EP1941568A1 - Lithium-schwefel-batterie mit hoher spezifischer energie - Google Patents

Lithium-schwefel-batterie mit hoher spezifischer energie

Info

Publication number
EP1941568A1
EP1941568A1 EP06779643A EP06779643A EP1941568A1 EP 1941568 A1 EP1941568 A1 EP 1941568A1 EP 06779643 A EP06779643 A EP 06779643A EP 06779643 A EP06779643 A EP 06779643A EP 1941568 A1 EP1941568 A1 EP 1941568A1
Authority
EP
European Patent Office
Prior art keywords
lithium
electrolyte
sulphur
polysulphides
electric energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06779643A
Other languages
English (en)
French (fr)
Inventor
Vladimir Kolosnitsyn
Elena Karaseva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oxis Energy Ltd
Original Assignee
Oxis Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0519491A external-priority patent/GB2430542B/en
Application filed by Oxis Energy Ltd filed Critical Oxis Energy Ltd
Priority to EP14186646.7A priority Critical patent/EP2824739B1/de
Publication of EP1941568A1 publication Critical patent/EP1941568A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to electrochemical power engineering, in particular it relates to chemical sources of electric energy (cells or batteries) comprising negative electrodes made of alkali metals and positive electrodes comprising sulphur and/or sulphur-based non-organic or organic (including polymeric) compounds as an electrode depolarizer substance.
  • the lithium-sulphur electrochemical system has a high theoretical specific energy of 2600 Wh/kg (D. Linden, T.B. Reddy, Handbook of batteries, third ed., McGraw-Hill, New- York, 2001), and is therefore of great interest at present.
  • Specific energy is defined as the ratio of the energy output of a cell or battery to its weight, and is expressed in Wh/kg.
  • specific energy is equivalent to the term gravimetric energy density.
  • the practical specific energy of a typical chemical source of electric energy usually reaches 20-30% of the theoretical maximum value of the specific energy of the electrochemical system that is employed. This is because various auxiliary elements (the separator, the current collectors of the electrodes, the electrolyte and other components) of the battery contribute to its total weight in addition to the electrode depolarizers.
  • the auxiliary elements of the battery design do not themselves take part in the electrochemical reaction itself, but are provided so as to facilitate the reaction process and to promote normal functioning of the battery.
  • the value of the practical specific energy for laboratory lithium-sulphur cells generally reaches only 10-15% of its theoretical value, and is typically around 250-350 Wh/kg (J.
  • Embodiments of the present invention seek at least substantially to optimize the electrolyte quantity in lithium-sulphur cells, and thereby to improve their practical specific energy.
  • the specific energy of a chemical source of electric energy is determined by the theoretical specific energy of the selected electrochemical system, as well as by the weight of auxiliary components required to ensure the proper operation of the chemical source of electric energy (e.g. a separator, current collectors of electrodes, a binder, current conducting additives, an electrolyte and other components), and also by the degree (efficiency) of utilization of the depolarizer.
  • the weight of the auxiliary components generally makes up 70-80% of the total weight of the cell. In order to achieve improved specific energy characteristics, the weight of the auxiliary components must be reduced.
  • the weight of the electrolyte is a significant part of the total weight of the chemical source of electric energy.
  • the electrolyte performs supplementary functions in chemical sources of electric energy with solid depolarizers, for example supporting the electrochemical reaction process and providing ion transport between the electrodes. Therefore in such systems it is desirable to minimize the quantity of the electrolyte.
  • the electrolyte may consist of a salt solution in a liquid depolarizer (for example a solution of lithium tetrachloroaluminate in thionyl chloride), or a salt solution in a mixture of a liquid depolarizer and an aprotic solvent (for example a solution of lithium bromide in a mixture of sulphurous anhydride and acetonitrile), or a salt solution in a solution of a liquid depolarizer in an aprotic solvent (for example a lithium perchlorate solution in a solution of lithium polysulphide in tetrahydrofuran) (D. Linden, T.B. Reddy: "Handbook of batteries", third ed., McGraw-Hill, New York, 2001).
  • a liquid depolarizer for example a solution of lithium tetrachloroaluminate in thionyl chloride
  • a salt solution in a mixture of a liquid depolarizer and an aprotic solvent for example
  • the electrolyte in chemical sources of electric energy comprising liquid cathodes performs a wider range of functions than the electrolyte used in systems having solid cathodes.
  • the electrolyte not only supports the electrochemical reaction and ion transport between the electrodes, but serves as a solvent for a depolarizer of the positive electrode. Accordingly, when aprotic solvents are used as a component of a liquid cathode, the specific power characteristics of chemical sources of electric energy with liquid cathodes depend on the content of the aprotic solvents and hence on the content of the liquid cathode.
  • lithium-sulphur batteries are classified as batteries with liquid cathodes. This is because of the formation of well-soluble products, lithium polysulphides, that occur during charge and discharge of such batteries.
  • the liquid cathode is formed in lithium-sulphur batteries during discharge of the sulphur electrode.
  • the electrochemical oxidation of sulphur is realised by way of two stages. In the first stage, long-chain lithium polysulphides (which are well-soluble in aprotic electrolytes) are generated during the electrochemical oxidation of elemental sulphur, which is non-soluble or poorly soluble in most electrolyte systems (Equation 1).
  • the solution of lithium polysulphides in electrolyte which is formed in the initial discharge phase is known to be a liquid cathode.
  • the efficiency of sulphur utilization in lithium-sulphur batteries is determined by the quantitative ratio of sulphur to electrolyte.
  • This ratio depends on the properties of the electrolyte system. In particular, the ratio depends on the solubility of initial, intermediate and final compounds.
  • the electrolyte content in the batteries should be chosen in a way that provides complete dissolution of lithium polysulphides (formed at the first stage) with formation of liquid cathodes with moderate viscosity.
  • the present applicant has found that such a condition is provided when, during discharge of the sulphur electrode, the concentration of soluble polysulphides in the electrolyte is at least 70%, and preferably from 70 to 90%, of the saturation concentration.
  • a chemical source of electric energy comprising a positive electrode (cathode) including sulphur or sulphur-based organic compounds, sulphur-based polymeric compounds or sulphur-based inorganic compounds as a depolarizer, a negative electrode (anode) made of metallic lithium or lithium-containing alloys, and an electrolyte comprising a solution of at least one salt in at least one aprotic solvent, the chemical source of electric energy being configured to generate soluble polysulphides in the electrolyte during a first stage of a two stage discharge process, characterised in that the quantity of sulphur in the depolariser and the volume of electrolyte are selected such that, after first stage discharge of the cathode, the concentration of the soluble polysulphides in the electrolyte is at least 70% of a saturation concentration of the polysulphides in the electrolyte.
  • the quantity of sulphur in the positive electrode and the volume of electrolyte are selected such that, after first stage discharge of the cathode, the concentration of the soluble polysulphides in the electrolyte is from 70 to 90% of a saturation concentration of the polysulphides in the electrolyte.
  • the depolarizer includes sulphur, carbon black and polyethylene oxide.
  • the electrolyte may comprise a solution of one or several lithium salts selected from the group consisting of: lithium trifluoromethanesulphonate, lithium perchlorate, lithium trifluoromethanesulfonimide, lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium tetrachloroaluminate, tetraalkylammonium salt, lithium chloride, lithium bromide and lithium iodide; in one or several solvents selected from the group consisting of: dioxolane, tetrahydrofuran, dimethoxyethane, diglyme, triglyme, tetraglyme, dialkyl carbonates, sulfolane and butyrolactone.
  • lithium salts selected from the group consisting of: lithium trifluoromethanesulphonate, lithium perchlorate, lithium trifluoromethanesulfonimide, lithium hexafluorophosphate, lithium hex
  • FIGURE 1 is a plot showing the two stage discharge process of a lithium-sulphur battery of an embodiment of the present invention.
  • a positive electrode comprising 70% elemental sublimed sulphur (available from Fisher Scientific, Loughborough, UK), 10% electroconductivity carbon black (Ketjenblack® EC- 600JD, available from Akzo Nobel Polymer Chemicals BV, Netherlands) and 20% polyethylene oxide (PEO, 4,000,000 molecular weight, available from Sigma-Aldrich Company Ltd., Gillingham, UK) was produced by the following procedure.
  • a dry mixture of these components was ground in a high-speed Microtron® MB550 mill for 10-15 minutes. Then acetonitrile was added as a solvent to the dry mixture and the suspension was mixed for 15-20 hours with a DLH laboratory stirrer. The solids content of the suspension was 10-15%.
  • the suspension thus produced was applied by an automatic film applicator Elcometer® SPRL to one side of a 12 ⁇ m thick aluminium foil with an electroconductive carbon coating (Product No. 60303 available from Rexam Graphics, South Hadley, Mass.) as a current collector.
  • the coating was dried at ambient conditions for 20 hours and then in a vacuum at 5O 0 C for 5 hours.
  • the resulting dry cathode active layer had a thickness of 19 ⁇ m and contained 2.01mg/cm 2 of cathode mixture.
  • the specific surface capacity of the electrode was 2.35mA*h/cm 2 .
  • the positive electrode from the Example 1 was used in a small assembly cell made of stainless steel.
  • the cathode surface area was 5.1cm 2 .
  • a pressure of 400kg/cm 2 was applied to the electrode before it was used in the cell.
  • the cathode thickness after pressing was 16 ⁇ m.
  • a 1.0M solution of lithium trifluoromethanesulphonate (available from 3M Corporation, St. Paul, Minn.) in sulfolane was used as an electrolyte.
  • Celgard® 2500 (a trade mark of Tonen Chemical Corporation, Tokyo, Japan, and also available from Mobil Chemical Company, Films Division, Pittsford, N. Y.) was used as a separator.
  • the cells were assembled as follows. The positive electrode was inserted into the cell. Then 4 microlitres of electrolyte were deposited onto the electrode by using a constant rate syringe CR-700 (Hamilton Co). The separator was placed on top of the wetted electrode and 3 microlitres of electrolyte were deposited onto the separator. Then a lithium electrode made of 38 ⁇ m thick lithium foil was placed on top of the separator. After the electrode stack was assembled, the cell was hermetically sealed by a lid containing a Teflon® sealing.
  • the ratio of sulphur to electrolyte was 1 ml of electrolyte to 1g of sulphur. After complete dissolution of the sulphur in the form of lithium polysulphide during discharge of the cell, the maximum sulphur concentration in the electrolyte was determined as 31.25 mole/litre.
  • Charge-discharge cycling of the cell was carried out at a current of 1.5mA which was equivalent to a current density of 0.3mA/cm 2 with a discharge cut-of voltage at 1.5V and charge termination at 2.8V.
  • the total weight of the cell and the weight distribution between elements of the cell are given in the Table 1 , with properties of the cell being shown in Table 2.
  • the specific energy of the cell was calculated from the capacity at the second cycle by dividing the capacity by the weight of the electrode stack including the electrolyte.
  • a lithium-sulphur cell was assembled in the same way as described in Example 2, except in that 11 microlitres of electrolyte were deposited onto the positive electrode and 3 microlitres of electrolyte were deposited onto the separator.
  • the total electrolyte content in the cell was 14 microlitres, which amounts to 2ml of electrolyte per 1g of sulphur. Cycling of the cell was performed in the same way as in Example 2. The parameters of the cell are shown in Tables 3 and 4. Table 3 Weight distribution between components of lithium-sulphur cell from Example 3
  • a lithium-sulphur cell was assembled in the same way as described in Example 2, except in that 22 microlitres of the electrolyte were deposited onto the positive electrode and 3 microlitres of electrolyte were deposited onto the separator.
  • the total electrolyte content of the cell was 25 microlitres, which corresponds to 3.5ml of electrolyte per 1g of sulphur. Cycling of the cell was performed in the same way as in Example 2. The parameters of the cell are shown in Tables 5 and 6. Table 5 Weight distribution between components of lithium-sulphur cell from Example 4
  • a lithium-sulphur cell was assembled in the same way as described in Example 2, except in that 49 microlitres of electrolyte were deposited onto the positive electrode and 3 microlitres of electrolyte were deposited onto the separator.
  • the total electrolyte content of the cell was 52 microlitres, which is 5.2ml of electrolyte per 1g of sulphur. Cycling of the cell was performed in the same way as in Example 2. The parameters of the cell are shown in Tables 7 and 8. Table 7 Weight distribution between components of the lithium-sulphur cell from Example 5
  • a lithium-sulphur cell was assembled in the same way as described in Example 2, except in that 69 microlitres of electrolyte were deposited onto the positive electrode and 3 microlitres of electrolyte were deposited onto the separator. The total electrolyte content of the cell was 72 microlitres, which amounts to 7.2ml of electrolyte per 1g of sulphur. Cycling of the cell was performed in the same way as in Example 2. The parameters of the cell are shown in Tables 9 and 10. Table 9 Weight distribution between components of lithium-sulphur cell from Example 6
  • the ultimate or saturation solubility of sulphur in the form of lithium octasulphide in 1.0M solution of lithium trifluoromethanesulphonate in sulfolane was evaluated.
  • the evaluation of solubility was carried out in the following way: 1.0g of a mixture of lithium sulphide and sulphur (the content of sulphur in the mixture was 0.86g) was taken in a molar ratio 1 :7 and placed in a sealed glass reactor in an air thermostat, the reactor being fitted with a mechanical blender and a metering device. The thermostat temperature was set to 3O 0 C.
  • a 1.0M solution of lithium trifluoromethanesulphonate in sulfolane was added in small portions to the reactor under constant mixing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
EP06779643A 2005-09-26 2006-09-21 Lithium-schwefel-batterie mit hoher spezifischer energie Ceased EP1941568A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14186646.7A EP2824739B1 (de) 2005-09-26 2006-09-21 Lithium-Schwefelbatterie mit hoher spezifischer Energie

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0519491A GB2430542B (en) 2005-09-26 2005-09-26 Lithium-sulphur battery with high specific energy
US72106205P 2005-09-28 2005-09-28
US73432005P 2005-11-08 2005-11-08
PCT/GB2006/050300 WO2007034243A1 (en) 2005-09-26 2006-09-21 Lithium-sulphur battery with high specific energy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP14186646.7A Division EP2824739B1 (de) 2005-09-26 2006-09-21 Lithium-Schwefelbatterie mit hoher spezifischer Energie

Publications (1)

Publication Number Publication Date
EP1941568A1 true EP1941568A1 (de) 2008-07-09

Family

ID=37441316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06779643A Ceased EP1941568A1 (de) 2005-09-26 2006-09-21 Lithium-schwefel-batterie mit hoher spezifischer energie

Country Status (5)

Country Link
US (3) US20070072076A1 (de)
EP (1) EP1941568A1 (de)
JP (2) JP5442257B2 (de)
KR (1) KR101760820B1 (de)
WO (1) WO2007034243A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024579A1 (en) 2004-07-27 2006-02-02 Vladimir Kolosnitsyn Battery electrode structure and method for manufacture thereof
JP5466364B2 (ja) * 2004-12-02 2014-04-09 オクシス・エナジー・リミテッド リチウム・硫黄電池用電解質及びこれを使用するリチウム・硫黄電池
JP5651284B2 (ja) * 2005-01-18 2015-01-07 オクシス・エナジー・リミテッド リチウム−硫黄電池
KR101301115B1 (ko) 2005-03-22 2013-09-03 옥시스 에너지 리미티드 황화리튬 전지 및 그의 제조 방법
GB2438890B (en) * 2006-06-05 2011-01-12 Oxis Energy Ltd Lithium secondary battery for operation over a wide range of temperatures
GB0615870D0 (en) * 2006-08-10 2006-09-20 Oxis Energy Ltd An electrolyte for batteries with a metal lithium electrode
KR101487862B1 (ko) * 2006-10-25 2015-01-30 옥시스 에너지 리미티드 높은 비에너지를 가진 리튬-황 전지 및 그의 작동 방법
US8465860B2 (en) * 2008-01-23 2013-06-18 The Gillette Company Lithium cell
US8273483B2 (en) * 2008-02-14 2012-09-25 The Gillette Company Lithium cell
DE102011003197A1 (de) * 2011-01-26 2012-07-26 Robert Bosch Gmbh Redoxadditiv für Sekundärzellen mit Flüssig-Fest-Phasenwechsel
FR2977722B1 (fr) * 2011-07-05 2014-03-14 Commissariat Energie Atomique Separateur d'electrodes pour accumulateur au lithium/soufre
US8974960B2 (en) * 2011-12-22 2015-03-10 Board Of Regents, The University Of Texas System Binder-free sulfur—carbon nanotube composite cathodes for rechargeable lithium—sulfur batteries and methods of making the same
EP2629352A1 (de) 2012-02-17 2013-08-21 Oxis Energy Limited Verstärkte Metallfolienelektrode
RU2702115C2 (ru) * 2012-04-13 2019-10-04 Аркема Инк. Батарея на основе сераорганических соединений
EP2784850A1 (de) 2013-03-25 2014-10-01 Oxis Energy Limited Verfahren zum Zyklisieren einer Lithium-Schwefel-Zelle
EP2784852B1 (de) 2013-03-25 2018-05-16 Oxis Energy Limited Verfahren zum Laden einer Lithium-Schwefel-Zelle
PL2784851T3 (pl) 2013-03-25 2015-12-31 Oxis Energy Ltd Sposób ładowania ogniwa litowo-siarkowego
CA2820635A1 (en) 2013-06-21 2014-12-21 Hydro-Quebec All-solid state polymer li-s electrochemical cells and their manufacturing processes
GB2517228B (en) 2013-08-15 2016-03-02 Oxis Energy Ltd Laminate cell
JP2017507451A (ja) 2013-12-17 2017-03-16 オキシス エナジー リミテッド リチウム−硫黄電池の電解質
JP2017514435A (ja) 2014-04-15 2017-06-01 ハイドロ−ケベック リチウム硫黄(Li−S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス
CN106537660B (zh) 2014-05-30 2020-08-14 奥克斯能源有限公司 锂硫电池
KR101725650B1 (ko) 2014-10-29 2017-04-12 주식회사 엘지화학 리튬 황 전지
US10050265B2 (en) 2014-12-18 2018-08-14 Samsung Electronics Co., Ltd. Positive electrode having sulfur contained in pores between nanocarbon structures, alkali metal-sulfur battery including the same, and method of preparing the positive electrode
US10186730B2 (en) 2015-07-15 2019-01-22 Samsung Electronics Co., Ltd. Electrolyte solution for secondary battery and secondary battery
CN111564602B (zh) * 2020-05-23 2023-03-07 江西理工大学 一种电位控制直接制备锂硫电池液态正极的方法
IT202100000704A1 (it) 2021-01-15 2022-07-15 Milano Politecnico Fluorurazione superficiale con fluoro elementare di litio metallico usato come anodo in batterie a litio metallico
CN114865076A (zh) * 2022-05-30 2022-08-05 远景动力技术(江苏)有限公司 电解质材料及其应用

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030720A (en) * 1960-06-08 1962-04-24 Highland Supply Corp Portable collapsible artificial christmas trees
US4048389A (en) * 1976-02-18 1977-09-13 Union Carbide Corporation Cathode or cathode collector arcuate bodies for use in various cell systems
US4218523A (en) * 1979-02-28 1980-08-19 Union Carbide Corporation Nonaqueous electrochemical cell
IL61085A (en) * 1980-09-19 1983-07-31 Univ Ramot Nonaqueous sulfur cell
JPS59194361A (ja) 1983-03-18 1984-11-05 Toshiba Battery Co Ltd 空気電池
JPH0869812A (ja) 1994-08-30 1996-03-12 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池およびその製造法
JPH08138650A (ja) 1994-11-01 1996-05-31 Dainippon Ink & Chem Inc 非水電解液二次電池用炭素質電極板および二次電池
US5686201A (en) 1994-11-23 1997-11-11 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US6030720A (en) * 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
US5814420A (en) * 1994-11-23 1998-09-29 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US6358643B1 (en) * 1994-11-23 2002-03-19 Polyplus Battery Company Liquid electrolyte lithium-sulfur batteries
US5523179A (en) * 1994-11-23 1996-06-04 Polyplus Battery Company Rechargeable positive electrode
AU5882896A (en) * 1995-06-07 1996-12-30 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysul fur materials and electrolytic cells containing same
DE69709740T2 (de) * 1996-06-14 2002-08-22 Moltech Corp Zusammensetzung verwendbar in elektrolyten für sekundär batteriezellen
JPH10284076A (ja) 1997-04-01 1998-10-23 Matsushita Electric Ind Co Ltd アルカリ蓄電池及びその電極の製造方法
US6090504A (en) * 1997-09-24 2000-07-18 Korea Kumho Petrochemical Co., Ltd. High capacity composite electrode and secondary cell therefrom
US6245465B1 (en) * 1997-10-15 2001-06-12 Moltech Corporation Non-aqueous electrolyte solvents for secondary cells
US6201100B1 (en) * 1997-12-19 2001-03-13 Moltech Corporation Electroactive, energy-storing, highly crosslinked, polysulfide-containing organic polymers and methods for making same
US6350545B2 (en) * 1998-08-25 2002-02-26 3M Innovative Properties Company Sulfonylimide compounds
US6413284B1 (en) * 1999-11-01 2002-07-02 Polyplus Battery Company Encapsulated lithium alloy electrodes having barrier layers
WO2001036206A1 (en) * 1999-11-12 2001-05-25 Fargo Electronics, Inc. Thermal printhead compensation
US6344293B1 (en) * 2000-04-18 2002-02-05 Moltech Corporation Lithium electrochemical cells with enhanced cycle life
US6958198B2 (en) * 2000-07-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
KR100326466B1 (ko) * 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
JP2002075446A (ja) * 2000-08-02 2002-03-15 Samsung Sdi Co Ltd リチウム−硫黄電池
KR100378007B1 (ko) * 2000-11-22 2003-03-29 삼성에스디아이 주식회사 리튬-황 전지용 양극 및 그를 포함하는 리튬-황 전지
KR100385357B1 (ko) * 2001-06-01 2003-05-27 삼성에스디아이 주식회사 리튬-황 전지
US7241535B2 (en) * 2001-10-15 2007-07-10 Samsung Sdi Co., Ltd. Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
US6893762B2 (en) * 2002-01-16 2005-05-17 Alberta Research Council, Inc. Metal-supported tubular micro-fuel cell
CA2424561A1 (en) * 2002-04-02 2003-10-02 Nippon Shokubai Co., Ltd. Material for electrolytic solutions and use thereof
JP2004179160A (ja) * 2002-11-26 2004-06-24 Samsung Sdi Co Ltd リチウム−硫黄電池用正極
EP1636864A4 (de) * 2003-04-22 2008-11-19 Benedetto Anthony Iacovelli Brennstoffzelle, komponenten und systeme
JP4055642B2 (ja) * 2003-05-01 2008-03-05 日産自動車株式会社 高速充放電用電極および電池
JP2005108724A (ja) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP2005158313A (ja) * 2003-11-21 2005-06-16 Sanyo Electric Co Ltd 非水電解質二次電池
JP2005166536A (ja) * 2003-12-04 2005-06-23 Sanyo Electric Co Ltd 非水電解質二次電池
US8334079B2 (en) * 2004-04-30 2012-12-18 NanoCell Systems, Inc. Metastable ceramic fuel cell and method of making the same
US7754378B2 (en) * 2004-06-25 2010-07-13 Samsung Sdi Co., Ltd. Secondary battery with a sealing plate used to seal an electrolyte injection hole in a cap plate
JP5466364B2 (ja) * 2004-12-02 2014-04-09 オクシス・エナジー・リミテッド リチウム・硫黄電池用電解質及びこれを使用するリチウム・硫黄電池
JP5651284B2 (ja) * 2005-01-18 2015-01-07 オクシス・エナジー・リミテッド リチウム−硫黄電池
KR101301115B1 (ko) * 2005-03-22 2013-09-03 옥시스 에너지 리미티드 황화리튬 전지 및 그의 제조 방법
GB2438890B (en) * 2006-06-05 2011-01-12 Oxis Energy Ltd Lithium secondary battery for operation over a wide range of temperatures
GB0615870D0 (en) * 2006-08-10 2006-09-20 Oxis Energy Ltd An electrolyte for batteries with a metal lithium electrode
KR101487862B1 (ko) * 2006-10-25 2015-01-30 옥시스 에너지 리미티드 높은 비에너지를 가진 리튬-황 전지 및 그의 작동 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007034243A1 *

Also Published As

Publication number Publication date
JP2009510684A (ja) 2009-03-12
JP5947774B2 (ja) 2016-07-06
US8647769B2 (en) 2014-02-11
KR20080053493A (ko) 2008-06-13
JP5442257B2 (ja) 2014-03-12
KR101760820B1 (ko) 2017-07-24
US20100231168A1 (en) 2010-09-16
US20140120428A1 (en) 2014-05-01
JP2014067717A (ja) 2014-04-17
US20070072076A1 (en) 2007-03-29
WO2007034243A1 (en) 2007-03-29
US9123975B2 (en) 2015-09-01

Similar Documents

Publication Publication Date Title
US9123975B2 (en) Lithium-sulphur battery with high specific energy
KR101301115B1 (ko) 황화리튬 전지 및 그의 제조 방법
EP2076936B1 (de) Eine lithium-schwefel batterie mit hoher spezifischer energie und eine methode diese zu handhaben
EP1839353B1 (de) Verbesserungen bezüglich elektrolytzusammensetzungen für batterien mit schwefel oder schwefelverbindungen
EP2824739B1 (de) Lithium-Schwefelbatterie mit hoher spezifischer Energie
WO2006059085A1 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
WO2000036683A2 (en) Non-aqueous electrolytes for electrochemical cells
GB2420907A (en) Electrolyte for lithium-sulphur batteries and lithium sulphur batteries using the same
RU2431908C2 (ru) Химический источник электрической энергии
GB2424511A (en) Lithium sulphide battery and method of producing the same
Barghamadi et al. Electrolyte for lithium–sulfur batteries
GB2443852A (en) A Lithium-Sulphur battery with a high specific energy and a method of operating same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080822

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBX Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2E

APBZ Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4E

DAX Request for extension of the european patent (deleted)
APAQ Information on invitation to file observation in appeal modified

Free format text: ORIGINAL CODE: EPIDOSCOBA2E

APBH Information on receipt of observation in appeal deleted

Free format text: ORIGINAL CODE: EPIDOSDOBA4E

APBZ Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20141217