen Polyalkoxylate, eingesetzt werden („Carrier"). Hierbei handelt es sich vor allem um anorganische Feststoffe, die besagte Hilfstoffe zu adsorbieren vermögen (Sorbentien). Geeignete anorganische Feststoffe sind in der Regel in Wasser schwer löslich oder wasserunlöslich, d.h. zum Lösen eines Teils anorganischen Feststoffs werden bei 20°C wenigstens 100, in der Regel wenigstens 1000 und insbesondere wenigstens 10000 Teile Wasser benötigt. Die schwer löslichen oder gar wasserunlöslichen anorganischen Feststoffe können aber wasserquellbar sein.
Zu den anorganischen Feststoffen gehören insbesondere aluminiumoxidbasierte Sub- stanzen, insbesondere Aluminiumoxid und Bauxit, siliziumdioxidbasierte Substanzen, insbesondere Silikate und Silikatmineralien, vor allem Diatomeenerden (Kieselgur, Diatomit), Kieselsäuren, Pyrophyllit, Talk, Glimmer und Tone wie Kaolinit, Bentonit, Mont- morillonit und Attapulgit. In Frage kommen grundsätzlich auch einige anorganische Salze, etwa Erdalkalimetallcarbonate, insbesondere Calciumcarbonate (Kalk, Kreide) und Magnesiumcarbonate sowie Calcium-Magnesium-Carbonate, und Erdalkalimetallsulfate, insbesondere Calciumsulfate (z.B. Gips). Unter den Silikaten sind beispielsweise die Produkte der Sipernat-Reihe (Fa. Degussa) zu nennen, besonders Sipernat 22S oder 5OS, die typischerweise für diese Zwecke eingesetzt werden können.
Der Anteil an den vorstehend aufgeführten, als Komponente (b2) geeigneten anorganischen Feststoffen kann erfindungsgemäß allerdings vergleichsweise niedrig gewählt werden, da im wesentlichen die höhermolekularen Sulfonate als Träger der Polyalkoxylate fungieren. Mit der Vermeidung hoher Anteile an anorganischen Feststoffen stellen sich darüber hinaus weitere Vorteile ein.
In diesem Sinne ist der gewichtsbezogene Anteil des höhermolekularen Sulfonats an der Komponente (b) in der Regel größer als der gewichtsbezogene Anteil anorganischen Feststoffs; erfindungsgemäß beträgt das Gewichtsverhältnis von höhermolekularem Sulfonat zu anorganischem Feststoff vorzugsweise wenigstens 2, vorzugsweise wenigstens 5 und insbesondere wenigstens 10.
Insbesondere ist es bevorzugt, wenn das Mittel insgesamt weniger als 10 Gew.-%, insbesondere weniger als 5 Gew.-% an aluminiumbasierten Substanzen enthält, und besonders bevorzugt, wenn das Mittel insgesamt im wesentlichen frei von aluminium- basierten Substanzen ist. Es ist auch bevorzugt, wenn das Mittel insgesamt weniger als 5 Gew-%, insbesondere weniger als 2 Gew.-% an Diatomeenerden enthält, und besonders bevorzugt, wenn das Mittel insgesamt im wesentlichen frei von Diatomeenerden ist. Es ist auch bevorzugt, wenn das Mittel insgesamt weniger als 5 Gew-%, insbesondere weniger als 1 Gew.-% an Kaolinit enthält, und besonders bevorzugt, wenn das Mittel insgesamt im wesentlichen frei von Kaolinit ist. Es ist auch bevorzugt, wenn das Mittel insgesamt weniger als 5 Gew-%, insbesondere weniger als 1 Gew.-% an Bentoniten enthält, und besonders bevorzugt, wenn das Mittel insgesamt im wesentlichen frei von Bentoniten ist.
Es ist auch bevorzugt, wenn das Mittel insgesamt weniger als 7,5 Gew-%, insbesondere weniger als 1 ,5 Gew.-% an Tonen enthält, und besonders bevorzugt, wenn das Mittel im wesentlichen frei von Tonen ist.
Es ist auch bevorzugt, wenn das Mittel insgesamt weniger als 15 Gew-%, insbesondere weniger als 2 Gew.-% an siliziumdioxydbasierten Substanzen enthält, und besonders bevorzugt, wenn das Mittel im wesentlichen frei von siliziumdioxydbasierten Substanzen ist.
Einer besonderen Ausführungsform zufolge enthält das Mittel insgesamt weniger als 15 Gew.-%, insbesondere weniger als 10 Gew.-% und besonders bevorzugt weniger als 5 Gew.% an folgenden anorganischen Feststoffen: aluminiumoxidbasierten Substanzen, insbesondere Aluminiumoxid und Bauxit, siliziumdioxidbasierten Substanzen, insbesondere Silikaten und Silikatmineralien, vor allem Diatomeenerden (Kieselgur, Diatomit), Kieselsäuren, Pyrophyllit, Talk, Glimmern und Tonen wie Kaolinit, Bentonit, Montmorillonit und Attapulgit.
Es ist bevorzugt, wenn das Mittel insgesamt weniger als 1 Gew.-% an Sorbentien enthält, und besonders bevorzugt, wenn das Mittel insgesamt im wesentlichen frei von Sorbentien ist.
Ferner ist es bevorzugt, wenn das Mittel insgesamt weniger als 5 Gew.-% an, insbesondere weniger als 1 Gew.-% an Calciumcarbonat enthält, und besonders bevorzugt, wenn das Mittel insgesamt im wesentlichen frei von Calciumcarbonat ist. Ferner ist es auch bevorzugt, wenn das Mittel insgesamt weniger als 5 Gew.-% , insbesondere we- niger als 1 Gew.-% an Magnesiumcarbonat enthält, und besonders bevorzugt, wenn das Mittel insgesamt im wesentlichen frei von Magnesiumcarbonat ist.
Einer besonderen Ausführungsform zufolge enthält das Mittel insgesamt weniger als 10 Gew.-%, insbesondere weniger als 5 Gew.-% und besonders bevorzugt weniger als 1 Gew.-% an folgenden anorganischen Feststoffen: Alkali- und Erdalkalimetallcarbona- ten, insbesondere Calciumcarbonaten (Kalk, Kreide) und Magnesiumcarbonaten sowie Calcium-Magnesium-Carbonaten, und Alkali- und Erdalkalimetallsulfaten, insbesondere Calciumsulfaten (z.B. Gips).
Ganz besonders bevorzugt ist es hierbei, wenn das Mittel insgesamt höchstens 15 Gew.-%, vorzugsweise insgesamt höchstens 10 Gew.-% und insbesondere höchstens 5 Gew.-%, z. B. höchstens 1 Gew.-% anorganischen Feststoff enthält, und insbesondere, wenn die Trägerkomponente (b) im wesentlichen frei von anorganischem Feststoff ist.
Einer besonderen Ausführungsform zufolge betrifft die vorliegende Erfindung ein Pflanzenschutzmittel, das zusätzlich zu den Komponenten a) und b) als Komponente c) weiteren Hilfsstoff umfassen kann.
Die optionale Komponente (c) kann vielerlei Zwecke erfüllen. Im allgemeinen besteht Komponente (c) daher aus einer Kombination von mehreren Stoffen mit unterschiedlichen Funktionen und Eigenschaften. Die Wahl geeigneter Hilfsstoffe erfolgt den Anforderungen entsprechend üblicherweise durch den Fachmann.
Als Komponente (c) kommen insbesondere in Frage:
(d ) oberflächenaktive Hilfsmittel;
(c2) Antiabsetzmittel, Antischaummittel, Retentionsmittel, pH-Puffer, Antidriftreagen- zien und sonstige Hilfsmittel zur Verbesserung der Handhabbarkeit und/oder physikalischen Eigenschaften des Mittels; und (c3) Chelatbildner.
Der Begriff "oberflächenaktives Hilfsmittel" (d ) bezeichnet hier grenzflächenaktive bzw. oberflächenaktive Mittel, wie Tenside, Dispergiermittel, Emulgiermittel oder Netzmittel. Prinzipiell brauchbar sind anionische, kationische, amphotere und nichtionische Tensi- de.
Zu den anionischen Tensiden gehören beispielsweise
Carboxylate, insbesondere Alkali-, Erdalkali- und Ammoniumsalze von Fettsäuren; Acylglutamate; - Sarkosinate, z.B. Natriumlauroylsarkosinat;
Taurate;
Methylcellulosen;
Alkylphosphate, z. B. Mono- und Diphosphorsäurealkylester; Sulfate; - monomere Sulfonate, insbesondere Alkyl- und Alkylarylsulfonate, vor allem
Alkali-, Erdalkali- und Ammoniumsalze von Arylsulfonsäuren sowie alkylsub- stituierten Arylsulfonsäuren, Alkylbenzolsulfonsäuren, wie beispielsweise Phenolsulfonsäuren, Naphthalin- und Dibutylnaphthalinsulfonsäuren, oder Dodecylbenzolsulfonate, Alkylnaphthalinsulfonate, Alkylmethylestersulfonate, Mono- oder Dialkylbernsteinsäureestersulfonate;
Eiweißhydrolysate und abgereicherte Lignin-Sulfitablaugen.
Zu den kationischen Tensiden gehören beispielsweise
- quaternäre Ammoniumsalze, insbesondere Alkyltrimethylammonium- und Di- alkyldimethylammonium-Halogenide und -Alkylsulfate sowie Pyridin- und Imidazolin-Derivate, insbesondere Alkylpyridinium-Halogenide.
Zu den nichtionischen Tensiden gehören insbesondere
Glycerinester, wie beispielsweise Glycerinmonostearat; Zuckertenside, insbesondere Sorbitester, wie beispielsweise Sorbitanfettsäure- ester (Sorbitanmonooleat, Sorbitantristearat), und Ester mono- oder polyfunktioneller Alkohole wie Alkyl(poly)glycoside und N-Alkylgluconamide; - Alkylmethylsulfoxide; - Alkyldimethylphosphinoxide, wie beispielsweise Tetradecyldimethylphosphino- xid;
- Di-, Tri- und Multiblockpolymere vom Typ (AB)x, ABA und BAB, z.B. Polystyrol- Block-Polyethylenoxid, und AB-Kammpolymere, z.B. Polymethacrylat-comb-Po- lyethylenoxid sowie insbesondere Ethylenoxid-Propylenoxid-Blockcopolymere bzw. deren Endgruppen-verschlossene Derivate.
Zu den amphoteren Tensiden gehören beispielsweise
- Sulfobetaine;
Carboxybetaine und
- Alkyldimethylaminoxide, z. B. Tetradecyldimethylaminoxid.
Weitere Tenside, die hier beispielhaft genannt werden können, ohne eindeutig einer der genannten Gruppen zugeordnet werden zu können, umfassen
Perfluortenside, Silikontenside,
Phospholipide, wie z. B. Lecithin oder chemisch modifizierte Lecithine, - Aminosäuretenside, z. B. N-Laurylglutamat, und oberflächenaktive Homo- und Copolymere, z.B. Polyvinylpyrrolidon, Polyacryl- säuren in Form ihrer Salze, Polyvinylalkohol, Polypropylenoxid, Polyethylen- oxid, Maleinsäureanhydrid-Isobuten-Copolymere und Vinylpyrrolidon-Vinyl- acetat-Copolymere.
Als Netzmittel kommen weiterhin unter anderem in Frage: Dioctylsulfosuccinat (z. B. „Pelex OTP"), Dialkylsulfonimid („Leophen RBD"), Diisobutylnapththalinsulfonat („Nekal BX"), verschiedene Alkylalkinole („Surfynol", Fa. Bisterfeld), Alkylarylphenolether- phosphatester („Phospholan PNP") und Polyethylenglykol („Pluriol") sowie Kombinatio- nen der genannten Stoffe.
Der Anteil der oberflächenaktiven Hilfsstoffkomponente (d ) am Gesamtgewicht des Mittels beträgt - sofern vorhanden - in der Regel bis zu 25 Gew.-%, vorzugsweise bis zu 20 Gew.-%, vor allem bis zu 15 Gew.-%, und insbesondere bis 10 Gew.-%, bezo- gen auf die Gesamtmasse des Mittels. Derartige oberflächenaktive Hilfsstoffkomponenten sind z. T. in Wirkstoffsuspensionen und Vorkonzentraten enthalten, die in Kombination mit den erfindungsgemäßen Inhaltstoffen eingesetzt werden. Alternativ können sie separat in einem geeigneten Schritt der Herstellung des Mittels zugesetzt werden.
Zu den Antischaummitteln gehören insbesondere solche vom Silicon-Typ, beispielsweise das von der Firma Wacker vertriebene Silicon SL und ähnliche.
Die Antiabsetzmittel, Retentionsmittel, pH-Puffer und Antidriftreagenzien umfassen eine Vielzahl von möglichen Substanzen. Sie sind dem Fachmann geläufig.
Weitere Hilfsmittel aus (c2) sind z. B. Staubbinder („antidusting agents"), Stützsubstanzen, Polymere zur Strukturverbesserung von Granulaten, Mittel zur Puderung, oder polymere Fließverbesserer für Granulate. Solche Mittel sind im Stand der Technik be- schrieben und dem Fachmann geläufig. Hydrophile pyrogene Kieselsäuren wie die Aerosil-Marken (Fa. Degussa) können auch als Hilfsstoffe und/oder Fließfähigkeits- verbesserer („antiblocking agents") fungieren.
Der Anteil der oberflächenaktiven Hilfsstoffkomponente (c2) am Gesamtgewicht des Mittels beträgt - sofern vorhanden - in der Regel bis zu 15 Gew.-%, vorzugsweise bis zu 10 Gew.-% und insbesondere bis zu 5 Gew.-%, bezogen auf die Gesamtmasse des Mittels.
Bevorzugte Chelatbildner sind Schwermetall- und insbesondere Übergangsmetall- komplexierende Verbindungen, z. B. EDTA und dessen Derivate.
Sofern vorhanden, beträgt der Anteil der Komponente (c3) am Gesamtgewicht des Mittels in der Regel 0,001 bis 0,5 Gew.-%, vorzugsweise 0,005 bis 0,2 Gew.-% und insbesondere 0,01 bis 0,1 Gew.-%.
Allgemein bevorzugt ist es, wenn das Mittel insgesamt höchstens 60 Gew.-%, vorzugsweise höchstens 45 Gew.-% und insbesondere höchstens 30 Gew.-% weiteren Hilfsstoff (c) enthält.
Typischerweise beträgt das Gewichtsverhältnis von (a) und (b) zu (c) mindestens 3, bevorzugt mindestens 5. Einer besonderen Ausführungsform zufolge betrifft die vorliegende Erfindung ein festes Pflanzenschutzmittel, das zusätzlich zu den Komponenten a), b) und gegebenenfalls c) als Komponente d) wasserlösliches anorganisches Salz umfassen kann.
Wasserlöslich ist ein anorganisches Salz dann, wenn zum Lösen eines Teils anorganisches Salz bei 20°C weniger als 20 Teile Wasser, insbesondere weniger als 10 Teile Wasser benötigt werden. Als wasserlösliches anorganisches Salz der Komponente (d) kommen insbesondere solche in Frage, die landwirtschaftlich nutzbar sind, beispiels- weise pflanzenverwertbare Mineralien und Spurenelemente.
Geeignete wasserlösliche anorganische Salze finden sich vor allem unter Alkalimetall-, und Ammoniumsalzen, insbesondere bevorzugt Natrium-, Kalium- und Ammoniumsulfaten, -Chloriden, -carbonaten, -nitraten und -phosphaten, nochmals besonders bevor- zugt Ammoniumsulfat und Ammoniumhydrogensulfat, sowie deren Gemische. Einer besonderen Ausführungsform zufolge besteht Komponente (d) im wesentlichen aus Ammoniumsulfat.
Sofern vorhanden, kann der Anteil der Komponente (d) am Gesamtgewicht des Mittels bis zu 65 Gew.-% betragen. Vorzugsweise beträgt ihr Anteil am Gesamtgewicht des Mittels bis zu 50 Gew.-%, bevorzugt bis zu 28,5 Gew.-% und insbesondere bevorzugt bis zu 25 Gew.-%, z. B. 0 Gew.-% - 17,5 Gew.-%.
Die Komponente (d) eignet sich besonders als Feststoffgrundlage für Wirbelschicht- und Fließbettgranulate. Demnach kann das wasserlösliche anorganische Salz als Kern für den Formgebungsprozess während der Wirbelschichttrocknung dienen, da in der Wirbelschichttrocknung keine de noi/o-Bildung von definierten Partikeln aus der fluiden Phase ohne Vorlegen eines festen Anlagerungskernes möglich ist, bzw. ein Wirbelschichtverfahren ohne Zusatz von Feststoffkernen nicht zu brauchbaren Partikelgrö- ßenverteilungen führt.
Allerdings stellen feste Pflanzenschutzmittel mit relativ geringen Anteilen an Komponente (d) eine bevorzugte Ausführungsform dar. In diesem Sinne beträgt der Anteil der Komponente (d) an dem Gesamtmittel bis zu 0 bis 10 Gew.-%, bevorzugt 0 bis 5 Gew.- % und insbesondere 0 bis zu 2 Gew.-%, z. B. 0 Gew.-% - 1 Gew.-%. In dieser Ausführungsform kommt den dennoch vorhandenen wasserlöslichen anorganischen Salzen eine im Sinne der Aufgabenstellung besondere Bedeutung in der Regel nicht zu. V Typischerweise sind sie häufig herstellungsbedingt enthalten, d.h. sie werden zusammen mit anderen erfindungsgemäßen Komponenten eingebracht.
Mithin ist es bevorzugt, wenn das Mittel insgesamt weniger als 5 Gew.-%, insbesondere weniger als 2 Gew.-% an Natriumchlorid enthält, und besonders bevorzugt, wenn das Mittel insgesamt im wesentlichen frei von Natriumchlorid ist. Mithin ist es auch bevorzugt, wenn das Mittel insgesamt weniger als 5 Gew.-%, insbesondere weniger als 2 Gew.-% an Kaliumchlorid enthält, und besonders bevorzugt, wenn das Mittel insge- samt im wesentlichen frei von Kaliumchlorid ist. Mithin ist es auch bevorzugt, wenn das Mittel insgesamt weniger als 5 Gew.-% , insbesondere weniger als 2 Gew.-% an Natri- umcarbonat enthält, und besonders bevorzugt, wenn das Mittel insgesamt im wesentlichen frei von Natriumcarbonat ist. Mithin ist es auch bevorzugt, wenn das Mittel insgesamt weniger als 5 Gew.-%, insbesondere weniger als 2 Gew.-% an Kaliumhydrogen- phosphat enthält, und besonders bevorzugt, wenn das Mittel insgesamt im wesentlichen frei von Kaliumhydrogenphosphat ist.
Einer besonderen Ausführungsform zufolge enthält das Mittel insgesamt weniger als 10 Gew.-%, insbesondere weniger als 5 Gew.-% und besonders bevorzugt weniger als 1 Gew.% an folgenden wasserlöslichen anorganischen Feststoffen: Alkali- und Erd- alkalimetallhalogeniden, insbesondere Natriumchlorid und Kaliumchlorid, Alkalimetallsulfaten, z.B. Natriumsulfat, Alkalimetallcarbonaten, z.B. Natriumcarbonat, und Alkali- und Erdalkalimetallphosphaten, insbesondere Kaliumhydrogenphosphat.
Als Pflanzenschutzwirkstoff (Pestizid) der Komponente (e) kann hierbei jede Substanz bezeichnet werden, deren Zweck bzw. Wirkung es ist, dem Befall einer Pflanze durch irgendeinen Schädling vorzubeugen oder den Schädling abzuwehren, abzuschrecken, zu vernichten oder auf andere Weise den von ihm verursachten Schaden zu verringern. Wie eingangs gesagt, können Pflanzenschädlinge zu verschiedenen Gruppen von Lebewesen gehören; unter den höheren Tieren sind insbesondere unter Insekten und Milben zahlreiche wichtige Schädlinge zu finden, ferner unter Nematoden und Schnecken; Wirbeltiere wie Säuger und Vögel sind in den Industrieländern heute von untergeordneter Bedeutung. Zahlreiche Gruppen von Mikroben, darunter Pilze, Bakterien einschließlich der Mykoplasmen, Viren und Viroide umfassen Schädlinge, und auch Unkräuter, die mit Nutzpflanzen um knappen Lebensraum und andere Ressourcen konkurrieren, können zu den Schädlingen im weiteren Sinne gerechnet werden. Pestizide umfasen insbesondere Avizide, Acarizide, Austrocknungsmittel, Bakterizide, Chemosterilisatoren, Entlaubungsmittel, Fraßhemmer, Fungizide, Herbizide, Herbizidsicherungsstoffe, Insektenlockstoffe, Insektizide, Insektenabschreckmittel, Molluskizide, Nematizide, Paarungsverhinderer (mating disrupters), Pflanzenaktivatoren, Pflan- zenwachstumsregulatoren, Rodentizide, Säugerabschreckmittel, Synergisten, Vogelabschreckmittel und Viruzide.
Aufgeschlüsselt nach chemischen Klassen umfassen Pestizide insbesondere Acylala- ninfungizide, Acylaminosäurefungizide, aliphatische Amid-Organothiophosphatinsekti- zide, aliphatische Organothiophosphatinsektizide, aliphatische Stickstofffungizide, A- midfungizide, Amidherbizide, Anilidfungizide, Anilidherbizide, anorganische Fungizide, anorganische Herbizide, anorganische Rodentizide, Antiauxine, Antibiotika-Acarizide, Antibiotikafungizide, Antibiotikaherbizide, Antibiotikainsektizide, Antibiotikanematizide, Aromatensäurenfungizide, Aromatensäurenherbizide, Arsenherbizide, Arseninsektizi- de, Arylalaninherbizide, Aryloxyphenoxypropionsäureherbizide, Auxine, Avermectina- carizide, Avermectininsektizide, Benzamidfungizide, Benzanilidfungizide, Benzimida- zolfungizide, Benzimidazolvorläuferfungizide, Benzimidazolylcarbamatfungizide, Ben- zoesäureherbizide, Benzofuranylalkylsulfonatherbizide, Benzofuranylmethylcarbama- tinsektizide, Benzothiazolfungizide, Benzothiopyranorganothiophosphatinsektizide, Benzotriazineorganothiophosphatinsektizide, Benzoylcyclohexandionherbizide, Bipyri- dyliumherbizide, Brückendiphenylacarizide, Brückendiphenylfungizide, Carbamatacari- zide, Carbamatfungizide, Carbamatherbizide, Carbamatinsektizide, Carbamatnematizi- de, Carbanilatfungizide, Carbanilatherbizide, Chinolinecarboxylatherbizide, Chinolin- fungizide, Chinonfungizide, Chinoxalinacarizide, Chinoxalineorganothiophosphatinsek- tizide, Chinoxalinfungizide, Chitinsyntheseinhibitoren, Chloracetanilidherbizide, Chlor- nicotinylinsektizide, Chlorpyridinherbizide, Chlortriazinherbizide, Conazolfungizide, Cu- marinrodentizide, Cyclodithiocarbamatfungizide, Cyclohexenoximherbizide, Cyclopro- pylisoxazolherbizide, Cytokinine, Diacylhydrazininsektizide, Dicarboximidfungizide, Di- carboximidherbizide, Dichlorphenyldicarboximidfungizide, Dimethylcarbamatinsektizi- de, Dinitroanilinherbizide, Dinitrophenolacarizide, Dinitrophenolfungizide, Dinitrophenol- herbizide, Dinitrophenolinsektizide, Diphenyletherherbizide, Dithiocarbamatfungizide, Dithiocarbamatherbizide, Entlaubungsmittel, Ethylenfreisetzer, Fluorinsektizide, Fura- midfungizide, Furanilidfungizide, Gibberelline, halogenierte aliphatische Herbizide, Harnstofffungizide, Harnstoffherbizide, Harnstoffinsektizide, Harnstoffrodentizide, Häu- tungshormone, Häutungshormonmimetika, Häutungsverhinderer, heterocyclische Organothiophosphatinsektizide, Imidazolfungizide, Imidazolinonherbizide, Indandionro- dentizide, Insektenwachstumsregulatoren, Isoindolorganothiophosphatinsektizide, Iso- xazolorganothiophosphatinsektizide, Juvenilhormone, Juvenilhormonmimetika, Kupferfungizide, macrocyclische Lactonacarizide, macrocyclische Lactoninsektizide, Metho- xytriazinherbizide, Methylthiotriazinherbizide, Milbemycinacarizide, Milbemycininsekti- zide, Milbenwachstumsregulatoren, Morphactine, Morpholinfungizide, Nereistoxinana- loga, Nicotinoidinsektizide, Nitrilherbizide, Nitroguanidininsektizide, Nitromethyleninsek- tizide, Nitrophenyletherherbizide, Organochlorinacarizide, Organochlorininsektizide, Or- ganochlorinrodentizide, Organophosphatacarizide, Organophosphatinsektizide, Orga- nophosphatnematizide, Organophosphoracarizide, Organophosphorfungizide, Organo- phosphorherbizide, Organophosphorinsektizide, Organophosphornematizide, Organo- phosphor-Rodentizide, Organothiophosphatacarizide, Organothiophosphatinsektizide, Organothiophosphatnematizide, Organotinacarizide, Organozinnfungizide, Oxadiazin- insektizide, Oxathiinfungizide, Oxazolfungizide, Oximcarbamatacarizide, Oximcarba- matnematizide, Oximcarbamatinsektizide, Oximorganothiophosphatinsektizide, pflanz- liehe Insektizide, pflanzliche Rodentizide, Phenoxybuttersäureherbizide, Phenoxy- essigsäureherbizide, Phenoxyherbizide, Phenoxypropionsäureherbizide, Phenylendia- minherbizide, Phenylethylphosphonothioatinsektizide, Phenylharnstoffherbizide, Phe- nylmethylcarbamatinsektizide, Phenylorganothiophosphatinsektizide, Phenylphenyl- phosphonothioatinsektizide, Phenylpyrazolylketonherbizide, Phenylsulfamidacarizide, Phenylsulfamidfungizide, Phosphonatacarizide, Phosphonatinsektizide, Phosphonothi- oatinsektizide, Phosphoramidatinsektizide, Phosphoramidothioatacarizide, Phosphor- amidothioatinsektizide, Phosphorodiamidacarizide, Phosphorodiamidinsektizide, Phthalatherbizide, Phthalimidacarizide, Phthalimidfungizide, Phthalimidinsektizide, Pi- colatherbizide, polymere Dithiocarbamatfungizide, Polysulfidfungizide, Precocene, Py- razolacarizide, Pyrazolfungizide, Pyrazolinsektizide, Pyrazolopyrimidineorganothio- phosphatinsektizide, Pyrazolyloxyacetophenonherbizide, Pyrazolylphenylherbizide, Py- rethroidacarizide, Pyrethroidesteracarizide, Pyrethroidesterinsektizide, Pyrethroidether- acarizide, Pyrethroidetherinsektizide, Pyrethroidinsektizide, Pyridazinherbizide, Pyrid- azinonherbizide, Pyridinfungizide, Pyridinherbizide, Pyridinorganothiophosphatinsekti- zide, Pyridylmethylamininsektizide, Pyrimidinaminacarizide, Pyrimidinamininsektizide, Pyrimidinaminrodentizide, Pyrimidinediaminherbizide, Pyrimidineorganothiophosphat- insektizide, Pyrimidinfungizide, Pyrimidinyloxybenzoesäureherbizide, Pyrimidinylsulfo- nylharnstoffherbizide, Pyrimidinylthiobenzoesäureherbizide, Pyrrolacarizide, Pyrrol- fungizide, Pyrrolinsektizide, quaternäre Ammoniumherbizide, Strobilurinfungizide, SuI- fitesteracarizide, Sulfonamidfungizide, Sulfonamidherbizide, Sulfonanilidfungizide, SuI- fonanilidherbizide, Sulfonylharnstoffherbizide, Tetrazinacarizide, Tetronatacarizide, Tet- ronatinsektizide, Thiadiazoleorganothiophosphatinsektizide, Thiadiazolylharnstoffherbi- zide, Thiazolfungizide, Thiocarbamatacarizide, Thiocarbamatfungizide, Thiocarbamat- herbizide, Thiocarbonatherbizide, Thioharnstoffacarizide, Thioharnstoffherbizide, Thio- harnstoff-Rodentizide, Thiophenfungizide, Triazinfungizide, Triazinherbizide, Triazinon- herbizide, Triazinylsulfonylharnstoffherbizide, Triazolfungizide, Triazolherbizide, Triazo- lonherbizide, Triazolopyrimidinherbizide, Triazolorganothiophosphatinsektizide, Uracil- herbizide, Valinamidfungizide, Wachstumsinhibitoren, Wachstumsstimulatoren, Wachs- tumsverzögerer, Xylylalaninfungizide.
Das Pestizid zur erfindungsgemäßen Verwendung ist insbesondere unter Fungiziden (e1 ), Herbiziden (e2) and Insektiziden (e3) ausgewählt.
Fungizide umfassen beispielsweise aliphatische Stickstofffungizide, wie Butylamin, Cy- moxanil, Dodicin, Dodine, Guazatine, Iminoctadine; Amidfungizide, wie Carpropamid, Chloraniformethan, Cyflufenamid, Diclocymet, Ethaboxam, Fenoxanil, Flumetover, Fu- rametpyr, Mandipropamid, Penthiopyrad, Prochloraz, Chinazamid, Silthiofam, Triforine; insbesondere Acylaminosäurefungizide, wie Benalaxyl, Benalaxyl-M, Furalaxyl, Meta- laxyl, Metalaxyl-M, Pefurazoate; Anilidfungizide, wie Benalaxyl, Benalaxyl-M, Boscalid, Carboxin, Fenhexamid, Metalaxyl, Metalaxyl-M, Metsulfovax, Ofurace, Oxadixyl, Oxy- carboxin, Pyracarbolid, Thifluzamide, Tiadinil; insbesondere Benzanilidfungizide, wie Benodanil, Flutolanil, Mebenil, Mepronil, Salicylanilide, Tecloftalam; Furanilidfungizide, wie Fenfuram, Furalaxyl, Furcarbanil, Methfuroxam; und Sulfonanilidfungizide, wie FIu- sulfamide; Benzamidfungizide, wie Benzohydroxamsäure, Fluopicolide, Tioxymid, Tri- chlamide, Zarilamid, Zoxamide; Furamidfungizide, wie Cyclafuramid, Furmecyclox; Phenylsulfamidfungizide, wie Dichlofluanid, Tolylfluanid; Sulfonamidfungizide, wie Cya- zofamid; und Valinamidfungizide, wie Benthiavalicarb, Iprovalicarb; Antibiotika-Fungizide, wie Aureofungin, Blasticidin-S, Cycloheximide, Griseofulvin, Kasugamycin, Nata- mycin, Polyoxins, Polyoxorim, Streptomycin, Validamycin; insbesondere Strobilurinfun- gizide, wie Azoxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-Methyl, Metomino- strobin, Orysastrobin, Picoxystrobin, Pyraclostrobin, Trifloxystrobin; aromatische Fungizide, wie Biphenyl, Chlordinitronaphthalen, Chloroneb, Chlorothalonil, Cresol, Dicloran, Chintozene, Tecnazene; Benzimidazolfungizide, wie Benomyl, Carbendazim, Chlorfe- nazol, Cypendazol, Debacarb, Fuberidazol, Mecarbinzid, Rabenzazol, Thiabendazole; Benzimidazolprecursorfungizide, wie Furophanate, Thiophanate, Thiophanat-Methyl; Benzothiazolfungizide, wie Bentaluron, Chlobenthiazon, TCMTB; Brückendiphenylfun- gizide, wie Bithionol, Dichlorphen, Diphenylamine; Carbamatfungizide, wie Benthiavali- carb, Furophanat, Iprovalicarb, Propamocarb, Thiophanat, Thiophanat-Methyl; insbesondere Benzimidazolylcarbamatfungizide, wie Benomyl, Carbendazim, Cypendazol, Debacarb, Mecarbinzid; und Carbanilatfungizide, wie Diethofencarb; Conazolfungizide; insbesondere Imidazole, wie Climbazol, Clotrimazol, Imazalil, Oxpoconazol, Prochlo- raz, Triflumizole; und Triazole, wie Azaconazol, Bromuconazol, Cyproconazol, Diclo- butrazol, Difenoconazol, Diniconazol, Diniconazol-M, Epoxiconazol, Etaconazol, Fen- buconazol, Fluquinconazol, Flusilazol, Flutriafol, Furconazol, Furconazol-Cis, Hexaco- nazol, Imibenconazol, Ipconazol, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prothioconazol, Chinconazol, Simeconazol, Tebuconazol, Tetraconazol, Triadimefon, Triadimenol, Triticonazol, Uniconazol, Uniconazol-P; Kupferfungizide, wie Bordeauxmischung, Burgundermischung, Cheshuntmischung, Kupferazetat, Kupferkarbonat, Kupferhydroxyd, Kupfernaphtenat, Kupferroleat, Kupferoxychlorid, Kupfersulfat, Kupfer- zinkchromat, Kupferoxyd, Mancopper, Cufraneb, Cuprobam, Oxinecopper; Dicarboxi- midfungizide, wie Famoxadon, Fluoroimide; insbesondere Dichlorphenyldicarboximid- fungizide, wie Chlozolinate, Dichlozoline, Iprodion, Isovaledion, Myclozolin, Procymi- don, Vinclozolin; und Phthalimidfungizide, wie Captafol, Captan, Ditalimfos, Folpet, Thiochlorfenphim; Dinitrophenolfungizide, wie Binapacryl, Dinobuton, Dinocap, Dino- cap-4, Dinocap-6, Dinocton, Dinopenton, Dinosulfon, Dinoterbon, DNOC; Dithiocarba- matfungizide, wie Azithiram, Carbamorph, Cufraneb, Cuprobam, Disulfiram, Ferbam, Metam, Nabam, Tecoram, Thiram, Ziram; insbesondere Cyclodithiocarbamatfungizide, wie Dazomet, Etem, Milneb; und polymere Dithiocarbamatfungizide, wie Mancopper, Mancozeb, Maneb, Metiram, Polycarbamate, Propineb, Zineb; Imidazolfungizide, wie Cyazofamid, Fenamidon, Fenapanil, Glyodin, Iprodion, Isovaledion, Pefurazoate, Triaz- oxide; anorganische Fungizide, wie Kaliumazid, Natriumazid, Schwefel; Morpholinfun- gizide, wie z.B. Aldimorph, Benzamorph, Carbamorph, Dimethomorph, Dodemorph, Fenpropimorph, Flumorph, Tridemorph; Organophosphorfungizide, wie Ampropylfos, Ditalimfos, Edifenphos, Fosetyl, Hexylthiofos, Iprobenfos, Phosdiphen, Pyrazophos, Tolclofos-Methyl, Triamiphos; Organotinfungizide, wie Decafentin, Fentin, Tributyltino- xide; Oxathiinfungizide, wie Carboxin, Oxycarboxin; Oxazolfungizide, wie Chlozolinate, Dichlozoline, Drazoxolon, Famoxadon, Hymexazol, Metazoxolon, Myclozolin, Oxadixyl, Vinclozolin; Polysulfidfungizide, wie Bariumpolysulfid, Kaliumpolysulfid, Natriumpolysulfid; Pyrazolfungizide, wie Furametpyr, Penthiopyrad; Pyridinfungizide, wie Boscalid, Buthiobate, Dipyrithion, Fluazinam, Fluopicolide, Pyridinitril, Pyrifenox, Pyroxychlor, Py- roxyfur; Pyrimidinfungizide, wie Bupirimate, Cyprodinil, Diflumetorim, Dimethirimol, E- thirimol, Fenarimol, Ferimzon, Mepanipyrim, Nuarimol, Pyrimethanil, Triarimol; Pyrrol- fungizide, wie Fenpiclonil, Fludioxonil, Fluoroimide; Chinolinfungizide, wie Ethoxyquin, Halacrinate, 8-Hydroxyquinolinesulfate, Chinacetol, Chinoxyfen; Chinonfungizide, wie Benquinox, Chloranil, Dichlon, Dithianon; Chinoxalinfungizide, wie Chinomethionat, Chlorquinox, Thioquinox; Thiazolfungizide, wie Ethaboxam, Etridiazol, Metsulfovax, Octhilinon, Thiabendazol, Thiadifluor, Thifluzamide; Thiocarbamatfungizide, wie Metha- sulfocarb, Prothiocarb; Thiophenfungizide, wie Ethaboxam, Silthiofam; Triazinfungizide, wie Anilazin; Triazolfungizide, wie Bitertanol, Fluotrimazol, Triazbutil; Harnstofffungizide, wie Bentaluron, Pencycuron, Chinazamid; unklassifzierte Fungizide, wie Aciben- zolar, Acypetacs, Allylalkohol, Benzalkoniumchlorid, Benzamacril, Bethoxazin, Carvon, DBCP, Dehydroessigsäure, Diclomezine, Diethylpyrocarbonate, Fenaminosulf, Fenitro- pan, Fenpropidin, Formaldehyde, Furfural, Hexachlorbutadiene, Isoprothiolan, Methyl- isothiocyanate, Metrafenon, Nitrostyrene, Nitrothal-Isopropyl, OCH, Phthalid, Piperalin, Probenazol, Proquinazid, Pyroquilon, Natriumorthophenylphenoxid, Spiroxamine, SuI- tropen, Thicyofen, Tricyclazol, Zinknaphthenat.
Gemäß einer besonderen Ausführungsform der Erfindung umfassen Fungizide (e1 ):
1. Acylalanine, wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl;
2. Aminderivate, wie Aldimorph, Dodine, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Spiroxamine, Tridemorph;
3. Anilinopyrimidine, wie Pyrimethanil, Mepanipyrimorcyprodinil; 4. Antibiotika, wie Cycloheximide, Griseofulvin, Kasugamycin, Natamycin, Polyo- xin und Streptomycin;
5. Azole: Azaconazol, Bitertanol, Bromoconazol, Cyproconazol, Dichlobutrazol, Di- fenoconazol, Dinitroconazol, Epoxiconazol, Fenbuconazol, Fluquinconazol, FIu- silazol, Flutriafol, Ketoconazol, Hexaconazol, Metconazol, Myclobutanil, Penco- nazol, Propiconazol, Prothioconazol, Tebuconazol, Tetraconazol, Triadimefon,
Triadimenol, Triflumizol, Triticonazole;
6. Dicarboximide, wie Iprodion, Myclozolin, Procymidon, Vinclozolin;
7. Dithiocarbamate: Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propi- neb, Polycarbamate, Thiram, Ziram, Zineb; 8. Heterozyklische Verbindungen, wie Anilazine, Benomyl, Boscalid, Carbenda- zim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenamidon, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolane, Mepronil, Nuarimol, Probenazol, Proquinazid, Pyrifenox, Pyroquilon, Chinoxyfen, Silthiofam, Thiabendazol, Thifluzamide, Thiophenat-Methyl, Tiadinil, Tricyc- lazol, Triforine;
9. Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-Isopropyl; 10. Phenylpyrrole, wie Fenpiclonil und Fludioxonil;
1 1. 2-Methoxybenzophenone wie in EP-A897904 beschrieben, z.B. Metrafenone;
12. zu keiner anderen Klasse gehörige Fungizide, wie Acibenzolar-S-Methyl, Ben- thiavalicarb, Carpropamid, Chlorothalonil, Cyflufenamid, Cymoxanil, Diclomezi- ne, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-
Acetate, Fenoxanil, Ferimzon, Fluazinam, Fosetyl, Foestyl-Aluminum, Iprovali- carb, Metrafenon, Pencycuron, Propamocarb, Phthalide, Toloclofos-Methyl, Chintozene, Zoxamide;
13. Strobilurine wie in WO03/075663 beschrieben, z.B. Azoxystrobin, Dimoxystro- bin, Fluoxastrobin, Kresoxim-Methyl, Metominostrobin, Orysastrobin, Picoxy- strobin, Pyraclostrobin und Trifloxystrobin;
14. Sulfonate, wie Captafol, Captan, Dichlofluanid, Folpet, Tolylfluanid;
15. Cinnamide und ihre Analoga, wie Dimethomorph, Flumetover, Flumorph;
16. 6-Aryl-[1 ,2,4]triazol[1 ,5-a]-pyrimidine wie z.B. in WO98/46608, WO99/41255 oder WO03/004465 beschrieben, z.B. 5-chlor-7-(4-methylpiperidin-1-yl)-6-(2, 4,
6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(4-methylpiperazin-1 - yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(Morpholin- 1-yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(Piperidin- 1-yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(Morpho- lin-1 -yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(iso- propylamino)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7- (cyclopentylamino)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(2, 2, 2-trifluorethylamino)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5- a]-pyrimidin, 5-Chlor-7-(1 , 1 , 1-trifluorpropan-2-ylamino)-6-(2, 4, 6-trifluorphe- nyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(3, 3-Dimethylbutan-2-ylamino)-
6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(cyclohexyl- methyl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(cyclo- hexyl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(2-me- thylbutan-3-yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7- (3-methylpropan-1 -yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin,
5-Chlor-7-(4-methylcyclohexan-1 -yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5- a]-pyrimidin, 5-Chlor-7-(Hexan-3-yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5- a]-pyrimidin, 5-Chlor-7-(2-methylbutan-1-yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]tri- azol[1 ,5-a]-pyrimidin, 5-Chlor-7-(3-methylbutan-1-yl)-6-(2, 4, 6-trifluorphenyl)- [1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Chlor-7-(1 -methylpropan-1 -yl)-6-(2, 4, 6-tri- fluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-methyl-7-(4-methylpiperidin-1 -yl)-6- (2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Methyl-7-(4-methylpipera- zin-1-yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Methyl-7-(mor- pholin-1-yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Methyl-7- (Piperidin-1-yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Methyl- 7-(Morpholin-1 -yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Me- thyl-7-(lsopropylamino)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5- Methyl-7-(cyclopentylamino)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimi- din, 5-Methyl-7-(2, 2, 2-tιϊfluorethylamino)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]tri- azol[1 ,5-a]-pyrimidin, 5-Methyl-7-(1 , 1 , 1-trifluorpropan-2-ylamino)-6-(2, 4, 6- trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Methyl-7-(3, 3-dimethylbutan-2- ylamino)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Methyl-7- (cyclohexylmethyl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5- Methyl-7-(cyclohexyl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5- Methyl-7-(2-methylbutan-3-yl)-6-(2, 4, 6-tιϊfluorphenyl)-[1 ,2,4]triazol[1 ,5-a]- pyrimidin, 5-Methyl-7-(3-methylpropan-1-yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]tri- azol[1 ,5-a]-pyrimidin, 5-Methyl-7-(4-methylcyclohexan-1-yl)-6-(2, 4, 6-trifluor- phenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Methyl-7-(Hexan-3-yl)-6-(2, 4, 6-tri- fluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Methyl-7-(2-methylbutan-1 -yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidin, 5-Methyl-7-(3-methylbutan-1 - yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidine und 5-Methyl-7-(1 - methylpropan-1 -yl)-6-(2, 4, 6-trifluorphenyl)-[1 ,2,4]triazol[1 ,5-a]-pyrimidine; 17. Amidfungizide, wie Cyclofenamid, und (Z)-N-[a-(Cyclopropylmethoxyimino)-2, 3-difluor-6-(difluormethoxy)benzyl]-2-phenylacetamid.
Herbizide (e2) umfassen zum Beispiel Amidherbizide, wie Allidochlor, Beflubutamid, Benzadox, Benzipram, Bromobutide, Cafenstrole, CDEA, Chlorthiamid, Cyprazole, Dimethenamid, Dimethenamid-P, Diphenamid, Epronaz, Etnipromid, Fentrazamide, Flupoxam, Fomesafen, Halosafen, Isocarbamid, Isoxaben, Napropamide, Naptalam, Pethoxamid, Propyzamide, Chinonamid, Tebutam; insbesondere Anilidherbizide, wie Chloranocryl, Cisanilide, Clomeprop, Cypromid, Diflufenican, Etobenzanid, Fenasulam, Flufenacet, Flufenican, Mefenacet, Mefluidide, Metamifop, Monalide, Naproanilide, Pentanochlor, Picolinafen, Propanil; insbesondere Arylalaninherbizide, wie Benzoyl- prop, Flamprop, Flamprop-M; Chloracetanilidherbizide, wie Acetochlor, Alachlor, Buta- chlor, Butenachlor, Delachlor, Diethatyl, Dimethachlor, Metazachlor, Metolachlor, S- Metolachlor, Pretilachlor, Propachlor, Propisochlor, Prynachlor, Terbuchlor, Thenyl- chlor, Xylachlor; und Sulfonanilidherbizide, wie Benzofluor, Cloransulam, Diclosulam, Florasulam, Flumetsulam, Metosulam, Perfluidon, Pyrimisulfan, Profluazol; und Sulfo- namidherbizide, wie Asulam, Carbasulam, Fenasulam, Oryzalin, Penoxsulam; Antibio- ticherbizide, wie Bilanafos; Aromatensäurenherbizide; insbesondere Benzoatherbizide, wie Chloramben, Dicamba, 2, 3, 6-TBA, Tricamba; insbesondere Pyrimidinyloxybenzo- atherbizide, wie Bispyribac, Pyriminobac; und Pyrimidinylthiobenzoatherbizide, wie Py- rithiobac; Phthalatherbizide, wie Chlorthal; Picolinatherbizide, wie Aminopyralid, Clopy- ralid, Picloram; und Chinolinecarboxylatherbizide, wie Chinclorac, Chinmerac; Arsenherbizide, wie Cacodylat, CMA, DSMA, Hexaflurate, MAA, MAMA, MSMA, Kaliumarse- nit, Natriumarsenit; Benzoylcyclohexandionherbizide, wie Mesotrion, Sulcotrion; Benzo- furanylalkylsulfonatherbizide, wie Benfuresat, Ethofumesat; Carbamatherbizide, wie Asulam, Carboxazol, Chlorprocarb, Dichlormat, Fenasulam, Karbutilate, Terbucarb; Carbanilatherbizide, wie Barban, BCPC, Carbasulam, Carbetamid, CEPC, Chlorbufam, Chlorpropham, CPPC, Desmedipham, Phenisopham, Phenmedipham, Phenmedi- pham-Ethyl, Propham, Swep; Cyclohexenoximherbizide, wie Alloxydim, Butroxydim, Clethodim, Cloproxydim, Cycloxydim, Profoxydim, Sethoxydim, Tepraloxydim, Tralko- xydim; Cyclopropylisoxazolherbizide, wie Isoxachlortol, Isoxaflutol; Dicarboximidherbi- zide, wie Benzfendizon, Cinidon-Ethyl, Flumezin, Flumiclorac, Flumioxazin, Flumipro- pyn; Dinitroanilinherbizide, wie Benfluralin, Butralin, Dinitramine, Ethalfluralin, Fluchlo- ralin, Isopropalin, Methalpropalin, Nitralin, Oryzalin, Pendimethalin, Prodiamine, Proflu- ralin, Trifluralin; Dinitrophenolherbizide, wie Dinofenat, Dinoprop, Dinosam, Dinoseb, Dinoterb, DNOC, Etinofen, Medinoterb; Diphenyletherherbizide, wie Ethoxyfen; insbesondere Nitrophenyletherherbizide, wie Acifluorfen, Aclonifen, Bifenox, Chlomethoxy- fen, Chlornitrofen, Etnipromid, Fluorodifen, Fluoroglycofen, Fluoronitrofen, Fomesafen, Furyloxyfen, Halosafen, Lactofen, Nitrofen, Nitrofluorfen, Oxyfluorfen; Dithiocarbamat- herbizide, wie Dazomet, Metam; halogenaliphatische Herbizide, wie Alorac, Chloropon, Dalapon, Flupropanat, Hexachloraceton, Chloressigsäure, SMA, TCA; Imidazolinon- herbizide, wie Imazamethabenz, Imazamox, Imazapic, Imazapyr, Imazaquin, Imazetha- pyr; anorganische Herbizide, wie Ammoniumsulfamate, Calciumchlorat, Kupfersulfat, Eisensulfat, Kaliumazid, Zyankali, Natriumazid, Natriumchlorat, Schwefelsäure; Nitril- herbizide, wie Bromobonil, Bromoxynil, Chloroxynil, Dichlobenil, lodobonil, loxynil, Py- raclonil; Organophosphorherbizide, wie Amiprofos-Methyl, Anilofos, Bensulide, Bilanafos, Butamifos, 2,4-DEP, DMPA, EBEP, Fosamin, Glufosinat, Glyphosat, Piperophos; Phenoxyherbizide, wie Bromofenoxim, Clomeprop, 2,4-DEB, 2,4-DEP, Difenopenten, Disul, Erbon, Etnipromid, Fenteracol, Trifopsime; insbesondere Phenoxyessigsäure- herbizide, wie 4-CPA, 2,4-D, 3,4-DA, MCPA, MCPA-Thioethyl; Phenoxybuttersäureher- bizide, wie 4-CPB, 2,4-DB, 3,4-DB, MCPB, 2,4,5-TB; und Phenoxypropionsäureherbizi- de, wie Cloprop, 4-CPP, Dichlorprop, Dichlorprop-P, 3, 4-DP, Fenoprop, Mecoprop, Mecoprop-P; insbesondere Aryloxyphenoxypropionsäureherbizide, wie Chlorazifop, Clodinafop, Clofop, Cyhalofop, Diclofop, Fenoxaprop, Fenoxaprop-P, Fenthiaprop, FIu- azifop, Fluazifop-P, Haloxyfop, Haloxyfop-P, Isoxapyrifop, Metamifop, Propaquizafop, Quizalofop, Quizalofop-P, Trifop; Phenylenediaminherbizide, wie Dinitramine, Prodiamine; Phenylpyrazolylketonherbizide, wie Benzofenap, Pyrazolynate, Pyrazoxyfen, Topramezone; Pyrazolylphenylherbizide, wie Fluazolate, Pyraflufen; Pyridazinherbizi- de, wie Credazin, Pyridafol, Pyridat; Pyridazinonherbizide, wie Brompyrazon, Chlorida- zon, Dimidazon, Flufenpyr, Metflurazon, Norflurazon, Oxapyrazon, Pydanon; Pyridin- herbizide, wie Aminopyralid, Cliodinate, Clopyralid, Dithiopyr, Fluroxypyr, Haloxydine, Picloram, Picolinafen, Pyriclor, Thiazopyr, Triclopyr; Pyrimidinediaminherbizide, wie Iprymidam, Tioclorim; quarternäre Ammoniumherbizide, wie Cyperquat, Diethamquat, Difenzoquat, Diquat, Morfamquat, Paraquat; Thiocarbamatherbizide, wie Butylate, Cyc- loate, Di-Allate, EPTC, Esprocarb, Ethiolate, Isopolinate, Methiobencarb, Molinate, Or- bencarb, Pebulate, Prosulfocarb, Pyributicarb, Sulfallate, Thiobencarb, Tiocarbazil, Tri- Allate, Vernolate; Thiocarbonatherbizide, wie Dimexano, EXD, Proxan; Thioharnstoff- herbizide, wie Methiuron; Triazinherbizide, wie Dipropetryn, Triaziflam, Trihydroxytriazi- ne; insbesondere Chlortriazinherbizide, wie Atrazine, Chlorazine, Cyanazine, Cyprazi- ne, Eglinazine, Ipazine, Mesoprazine, Procyazine, Proglinazine, Propazine, Sebuthyl- azine, Simazine, Terbuthylazine, Trietazine; Methoxytriazinherbizide, wie Atraton, Me- thometon, Prometon, Secbumeton, Simeton, Terbumeton; und Methylthiotriazinherbi- zide, wie Ametryn, Aziprotryne, Cyanatryn, Desmetryn, Dimethametryn, Methoprotryne, Prometryn, Simetryn, Terbutryn; Triazinonherbizide, wie Ametridion, Amibuzin, Hexazi- non, Isomethiozin, Metamitron, Metribuzin; Triazolherbizide, wie Amitrole, Cafenstrol, Epronaz, Flupoxam; Triazolonherbizide, wie Amicarbazon, Carfentrazon, Flucarbazon, Propoxycarbazon, Sulfentrazone; Triazolopyrimidinherbizide, wie Cloransulam, Diclo- sulam, Florasulam, Flumetsulam, Metosulam, Penoxsulam; Uracilherbizide, wie Buta- fenacil, Bromacil, Flupropacil, Isocil, Lenacil, Terbacil; Harnstoffherbizide, wie Benz- thiazuron, Cumyluron, Cycluron, Dichloralharnstoff, Diflufenzopyr, Isonoruron, Isouron, Methabenzthiazuron, Monisouron, Noruron; insbesondere Phenylharnstoffherbizide, wie Anisuron, Buturon, Chlorbromuron, Chloreturon, Chlorotoluron, Chloroxuron, Dai- muron, Difenoxuron, Dimefuron, Diuron, Fenuron, Fluometuron, Fluothiuron, Isoprotu- ron, Linuron, Methiuron, Methyldymron, Metobenzuron, Metobromuron, Metoxuron, Monolinuron, Monuron, Neburon, Parafluron, Phenobenzuron, Siduron, Tetrafluron, Thidiazuron; Sulfonylharnstoffherbizide; insbesondere Pyrimidinylsulfonylharnstoffher- bizide, wie Amidosulfuron, Azimsulfuron, Bensulfuron, Chlorimuron, Cyclosulfamuron, Ethoxysulfuron, Flazasulfuron, Flucetosulfuron, Flupyrsulfuron, Foramsulfuron, HaIo- sulfuron, Imazosulfuron, Mesosulfuron, Nicosulfuron, Orthosulfamuron, Oxasulfuron, Primisulfuron, Pyrazosulfuron, Rimsulfuron, Sulfometuron, Sulfosulfuron, Trifloxysulfu- ron; und Triazinylsulfonylharnstoffherbizide, wie Chlorsulfuron, Cinosulfuron, Ethamet- sulfuron, lodosulfuron, Metsulfuron, Prosulfuron, Thifensulfuron, Triasulfuron, Tribenu- ron, Triflusulfuron, Tritosulfuron; und Thiadiazolylharnstoffherbizide, wie Buthiuron, E- thidimuron, Tebuthiuron, Thiazafluron, Thidiazuron; und sonstige Herbizide, wie Acrole- in, Allylalkohol, Azafenidin, Benazolin, Bentazon, Benzobicyclon, Buthidazole, Calcium- cyanamid, Cambendichlor, Chlorfenac, Chlorfenprop, Chlorflurazole, Chlorflurenol, Cin- methylin, Clomazon, CPMF, Cresol, Orthodichlorbenzol, Dimepiperate, Endothal, Fluo- romidine, Fluridon, Flurochloridon, Flurtamon, Fluthiacet, Indanofan, Methazole, Methy- lisothiocyanate, Nipyraclofen, OCH, Oxadiargyl, Oxadiazon, Oxaziclomefon, Pentoxa- zon, Pinoxaden, Prosulfalin, Pyribenzoxim, Pyriftalid, Chinoclamine, Rhodethanil, SuI- glycapin, Thidiazimin, Tridiphane, Trimeturon, Tripropindan, Tritac.
Gemäß einer besonderen Ausführungsform der Erfindung umfassen Herbizide (e2):
1. 1 , 3, 4-Thiadiazol, wie Buthidazoleandcyprazol;
2. Amide, wie Allidochlor, Benzoylprop-Ethyl, Bromobutide, Chlorthiamid, Dimepiperate, Dimethenamid, Diphenamid, Etobenzanid, Flamprop, Flamprop-Methyl, Fosamine, Isoxaben, Metazach lor, Monalid, Naptalam, Pronamide, Propanil,
Propyzamide, Chinonamid;
3. Aminotriazol, wie Amitrol,
4. Anilide, wie Anilofos, Mefenacet, Pentanochlor;
5. Aryloxycarbonsäuren, wie 2,4-D, 2,4-DB, Clomeprop, Dichlorprop, Dichlor- prop-P, Fenoprop, Fluroxypyr, MCPA, MCPB, Mecoprop, Mecoprop-P, Napro- pamide, Napropanilide, Triclopyr;
6. Benzoesäuren, wie Chloramben, Dicamba;
7. Benzothiadiazinone, wie Bentazon;
8. Bleichmittel, wie Clomazon, Diflufenican, Fluorochloridon, Flupoxam, Fluridon, Karbutilate, Pyrazolate, Sulcotrion, Mesotrione;
9. Carbamate, wie Asulam, Carbetamide, Chlorbufam, Chlorpropham, Desmedi- pham, Phenmedipham, Vernolate;
10. Chinolate, wie Chinclorac, Chinmerac;
1 1. Dichlorpropionsäuren, wie Dalapon; 12. Dihydrobenzofurane, wie Ethofumesat;
13. Dihydrofuran-3-one, wie Flurtamon; 14. Dinitroaniline, wie Benefin, Butralin, Dinitramine, Ethalfluralin, Fluchloralin, Iso- propalin, Nitralin, Oryzalin, Pendimethalin, Prodiamine, Profluralin, Trifluralin;
15. Dinitrophenols, wie Bromofenoxim, Dinoseb, Dinoseb-Acetate, Dinoterb, DNOC, Minoterb-Azetat; 16. Diphenylether, wie Aciflurofen, Acifluorfen-Natrium, Aclonifen, Bifenox, Chlornitrofen, Difenoxuran, Ethoxyfen, Fluorodifen, Fluoroglycofen-Ethyl, Fomesafen, Furyloxyfen, Lactofen, Nitrofen, Nitrofluorfen, Oxyfluorfen;
17. Harnstoffe, wie Benzthiazuron, DCU, Diflufenzopyr, Methabenzthiazuron;
18. Imidazolinone, wie Imazamethapyr, Imazapyr, Imazaquin, Imazethabenz- Methyl, Imazethapyr, Imazapic, Imazamox;
19. Oxadiazol, wie Methazol, Oxadiargyl, Oxadiazon;
20. Oxirane, wie Tridiphan;
21. Phenol, wie Bromoxynil, loxynil;
22. Phenoxyphenoxypropionsäuresäureesters, wie Clodinafop, Cyhalofop-Butyl, Diclofop-Methyl, Fenoxaprop-Ethyl, Fenoxaprop-P-Ethyl, Fenthiaprop-Ethyl,
Fluazifop-Butyl, Fluazifop-P-Butyl, Haloxyfop-Ethoxyethyl, Haloxyfop-Methyl, Haloxyfop-P-Methyl, Isoxapyrifop, Propaquizafop, Quizalofop-Ethyl, Quizalofop- P-Ethyl, Quizalofop-Tefuryl;
23. Phenylessigsäuresäuren, wie Chlorfenac; 24. Phenylharnstoffe, wie Buturon, Chlorotoluron, Chlorbromuron, Chloroxuron, Di- mefuron, Diuron, Fenuron, Isoproturon, Linuron, Monolinuron, Monuron, Meto- benzuron, Metobromuron, Metoxuron, Neburon;
25. Phenylpropionsäuren, wie Chlorophenprop-Methyl;
26. Ppi-active Verbindungen, wie Benzofenap, Flumichlorac, Flumiclorac-Pentyl, Flumioxazin, Flumipropyn, Flupropacil, Pyrazoxyfen, Sulfentrazon, Thidiazimin;
27. Pyrazol, wie Nipyraclofen;
28. Pyridazine, wie Chloridazon, Maleichydrazide, Norflurazon, Pyridat;
29. Pyridincarboxylate, wie Clopyralid, Dithiopyr, Picloram, Thiazopyr;
30. Pyrimidylether, wie Pyrithiobac-Acid, Pyrithiobac-Natrium, KIH-2023, KIH-6127; 31. Sulfonamide, wie Flumetsulam, Metosulam;
32. Sulfonylharnstoffe, wie Amidosulfuron, Azimsulfuron, Bensulfuron-Methyl, ChIo- rimuron-Ethyl, Chlorsulfuron, Cinosulfuron, Cyclosulfamuron, Ethoxysulfuron, Ethametsulfuron-Methyl, Flazasulfuron, Flupyrsulfuron-Methyl, Foramsulfuron, Halosulfuron-Methyl, Imazosulfuron, Idosulfuron, Metsulfuron-Methyl, Nicosulfu- ron, Oxasulfuron, Primisulfuron, Prosulfuron, Pyrazosulfuron-Ethyl, Rimsulfu- ron, Sulfometuron-Methyl, Sulfosulfuron, Thifensulfuron-Methyl, Triasulfuron, Tribenuron-Methyl, Triflusulfuron-Methyl, Tritosulfuron;
33. Thiadiazolylharnstoffe, wie Ethidimuron, Tebuthiuron, Thiazafluron;
34. Triazine, wie Ametryn, Atrazine, Atraton, Cyanazine, Cyprazine, Desmetryn, Dipropetryn, Isomethiozin, Propazine, Promethryn, Prometon, Sebuthylazine,
Secbumethon, Simazine, Tebutryn, Terbumeton, Terbuthylazine, Trietazin;
35. Triazolcarboxamide, wie Triazofenamid;
36. Uracile, wie Bromacil, Butafenacil, Lenacil, Terbacil;
37. weiterhin Azafenidin, Aziprotryne, Bromuron, Benazolin, Benfuresate, Bensuli- de, Benzofluor, Bentazon, Bromofenoxim, Butamifos, Cafenstrol, Chlorthal-
Dimethyl, Cinmethylin, Cinidon-Ethyl, Defenuron, Dichlobenil, Endothall, Fluor- bentranil, Fluthiacet-Methyl, Inxynil, Isoxaflutol, Mefluidide, Methazol, Metribu- zin, Metramitron, Perfluidon, Piperophos, Topramezone;
38. Pflanzenschutzstoffe vom Cyclohexenontyp, wie Alloxydim, Clethodim, Clopro- xydim, Cycloxydim, Sethoxydim und Tralkoxydim.
Besonders bevorzugte Pflanzenschutzstoffe vom Cyclohexenontyp umfassen Tepralo- xydim (cf. AGROW, No.243, 11.3.95, S. 21 , Caloxydim) und 2-(1-[2-{4-Chlorphenoxy}- propyloxyimino]butyl)-3-hydroxy-5-(2h-tetrahydrothiopyran-3-yl)-2-cyclohexen-1-on, und eine besonders bevorzugte herbizid wirksame Verbindung vom Sulfonylharnstoff- typ ist N-(((4-Methoxy-6-[trifluormethyl]-1 , 3, 5-triazin-2-yl)amino)carbonyl)-2-(trifluor- methyl)benzolsulfonamid.
Insektizide (e3) umfassen zum Beispiel Antibiotika-Insektizide, wie Allosamidin, Thurin- giensin; insbesondere macrocyclische Lactoninsektizide, wie Spinosad; insbesondere Vermectininsektizide, wie Abamectin, Doramectin, Emamectin, Eprinomectin, Ivermec- tin, Selamectin; und Milbemycininsektizide, wie Lepimectin, Milbemectin, Milbemycin- oxime, Moxidectin; Arseninsektizide, wie Calciumarsenat, Kupferacetarsenit, Kupferar- senat, Bleiarsenat, Kaliumarsenit, Natriumarsenit; pflanzliche Insektizide, wie Anaba- sin, Azadirachtin, D-Limonen, Nicotin, Pyrethrine, Cinerin E, Cinerin I, Cinerin II, Jas- molin I, Jasmolin II, Pyrethrin I, Pyrethrin II, Quassia, Rotenon, Ryania, Sabadilla; Car- bamatinsektizide, wie Bendiocarb, Carbaryl; insbesondere Benzofuranylmethylcarba- matinsektizide, wie Benfuracarb, Carbofuran, Carbosulfan, Decarbofuran, Furathio- carb; Dimethylcarbamatinsektizide, wie Dimetan, Dimetilan, Hyquincarb, Pirimicarb; Oximcarbamatinsektizide, wie Alanycarb, Aldicarb, Aldoxycarb, Butocarboxim, Butoxy- carboxim, Methomyl, Nitrilacarb, Oxamyl, Tazimcarb, Thiocarboxime, Thiodicarb, Thio- fanox; und Phenylmethylcarbamatinsektizide, wie Allyxycarb, Aminocarb, Bufencarb, Butacarb, Carbanolate, Cloethocarb, Dicresyl, Dioxacarb, EMPC, Ethiofencarb, Fen- ethacarb, Fenobucarb, Isoprocarb, Methiocarb, Metolcarb, Mexacarbate, Promacyl, Promecarb, Propoxur, Trimethacarb, XMC, Xylylcarb; Dinitrophenolinsektizide, wie Di- nex, Dinoprop, Dinosam, DNOC; Insektenwachstumsregulatoren; insbesondere Chitinsyntheseinhibitoren, wie Bistrifluron, Buprofezin, Chlorfluazuron, Cyromazine, Difluben- zuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumu- ron, Penfluron, Teflubenzuron, Triflumuron; Juvenilhormonmimetika, wie Epofenonan, Fenoxycarb, Hydropren, Kinopren, Methopren, Pyriproxyfen, Tripren; Juvenilhormone, wie Juvenilhormon I, Il und IM; Häutungshormonagonisten, wie Chromafenozid, HaIo- fenozid, Methoxyfenozid, Tebufenozid; Häutungshormone, wie A-Ecdyson, Ecdysteron; Häutungshemmer, wie Diofenolan; Precocene, wie Precocen I, Il und IM; und unklassi- fizierte Insektizide, wie Dicyclanil; Nereistoxinanaloga, wie Bensultap, Cartap, Thiocyc- lam, Thiosultap; Nicotinoidinsektizide, wie Flonicamid; insbesondere Nitroguanidinin- sektizide, wie Clothianidin, Dinotefuran, Imidacloprid, Thiamethoxam; Nitromethylen- insektizide, wie Nitenpyram, Nithiazine; und Pyridylmethylamininsektizide, wie Acetami- prid, Imidacloprid, Nitenpyram, Thiacloprid; Organochlorininsektizide, wie Isobenzan, I- sodrin, Kelevan, Mirex; Organophosphorinsektizide; insbesondere Organophosphatin- sektizide, wie Bromfenvinfos, Chlorfenvinphos, Crotoxyphos, Dichlorvos, Dicrotophos, Dimethylvinphos, Fospirate, Heptenophos, Methocrotophos, Mevinphos, Monocroto- phos, Naled, Naftalofos, Phosphamidon, Propaphos, TEPP, Tetrachlorvinphos; Orga- nothiophosphatinsektizide, wie Dioxabenzofos, Fosmethilan, Phenthoate; insbesondere aliphatische Organothiophosphatinsektizide, wie Acethion, Amiton, Cadusafos, ChIo- rethoxyfos, Chlormephos, Demephion, Demephion-O, Demephion-S, Demeton, Deme- ton-O, Demeton-S, Demeton-Methyl, Demeton-O-Methyl, Demeton-S-Methyl, Deme- ton-S-Methylsulphon, Disulfoton, Ethion, Ethoprophos, IPSP, Isothioat, Malathion, Me- thacrifos, Oxydemeton-Methyl, Oxydeprofos, Oxydisulfoton, Phorat, Sulfotep, Terbufos, Thiometon; insbesondere aliphatische Amidorganothiophosphatinsektizide, wie Amidi- thion, Cyanthoate, Dimethoate, Ethoat-Methyl, Formothion, Mecarbam, Omethoate, Prothoate, Sophamide, Vamidothion; und Oximorganothiophosphatinsektizide, wie
Chlorphoxim, Phoxim, Phoxim-Methyl; Heterocyclische Organothiophosphatinsektizide, wie Azamethiphos, Coumaphos, Coumithoate, Dioxathion, Endothion, Menazon, Mor- phothion, Phosalon, Pyraclofos, Pyridaphenthion, Chinothion; besonders Benzothiopy- ranorganothiophosphatinsektizide, wie Dithicrofos, Thicrofos; Benzotriazinorganothio- phosphatinsektizide, wie Azinphos-Ethyl, Azinphos-Methyl; Isoindolorganothiophos- phatinsektizide, wie Dialifos, Phosmet; Isoxazolorganothiophosphatinsektizide, wie Iso- xathion, Zolaprofos; Pyrazolopyrimidinorganothiophosphatinsektizide, wie Chlorprazo- phos, Pyrazophos; Pyridinorganothiophosphatinsektizide, wie Chlorpyrifos, Chlorpyri- fos-Methyl; Pyrimidinorganothiophosphatinsektizide, wie Butathiofos, Diazinon, Etrim- fos, Lirimfos, Pirimiphos-Ethyl, Pirimiphos-Methyl, Primidophos, Pyrimitate, Tebupirim- fos; Chinoxalinorganothiophosphatinsektizide, wie Chinalphos, Chinalphos-Methyl; Thiadiazolorganothiophosphatinsektizide, wie Athidathion, Lythidathion, Methidathion, Prothidathion; und Triazoleorganothiophosphatinsektizide, wie Isazofos, Triazophos; und Phenylorganothiophosphatinsektizide, wie Azothoate, Bromophos, Bromophos- Ethyl, Carbophenothion, Chlorthiophos, Cyanophos, Cythioate, Dicapthon, Dichlofen- thion, Etaphos, Famphur, Fenchlorphos, Fenitrothion, Fensulfothion, Fenthion, Fenthi- on-Ethyl, Heterophos, Jodfenphos, Mesulfenfos, Parathion, Parathion-Methyl, Phen- kapton, Phosnichlor, Profenofos, Prothiofos, Sulprofos, Temephos, Trichlormetaphos- 3, Trifenofos; Phosphonatinsektizide, wie Butonat, Trichlorfon; Phosphonothioatinsek- tizide, wie Mecarphon; insbesondere Phenylethylphosphonothioatinsektizide, wie Fo- nofos, Trichloronat; und Phenylphenylphosphonothioatinsektizide, wie Cyanofenphos, EPN, Leptophos; Phosphoramidatinsektizide, wie Crufomate, Fenamiphos, Fosthietan, Mephosfolan, Phosfolan, Pirimetaphos; Phosphoramidothioatinsektizide, wie Acephate, Isocarbophos, Isofenphos, Methamidophos, Propetamphos; und Phosphorodiamidin- sektizide, wie Dimefox, Mazidox, Mipafox, Schradan; Oxadiazininsektizide, wie Indoxa- carb; Phthalimidinsektizide, wie Dialifos, Phosmet, Tetramethrin; Pyrazolinsektizide, wie Acetoprol, Ethiprol, Fipronil, Pyrafluprol, Pyriprol, Tebufenpyrad, Tolfenpyrad, Vani- liprole; Pyrethroidinsektizide; insbesondere Pyrethroidesterinsektizide, wie Acrinathrin, Allethrin, Bioallethrin, Barthrin, Bifenthrin, Bioethanomethrin, Cyclethrin, Cycloprothrin, Cyfluthrin, Beta-Cyfluthrin, Cyhalothrin, Gamma-Cyhalothrin, Lambda-Cyhalothrin, Cy- permethrin, Alpha-Cypermethrin, Beta-Cypermethrin, Theta-Cypermethrin, Zeta-Cyper- methrin, Cyphenothrin, Deltamethrin, Dimefluthrin, Dimethrin, Empenthrin, Fenfluthrin, Fenpirithrin, Fenpropathrin, Fenvalerate, Esfenvalerate, Flucythrinate, Fluvalinate, Tau- Fluvalinate, Furethrin, Imiprothrin, Metofluthrin, Permethrin, Biopermethrin, Transper- methrin, Phenothrin, Prallethrin, Profluthrin, Pyresmethrin, Resmethrin, Bioresmethrin, Cismethrin, Tefluthrin, Terallethrin, Tetramethrin, Tralomethrin, Transfluthrin; und Py- rethroidetherinsektizide, wie Etofenprox, Flufenprox, Halfenprox, Protrifenbute, Silafluo- fen; Pyrimidinamininsektizide, wie Flufenerim, Pyrimidifen; Pyrrolinsektizide, wie Chlor- fenapyr; Tetronicsäurinsektizide, wie Spiromesifen; Thioharnstoffinsektizide, wie Dia- fenthiuron; Harnstoffinsektizide, wie Flucofuron, Sulcofuron; unklassifizierte Insektizide, wie Closantel, Crotamiton, EXD, Fenazaflor, Fenoxacrim, Flubendiamide, Hydra- methylnon, Isoprothiolane, Malonoben, Metaflumizon, Metoxadiazon, Nifluridide, Pyri- daben, Pyridalyl, Rafoxanide, Triarathene, Triazamate.
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung umfassen In- sektizide (e3):
1. Organophosphate, wie Azinphos-Methyl, Azinphos-Ethyl, Chlorpyrifos, Chlorpyri- fos-Methyl, Chlorfenvinphos, Diazinon, Dimethylvinphos, Dioxabenzofos, Disul- foton, Ethion, EPN, Fenitrothion, Fenthion, Heptenophos, Isoxathion, Malathion, Methidathion, Methyl-Parathion, Paraoxon, Parathion, Phenthoate, Phosalon, Phosmet, Phorate, Phoxim, Pirimiphos-Methyl, Profenofos, Prothiofos, Primi- phos-Ethyl, Pyraclofos, Pyridaphenthion, Sulprofos, Triazophos, Trichlorfon, Tetrachlorvinphos, Vamidothion;
2. Carbamate, wie Alanycarb, Benfuracarb, Bendiocarb, Carbaryl, Carbofuran, Car- bosulfan, Fenoxycarb, Furathiocarb, Indoxacarb, Methiocarb, Pirimicarb, Pro- poxur, Thiodicarb, Triazamate;
3. Pyrethroide, wie Bifenthrin, Cyfluthrin, Cycloprothrin, Cypermethrin, Deltamethrin,
Esfenvalerat, Ethofenprox, Fenpropathrin, Fenvalerate, Cyhalothrin, Lambda- Cyhalothrin, Permethrin, Silafluofen, Tau-Fluvalinate, Tefluthrin, Tralomethrin, Alpha-Cypermethrin, Permethrin; 4. Arthropodenwachstumsregulatoren:
A) Chitinsyntheseinhibitoren, z. B. Benzoylharnstoffe, wie Chlorfluazuron, Di- flubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, No- valuron, Teflubenzuron, Triflumuron; Buprofezin, Diofenolan, Hexythiazox, Etoxazol, Clofentazine; B) Ecdysonantagonisten, wie Halofenozid, Methoxyfenozid, Tebufenozid;
C) Juvenoide, wie Pyriproxyfen, Methoprene;
D) Lipidbiosyntheseinhibitoren, wie Spirodiclofen;
5. Neonicotinoide, wie Flonicamid, Clothianidin, Dinotefuran, Imidacloprid, Thia- methoxam, Nithiazine, Acetamiprid, Thiacloprid; 6. Weitere Insektizide, die keiner der genannten Klassen zuzurechnen sind, wie Aba- mectin, Acequinocyl, Acetamiprid, Azadirachtin, Bensultap, Bifenazate, Cartap, Chlorfenapyr, Diafenthiuron, Dinetofuran, Diofenolan, Emamectin, Ethiprol, Fe- nazaquin, Fipronil, Hydramethylnon, Imidacloprid, Indoxacarb, Isoprocarb, Me- tolcarb, Pyridaben, Pymetrozine, Spinosad, Tebufenpyrad, Thiamethoxam, Xmc und Xylylcarb und 7. N-Phenylsemicarbazone wie in EP-A462456 beschrieben, insbesondere Verbindungen der allgemeinen Formel (IV)
worin R12 und R14 unabhängig voneinander Wasserstoff, Halogen, CN, CrC4- alkyl, CrC4-Alkoxy, Ci-4-Haloalkyl or Ci-4-Haloalkoxy und R13 is Ci-4-Alkoxy, Ci- 4-Haloalkyl or Ci-4-Haloalkoxy sein können, z.B. Verbindungen gemäß Formel (IV), in denen R14 = 3-CF3, R12 = 4-CN und R13 = 4-OCF3 sind.
Von den hier speziell genannten Wirkstoffen können auch Salze, insbesondere landwirtschaftlich nutzbare Salze eingesetzt werden.
In einer besonderen Ausführungsform der Erfindung ist der Pflanzenschutzwirkstoff ein Fungizid.
Besonders bevorzugt ist es hierbei, wenn das Fungizid ein Wirkstoff aus der Gruppe der Strobilurine oder Triazole ist, insbesondere ein Strobilurin ausgewählt unter Azo- xystrobin, Pyraclostrobin, Dimoxystrobin, Trifloxystrobin, Fluoxystrobin, Picoxystrobin und Orysastrobin oder ein Triazol ausgewählt unter Epoxiconazol, Metconazol, Tebu- conazol, Flusilazol, Fluquinconazol, Triticonazol, Propiconazol, Penconazol, Cyproco- nazol und Prothioconazol.
Erfindungsgemäß besonders bevorzugt ist die Verwendung von Epoxiconazol.
Die hier gewählten Namen von Pfanzenschutzwirkstoffen, z.B. Epoxiconazol, schließen isomere Formen dieser Verbindung mit ein. Insbesondere zu nennen sind Stereoisomere, wie Enantiomere oder Diastereoisomere der Formeln. Neben den im wesentlichen reinen Isomeren gehören zu den Verbindungen der Formeln auch deren Isomerengemische, z. B. Stereoisomerengemische. Allgemein bevorzugt werden Wirkstoffe mit einem höheren Anteil des gegenüber dem optischen Antipoden biologisch wirksameren Stereoisomers, besonders bevorzugt iso- merenreine Wirkstoffe.
Der Anteil der Wirkstoffkomponente (e) am Gesamtgewicht des Mittels macht in der Regel mehr als 1 Gew.-%, vorzugsweise mehr als 2 Gew.-% und insbesondere mehr als 2,5 Gew.-% aus. Andererseits macht der Anteil der Komponente (e) am Gesamtgewicht des Mittels in der Regel weniger als 50 Gew.-%, vorzugsweise weniger als 40 Gew.-% und insbesondere weniger als 35 Gew.-%, bezogen auf die Gesamtmasse der Zusammensetzung, aus.
In einer besonderen Ausführungsform der Erfindung ist das Mittel im wesentlichen wasserfrei, insbesondere mit einem Wassergehalt von weniger als 5% und besonders von weniger als 2% des Gesamtgewichts.
In einer besonderen Ausführungsform der Erfindung ist das Mittel wenig hygroskopisch, wobei bevorzugt ist, wenn seine Feuchtigkeitsaufnahme bei 65%-iger Luftfeuchtigkeit weniger als 20 Gew.-%, vorzugsweise weniger als 15 Gew.-%, und insbesondere weniger als 10 Gew.-% beträgt.
In einer besonderen Ausführungsform der Erfindung ist das Mittel ein partikulärer Feststoff, insbesondere ein Granulat oder ein Pulver.
Besonders bevorzugt ist es hierbei, wenn das Granulat grobkörnig ist.
Besonders bevorzugt ist es hierbei weiterhin, wenn das Granulat ausgewählt ist unter wasserdispergierbaren Granulaten (WG) und wasserlöslichen Granulaten (SG), wobei es sich hierbei insbesondere um Wirbelschichtgranulate (WSG) handeln kann.
Besonders bevorzugt ist es des weiteren, wenn das Pulver ein trocken fließfähiges („dry flowable" = DF) Pulver ist, insbesondere ein schütt- oder rieselfähiges Pulver, nochmals besonders bevorzugt ein Pulver mit einer Partikelgröße im Bereich von 1 bis 200 μm, vorzugsweise im Bereich von 2 bis 150 μm und insbesondere im Bereich von 5 bis 100 μm, bestimmt nach Methode CIPAC MT 59 („dry sieve test"). In einer besonderen Ausführungsform der Erfindung ist das Mittel im wesentlichen staubfrei, bestimmt nach Methode CIPAC MT 171 („dustiness of granulär formulati- ons").
In einer besonderen Ausführungsform der Erfindung ist das Mittel im wesentlichen lagerstabil, insbesondere verklebt es bei Lagerung nicht, insbesondere verklebt es bei mindestens achtwöchiger Lagerung, bevorzugt mindestens zwölfwöchiger Lagerung bei einer Temperatur im Bereich von -10°C bis 40°C nicht, bestimmt nach Methode CIPAC MT 172 („flowability of water").
In einer besonderen Ausführungsform der Erfindung ist das Mittel in Wasser disper- gierbar, bestimmt nach Methode CIPAC MT 174 („dispersibility of water dispersible granules").
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines erfindungsgemäßen festen Pflanzenschutzmittels.
Hierzu zeigt
Figur 1 eine schematische Darstellung möglicher Herstellungswege.
In der praktischen Herstellung der erfindungsgemäßen Pflanzenschutzmittel werden im allgemeinen handelsübliche Produkte eingesetzt, die zusätzlich noch Solventien, etwa Wasser, und andere Zusätze enthalten können, wobei bevorzugt Hochkonzentrate ver- wendet werden. Insbesondere können in den eingesetzten Produkten geringere Mengen an anorganischen Substanzen, vor allem anorganischen Salzen, eingeschlossen sein. So können höhermolekulare Sulfonate herstellbedingt bis zu 20 Gew.-% an anorganischen Salzen, insbesondere anorganischen Alkalimetallsalzen, z. B. Natriumsulfat, enthalten. Alle Mengenangaben, wie Gewichtsanteile und Gewichtsverhältnisse, insbe- sondere zu den erfindungsgemäßen Polyalkoxylaten und höhermolekularen Sulfona- ten, beziehen sich erfindungsgemäß auf die namentlich genannten Bestandteile und sind bei der Verwendung solch handelsüblicher Produkte entsprechend dem tatsächlichen Gehalt des Produktes an den genannten Bestandteilen umzurechnen.
Die Herstellung des festen Pflanzenschutzmittels kann erfindungsgemäß dadurch erfolgen, dass man aus einem wenigstens einen Teil der Inhaltsstoffe umfassenden flu- idhaltigen Gemisch Fluid entfernt und den vom Fluid zumindest teilweise befreiten Feststoff gewinnt. Die übrigen Inhaltsstoffe können erforderlichenfalls vor Entfernung des Fluids vorgelegt und/oder nach Entfernung des Fluids zusetzt werden. Die Vorlage erfolgt dabei vorzugsweise als Feststoff. Der Zusatz kann als fluidhaltiges Gemisch erfolgen, wonach man abermals Fluid entfernt und den vom Fluid zumindest teilweise befreiten Feststoff gewinnt. Das Fluid ist vorzugsweise ein Lösungsmittel für einen oder mehrere Inhaltsstoffe, insbesondere Wasser. Im Zuge eines mehrstufigen Verfahrens können auch verschiedene Fluide verwendet werden.
In einer bevorzugten Ausführungsform umfasst das fluidhaltige Gemisch zumindest einen Teil der Komponenten (a) und (b). In der Regel ist es sogar zweckmäßig, dass ein solches fluidhaltiges Gemisch die Gesamtmenge der Komponenten (a) und (b) enthält. Einer weiteren bevorzugten Ausführungsform zufolge umfasst das fluidhaltige Gemisch zumindest einen Teil der Komponente (e). In der Regel ist es sogar zweck- mäßig, dass ein solches fluidhaltiges Gemisch die Gesamtmenge der Komponente (e) enthält.
Zur Herstellung der erfindungsgemäßen festen Pflanzenschutzmittel kann man prinzipiell so vorgehen, dass man (i) aus einem Komponenten (a), (b) und (e) umfassenden fluidhaltigen Gemisch Fluid entfernt; (ii) einen Komponenten (a) und (b) umfassenden Feststoff, z.B. einen zuvor vom Fluid zumindest teilweise befreiten, Komponenten (a) und (b) umfassenden Feststoff, vorlegt, ein Komponente (e) umfassendes fluidhaltiges Gemisch zusetzt und Fluid entfernt; oder (iii) einen Komponente (e) umfassenden Feststoff, z.B. einen zuvor vom Fluid zumindest teilweise befreiten, Komponente (e) umfassenden Feststoff vorlegt, ein Komponenten (a) und (b) umfassendes fluidhaltiges Gemisch zusetzt und Fluid entfernt.
Ein Komponenten (a) und (b) umfassender Feststoff ist beispielsweise erhältlich, indem man aus einem wenigstens einen Teil der Komponenten (a) und (b) umfassenden flu- idhaltigen Gemisch Fluid entfernt und den vom Fluid zumindest teilweise befreiten Feststoff gewinnt.
Als Komponente (e) umfassenden Feststoff bevorzugt man Pulver oder Granulate, die wenigstens 5 Gew.-%, vorzugsweise wenigstens 10 Gew.-% und insbesondere we- nigstens 15 Gew.-% Pflanzenschutzwirkstoff enthalten. Solche Feststoffe sind beispielsweise erhältlich, indem man aus einem wenigstens einen Teil der Komponenten (e) umfassenden fluidhaltigen Gemisch Fluid entfernt und den vom Fluid zumindest teilweise befreiten Feststoff gewinnt. Außerdem sind in diesem Zusammenhang vor allem gängige Feststoffformulierungen von Pflanzenschutzwirkstoffen zu nennen, beispielsweise SGs, WGs, DFs oder WSGs.
Als fluidhaltiges Gemisch zumindest eines Teils der Komponente (e) bevorzugt man Konzentrate, die wenigstens 5 Gew.-%, vorzugsweise wenigstens 10 Gew.-% und insbesondere wenigstens 15 Gew.-% Pflanzenschutzwirkstoff enthalten. In diesem Zusammenhang sind vor allem gängige Flüssigformulierungen von Pflanzenschutzwirk- Stoffen zu nennen. Besonders bevorzugt ist die Verwendung eines flüssigen Konzentrats, insbesondere eines einphasigen Konzentrates, eines mehrphasigen Konzentrates, eines Suspensionskonzentrates (SC) oder eines Konzentrates in Form einer Suspoemulsion (SE). Besonders bevorzugt erfolgt das Zusetzen weiterhin durch Aufsprühen, insbesondere im Wirbelschicht- oder Fließbettverfahren oder durch Trommel- coating.
Erfindungsgemäß erfolgt die Herstellung des Mittels bevorzugt durch möglichst rasches Entfernen des Fluids, also insbesondere durch möglichst rasches Trocknen, wobei die verwendbaren Verfahren grundsätzlich aus dem Stand der Technik bekannt sind. Der Entzug von Fluid wird nachfolgend als „Trocknung" bezeichnet. Dabei kommt es darauf an, dass die Entfernung des Fluids in lokalen (molekularen bis supermolekularen) Größenmaßstäben rasch genug verläuft, was der Bildung der erfindungsgemäßen Feststoffe zuträglich ist. Das Verfahren als Ganzes kann hingegen, sofern die gegebenenfalls verwendeten Einsatzstoffe dies erlauben und praktische Erwägungen dies wünschenswert erscheinen lassen, vergleichsweise langsam verlaufen, z. B. durch sequentielles Aufbringen einer größeren Anzahl sehr dünner Schichten im Wirbel- bzw. Fließbettverfahren, deren jede für sich rasch getrocknet wird.
Erfindungsgemäß sollte Fluid bis zu dem oder geringfügig über den Punkt entzogen werden, an dem erfindungsgemäße Feststoffe entstehen. Ein wesentlich weiter gehender Entzug des Fluids ist grundsätzlich möglich, aber nicht immer zweckmäßig, da erfahrungsgemäß eine zu geringe Restfeuchte die mechanische Stabilität und Lösungseigenschaften vieler Granulate beeinträchtigen kann („Tottrocknen"); ohne Beschränkung auf die Theorie wird hierbei grundsätzlich angenommen, dass es bei zu weit ge- hender Trocknung zu unerwünschten Umlagerungs- und Vernetzungsreaktionen innerhalb des Granulats kommen kann. Der für ein bestimmtes Verfahrensprodukt ideale Trocknungsgrad ist aufgrund der Komplexität des Systems von vielen Faktoren (darunter die gewünschten Eigenschaften und die vorgesehene Verwendung des Granulats, die Zusammensetzung des eingetragenen Materials, in der praktischen Durchführung günstigste Prozessparameter etc.) abhängig und weitgehend empirisch zu bestimmen.
Gemäß einer bevorzugten Ausführungsform der Erfindung erfolgt die Entfernung des Fluids durch Konvektionstrocknung. Hierbei sind Verfahren bevorzugt, bei denen das zu trocknende Material in fluidem oder pastösem Zustand versprüht wird. Hierzu gehört insbesondere die Sprühtrocknung, bei der man ein fluidhaltiges Material versprüht (Ein- trag), Fluid im Gasstrom entfernt und das teilweise oder vollständig vom Fluid befreite Material als partikelförmigen Austrag gewinnt. Zu den Sprühverfahren gehören auch Wirbel- oder Fließbettverfahren, bei denen man ein festes, vorzugsweise partikelförmiges Material vorlegt („Vorlage"), ein fluidhaltiges Material versprüht („Eintrag"), Fluid im Gasstrom entfernt, wobei sich vorgelegtes partikelförmiges Material und ver- sprühtes Material miteinander assoziieren, und man das teilweise oder vollständig vom Fluid befreite Material in Assoziation mit dem vorgelegten partikelförmigen Material als partikelförmigen „Austrag" gewinnt.
Ein weiteres geeignetes Trockungsverfahren ist die Gefriertrocknung (Verfahren C). Auch dieses Verfahren ist dem Fachmann geläufig.
Das jeweilige Verfahrensprodukt, in der Regel der Austrag, kann unmittelbar erfindungsgemäß verwendet oder seinerseits als Vorlage in weiteren Verfahrensschritten zur Herstellung der jeweiligen Anwendungsform verwendet werden.
In einer besonderen Ausführungsform der Erfindung erfolgt die Trocknung durch Sprühtrocknung, z.B. unter Verwendung eines sogenannten Sprühturms (Verfahren A).
In einer speziellen Ausführungsform von Verfahren A werden erfindungsgemäße Mittel, z.B. wasserlösliche Granulate (SGs), aus den Komponenten (a), (b) und ggf. (c) hergestellt, indem man geeignete fluidhaltige Gemische aus (a), (b) und ggf. (c), z. B. wäss- rige Konzentrate, sprühtrocknet (Verfahren A1 ). Bevorzugt erfolgt der Produktaustrag hierbei kontinuierlich.
In einer weiteren speziellen Ausführungsform von Verfahren A werden erfindungsgemäße Mittel, z.B. wasserlösliche Granulate (SGs) oder trocken fließfähige Granulate (DFs), aus den Komponenten (a), (b) und ggf. (c) sowie (e) hergestellt, indem man (a), (b) und ggf. (c) sowie (e) umfassende fluidhaltige Gemische aus z.B. wässrigen Konzentraten sprühtrocknet (Verfahren A2), wobei die Komponente (e) bevorzugt in Form von Konzentraten, z.B. SL-, SC- oder SE-Konzentraten, eingesetzt wird. Bevorzugt erfolgt der Produktaustrag hierbei kontinuierlich.
Wird eine Komponente (b2) eingesetzt, so kann diese verfahrenstechnisch als Auf- schlämmung („slurry") bzw. Dispersion den Gemischen aus den Komponenten (a), (b1 ) und ggf. (c) vor der Sprühtrockung zugesetzt werden (sog. Co-Sprühtrocknung).
Inhaltsstoffe, die der Komponente (d) zuzurechnen sind, werden in vielen Fällen zusammen mit den übrigen Komponenten, beispielsweise in Form von Handelsprodukten, eingebracht.
In einer weiteren besonderen Ausführungsform der Erfindung erfolgt die Trocknung im Wirbel- bzw. Fließbettverfahren (Verfahren B).
Im Wirbel- bzw. Fließbettverfahren erfolgt der Produktaustrag bevorzugt diskontinuierlich (Chargen- oder ,,Batch"-Prozess). Zur Anwendung des Verfahrens ist es im allge- meinen notwendig, ein geeignetes partikuläres Material (Trägerstoffkerne) vorzulegen, an das sich der eigentliche Eintrag dann während des Verfahrens anlagern kann. Der Eintrag kann durch Ein- oder Mehrstromdüsentechnik und/oder Bodendüsen erfolgen. Je nach Einrichtung und Steuerung des Verfahrens können eine einzelne, wenige oder viele Schichten auf die Kerne aufgebracht werden, wobei zu berücksichtigen ist, dass jede einzelne Schicht hinreichend schnell trocknen sollte, um der Bildung der erfindungsgemäßen Feststoffe zuträglich zu sein. Die Auswahl der Anzahl und Dicke der Schichten ist aufgrund der Komplexität des Systems von vielen Faktoren (darunter z. B. gewünschte Eigenschaften und Verwendung des Granulats, Zusammensetzung des eingetragenen Materials, in der praktischen Durchführung günstigste Prozessparame- ter etc.) abhängig und weitgehend empirisch zu bestimmen.
In einer speziellen Ausführungsform von Verfahren B werden erfindungsgemäße Mittel, z.B. wasserlösliche Granulate (SGs), hergestellt, indem man auf der Komponente (d) basierendes partikuläres Material (Trägerstoffkerne) vorlegt und Komponente (a), (b) und ggf. (c) umfassende fluidhaltige Gemische, z.B. wässrigen Konzentrate, einträgt (Verfahren B 1 ). In einer weiteren speziellen Ausführungsform von Verfahren B werden erfindungsgemäße Mittel, insbesondere WGs, SGs oder DFs, hergestellt, indem mindestens ein die Komponenten (a), (b) und ggf. (c) umfassender Feststoff, in der Regel partikelförmig, vorgelegt wird und anschließend ein oder mehrere, die Komponente (e) und ggf. weitere Teile von (c) umfassende fluidhaltige Gemische, bevorzugt in Form von Konzentraten, z.B. SL-, SC- oder SE-Konzentraten, eingetragen werden (Verfahren B2). Zum Vorlegen geeignete Partikel können zuvor z. B. durch eines der Verfahren A1 , B1 oder C hergestellt werden.
In einer besonderen Ausführungsform von Verfahren B2 werden auf der Komponente (d) basierende Trägerkerne vorgelegt, so dass das vorgelegte Material mindestens die Komponenten (a), (b), (d) und ggf. (c) umfasst.
In einer weiteren speziellen Ausführungsform von Verfahren B werden erfindungsgemäße Mittel, insbesondere WGs, SGs oder DFs hergestellt, indem auf der Komponente (d) basierende Trägerkerne vorgelegt und anschließend ein oder mehrere, mindestens die Komponenten (a), (b), (e) und/oder ggf. (c) umfassende, fluidhaltige Gemische, z.B. wässrige Konzentrate, eingetragen werden (Verfahren B3).
In einer weiteren speziellen Ausführungsform von Verfahren B werden erfindungsgemäße Mittel, insbesondere WGs, SGs oder DFs hergestellt, indem man einen Feststoff mit pflanzenschutzwirksamer Aktivität, d.h. einen mindestens die Komponente (e) und ggf. (c) umfassenden Feststoff, insbesondere ein Granulat, z. B. als Austrag des Verfahrens B2 erhältlich, vorlegt und ein oder mehrere, mindestens die Komponenten (a) und (b) und ggf. weitere Teile von (c) umfassende, fluidhaltige Gemische, z.B. wässrige Konzentrate, einträgt (Verfahren B4).
Mögliche Querverbindungen zwischen den einzelnen Verfahrensabläufen der be- vorzugten Ausführungen der Verfahren A und B werden beispielhaft in Fig. 1 dargestellt. Selbstverständlich können auch andere Verfahren, z. B. C, als Quelle für die z. B. in Verfahren B2 vorzulegenden Partikel dienen, auch sind gewünschtenfalls komplexere Abläufe als die in der Übersicht dargestellten möglich (z. B. Überzug von nach A2 hergestellten träger- und wirkstoffhaltigen Partikeln mit einer zusätzlichen, gleich- falls träger- und wirkstoffhaltigen Schicht in B2), die z. B. zur Herstellung einer Kombination mehrerer schlecht miteinander verträglicher Wirkstoffe (z. B. verschiedener stark saurer und stark basischer oder potentiell miteinander reaktiver Substanzen) und/oder für Granulate mit speziellen Eigenschaften (z. B. einem über das der vorliegenden Erfindung gemäße Maß an Lagerstabilität unter extremen Klimabedingungen) geeignet sein können.
Auf diese Weise werden feste Pflanzenschutzmittel, insbesondere grobe Pflanzenschutzmittelgranulate erhalten, die sich in stabilen wässrigen Wirkstoffaufbereitungen dispergieren (wasserdispergierbare Granulate) oder auflösen (wasserlösliche Granulate) lassen und überdies nicht stauben. Die so erhaltenen feste Pflanzenschutzmittel sind lagerstabil.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Pestizide, insbesondere fungizide, insektizide oder herbizide, Behandlung von Pflanzen und ihren Lebensräumen mit einem erfindungsgemäßen Pflanzenschutzmittel beziehungsweise die Ver- wendung der offenbarten Pflanzenschutzmittel zur Pestiziden, insbesondere fungizi- den, insektiziden oder herbiziden, Behandlung von Pflanzen und ihren Lebensräumen.
Hierfür werden die erfindungsgemäßen festen Pflanzenschutzmittel vor ihrem Gebrauch in der Regel vom Anwender, z.B. dem Landwirt oder Gärtner, in grundsätzlich bekannter Weise durch Auflösen, Dispergieren oder Emulgieren in Wasser in eine anwendungsfertige Applikationsform überführt, z.B. zu einer Spritzbrühe verarbeitet (Tankmixverfahren).
Die Applikation der angesetzten Spritzbrühen kann in allgemein bekannter Weise im Spritzverfahren, vor allem durch Versprühen etwa mit einer fahrbaren Spritzmaschine anhand feinstverteilender Düsen, erfolgen. Die hierfür weiterhin gebräuchlichen Geräte und Arbeitstechniken sind dem Fachmann bekannt.
Gemäß einer besonderen Ausführungsform erfolgt daher die Behandlung von Pflanzen und ihren Lebensräumen im Spritzverfahren. Hierbei ist es bevorzugt, wenn die Herstellung der auszubringenden Spritzbrühe durch Auflösen, Dispergieren oder Emulgieren, und nochmals besonders bevorzugt, wenn das Auflösen, Dispergieren oder Emulgieren im Tankmixverfahren erfolgt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine ein erfindungsgemäßes Pflanzenschutzmittel enthaltende Spritzbrühe zur Pestiziden Behandlung von Pflanzen. In einer besonderen Ausführungsform der Erfindung enthält die Spritzbrühe 0,0001 bis 10 Gew.-%, vorzugsweise 0,001 bis 1 Gew.-% und insbesondere 0,01 bis 0,5 Gew.-% Pflanzenschutzwirkstoff. Dies entspricht etwa 0,01 bis 5 Gew.-%, vorzugsweise 0,05 bis 3 Gew.-% und insbesondere 0,1 bis 2 Gew.-% an erfindungsgemäßem Pflanzenschutzmittel.
Die vorliegende Erfindung wird nun anhand der nachfolgenden, nicht einschränkend zu verstehenden Beispiele näher beschrieben.
Referenzbeispiele 1 bis 37: Poylalkoxylat-haltige Feststoffe
Es wurde eine Reihe von Poylalkoxylat-haltigen Feststoffe nach den Verfahren V1 , V2,
V3 oder V4 hergestellt und bewertet.
Verfahren V1 : Herstellung mittels Gefriertrocknung
Die jeweiligen Inhaltsstoffe wurden in einem 250 ml Rundkolben unter Rühren bei RT oder durch leichtes Erwärmen auf 50°C mit Wasser versetzt und gelöst. Anschließend gab man die Rundkolben in ein Bad aus Trockeneis und Aceton und fror die Mischung bei etwa -70 bis -78°C zu einer festen Masse ein. Alternativ verwendete man zum Ein- frieren flüssigen Stickstoff oder flüssige Luft. Das Einfrieren dauerte in Regel nur wenige Minuten.
Dann schloss man die Kolben an eine herkömmliche Gefriertrocknungsanlage an. Je nach Menge dauerte der Gefriertrocknungsprozess bis zu 48 Stunden, wobei typi- scherweise ein Unterdruck unter 0,5 mbar anlag.
Die Rückstände wurden aus den Kolben isoliert, d. h. im Allgemeinen mit einem Spatel herausgekratzt und in ihren Eigenschaften anschließend bewertet.
Verfahren V2: Herstellung mittels Abdampfen
Die Inhaltstoffe werden in Wasser gelöst und ein Teil dieser Menge in ca. 1 - 2 mm Schichthöhe in eine Petrischale gegeben. Die Petrischale wird bis zur Gewichtskonstanz auf einer Wärmeplatte gestellt und bei 100°C die wässrige Mischung durch freies Abdampfen von Wasser bei Atmosphärendruck getrocknet.
Verfahren V3: Herstellung mittels Rotationsverdampfen Die Inhaltstoffe werden in Wasser gelöst und am Rotationsverdampfer bei 60°C und 100 bis ca. 50 mbar eingedampft.
In nachstehender Tabelle 1 sind für einige Formulierungen die Angaben zu Inhaltsstof- fen, Mengen, Herstellungsverfahren und Bewertung zusammengestellt.
Tabelle 1 :
1) Bewertungen der Konsistenz:
S-O: gute Eigenschaften, feste Pulver, die beim Ankratzen oder Aufstoßen mit einem
Spatel fest und krümelig bleiben und nicht zu Schmiereffekten neigen.
S-1 : schmiert beim Ankratzen mit dem Spatel fast nicht;
S-2: schmiert bei Ankratzen mit dem Spatel sehr leicht;
S-3 schmiert deutlich bei mechanischer Belastung bzw. Ankratzen;
S-4 die gefriertrocknete Masse ist bereits zähviskos und sehr schmierig;
2) Hygroskopizität angegeben in Gew.%-Wasseraufnahme bei relativem Luftfeuchtewert von 50% oder 65% (die Bestimmung erfolgte jeweils bis zum Sättigungswert, d. h. Gewichtskonstanz, wobei die Gewichtszunahme von 1g-Proben in kleinen Petrischalen bis zu 4 Wochen ermittelt wurde)
3) Gesamtmenge der in Wasser gelösten Inhaltsstoffe
4) Menge Inhaltsstoff/ Menge Wasser
5) Wassermenge, in der die Inhaltsstoffe gelöst wurden
Verfahren V4: Herstellung mittels Sprühtrocknung
Die Inhaltsstoffe wurden in Wasser gelöst und unter den in der folgenden Tabelle 2 genannten Bedingungen in einem Sprühturm der Fa. Niro-Reiholb (Scheibenturm; Hö- he: 6 m; Durchmesser: 1 m; Zweistoffdüse mit Kreisgasanlage, Zyklon und Filtersystem; Verwendung von Stickstoff; Düsengasmassenstrom: 11.5 kg/h; Düsengasvor- druck: 2,7 bar; Produkteintrittstemperatur. 20°C) sprühgetrocknet.
Tabelle 2
***) Fehlversuch; kein Produktaustrag; ca. 50 kg Pulver im Filter.
Die Restfeuchten der erhaltenen Feststoffformulierungen betrugen 2,1 % (Beispiel 33), 1 ,7% (Beispiel 34) beziehungsweise 1 ,5% (Beispiel 36).
Die nachfolgende Tabelle 3 ist eine Übersicht der verwendeten Inhaltsstoffe.
Tabelle 3
Ohne Festlegung durch die Theorie wird folgender Mechanismus zur Erklärung der Beobachtung, dass höhermolekulare Sulfonate mit hohen und gewichtsanteilig glei- chen oder ähnlichen Anteilen an Polyalkoxylaten beim Sprühtrocknen oder bei der Gefriertrocknung feste Pulver liefern, vorgeschlagen:
In beiden Fällen, sowohl bei der Sprüh- als auch der Gefriertrocknung, wird den Vor- konzentraten das Lösungsmittel, im allgemeinen Wasser, rasch und/oder relativ schonend entzogen. Dabei kann angenommen werden, dass zunächst Assoziate vorliegen oder sich bilden, dadurch gekennzeichnet, dass neben Dipol-Dipol- und Van-der- Waals-Wechselwirkungen auch sogenannte „Template"-Effekte (d.h. Begünstigung und/oder Veränderung der Einlagerung von Makromolekülen in präformierte supermo- lekulare Aggregationen infolge kooperativer Effekte, ähnlich den bei der Bildung vieler biologischer Makromolekülstrukturen bekannten Prozessen) eine Rolle spielen, bei denen das Kation des Sulfonats mit der Polyalkoxylatkette unter Bildung chelatähnli- cher Strukturen wechselwirkt. Auf diese Weise entstehen poly- oder makromere Kationen und poly- oder makromere Anionen mit vergleichsweise hoher Stabilität.
Allgemein ist bekannt, dass große und/oder makromere fragile Anionen mit vielen Freiheitsgraden der Raumorientierung, d. h. geringer Starrheit des Moleküls, vielfach nur mit gleichfalls großen und/oder makromeren Kationen stabile Gitter bzw. Feststoffe mit kristallartiger Struktur und/oder Assoziate mit Schmelzpunkten über 50°C bilden kön- nen. Bei mikroskopischer Betrachtung bleiben diese Gerüstassoziate beim erfindungsgemäßen, schnellen oder schonenden, kinetisch kontrollierten Lösungsmittelentzug erhalten. Makroskopisch liefert dieser Vorgang letztlich lockere Pulver oder Granulate, typischerweise mit Luftanteilen von mindestens 20 Vol.-% und Schüttdichten zwischen 0,3 und 0,9 g / ml.
Im Gegensatz hierzu führt das langsame bzw. nicht schonende Entfernen des Lösungsmittels aus erfindungsgemäßen Mischungen, wie es z. B. in einem Rotationsverdampfer erfolgt, unter Auflösung der molekularen Assoziate bei thermodynamischer Kontrolle zu Filmen oder zu pastösen Massen höherer Dichte (>0,9 g / ml), für die Her- Stellung von Pflanzenschutzgranulaten weniger geeignet sind.
Der vorgeschlagene Mechanismus wird lediglich zur Erläuterung der Erfindung dargestellt und beschränkt diese nicht.
Beispiele 1 und 2: Pflanzenschutzmittel auf Epoxiconazol-Basis Es wurden zwei Pflanzenschutzmittel auf Basis eines Epoxiconazol-Suspensions- konzentrats (Epoxiconazol-SC) nach den Verfahren V4 oder V5 hergestellt und bewertet.
Epoxiconazol-SC:
1 ,5 kg SC wurden gemäß EP 707 445 B1 durch Vermahlung eines wässrigen Abmi- schung mit 12,5% Epoxiconazol, 5% Wettol LF 700, 2,5% Tamol NH 7519 sowie 0,1 % Silicon SRE (Antischaummittel) in einer Labor-Kugelmühle hergestellt, wobei eine Partikelverteilung von 80% < 2 μm erhalten wurden.
Beispiel 1
Die Inhaltsstoffe wurden in Wasser gelöst und in Anlehnung an Verfahren V4 sprühgetrocknet.
Beispiel 2
Verfahren V5: Herstellung mittels Wirbelschicht
Eine WSG-Laboranlage (Modell Turbojet) der Fa. Hüttlin wird bei 70°C mit ca. 80 im3 Stickstoffstrom mit 1 ,5 kg der Mischung aus Beispiel 33 fluidisiert. Danach werden über die drei Bodendüsen der Anlage binnen 45 Minuten 2,5 kg Epoxiconazol-SC aufgesprüht, wobei man ein grobkörniges Granulat mit guten Dispergiereigenschaften erhält. Der auf 2,0 kg berechnete Granulataustrag betrug tatsächlich ca. 1 ,9 kg mit einem Wirkstoffanteil von rund 19% Epoxicoanzol und 38% Polyalkoxylatanteil (Wettol LF 700).
Die erfindungsgemäßen Pflanzenschutzmittel sind staubfreie, schnell benetzende, leicht dispergierbare, nicht oder kaum hygroskopische Granulate mit guter Lagerstabili- tat.

Claims

Patentansprüche:
1. Festes Pflanzenschutzmittel, umfassend: a) flüssiges oder niedrigschmelzendes Polyalkoxylat; und b) einen Träger auf der Basis höhermolekularen Sulfonats, wobei
(i) das Gewichtsverhältnis von flüssigem oder niedrigschmelzendem Polyalkoxylat zu Pflanzenschutzwirkstoff wenigstens 1 :2 beträgt; (ii) der auf das Gesamtgewicht der höhermolekularen Sulfonate bezogene An- teil an flüssigem oder niedrigschmelzendem Polyalkoxylat wenigstens 30
Gew.-% beträgt; und
(iii) das Gewichtsverhältnis von flüssigem oder niedrigschmelzendem Polyalkoxylat zu höhermolekularem Sulfonat höchstens 3:1 beträgt.
2. Mittel nach Anspruch 1 , wobei das Mittel 1 bis 50 Gew.-%, vorzugsweise 2 bis 40 Gew.-% und insbesondere 2,5 bis 35 Gew.-% Pflanzenschutzwirkstoff enthält.
3. Mittel nach Anspruch 1 oder 2, wobei der Pflanzenschutzwirkstoff ausgewählt ist unter fungiziden Wirkstoffen aus der Reihe der Triazole, inbesondere Epoxicona- zol, Metconazol, Tebuconazol, Flusilazol, Fluquinconazol, Triticonazol, Propico- nazol, Penconazol, Cyproconazol und Prothioconazol, ferner unter fungiziden Wirkstoffen aus der Reihe der Strobilurine, insbesondere Azoxystrobin, Pyrac- lostrobin, Dimoxystrobin, Trifloxystrobin, Fluoxastrobin, Picoxystrobin und Ory- sastrobin sowie Prochloraz, Iprodione, Dimethomorph und Pyrimethanil.
4. Mittel nach einem der Ansprüche 1 bis 3, wobei das Polyalkoxylat ausgewählt ist unter gegebenenfalls endgruppenmodifizierten alkoxylierten Fettalkoholen, alko- xylierten Fettsäureestern, alkoxylierten Fettaminen, alkoxylierten Glyceriden, alkoxylierten Sorbitanestern, alkoxylierten Alkylphenolen und alkoxylierten Di- und Tristyrylphenolen mit Alkoxylatteilen.
5. Mittel nach einem der Ansprüche 1 bis 3, wobei das Polyalkoxylat ausgewählt ist unter Alkoholpolyalkoxylaten der Formel (I)
R7-O-(CmH2mO)x-(CnH2nO)y-(CpH2pO)z-R6 (I) worin
R6 für einen organischen Rest steht;
R7 für einen aliphatischen Kohlenwasserstoffrest mit 3 bis 100 Kohlenstoffatomen steht;
m,n, p unabhängig voneinander für eine ganze Zahl von 2 bis 6, vorzugsweise für
2, 3, 4 oder 5 stehen;
x,y,z unabhängig voneinander für eine Zahl von 0 bis 1000 stehen; und
x+y+z einem Wert von 2 bis 1000 entspricht.
6. Mittel nach Anspruch 5, wobei R7 für verzweigtes oder lineares, C3_3o-Alkyl, vorzugsweise C5-24-Alkyl, oder C3-3o-Alkenyl, vorzugsweise C5-C24-Alkenyl, steht.
7. Mittel nach einem der Ansprüche 1 bis 6, wobei das Mittel wenigstens 20 Gew.- %, vorzugsweise wenigstens 25 Gew.-% und insbesondere wenigstens 30 Gew.- % Alkoxylat enthält.
8. Mittel nach einem der Ansprüche 1 bis 7, wobei das Mittel höchstens 70 Gew.-%, vorzugsweise höchstens 60 Gew.-% und insbesondere höchstens 45 Gew.-%. Alkoxylat enthält.
9. Mittel nach einem der Ansprüche 1 bis 8, wobei das höhermolekulare Sulfonat ein gewichtsmittleres Molekulargewicht von wenigstens 1 kDa, vorzugsweise von wenigstens 2,5 kDa und insbesondere von wenigstens 5 kDa aufweist.
10. Mittel nach einem der Ansprüche 1 bis 9, wobei das höhermolekulare Sulfonat ein Ligninsulfonat ist.
1 1. Mittel nach einem der Ansprüche 1 bis 9, wobei das höhermolekulare Sulfonat ein Kondensationsprodukt auf Basis eines sulfonierten Aromaten, eines Aldehyds und/oder Ketons, und gegebenenfalls einer unter nichtsulfonierten Aromaten,
Harnstoff und Harnstoffderivaten ausgewählten Verbindung ist.
12. Mittel nach Anspruch 11 , wobei das Kondensationsprodukt Wiederholungseinheiten mit der Struktur der Formel (IIa)
und/oder Formel (IIb)
und/oder Formel (Mc)
umfasst, worin
R8 für Wasserstoff, eine oder mehrere Hydroxylgruppen oder einen oder mehrere C-i-β-Alkylreste steht;
q1 einem Wert von 100 bis 1010 entspricht; und
A für Methylen-, 1 ,1-Ethylen- oder eine Gruppe der Formeln
-CH2-NH-CO-NH-CH2- , -CH-NH-CO-NH-CH-
CH, CH, steht.
13. Mittel nach Anspruch 1 1 , wobei das Kondensationsprodukt Wiederholungseinheiten mit der Struktur der Formel (III): umfasst, worin
R9 für Wasserstoff, eine oder mehrere Hydroxylgruppen oder einen oder mehrere C-i-β-Alkylreste steht; q2 einem Wert von 100 bis 10 10 entspricht;
A für Methylen-, 1 ,1-Ethylen- oder eine Gruppe der Formeln
-CH2-NH-CO-NH-CH2- , -CH-NH-CO-NH-CH-
CH, CK steht.
14. Mittel nach einem der Ansprüche 1 bis 9, wobei das höhermolekulare Sulfonat ein Copolymer ist, wobei die das Copolymer konstituierenden Monomere M α) wenigstens ein monoethylenisch ungesättigtes Monomer M1 , das wenigstens eine Sulfonsäuregruppe aufweist, und ß) wenigstens ein neutrales, monoethylenisch ungesättigtes Monomer M2 umfassen.
15. Mittel nach einem der Ansprüche 1 bis 14, wobei das Sulfonat ein Ammonium-, Alkalimetall-, Erdalkalimetall- oder Übergangsmetallsulfonat ist.
16. Mittel nach einem der Ansprüche 1 bis 15, wobei das Mittel wenigstens 15 Gew.- %, vorzugsweise wenigstens 25 Gew.-% und insbesondere wenigstens 30 Gew.- % höhermolekulares Sulfonat enthält.
17. Mittel nach einem der Ansprüche 1 bis 16, wobei das Mittel höchstens 80 Gew.- %, vorzugsweise höchstens 70 Gew.-% und insbesondere höchstens 55 Gew.-% höhermolekulares Sulfonat enthält.
18. Mittel nach einem der Ansprüche 1 bis 17, wobei das Gewichtsverhältnis von flüssigem oder niedrigschmelzendem Polyalkoxylat zu höhermolekularem Sulfo- nat höchstens 2:1 beträgt.
19. Mittel nach einem der Ansprüche 1 bis 18, wobei das Gewichtsverhältnis von flüssigem oder niedrigschmelzendem Polyalkoxylat zu höhermolekularem Sulfo- nat mindestens 3 : 10 beträgt.
20. Mittel nach einem der Ansprüche 1 bis 19, wobei die Komponente (b) b1 ) höhermolekulares Sulfonat; und b2) anorganischen Feststoff umfasst.
21. Mittel nach Anspruch 20, wobei der anorganische Feststoff in Wasser schwer löslich oder unlöslich ist.
22. Mittel nach Anspruch 20 oder 21 , wobei der anorganische Feststoff ausgewählt ist unter aluminiumoxidbasierten Substanzen, insbesondere Aluminiumoxid und Bauxit, siliziumdioxidbasierten Substanzen, insbesondere Silikaten und Silikat- mineralien, vor allem Diatomeenerden (Kieselgur, Diatomit), Kieselsäuren, Pyro- phyllit, Talk, Glimmern und Tonen wie Kaolinit, Bentonit, Montmorillonit und Atta- pulgit.
23. Mittel nach Anspruch 22, wobei der Anteil anorganischen Feststoffs in dem Mittel insgesamt weniger als 15 Gew.-%, insbesondere weniger als 10 Gew.-% und besonders bevorzugt weniger als 5 Gew.-% beträgt.
24. Mittel nach einem der Ansprüche 20 bis 23, wobei das Gewichtsverhältnis von höhermolekularem Sulfonat zu anorganischem Feststoff wenigstens 2, vorzugs- weise wenigstens 5 und insbesondere wenigstens 10 beträgt.
25. Mittel nach einem der Ansprüche 1 bis 24, des Weiteren umfassend: c) weiteren Hilfsstoff.
26. Mittel nach Anspruch 25, wobei der weitere Hilfsstoff ausgewählt ist unter d ) oberflächenaktiven Hilfsstoffen; c2) Antiabsetzmitteln, Antischaummitteln, Retentionsmitteln, pH-Puffern, Anti- driftreagenzien und sonstigen Hilfsmitteln zur Verbesserung der Handhabbarkeit und/oder physikalischen Eigenschaften der Formulierung; c3) Chelatbildnern.
27. Mittel nach Anspruch 25 oder 26, wobei das Mittel höchstens 60 Gew.-%, vorzugsweise höchstens 55 Gew.-% und insbesondere höchstens 50 Gew.-% weiteren Hilfsstoff enthält.
28. Mittel nach einem der Ansprüche 1 bis 27, des Weiteren umfassend: d) wasserlösliches anorganisches Salz.
29. Mittel nach Anspruch 28, wobei das anorganische Salz Ammoniumsulfat ist.
30. Mittel nach einem der Ansprüche 1 bis 29, das im Wesentlichen wasserfrei ist.
31. Mittel nach einem der Ansprüche 1 bis 30, nämlich ein Granulat.
32. Mittel nach Anspruch 31 , wobei das Granulat ein wasserdispergierbares Granulat (WG) oder ein wasserlösliches Granulat (SG) ist.
33. Mittel nach Anspruch 31 oder 32, wobei das Granulat ein Wirbelschicht-Granulat (WSG) ist.
34. Mittel nach einem der Ansprüche 1 bis 30, nämlich ein Pulver.
35. Mittel nach Anspruch 34, wobei das Pulver ein trocken fließfähiges Pulver (DF) ist.
36. Verfahren zur Herstellung eines Mittels nach einem der Ansprüche 1 bis 35, wobei man aus einem wenigstens einen Teil der Inhaltsstoffe umfassenden fluidhal- tigen Gemisch Fluid entfernt und den vom Fluid zumindest teilweise befreiten Feststoff gewinnt.
37. Verfahren nach Anspruch 36, wobei das Fluid Wasser ist.
38. Verfahren nach Anspruch 36 oder 37, wobei man das Fluid durch Gefriertrocknung oder Sprühtrocknung entfernt.
39. Verfahren nach Anspruch 36 oder 37, wobei man das Fluid im Wirbelschichtver- fahren entfernt.
40. Verfahren nach einem der Ansprüche 36 bis 39, wobei man aus einem Komponente (a), (b) und Pflanzenschutzwirkstoff umfassenden fluidhaltigen Gemisch Fluid entfernt.
41. Verfahren nach einem der Ansprüche 36 bis 39, wobei man einen Komponente (a) und (b) umfassenden Feststoff vorlegt, ein Pflanzenschutzwirkstoff umfassendes fluidhaltiges Gemisch zusetzt und Fluid entfernt.
42. Verfahren nach Anspruch 41 , wobei das fluidhaltige Gemisch ein Konzentrat ist, das wenigstens 5 Gew.-% Pflanzenschutzwirkstoff enthält.
43. Verfahren nach einem der Ansprüche 36 bis 39, wobei man einen Pflanzenschutzwirkstoff umfassenden Feststoff vorlegt, ein Komponente (a) und (b) um- fassendes fluidhaltiges Gemisch zusetzt und Fluid entfernt.
44. Verwendung eines festen Pflanzenschutzmittels nach einem der Ansprüche 1 bis 35 zur Herstellung einer Lösung, Dispersion oder Emulsion (Spritzbrühe) zur fun- giziden, insektiziden oder herbiziden Behandlung von Pflanzen und/oder ihres Habitats.
45. Verfahren zur fungiziden, insektiziden oder herbiziden Behandlung von Pflanzen und ihres Lebensraums, wobei man ein festes Pflanzenschutzmittel nach einem der Ansprüche 1 bis 35 auflöst, dispergiert oder emulgiert und mit der resultie- renden Lösung, Dispersion bzw. Emulsion (Spritzbrühe) Pflanzen und/oder ihren
Habitat behandelt.
46. Verfahren nach Anspruch 45, wobei das Auflösen, Dispergieren oder Emulgieren im Tankmixverfahren erfolgt.
47. Verfahren nach Anspruch 45 oder 46, wobei die Behandlung im Spritzverfahren erfolgt.
48. Spritzbrühe, umfassend ein Pflanzenschutzmittel nach einem der Ansprüche 1 bis 35.
49. Spritzbrühe nach Anspruch 48, die 0,0001 bis 10 Gew.-%, vorzugsweise 0,001 bis 1 Gew.-% und insbesondere 0,01 bis 0,5 Gew.-% Pflanzenschutzwirkstoff enthält.
EP06807635A 2005-10-28 2006-10-27 Polyalkoxylat-haltige feste pflanzenschutzmittel, verfahren zu ihrer herstellung und ihre verwendung Withdrawn EP1942730A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005051823A DE102005051823A1 (de) 2005-10-28 2005-10-28 Polyalkoxylat-haltige feste Pflanzenschutzmittel, Verfahren zu ihrer Herstellung und ihre Verwendung
PCT/EP2006/067899 WO2007048851A1 (de) 2005-10-28 2006-10-27 Polyalkoxylat-haltige feste pflanzenschutzmittel, verfahren zu ihrer herstellung und ihre verwendung

Publications (1)

Publication Number Publication Date
EP1942730A1 true EP1942730A1 (de) 2008-07-16

Family

ID=37649532

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06807635A Withdrawn EP1942730A1 (de) 2005-10-28 2006-10-27 Polyalkoxylat-haltige feste pflanzenschutzmittel, verfahren zu ihrer herstellung und ihre verwendung

Country Status (10)

Country Link
US (1) US8497230B2 (de)
EP (1) EP1942730A1 (de)
JP (1) JP4832524B2 (de)
CN (1) CN101351120A (de)
AR (1) AR056606A1 (de)
BR (1) BRPI0617843A2 (de)
DE (1) DE102005051823A1 (de)
TW (1) TW200733878A (de)
UY (1) UY29889A1 (de)
WO (1) WO2007048851A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2734882A1 (en) * 2008-08-29 2010-03-04 Rhodia Operations Herbicidal composition comprising an aminophosphate or aminophosphonate salt and an n-alkyl-pyrrolidone solvent
EP2405759B1 (de) 2009-03-11 2018-12-26 Monsanto Technology LLC Herbizide formulierungen, die glyphosate und alkoxylierte glyceride umfassen
CN102724868B (zh) 2009-10-27 2015-04-29 巴斯夫欧洲公司 在喷射床装置中生产农药颗粒
AR084149A1 (es) * 2010-12-13 2013-04-24 Akzo Nobel Chemicals Int Bv Composicion de adyuvantes para insecticidas y proceso para controlar poblaciones de insectos de cultivos
WO2013061157A1 (en) 2011-10-27 2013-05-02 Basf Se Water dispersible granules
WO2013061165A2 (en) 2011-10-27 2013-05-02 Basf Se Water dispersible granules
WO2013072778A2 (en) 2011-10-27 2013-05-23 Basf Se Water dispersible granules
KR20140097573A (ko) 2011-12-15 2014-08-06 바스프 에스이 살충제 및 폴리알콕실레이트의 용융물로부터 제조되며, 임의로는 폴리카르복실레이트로 착물형성된 액체 아쥬반트를 함유하는 고체 농약제형물
US9980481B2 (en) 2012-04-02 2018-05-29 Basf Se Granules obtainable by milling pesticide and silica, addition of adjuvant, and fluidized bed granulation
KR101372943B1 (ko) * 2012-06-26 2014-03-12 주식회사경농 무기염을 포함하는 유화가능한 고상 농약 조성물의 제조방법
WO2017098325A2 (en) * 2015-12-10 2017-06-15 Adama Makhteshim Ltd. Polyelectrolyte-layer forming block copolymers and compositions and used thereof
EP3500100A4 (de) * 2016-08-17 2020-03-25 Gowan Company, L.L.C. Lagerstabile azadirachtin-formulierungen sowie verfahren zur herstellung und verwendung davon
CN115997003A (zh) * 2020-07-06 2023-04-21 联合利华知识产权控股有限公司 刺激性减轻表面活性剂
KR102560852B1 (ko) * 2021-05-13 2023-07-31 전남대학교 산학협력단 식물 내 멜라토닌 함량 증대용 조성물 및 이를 이용한 멜라토닌 함량 증대 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1291251A (en) 1969-01-10 1972-10-04 Fisons Ltd Pesticidal compositions
CN1033345A (zh) * 1988-11-19 1989-06-14 黑龙江省农业科学院牡丹江农业科学研究所 水田除草剂除莎净
FI93416C (fi) 1991-09-27 1995-04-10 Kemira Oy Menetelmä rae- tai tablettimuotoisen herbisidituotteen valmistamiseksi
TW230742B (de) 1992-06-16 1994-09-21 Du Pont
DE4322211A1 (de) 1993-07-03 1995-01-12 Basf Ag Wäßrige, mehrphasige, stabile Fertigformulierung für Pflanzenschutz-Wirkstoffe und Verfahren zu ihrer Herstellung
BR9407709A (pt) * 1993-09-23 1997-02-12 Du Pont Composiçao agroquímica granular e processo para preparaçao de uma composiçao granular
JPH09508895A (ja) * 1994-01-10 1997-09-09 チバーガイギー アクチェンゲゼルシャフト 除草剤の水和剤配合物
FR2742675B1 (fr) 1995-12-26 1998-01-16 Rhone Poulenc Chimie Agent dispersant a base de lignosulfonate et son utilisation dans des formulations phytosanitaires solides
US5730996A (en) * 1996-05-23 1998-03-24 Amcol International Corporation Intercalates and expoliates formed with organic pesticide compounds and compositions containing the same
US5980926A (en) 1996-06-07 1999-11-09 Nippon Soda Co., Ltd. Water dispersible granule
BR9715000A (pt) * 1996-09-25 2001-09-18 Aquatrol Corp Processos para preparação de veìculos para pesticida que dispersam espontaneamente em água e uso destes
WO1998012921A1 (en) * 1996-09-25 1998-04-02 Rhodia Inc. Spontaneously water dispersible carrier for pesticides
US6060522A (en) 1997-08-14 2000-05-09 Rhodia Inc. Surfactant co-clathrates
US6239115B1 (en) 1997-11-17 2001-05-29 Kaken Pharmaceutical Co., Ltd. Dry flowable polyoxin compositions
AU7593498A (en) 1998-05-07 1999-11-23 Rhodia Inc. Surfactant clathrates and agricultural chemical formulations thereof
JP4707254B2 (ja) * 2001-04-24 2011-06-22 クミアイ化学工業株式会社 粒状組成物及びその製造方法
DE10217201A1 (de) 2001-12-27 2003-07-17 Bayer Ag Staubarme Feststoffpräparationen
WO2003055959A1 (de) 2001-12-27 2003-07-10 Bayer Chemicals Ag Staubarme feststoffpräparationen
DE102005051830A1 (de) * 2005-10-28 2007-05-03 Basf Ag Polyalkoxylat-haltige Feststoffformulierungen, Verfahren zu ihrer Herstellung und ihre Verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007048851A1 *

Also Published As

Publication number Publication date
DE102005051823A1 (de) 2007-05-03
AR056606A1 (es) 2007-10-10
JP4832524B2 (ja) 2011-12-07
JP2009513610A (ja) 2009-04-02
BRPI0617843A2 (pt) 2013-01-08
TW200733878A (en) 2007-09-16
WO2007048851A1 (de) 2007-05-03
US20090170704A1 (en) 2009-07-02
US8497230B2 (en) 2013-07-30
UY29889A1 (es) 2007-05-31
CN101351120A (zh) 2009-01-21

Similar Documents

Publication Publication Date Title
US8497230B2 (en) Solid crop protection agents containing polyalkoxylate, method for their production and use thereof
EP2150515B1 (de) Alkoholalkoxylate, diese enthaltende mittel und verwendung der alkoholalkoxylate als adjuvans für den agrochemischen bereich
EP2271697B1 (de) Alkoholalkoxylate, diese enthaltende mittel und verwendung der alkoholalkoxylate als adjuvans für den agrochemischen bereich
EP2178366A2 (de) Mittel enthaltend alkoholalkoxylate und verwendung der alkoholalkoxylate als adjuvans für den agrochemischen bereich
US20070149409A1 (en) Pesticide formulations with substituted biopolymers and organic polymers for improving residual activity, droplet size, adherence and rainfastness on leaves and reduction in soil leaching
US20120021914A1 (en) Cyclodextrin-containing suspension concentrates, method for producing the same and their use
EP2376219B1 (de) Verfahren zur beeinflussung der verdampfung von wasser
AU2005275217B2 (en) Use of phosphated alcanols as dispersants, emulsifiers, hydrotropes, wetting agents and compatability agents in agricultural compositions
CN1984562A (zh) 磷酸化alcanols在农业组合物中作为分散剂、乳化剂、水溶助长剂、润湿剂和相容剂的用途
WO2011040956A1 (en) Novel pesticide formulations
US20130244880A1 (en) Novel pesticide formulations
WO2005065379A2 (en) Pesticide formulations with substituted biopolymers and organic polymers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090506

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: A01N 25/10 20060101AFI20150107BHEP

Ipc: A01N 43/653 20060101ALI20150107BHEP

Ipc: A01N 25/30 20060101ALI20150107BHEP

Ipc: A01N 25/12 20060101ALI20150107BHEP

Ipc: A01N 25/14 20060101ALI20150107BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150305

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150716