EP1940768A1 - Cyclopropylessigsäure-derivate und ihre verwendung - Google Patents

Cyclopropylessigsäure-derivate und ihre verwendung

Info

Publication number
EP1940768A1
EP1940768A1 EP06806108A EP06806108A EP1940768A1 EP 1940768 A1 EP1940768 A1 EP 1940768A1 EP 06806108 A EP06806108 A EP 06806108A EP 06806108 A EP06806108 A EP 06806108A EP 1940768 A1 EP1940768 A1 EP 1940768A1
Authority
EP
European Patent Office
Prior art keywords
formula
compounds
compound
mmol
salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06806108A
Other languages
English (en)
French (fr)
Inventor
Eva-Maria Becker
Michael Hahn
Andreas Knorr
Christian Pilger
Johannes-Peter Stasch
Karl-Heinz Schlemmer
Frank Wunder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer Healthcare AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare AG filed Critical Bayer Healthcare AG
Publication of EP1940768A1 publication Critical patent/EP1940768A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/21Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups
    • C07C65/28Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups having unsaturation outside the aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/194Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/21Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups
    • C07C65/24Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups polycyclic
    • C07C65/26Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups polycyclic containing rings other than six-membered aromatic rings

Definitions

  • the present application relates to novel cyclopropylacetic acid derivatives, processes for their preparation, their use for the treatment and / or prophylaxis of diseases and their use for the preparation of medicaments for the treatment and / or prophylaxis of diseases, in particular for the treatment and / or prevention of cardiovascular diseases.
  • cyclic guanosine monophosphate cGMP
  • NO nitric oxide
  • the guanylate cyclases catalyze the biosynthesis of cGMP from guanosine triphosphate (GTP).
  • GTP guanosine triphosphate
  • the previously known members of this family can be divided into two groups according to both structural features and the nature of the ligands: the particulate guanylate cyclases stimulable by natriuretic peptides and the soluble guanylate cyclases stimulable by NO.
  • the soluble guanylate cyclases consist of two subunits and most likely contain one heme per heterodimer that is part of the regulatory center. This is central to the activation mechanism. NO can bind to the iron atom of the heme and thus significantly increase the activity of the enzyme. On the other hand, heme-free preparations can not be stimulated by NO. Carbon monoxide (CO) is also capable of attacking the iron central atom of the heme, with stimulation by CO being significantly less than by NO.
  • CO Carbon monoxide
  • guanylate cyclase plays a crucial role in various physiological processes, in particular in the relaxation and proliferation of smooth muscle cells, platelet aggregation and adhesion and neuronal signal transmission and diseases based on a disturbance of the above operations.
  • the NO / cGMP system may be suppressed, which may, for example, lead to hypertension, platelet activation, increased cell proliferation, endothelial dysfunction, atherosclerosis, angina pectoris, heart failure, thrombosis, stroke and myocardial infarction.
  • a NO-independent treatment option for such diseases which is aimed at influencing the cGMP pathway in organisms, is a promising approach on account of the expected high efficiency and low side effects.
  • Diphenyliodonium hexafluorophosphate [Pettibone et al., Eur. J. Pharmacol. 116 (1985), 307], iso-leviririgenin [Yu et al., Br. J. Pharmacol. 114 (1995), 1587], as well as various substituted pyrazole derivatives (WO 98/16223, WO 98/16507 and WO 98/23619).
  • the soluble guanylate cyclase stimulators described above stimulate the enzyme either directly via the heme group (carbon monoxide, nitric oxide or diphenyliodonium hexafluorophosphate) through interaction with the iron center of the heme group and consequent conformational change resulting in increasing enzyme activity [Gerzer et al., FEBS Leu. 132 (1981), 71] or via a heme-dependent mechanism which is independent of NO but leads to a potentiation of the stimulatory effect of NO or CO [e.g. YC-I, Hoenicka et al., J. Mol. Med. TL (1999) 14; or the pyrazole derivatives described in WO 98/16223, WO 98/16507 and WO 98/23619].
  • the enzyme either directly via the heme group (carbon monoxide, nitric oxide or diphenyliodonium hexafluorophosphate) through interaction with the iron center of
  • the enzyme When the heme group is removed from soluble guanylate cyclase, the enzyme still shows detectable catalytic basal activity, i. cGMP is still being formed. The remaining catalytic basal activity of the heme-free enzyme is not stimulable by any of the above known stimulators.
  • protoporphyrin IX Stimulation of heme-free soluble guanylate cyclase by protoporphyrin IX has been described [Ignarro et al., Adv. Pharmacol. 26 (1994), 35].
  • protoporphyrin EX can be considered as a mimic for the NO-heme adduct, which is why the addition of protoporphyrin EX to soluble guanylate cyclase should lead to the formation of one of the NO-stimulated heme-containing soluble guanylate cyclase corresponding structure of the enzyme.
  • the compounds of the present invention are capable of activating both the heme-containing and heme-free forms of soluble guanylate cyclase.
  • the stimulation of the enzyme proceeds in these new activators thus via a heme-independent path, which is also evidenced by the fact that the new activators on heme-containing enzyme on the one hand show no synergistic effect with NO and on the other hand, the effect of these novel activators not by the Inhibit heme-dependent inhibitor of soluble guanylate cyclase, lH-l, 2,4-oxadiazol- (4,3-a) -quinoxalin-1-one (ODQ).
  • EP 0 341 551 A1 discloses alkenoic acid derivatives as leukotriene antagonists for the treatment of diseases of the circulatory and respiratory system.
  • WO 01/19355, WO 01/19776, WO 01/19778, WO 01/19780, WO 02/070462 and WO 02/070510 disclose dicarboxylic acid or aminodicarboxylic acid derivatives as stimulators of soluble guanylate cyclase for the treatment of cardiovascular disorders. Disorders described. However, it has been found that these compounds have disadvantages in terms of their pharmacokinetic properties, in particular a low bioavailability and / or a short duration of action after oral administration.
  • the object of the present invention was therefore to provide novel compounds which act as activators of the soluble guanylate cyclase, but do not have the abovementioned disadvantages of the compounds of the prior art.
  • A is a bond, (C r C 7 ) -alkanediyl, (C 2 -C 7 ) -alkendiyl or (C 2 -C 7 ) -alkanediyl,
  • D is hydrogen, trifluoromethyl or a group of the formula
  • n is the number 1 or 2
  • R 1 , R 2 , R 3 , R 4 and R 5 independently represent a substituent selected from the group halogen, (Ci-Ce) -AIlCyI, trifluoromethyl, (Ci-C 6 ) alkoxy, trifluoromethoxy, cyano and nitro stand .
  • o, p, q, r and s are each, independently of one another, the number 0, 1, 2, 3 or 4,
  • R 1 , R 2 , R 3 , R 4 or R 5 occur several times, their meanings may be the same or different,
  • Compounds according to the invention are the compounds of the formula (I) and their salts, solvates and solvates of the salts comprising the compounds of the formulas below and their salts, solvates and solvates of the salts and of the formula (I) encompassed by formula (I), hereinafter referred to as exemplary compounds and their salts, solvates and solvates of the salts, as far as the compounds of formula (I), the compounds mentioned below are not already salts, solvates and solvates of the salts.
  • the compounds according to the invention can exist in stereoisomeric forms (enantiomers, diastereomers).
  • the invention therefore includes the enantiomers or diastereomers and their respective mixtures. From such mixtures of enantiomers and / or diastereomers, the stereoisomerically uniform components can be isolated in a known manner.
  • the present invention encompasses all tautomeric forms.
  • Salts used in the context of the present invention are physiologically acceptable salts of the compounds according to the invention. Also included are salts which are themselves unsuitable for pharmaceutical applications but can be used, for example, for the isolation or purification of the compounds of the invention.
  • Physiologically acceptable salts of the compounds of the invention include acid addition salts of mineral acids, carboxylic acids and sulfonic acids, e.g. Salts of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, naphthalene disulfonic acid, acetic acid, trifluoroacetic acid, propionic acid, lactic acid, tartaric acid, malic acid, citric acid, fumaric acid, maleic acid and benzoic acid
  • Physiologically acceptable salts of the compounds according to the invention also include salts of customary bases, such as, by way of example and by way of preference, alkali metal salts (for example sodium and potassium salts), alkaline earth salts (for example calcium and magnesium salts) and ammonium salts derived from ammonia or organic amines having 1 to 16 carbon atoms, such as, by way of example and by way of illustration, ethylamine, diethylamine, triethylamine, ethyldiisopropylamine, monoethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, dimethylaminoethanol, procaine, dibenzylamine, N-methylmorpholine, arginine, lysine, ethylenediamine and N-methylpiperidine.
  • customary bases such as, by way of example and by way of preference, alkali metal salts (for example sodium and potassium salts), alkaline earth salts (for example calcium and magnesium salts
  • solvates are those forms of the compounds according to the invention which form a complex in the solid or liquid state by coordination with solvent molecules. Hydrates are a special form of solvates in which the coordination with water takes place. As solvates, hydrates are preferred in the context of the present invention.
  • the present invention also includes prodrugs of the compounds of the invention.
  • prodrugs includes compounds which may themselves be biologically active or inactive, but during their residence time in the body are converted to compounds of the invention (for example metabolically or hydrolytically).
  • (C 1 -Q) -AlkVl and (C 1 -C 4 -alkyl in the context of the invention represent a straight-chain or branched alkyl radical having 1 to 6 or 1 to 4 carbon atoms, preferably a straight-chain or branched alkyl radical having 1 to 4 carbon atoms
  • Methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, tert-butyl, 1-ethyl-propyl, n-pentyl and n-hexyl may be mentioned as examples.
  • (C j -CxVAlkandiyl is in the context of the invention a straight-chain or branched di- valent alkyl radical having 1 to 7 carbon atoms is preferably a straight-chain alkanediyl radical having 1 to 6 carbon atoms
  • Preferred examples which may be mentioned are:.., Methylene, 1,2-ethylene, Ethane-1, 1-diyl, 1,3-propylene, propane-1,1-diyl, propane-1,2-diyl, propane-2,2-diyl, 1,4-butylene, butane-1,2- diyl, butane-l, 3-diyl, butane-2,3-diyl, pentane-l, 5-diyl, pentane-2,4-diyl, 3-methyl-pentane-2,4-diyl and hexane-1, 6-diyl.
  • (C 2 -C 6) -Alkendiyl in the context of the invention is a straight-chain or branched divalent alkenyl radical having 2 to 7 carbon atoms and up to 3 double bonds. Preference is given to a straight-chain alkenediyl radical having 2 to 6 carbon atoms and up to 2 double bonds.
  • (C 2 -C 6) -Alkanyiyl in the context of the invention is a straight-chain or branched di-valent alkynyl radical having 2 to 7 carbon atoms and having up to 3 triple bonds. Preference is given to a straight-chain alkynediyl radical having 2 to 6 carbon atoms and up to 2 triple bonds.
  • (C 1 -CA) -alkoxy and (C 1 -Q) -alkoxy are a straight-chain or branched alkoxy radical having 1 to 6 or 1 to 4 carbon atoms.
  • Preferred is a straightforward chain or branched alkoxy radical having 1 to 4 carbon atoms. Examples which may be mentioned are: methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, tert-butoxy, n-pentoxy and n-hexoxy.
  • (Ci-Gi) -Alkoxycarbonyl stands in the context of the invention for a straight-chain or branched alkoxy radical having 1 to 4 carbon atoms, which is linked via a carbonyl group. Examples which may be mentioned by way of example include methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl and tert-butoxycarbonyl.
  • Halogen in the context of the invention includes fluorine, chlorine, bromine and iodine. Preference is given to chlorine or fluorine.
  • radicals are substituted in the compounds according to the invention, the radicals can, unless otherwise specified, be monosubstituted or polysubstituted. In the context of the present invention, the meaning is independent of each other for all radicals which occur repeatedly. Substitution with one, two or three identical or different substituents is preferred. Very particular preference is given to the substitution with a substituent.
  • A is a bond or (C r C 7 ) -alkanediyl
  • D is hydrogen, trifluoromethyl or a group of the formula
  • n is the number 1 or 2
  • R 1 , R 3 , R 4 and R 5 independently of one another represent a substituent selected from the group fluorine, chlorine, bromine, (CrG) -alkyl, trifluoromethyl, (C 1 -C 4 ) -alkoxy and trifluoromethoxy,
  • o, q, r and s are each, independently of one another, the number 0, 1 or 2, wherein, in the event that R 1 , R 3 , R 4 or R 5 occur several times, their meanings may be the same or different,
  • R 2 is fluorine
  • A is (C 1 -C 7 ) -alkanediyl
  • R 3A denotes hydrogen, fluorine, chlorine, methyl, tert-butyl, trifluoromethyl, methoxy or trifluoromethoxy,
  • the invention further provides a process for the preparation of the compounds of the formula (I) according to the invention, which comprises reacting compounds of the formula (II)
  • T 1 and T 2 are identical or different and are cyano or (C 1 -C 4 ) -alkoxycarbonyl
  • A, D, R and o each have the meanings given above and for phenyl or o-, m- or p-tolyl
  • X is halide or tosylate
  • a 1 has the abovementioned meaning of A, but does not represent a bond
  • Inert solvents for process steps (E) + (III-A) ⁇ (IV-A) and (II) + (HI-B) ⁇ (IV-B) are, for example, ethers, such as diethyl ether, tetrahydrofuran, glycol dimethyl ether or diethylene glycol dimethyl ether, or hydrocarbons such as benzene, toluene, xylene, pentane, hexane, heptane, cyclohexane or petroleum fractions, or mixtures of these solvents. Preference is given to using tetrahydrofuran in a mixture with hexane.
  • Suitable bases for these process steps are the bases customary for a Wittig reaction. These include, in particular, strong bases such as n-, sec- or tert-butyl lithium, lithium diisopropylamide (LDA) or lithium, sodium or potassium bis (trimethylsilyl) amide. Preference is given to n-butyl-lithium.
  • the reactions (II) + (ffl-A) ⁇ (IV-A) and (II) + (ITl-B) ⁇ (IV-B) are generally in a temperature range from -78 ° C to +20 0 C, preferably carried out at -20 0 C to +10 0 C.
  • Inert solvents for process step (FV-B) + (V) -> (FV-C) are, for example, ethers, such as diethyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether or diethylene glycol dimethyl ether, or other solvents, such as acetonitrile, dimethylformamide, dimethyl sulfoxide, N, N-dimethylpropyleneurea (DMPU) or N-methylpyridinium ( ⁇ MP). It is likewise possible to use mixtures of the solvents mentioned. Preferably, acetonitrile is used.
  • Suitable bases for this process step are in particular potassium carbonate, sodium or potassium hydride, lithium diisopropylamide or n-butyllithium.
  • potassium carbonate is used.
  • reaction (FV-B) + (V) -> (FV-C) is generally carried out in a temperature range of +20 0 C to +120 0 C, preferably at +50 0 C to +100 0 C.
  • the hydrolysis of the ester or nitrile groups T 1 and T 2 in the process steps (FV-A) - »(I) and (FV-C) -> (I) is carried out by conventional methods by reacting the esters or Treated nitriles in inert solvents with acids or bases, the latter in the latter Salts are converted by treatment with acid in the free carboxylic acids.
  • the tert-butyl ester ester cleavage is preferably carried out with acids.
  • the hydrolysis may optionally be carried out simultaneously in a one-pot reaction or in two separate reaction steps.
  • Suitable inert solvents for these reactions are water or the organic solvents customary for ester cleavage. These include, preferably, alcohols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol or tert-butanol, or ethers, such as diethyl ether, tetrahydrofuran, dioxane or glycol dimethyl ether, or other solvents, such as acetone, dichloromethane, dimethylformamide or dimethyl sulfoxide. It is likewise possible to use mixtures of the solvents mentioned.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol or tert-butanol
  • ethers such as diethyl ether, tetrahydrofuran, dioxane or glycol dimethyl ether
  • other solvents such as acetone, dichloromethane,
  • Suitable bases are the customary inorganic bases. These include preferably alkali or alkaline earth hydroxides such as sodium, lithium, potassium or barium hydroxide, or alkali or alkaline earth metal carbonates such as sodium, potassium or calcium carbonate. Particularly preferred are sodium, potassium or lithium hydroxide.
  • Suitable acids for the ester cleavage are generally sulfuric acid, hydrochloric acid / hydrochloric acid, hydrobromic / hydrobromic acid, phosphoric acid, acetic acid, trifluoroacetic acid, toluenesulfonic acid, methanesulfonic acid or trifluoromethanesulfonic acid or mixtures thereof, optionally with the addition of water.
  • Hydrogen chloride or trifluoroacetic acid are preferred in the case of tert-butyl esters and hydrochloric acid in the case of methyl esters.
  • the ester cleavage is generally carried out in a temperature range from 0 0 C to + 100 0 C, preferably at +20 0 C to + 60 0 C.
  • the nitrile hydrolysis is generally in a temperature range from +50 0 C to +150 0 C, preferably carried out at +90 0 C to +110 0 C.
  • the reactions mentioned can be carried out at normal, elevated or reduced pressure (for example from 0.5 to 5 bar). In general, one works at normal pressure.
  • aldehydes of the formula (II) can be prepared analogously to processes known from the literature, for example via a sequential dialkylation of malonic acid diallyl ester with compounds of the formulas (VI) and (VII)
  • Y 1 and Y 2 are the same or different and represent a leaving group such as, for example, halogen, mesylate or tosylate,
  • R 2 , n, p, T 1 and T 2 each have the meanings given above, and subsequent reduction of the carboxylic acid moiety (see also Reaction Schemes 2 and 3 below).
  • the compounds of the formulas (HI-A) and (IE-B) can be prepared by methods customary in the literature by reacting compounds of the formula (X-A) or (X-B)
  • Z is a leaving group, such as halogen or tosylate, or hydroxy
  • the compounds of the formula (VI) can be obtained in analogy to processes known from the literature, for example from cyclopropanone acetals via a Wittig reaction, subsequent Michael addition, hydroboration and halogenation (see reaction scheme 1 below).
  • a separation of the compounds according to the invention into the corresponding enantiomers and / or diastereomers may, if appropriate, also be carried out at the stage of the compounds (FV-A), (FV-B), (FV-C) or (FX), depending on the expediency, which are then further reacted in separated form in accordance with the previously described method sequence.
  • Such a separation of the stereoisomers can be carried out by customary methods known to those skilled in the art; Preferably, chromatographic methods or separation via diastereomeric salts are used.
  • Ph 3 P CHCOOEt, benzoic acid, toluene, 90 0 C, 18 h; b) vinylmagnesium chloride, copper (I) chloride, lithium chloride, THF, -78 ° C ⁇ -5 ° C; c) 1. Borane-THF complex, THF, 0 ° C ⁇ RT, 1 h; 2. bromine, sodium methylate, methanol, -5 0 C].
  • DMF dimethylformamide
  • Et ethyl
  • PCC pyridinium chlorochromate
  • Ph phenyl
  • RT room temperature
  • THF tetrahydrofuran
  • the compounds according to the invention have valuable pharmacological properties and can be used for the prevention and treatment of diseases in humans and animals.
  • the compounds of the present invention have advantageous pharmacokinetic properties such as increased bioavailability and / or prolonged duration of action after oral administration.
  • the compounds according to the invention lead to vascular relaxation, to an inhibition of platelet aggregation and to a reduction in blood pressure and to an increase in coronary blood flow. These effects are mediated via direct activation of soluble guanylate cyclase and intracellular cGMP increase.
  • the compounds according to the invention can therefore be used in medicaments for the treatment of cardiovascular diseases, for example for the treatment of hypertension and cardiac insufficiency, stable and unstable angina pectoris, pulmonary hypertension, peripheral and cardiovascular diseases, arrhythmias, for the treatment of thromboembolic disorders and ischaemias such as myocardial infarction, stroke, Transient and ischemic attacks, peripheral circulatory disorders, for the prevention of restenosis such as after thrombolysis, percutaneous transluminal angioplasties (PTA), percutaneous transluminal coronary angioplasty (PTCA) and bypass and for the treatment of arteriosclerosis, asthmatic diseases, diseases of the genitourinary system such as prostatic hypertrophy , erectile dysfunction, female sexual dysfunction and incontinence, are used by osteoporosis, glaucoma and gastroparesis.
  • cardiovascular diseases for example for the treatment of hypertension and cardiac insufficiency, stable and unstable angina pectoris, pulmonary hypertension, peripheral and cardiovascular diseases
  • the compounds of the invention can be used for the treatment of primary and secondary Raynaud's phenomenon, microcirculatory disorders, claudication, peripheral and autonomic neuropathies, diabetic microangiopathies, diabetic retinopathy, diabetic limb ulcers, CREST syndrome, erythematosis, onychomycosis and rheumatic diseases.
  • the compounds according to the invention are suitable for the treatment of respiratory distress syndromes and chronic obstructive pulmonary diseases (COPD), of acute and chronic renal insufficiency, and for the promotion of wound healing.
  • COPD chronic obstructive pulmonary diseases
  • the compounds described in the present invention are also agents for controlling diseases in the central nervous system, which are characterized by disorders of the NO / cGMP system.
  • they are suitable for improving the perception, concentration performance, learning performance or memory performance after cognitive disorders such as occur in situations / diseases / syndromes such as mild cognitive impairment, age-associated learning and memory disorders, age-associated memory loss, vascular dementia, cranial brain -Trauma, stroke, post-stroke dementia, post-traumatic traumatic brain injury, general attention deficit disorder, impaired concentration in children with learning and memory problems, Alzheimer's disease, dementia with Lewy Corpuscles, dementia with degeneration of the frontal lobes including Pick's syndrome, Parkinson's disease, progressive nuclear palsy, dementia with corticobasal degeneration, amyolateral sclerosis (ALS), Huntington's disease, multiple sclerosis, thalamic degeneration, Creutzfeld-Jacob dementia, HTV dementia, Sch izophrenia with dementia or Korsakoff's psychosis. They are also suitable for
  • the compounds according to the invention are also suitable for regulating cerebral blood flow and are effective agents for combating migraine. They are also suitable for the prophylaxis and control of the consequences of cerebral infarct events (Apoplexia cerebri) such as stroke, cerebral ischaemias and craniocerebral trauma , Likewise, the compounds of the invention can be used to combat pain.
  • cerebral infarct events Apoplexia cerebri
  • cerebral infarct events such as stroke, cerebral ischaemias and craniocerebral trauma
  • the compounds of the invention can be used to combat pain.
  • the compounds of the invention have anti-inflammatory action and can therefore be used as anti-inflammatory agents.
  • Another object of the present invention is the use of the compounds of the invention for the treatment and / or prevention of diseases, in particular the aforementioned diseases.
  • Another object of the present invention is the use of the compounds of the invention for the manufacture of a medicament for the treatment and / or prevention of diseases, in particular the aforementioned diseases.
  • Another object of the present invention is a method for the treatment and / or prevention of diseases, in particular the aforementioned diseases, using an effective amount of at least one of the compounds of the invention.
  • the compounds of the invention may be used alone or as needed in combination with other agents.
  • Another object of the present invention are pharmaceutical compositions containing at least one of the compounds of the invention and one or more other active ingredients, in particular for the treatment and / or prevention of the aforementioned diseases.
  • suitable combination active ingredients may be mentioned by way of example and preferably:
  • organic nitrates and NO donors such as sodium nitroprusside, nitroglycerin, isosorbide mononitrate, isosorbide dinitrate, molsidomine or SDSf-I, and inhaled NO;
  • cGMP cyclic guanosine monophosphate
  • PDE phosphodiesterases
  • NO-independent, but heme-dependent guanylate cyclase stimulators such as, in particular, the compounds described in WO 00/06568, WO 00/06569, WO 02/42301 and WO 03/095451;
  • Antithrombotic agents by way of example and preferably from the group of platelet aggregation inhibitors, anticoagulants or profibrinolytic substances;
  • Antihypertensive agents by way of example and preferably from the group of calcium antagonists, angiotensin AII antagonists, ACE inhibitors, endothelin antagonists, renin inhibitors, alpha-receptor blockers, beta-receptor blockers, mineralocorticoid Receptor antagonists and diuretics; and or
  • Lipid metabolism-modifying agents by way of example and preferably from the group of thyroid receptor agonists, cholesterol synthesis inhibitors such as, for example, and preferably HMG-CoA reductase or squalene synthesis inhibitors, the ACAT inhibitors,
  • CETP inhibitors MTP inhibitors, PPAR-alpha, PPAR-gamma and / or PPAR-delta Agonists, cholesterol absorption inhibitors, lipase inhibitors, polymeric bile acid adsorbers, bile acid reabsorption inhibitors and lipoprotein (a) antagonists.
  • Antithrombotic agents are preferably understood as meaning compounds from the group of platelet aggregation inhibitors, anticoagulants or profibrinolytic substances.
  • the compounds according to the invention are administered in combination with a platelet aggregation inhibitor, such as, by way of example and by way of preference, aspirin, clopidogrel, ticlopidine or dipyridamole.
  • a platelet aggregation inhibitor such as, by way of example and by way of preference, aspirin, clopidogrel, ticlopidine or dipyridamole.
  • the compounds according to the invention are administered in combination with a thrombin inhibitor, such as, by way of example and by way of preference, ximelagatran, melagatran, bivalirudin or Clexane.
  • a thrombin inhibitor such as, by way of example and by way of preference, ximelagatran, melagatran, bivalirudin or Clexane.
  • the compounds according to the invention are administered in combination with a GPUb / IIIa antagonist, such as, by way of example and by way of preference, tirofiban or abciximab.
  • the compounds according to the invention are administered in combination with a factor Xa inhibitor, such as by way of example and preferably BAY 59-7939, DU-176b, fidexaban, razaxaban, fondaparinux, idraparinux, PMD-3112, YM-150, KFA- 1982, EMD-503982, MCM-17, MLN-1021, DX 9065a, DPC 906, JTV 803, SSR-126512 or SSR-128428.
  • a factor Xa inhibitor such as by way of example and preferably BAY 59-7939, DU-176b, fidexaban, razaxaban, fondaparinux, idraparinux, PMD-3112, YM-150, KFA- 1982, EMD-503982, MCM-17, MLN-1021, DX 9065a, DPC 906, JTV 803, SSR-126512 or SSR-128428.
  • the compounds according to the invention are administered in combination with heparin or a low molecular weight (LMW) heparin derivative.
  • LMW low molecular weight
  • the compounds according to the invention are administered in combination with a vitamin K antagonist, such as by way of example and preferably coumarin.
  • antihypertensive agents are preferably compounds from the group of calcium antagonists, angiotensin Aü antagonists, ACE inhibitors, endothelin antagonists, renin inhibitors, alpha-receptor blocker, beta-receptor blocker, mineralocorticoid receptor Antagonists and diuretics understood.
  • the compounds according to the invention are administered in combination with a calcium antagonist, such as, by way of example and by way of preference, nifedipine, amlodipine, verapamil or diltiazem.
  • the compounds according to the invention are administered in combination with an alpha-1-receptor blocker, such as by way of example and preferably prazosin.
  • the compounds according to the invention are used in combination with a beta-receptor blocker such as, by way of example and by way of preference, propranolol, atenolol, timolol, pindolol, alprenolol, oxprenolol, penbutolol, bupranolol, metipropanol, nadolol, mepindolol, carazalol, Sotalol, metoprolol, betaxolol, celiprolol, bisoprolol, Carteolol, esmolol, labetalol, carvedilol, adaprolol, landiolol, nebivolol, epanolol or bucine dolol administered.
  • a beta-receptor blocker such as, by way of example and by way of preference, propranolol, atenolol
  • the compounds according to the invention are administered in combination with an angiotensin AH antagonist, such as by way of example and preferably losartan, candesartan, valsartan, telmisartan or embursatan.
  • angiotensin AH antagonist such as by way of example and preferably losartan, candesartan, valsartan, telmisartan or embursatan.
  • the compounds according to the invention are administered in combination with an ACE inhibitor such as, by way of example and by way of preference, enalapril, captopril, lisinopril, ramipril, delapril, fosinopril, quinopril, perindopril or trandopril.
  • an ACE inhibitor such as, by way of example and by way of preference, enalapril, captopril, lisinopril, ramipril, delapril, fosinopril, quinopril, perindopril or trandopril.
  • the compounds according to the invention are administered in combination with an endothelial antagonist, such as, by way of example and by way of preference, bosentan, darusentan, ambrisentan or sitaxsentan.
  • an endothelial antagonist such as, by way of example and by way of preference, bosentan, darusentan, ambrisentan or sitaxsentan.
  • the compounds of the invention are administered in combination with a renin inhibitor, such as by way of example and preferably aliskiren, SPP-600 or SPP-800.
  • a renin inhibitor such as by way of example and preferably aliskiren, SPP-600 or SPP-800.
  • the compounds according to the invention are administered in combination with a mineralocorticoid receptor antagonist, such as by way of example and preferably spironolactone or eplerenone.
  • a mineralocorticoid receptor antagonist such as by way of example and preferably spironolactone or eplerenone.
  • the compounds according to the invention are administered in combination with a diuretic, such as by way of example and preferably furosemide.
  • a diuretic such as by way of example and preferably furosemide.
  • the fat metabolism modifying agents are preferably compounds from the group of CETP inhibitors, thyroid receptor agonists, cholesterol synthesis inhibitors such as HMG-CoA reductase or squalene synthesis inhibitors, the ACAT inhibitors, MTP inhibitors, PPAR alpha- , PPAR gamma and / or PPAR delta agonists, cholesterol absorption inhibitors, polymeric bile acid adsorbers, bile acid reabsorption inhibitors, lipase inhibitors and the lipoprotein (a) antagonists understood.
  • the compounds according to the invention are administered in combination with a CETP inhibitor, such as by way of example and preferably torcetrapib (CP-529 414), JJT-705 or CETP vaccine (Avant).
  • a CETP inhibitor such as by way of example and preferably torcetrapib (CP-529 414), JJT-705 or CETP vaccine (Avant).
  • the compounds according to the invention are administered in combination with a thyroid receptor agonist, such as by way of example and preferably D-thyroxine, 3,5,3'-triiodothyronine (T3), CGS 23425 or axitirome (CGS 26214).
  • a thyroid receptor agonist such as by way of example and preferably D-thyroxine, 3,5,3'-triiodothyronine (T3), CGS 23425 or axitirome (CGS 26214).
  • the compounds according to the invention are administered in combination with an HMG-CoA reductase inhibitor from the class of statins, such as by way of example and preferably lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, rosuvastatin, cerivastatin or pitavastatin.
  • statins such as by way of example and preferably lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, rosuvastatin, cerivastatin or pitavastatin.
  • the compounds according to the invention are administered in combination with a squalene synthesis inhibitor, such as by way of example and preferably BMS-188494 or TAK-475.
  • a squalene synthesis inhibitor such as by way of example and preferably BMS-188494 or TAK-475.
  • the compounds according to the invention are administered in combination with an ACAT inhibitor, such as by way of example and preferably avasimibe, melinamide, pactimibe, eflucimibe or SMP-797.
  • an ACAT inhibitor such as by way of example and preferably avasimibe, melinamide, pactimibe, eflucimibe or SMP-797.
  • the compounds according to the invention are administered in combination with an MTP inhibitor such as, for example and preferably, implitapide, BMS-201038, R-103757 or JTT-130.
  • an MTP inhibitor such as, for example and preferably, implitapide, BMS-201038, R-103757 or JTT-130.
  • the compounds according to the invention are administered in combination with a PPAR-gamma agonist, such as by way of example and preferably pioglitazone or rosiglitazone.
  • a PPAR-gamma agonist such as by way of example and preferably pioglitazone or rosiglitazone.
  • the compounds according to the invention are administered in combination with a PPAR delta agonist, such as by way of example and preferably GW 501516 or BAY 68-5042.
  • a PPAR delta agonist such as by way of example and preferably GW 501516 or BAY 68-5042.
  • the compounds according to the invention are administered in combination with a cholesterol absorption inhibitor, such as by way of example and preferably ezetimibe, tiqueside or pamaqueside.
  • the compounds according to the invention are administered in combination with a lipase inhibitor, such as, for example and preferably, orlistat.
  • a lipase inhibitor such as, for example and preferably, orlistat.
  • the compounds of the invention are administered in combination with a polymeric bile acid adsorbent such as, by way of example and by way of preference, cholestyramine, colestipol, colesolvam, cholesta gel or colestimide.
  • a polymeric bile acid adsorbent such as, by way of example and by way of preference, cholestyramine, colestipol, colesolvam, cholesta gel or colestimide.
  • ASBT IBAT
  • AZD-7806 S-8921
  • AK-105 AK-105
  • BARI-1741 AK-105
  • SC-435 SC-635.
  • the compounds according to the invention are administered in combination with a lipoprotein (a) antagonist, such as, by way of example and by way of preference, gemcabene calcium (CI-1027) or nicotinic acid.
  • a lipoprotein (a) antagonist such as, by way of example and by way of preference, gemcabene calcium (CI-1027) or nicotinic acid.
  • compositions containing at least one compound of the invention usually together with one or more inert, non-toxic, pharmaceutically suitable excipients, and their use for the purposes mentioned above.
  • the compounds according to the invention can act systemically and / or locally.
  • they may be applied in a suitable manner, e.g. oral, parenteral, pulmonary, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctivae otic or as an implant or stent.
  • the compounds according to the invention can be administered in suitable administration forms.
  • the compounds of the invention rapidly and / or modified donating application forms containing the compounds of the invention in crystalline and / or amorphized and / or dissolved form, such as tablets (uncoated or coated Tablets, for example with enteric or delayed-dissolving or insoluble coatings, which control the release of the compound according to the invention), rapidly disintegrate in the oral cavity.
  • Parenteral administration can be accomplished by bypassing a resorption step (e.g., intravenously, intraarterially, intracardially, intraspinal, or intralumbar) or by resorting to absorption (e.g., intramuscularly, subcutaneously, intracutaneously, percutaneously, or intraperitoneally).
  • a resorption step e.g., intravenously, intraarterially, intracardially, intraspinal, or intralumbar
  • absorption e.g., intramuscularly, subcutaneously, intracutaneously, percutaneously, or intraperitoneally.
  • parenteral administration are suitable as application forms u.a. Injection and infusion preparations in the form of solutions, suspensions, emulsions, lyophilisates or sterile powders.
  • Inhalation medicaments including powder inhalers, nebulizers
  • nasal drops solutions or sprays
  • lingual, sublingual or buccal tablets films / wafers or capsules
  • suppositories ear or ophthalmic preparations
  • vaginal capsules aqueous suspensions (lotions, shake mixtures)
  • lipophilic suspensions ointments
  • creams transdermal therapeutic systems (eg plasters)
  • milk pastes, foams, powdered powders, implants or stents.
  • the compounds according to the invention can be converted into the stated administration forms. This can be done in a conventional manner by mixing with inert, non-toxic, pharmaceutically suitable excipients.
  • excipients for example microcrystalline cellulose, lactose, mannitol
  • solvents for example liquid polyethylene glycols
  • emulsifiers and dispersants or wetting agents for example sodium dodecyl sulfate, polyoxysorbitanoleate
  • binders for example polyvinylpyrrolidone
  • synthetic and natural polymers for example albumin
  • Stabilizers eg, antioxidants such as ascorbic acid
  • dyes eg, inorganic pigments such as iron oxides
  • flavor and / or odoriferous include, among others.
  • Excipients for example microcrystalline cellulose, lactose, mannitol
  • solvents for example liquid polyethylene glycols
  • emulsifiers and dispersants or wetting agents for example sodium dodecy
  • the dosage is about 0.01 to 100 mg / kg, preferably about 0.01 to 20 mg / kg and most preferably 0.1 to 10 mg / kg body weight.
  • Device type MS Micromass ZQ
  • Device type HPLC HP 1100 Series
  • UV DAD Column: Phenomenex Synergi 2 ⁇ Hydro-RP Mercury 20 mm x 4 mm
  • Eluent A 1 liter of water + 0.5 ml of 50% ant acid
  • eluent B 1 liter acetonitrile + 0.5 ml 50% formic acid
  • Flow 0.0 min 1 ml / min ⁇ 2.5 min / 3.0 min / 4.5 min 2 ml / min
  • Oven 50 ° C .
  • UV detection 210 nm.
  • Device type MS Micromass ZQ
  • Device type HPLC Waters Alliance 2795; Column: Phenomenex Synergi 2 ⁇ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 l of water + 0.5 ml of 50% formic acid, eluent B: 1 l of acetonitrile + 0.5 ml of 50% formic acid; Gradient: 0.0 min 90% A -> 2.5 min 30% A ⁇ 3.0 min 5% A ⁇ 4.5 min 5% A; Flow: 0.0 min 1 ml / min ⁇ 2.5 min / 3.0 min / 4.5 min 2 ml / min; Oven: 50 ° C .; UV detection: 210 nm.
  • Device type MS Micromass ZQ
  • Device type HPLC HP 1100 Series
  • UV DAD Column: Phenomenex Gemini 3 ⁇ 30 mm x 3.00 mm
  • Eluent A 1 1 water + 0.5 ml 50% formic acid
  • eluent B 1 1 Acetonitrile + 0.5 ml of 50% formic acid
  • Oven 50 ° C .
  • UV detection 210 nm.
  • Instrument Micromass GCT, GC6890; Column: Restek RTX-35MS, 30 m ⁇ 250 ⁇ m ⁇ 0.25 ⁇ m; constant flow with helium: 0.88 ml / min; Oven: 6O 0 C; Inlet: 250 ° C; Gradient: 60 0 C (0.30 keep min), 50 ° C min ⁇ 120 0 C, 16 ° C min ⁇ 250 0 C, 30 ° C (1.7 min hold) / / / min ⁇ 300 0C.
  • Instrument Micromass GCT, GC6890; Column: Restek RTX-35MS, 30 m ⁇ 250 ⁇ m ⁇ 0.25 ⁇ m; constant flow with helium: 0.88 ml / min; Oven: 60 ° C; Inlet: 25O 0 C; Gradient: 60 0 C (0.30 keep min), 50 ° C min ⁇ 120 0 C, 16 ° C min ⁇ 250 0 C, 30 ° C (8.7 min hold) / / / min ⁇ 300 0C.
  • the cold bath is replaced with an ice / acetone bath.
  • the reaction is stopped by dropwise addition of 100 ml of 1 N hydrochloric acid.
  • the reaction mixture is saturated with sodium chloride and then treated with 100 ml of a saturated sodium chloride solution containing 5 ml of a 25% aqueous ammonia solution.
  • the mixture is filtered through Celite.
  • the filtrate is treated with ammoniacal sodium chloride solution for as long as Wash until the aqueous phase remains colorless.
  • the organic phase is washed with saturated sodium chloride solution and dried over anhydrous magnesium sulfate. After removal of the solvent and Kugelrohr distillation of the residue at 150 ° C. and 15 mbar, 7.10 g (67% of theory) of the title compound are obtained as a colorless liquid.
  • the residue is taken up in 200 ml of ethyl acetate and 100 ml of water.
  • the aqueous phase is extracted with ethyl acetate.
  • the combined organic phases are washed with saturated sodium chloride solution and dried over anhydrous magnesium sulfate.
  • the crude product is pre-purified over 100 g of gelatin gel-60 (eluent: cyclohexane / dichloromethane 2: 1, then cyclohexane / ethyl acetate 4: 1).
  • the desired product is then isolated by preparative HPLC. 11.60 g (22% of theory) of a colorless oil are obtained.
  • reaction mixture is then stirred at 100 0 C for 12 hours. After complete conversion, the reaction solution is cooled and the solvent removed in vacuo. The residue is then taken up in ethyl acetate and water, acidified with 1 N hydrochloric acid and the organic phase is separated off. The aqueous phase is extracted three more times with ethyl acetate, the organic phases are then combined, washed with saturated sodium chloride solution and dried over sodium sulfate. After filtration, the solution is concentrated in vacuo and the residue is purified by flash chromatography on silica gel (mobile phase: cyclohexane / ethyl acetate 4: 1). 406 mg (83% of theory) of a yellow oil are obtained.
  • reaction mixture is then stirred at 100 0 C for 2 hours. After complete conversion, the reaction solution is cooled and the solvent removed in vacuo. Subsequently, the residue is taken up in ethyl acetate and water, acidified with 1 N hydrochloric acid and the organic phase is separated off. The aqueous phase is extracted three more times with ethyl acetate, the organic phases are then combined, washed with saturated sodium chloride solution and dried over sodium sulfate. After filtration, the solution is concentrated in vacuo. The resulting crude product is purified by flash chromatography on silica gel (eluent: petroleum ether / ethyl acetate 4: 1).
  • reaction solution is mixed with saturated ammonium chloride solution and concentrated to dryness.
  • the residue is taken up in ethyl acetate, washed with water and saturated sodium chloride solution and dried over sodium sulfate. After filtration, the Solvent concentrated to dryness.
  • the crude product obtained is purified by flash chromatography on silica gel (mobile phase: cyclohexane / ethyl acetate 4: 1). 757 mg (47% of theory) of a yellowish oil are obtained.
  • the crude product is purified by flash chromatography (3000 g of silica gel 60, mobile phase: cyclohexane / ethyl acetate 20: 1). There are obtained 8 g (35% of theory) of the title compound in the form of a colorless oil.
  • reaction solution is mixed with saturated ammonium chloride solution and concentrated to dryness.
  • the residue is taken up in ethyl acetate, washed with water and saturated sodium chloride solution and dried over sodium sulfate. After filtration, the solvent is evaporated to dryness.
  • the crude product obtained is purified by preparative HPLC. 162 mg (8% of theory) of a colorless oil are obtained.
  • Rabbits are anaesthetized or killed (approximately 50 mg / kg) by intravenous injection of thiopental sodium and bled.
  • the saphenous artery is removed and divided into 3 mm wide rings.
  • the rings are individually mounted on a triangular, at the end open hook pair of 0.3 mm thick special wire (Remanium ® ).
  • Each ring is prestressed in 5 ml organ baths with 37 ° C warm carbogengestaster Krebs-Henseleit solution of the following composition: NaCl 119 mM; KCl 4.8 mM; CaCl 2 ⁇ 2 H 2 O 1 mM; MgSO 4 ⁇ 7 H 2 O 1.4 mM; KH 2 PO 4 1.2 mM; NaHCO 3 25 mM; Glucose 10mM; Bovine serum albumin 0.001%.
  • the force of contraction is recorded with Statham UC2 cells, amplified and digitized via A / D converters (DAS-1802 HC, Keithley Instruments, Munich) and registered in parallel on chart recorders. Contractions are induced by the addition of phenylephrine.
  • the substance to be tested is added in increasing frequency in each subsequent pass, and the height of the contraction achieved under the influence of the test substance is compared with the height of the contraction achieved in the last predistortion. This is used to calculate the concentration required to reduce the contraction achieved in the pre-control to 50% (IC 50 -wef).
  • the standard application volume is 5 ⁇ l.
  • the DMSO content in the bath solution corresponds to 0.1%.
  • the system consists of 3 main components: (i) implantable transmitters, (2) receivers connected via a multiplexer to a (3) data acquisition computer.
  • the telemetry system allows continuous recording of blood pressure and heart rate on awake animals in their habitual habitat.
  • the investigations are carried out on adult female, spontaneously hypertensive rats (SH rats) with a body weight of> 200 g.
  • the experimental animals are kept individually in Makrolon cages type 3 after transmitter implantation. You have free access to standard food and water.
  • the day / night rhythm in the experimental laboratory is changed by room lighting at 6:00 in the morning and at 19:00 in the evening.
  • the telemetry transmitters used (TAM PA-C40, DSI) are surgically implanted into the experimental animals under aseptic conditions at least 14 days before the first trial. The animals so instrumented are repeatedly used after healing of the wound and ingrowth of the implant.
  • the fasting animals are anesthetized with pentobarbital (Nembutal, Sanofi, 50 mg / kg i.p.) and shaved and disinfected on the ventral side.
  • pentobarbital Nembutal, Sanofi, 50 mg / kg i.p.
  • the system's fluid-filled measuring catheter above the bifurcation is inserted cranially into the descending aorta and secured with tissue adhesive (VetBonD TM, 3M).
  • the transmitter housing is fixed intraperitoneally to the abdominal wall musculature and the wound is closed in layers.
  • an antibiotic is administered for infection prophylaxis (Tardomyocel COMP, Bayer, 1 ml / kg s.c.).
  • the telemetry measuring device is configured for 24 animals. Each trial is registered under a trial number.
  • the instrumented rats living in the plant each have their own receiving antenna (1010 receivers, DSI).
  • the implanted transmitters can be activated externally via a built-in magnetic switch and are switched to transmission during the test run.
  • the emitted signals can be recorded online by a data acquisition system (Dataquest TM ART for Windows, DSI) and processed accordingly. The storage of the data takes place in each case in a folder opened for this, which carries the test number.
  • SBP systolic blood pressure
  • DBP diastolic blood pressure
  • MAP mean arterial pressure
  • HR heart rate
  • the measured value acquisition is repeated computer-controlled in 5-minute intervals.
  • the source data collected as the absolute value are corrected in the diagram with the currently measured barometric pressure and stored in individual data. Further technical details are listed in the documentation of the manufacturer (DSI).
  • the administration of the test substances takes place on the day of the experiment at 9:00. Following the application, the parameters described above are measured over 24 hours. At the end of the experiment, the collected individual data is sorted using the analysis software (Dataquest TM A.R.T. Analysis). As a blank value, the time is assumed 2 hours before substance application, so that the selected data record covers the period from 7:00 am on the trial day to 9:00 am on the following day.
  • the data is smoothed over a presettable time by averaging (15-minute average, 30-minute average) and transferred as a text file to a disk.
  • the presorted and compressed measured values are transferred to Excel templates and displayed in tabular form.
  • the compounds according to the invention can be converted into pharmaceutical preparations as follows:
  • the mixture of compound of the invention, lactose and starch is granulated with a 5% solution (m / m) of the PVP in water.
  • the granules are mixed after drying with the magnesium stearate for 5 minutes.
  • This mixture is compressed with a conventional tablet press (for the tablet format see above).
  • a pressing force of 15 kN is used as a guideline for the compression.
  • a single dose of 100 mg of the compound of the invention corresponds to 10 ml of oral suspension.
  • the rhodigel is suspended in ethanol, the compound according to the invention is added to the suspension. While stirring, the addition of water. Until the completion of the swelling of Rhodigels is stirred for about 6 h. Orally administrable solution;
  • a single dose of 100 mg of the compound according to the invention corresponds to 20 g of oral solution.
  • the compound of the invention is suspended in the mixture of polyethylene glycol and polysorbate with stirring. The stirring is continued until complete dissolution of the compound according to the invention.
  • the compound of the invention is dissolved at a concentration below saturation solubility in a physiologically acceptable solvent (e.g., isotonic saline, glucose solution 5% and / or PEG 400 solution 30%).
  • a physiologically acceptable solvent e.g., isotonic saline, glucose solution 5% and / or PEG 400 solution 30%.
  • the solution is sterile filtered and filled into sterile and pyrogen-free injection containers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Hospice & Palliative Care (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die vorliegende Anmeldung betrifft neue Cyclopropylessigsäure-Derivate, Verfahren zu ihrer Herstellung, ihre Verwendung zur Behandlung und/oder Prophylaxe von Krankheiten sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten, insbesondere zur Behandlung und/oder Prävention kardiovaskulärer Erkrankungen.

Description

Cvclopropylessigsäure-Derivate und ihre Verwendung
Die vorliegende Anmeldung betrifft neue Cyclopropylessigsäure-Derivate, Verfahren zu ihrer Herstellung, ihre Verwendung zur Behandlung und/oder Prophylaxe von Krankheiten sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krank- heiten, insbesondere zur Behandlung und/oder Prävention kardiovaskulärer Erkrankungen.
Eines der wichtigsten zellulären Übertragungssysteme in Säugerzellen ist das cyclische Guanosin- monophosphat (cGMP). Zusammen mit Stickstoffmonoxid (NO), das aus dem Endothel freigesetzt wird und hormonelle und mechanische Signale überträgt, bildet es das NO/cGMP-System. Die Guanylatcyclasen katalysieren die Biosynthese von cGMP aus Guanosintriphosphat (GTP). Die bisher bekannten Vertreter dieser Familie lassen sich sowohl nach strukturellen Merkmalen als auch nach der Art der Liganden in zwei Gruppen aufteilen: Die partikulären, durch natriuretische Peptide stimulierbaren Guanylatcyclasen und die löslichen, durch NO stimulierbaren Guanylatcyclasen. Die löslichen Guanylatcyclasen bestehen aus zwei Untereinheiten und enthalten höchstwahrscheinlich ein Häm pro Heterodimer, das ein Teil des regulatorischen Zentrums ist. Dieses hat eine zentrale Bedeutung für den Aktivierungsmechanismus. NO kann an das Eisenatom des Häms binden und so die Aktivität des Enzyms deutlich erhöhen. Hämfreie Präparationen lassen sich hingegen nicht durch NO stimulieren. Auch Kohlenmonoxid (CO) ist in der Lage, am Eisen- Zentralatom des Häms anzugreifen, wobei die Stimulierung durch CO deutlich geringer ist als die durch NO.
Durch die Bildung von cGMP und der daraus resultierenden Regulation von Phosphodiesterasen, Ionenkanälen und Proteinkinasen spielt die Guanylatcyclase eine entscheidende Rolle bei unterschiedlichen physiologischen Prozessen, insbesondere bei der Relaxation und Prolifεration glatter Muskelzellen, der Plättchenaggregation und -adhäsion und der neuronalen Signalübertragung sowie bei Erkrankungen, welche auf einer Störung der vorstehend genannten Vorgänge beruhen. Unter pathophysiologischen Bedingungen kann das NO/cGMP-System supprimiert sein, was zum Beispiel zu Bluthochdruck, einer Plättchenaktivierung, einer vermehrten Zellproliferation, endothelialer Dysfunktion, Atherosklerose, Angina pectoris, Herzinsuffizienz, Thrombosen, Schlaganfall und Myokardinfarkt führen kann.
Eine auf die Beeinflussung des cGMP-Signalweges in Organismen abzielende NO-unabhängige Behandlungsmöglichkeit für derartige Erkrankungen ist aufgrund der zu erwartenden hohen Effizienz und geringen Nebenwirkungen ein vielversprechender Ansatz.
Zur therapeutischen Stimulation der löslichen Guanylatcyclase wurden bisher ausschließlich Verbindungen wie organische Nitrate verwendet, deren Wirkung auf NO beruht. Dieses wird durch Biokonversion gebildet und aktiviert die lösliche Guanylatcyclase durch Angriffe am Eisen- Zentralatom des Häms. Neben den Nebenwirkungen gehört die Toleranzentwicklung zu den entscheidenden Nachteilen dieser Behandlungsweise.
In den letzten Jahren wurden einige Substanzen beschrieben, die die lösliche Guanylatcyclase direkt, d.h. ohne vorherige Freisetzung von NO stimulieren, wie beispielsweise 3-(5'-Hydroxy- methyl-2'-furyl)-l-benzylindazol [YC-I, Wu et al., Blood 84 (1994), 4226; Mülsch et al., Br. J.
Pharmacol. 120 (1997), 681], Fettsäuren [Goldberg et al., J. Biol. Chem. 252 (1977), 1279],
Diphenyliodonium-hexafluorophosphat [Pettibone et al., Eur. J. Pharmacol. 116 (1985), 307], Iso- liquiritigenin [Yu et al., Br. J. Pharmacol. 114 (1995), 1587], sowie verschiedene substituierte Pyrazolderivate (WO 98/16223, WO 98/16507 und WO 98/23619).
Die vorstehend beschriebenen Stimulatoren der löslichen Guanylatcyclase stimulieren das Enzym entweder direkt über die Häm-Gruppe (Kohlenmonoxid, Stickstoffmonoxid oder Diphenyliodo- niumhexafluorophosphat) durch Interaktion mit dem Eisenzentrum der Häm-Gruppe und eine sich daraus ergebende, zur Erhöhung der Enzymaktivität führende Konformationsänderung [Gerzer et al., FEBS Leu. 132 (1981), 71] oder über einen Häm-abhängigen Mechanismus, der unabhängig von NO ist, aber zu einer Potenzierung der stimulierenden Wirkung von NO oder CO fuhrt [z.B. YC-I, Hoenicka et al., J. Mol. Med. TL (1999) 14; oder die in WO 98/16223, WO 98/16507 und WO 98/23619 beschriebenen Pyrazolderivate].
Die in der Literatur behauptete stimulierende Wirkung von Isoliquiritigenin und von Fettsäuren, wie z.B. von Arachidonsäure, Prostaglandin-Endoperoxiden und Fettsäure-Hydroperoxiden auf die lösliche Guanylatcyclase konnte nicht bestätigt werden [vgl. z.B. Hoenicka et al., J. Mol. Med. 77 (1999), 14].
Entfernt man von der löslichen Guanylatcyclase die Häm-Gruppe, zeigt das Enzym immer noch eine nachweisbare katalytische Basalaktivität, d.h. es wird nach wie vor cGMP gebildet. Die verbleibende katalytische Basalaktivität des Häm-freien Enzyms ist durch keinen der vorstehend genannten bekannten Stimulatoren stimulierbar.
Es wurde eine Stimulation von Häm-freier löslicher Guanylatcyclase durch Protoporphyrin IX beschrieben [Ignarro et al., Adv. Pharmacol. 26 (1994), 35]. Allerdings kann Protoporphyrin EX als Mimik für das NO-Häm-Addukt angesehen werden, weshalb die Zugabe von Protoporphyrin EX zur löslichen Guanylatcyclase zur Bildung einer der durch NO stimulierten Häm-haltigen löslichen Guanylatcyclase entsprechenden Struktur des Enzyms fuhren dürfte. Dies wird auch durch die Tatsache belegt, dass die stimulierende Wirkung von Protoporphyrin EX durch den vorstehend be- schriebenen NO-unabhängigen, aber Häm-abhängigen Stimulator YC-I erhöht wird [Mülsch et al., Naunyn Schmiedebergs Arch. Pharmacol. 355, R47].
Im Gegensatz zu den vorstehend beschriebenen Stimulatoren der löslichen Guanylatcyclase sind die Verbindungen der vorliegenden Erfindung in der Lage, sowohl die Häm-haltige als auch die Häm-freie Form der löslichen Guanylatcyclase zu aktivieren. Die Stimulierung des Enzyms verläuft bei diesen neuen Aktivatoren also über einen Häm-unabhängigen Weg, was auch dadurch belegt wird, dass die neuen Aktivatoren am Häm-haltigen Enzym einerseits keine synergistische Wirkung mit NO zeigen und andererseits sich die Wirkung dieser neuartigen Aktivatoren nicht durch den Häm-abhängigen Inhibitor der löslichen Guanylatcyclase, lH-l,2,4-Oxadiazol-(4,3-a)- chinoxalin-1-on (ODQ), blockieren lässt.
In EP 0 341 551-A1 werden Alkensäure-Derivate als Leukotrien-Antagonisten für die Behandlung von Erkrankungen des Kreislauf- und Atmungssystems offenbart. In WO 01/19355, WO 01/19776, WO 01/19778, WO 01/19780, WO 02/070462 und WO 02/070510 werden Dicarbonsäure- bzw. Aminodicarbonsäure-Derivate als Stimulatoren der löslichen Guanylatcyclase zur Behandlung von Herz-Kreislauf-Erkrankungen beschrieben. Allerdings zeigte es sich, dass diese Verbindungen hinsichtlich ihrer pharmakokinetischen Eigenschaften Nachteile aufweisen, wie insbesondere eine geringe Bioverfügbarkeit und/oder eine nur kurze Wirkdauer nach oraler Gabe.
Aufgabe der vorliegenden Erfindung war daher die Bereitstellung neuer Verbindungen, welche als Aktivatoren der löslichen Guanylatcyclase wirken, jedoch nicht die vorstehend aufgeführten Nach- teile der Verbindungen aus dem Stand der Technik aufweisen.
Diese Aufgabe wird durch die in der vorliegenden Erfindung beschriebenen Verbindungen gelöst. Diese Verbindungen zeichnen sich strukturell im Vergleich zu den Verbindungen aus dem Stand der Technik durch eine l,4-Diphenylbut-l-en-3-yl- oder l,5-Diphenylpent-l-en-3-yl-Kernstruktur in Verbindung mit einer Cyclopropylessigsäure-Seitenkette aus.
Im Einzelnen betrifft die vorliegende Erfindung Verbindungen der allgemeinen Formel (I)
in welcher
A für eine Bindung, (CrC7)-Alkandiyl, (C2-C7)-Alkendiyl oder (C2-C7)-Alkindiyl steht,
D für Wasserstoff, Trifluormethyl oder eine Gruppe der Formel
steht, worin * die Verknüpfungsstelle mit der Gruppe A und
E eine Bindung, CH2, -CH2-CH2- oder -CH=CH- bedeutet,
n für die Zahl 1 oder 2 steht,
R1, R2, R3, R4 und R5 unabhängig voneinander für einen Substituenten ausgewählt aus der Reihe Halogen, (Ci-Ce)-AIlCyI, Trifluormethyl, (Ci-C6)-Alkoxy, Trifluormethoxy, Cyano und Nitro stehen,
und
o, p, q, r und s unabhängig voneinander jeweils für die Zahl 0, 1, 2, 3 oder 4 stehen,
wobei für den Fall, dass R1, R2, R3, R4 oder R5 mehrfach auftreten, ihre Bedeutungen jeweils gleich oder verschieden sein können,
sowie ihre Salze, Solvate und Solvate der Salze.
Erfindungsgemäße Verbindungen sind die Verbindungen der Formel (I) und deren Salze, Solvate und Solvate der Salze, die von Formel (I) umfassten Verbindungen der nachfolgend genannten Formeln und deren Salze, Solvate und Solvate der Salze sowie die von Formel (I) umfassten, nachfolgend als Ausführungsbeispiele genannten Verbindungen und deren Salze, Solvate und Solvate der Salze, soweit es sich bei den von Formel (I) umfassten, nachfolgend genannten Verbindungen nicht bereits um Salze, Solvate und Solvate der Salze handelt. Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enaritiomere, Diastereomere) existieren. Die Erfindung umfasst deshalb die Enantiomeren oder Diastereomeren und ihre jeweiligen Mischungen. Aus solchen Mischungen von Enantiomeren und/oder Diastereomeren lassen sich die stereoisomer einheitlichen Bestandteile in bekannter Weise isolieren.
Die Gruppierung "*^^^^\* in Formel (I) bedeutet, dass diese CC-Doppelbindung in einer cis- oder in einer frvms-Konfϊguration vorliegen kann. Beide isomeren Formen werden von der vorliegenden Erfindung umfasst. Bevorzugt sind Verbindungen der Formel (I) mit einer trans-Anord- nung dieser Doppelbindung.
Sofern die erfindungsgemäßen Verbindungen in tautomeren Formen vorkommen können, umfasst die vorliegende Erfindung sämtliche tautomere Formen.
Als Salze sind im Rahmen der vorliegenden Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt. Umfasst sind auch Salze, die für pharmazeutische Anwendungen selbst nicht geeignet sind, jedoch beispielsweise für die Isolierung oder Reinigung der erfindungsgemäßen Verbindungen verwendet werden können.
Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen Säureadditionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z.B. Salze der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethan- sulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Trifluor- essigsaure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Fumarsäure, Maleinsäure und Benzoesäure
Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C- Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methyl- morpholin, Arginin, Lysin, Ethylendiamin und N-Methylpiperidin.
Als Solvate werden im Rahmen der Erfindung solche Formen der erfindungsgemäßen Verbin- düngen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt. Als Solvate sind im Rahmen der vorliegenden Erfindung Hydrate bevorzugt.
Außerdem umfasst die vorliegende Erfindung auch Prodrugs der erfindungsgemäßen Verbindungen. Der Begriff "Prodrugs" umfaßt Verbindungen, welche selbst biologisch aktiv oder inaktiv sein können, jedoch während ihrer Verweilzeit im Körper zu erfindungsgemäßen Verbindungen umgesetzt werden (beispielsweise metabolisch oder hydrolytisch).
Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung:
(C1-Q)-AIkVl und (Cv-CaVAlkyl stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, wo-Butyl, sec.-Butyl, tert. -Butyl, 1-Ethyl- propyl, n-Pentyl und n-Hexyl.
(Cj-CxVAlkandiyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten di- valenten Alkylrest mit 1 bis 7 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger Alkandiylrest mit 1 bis 6 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methylen, 1,2- Ethylen, Ethan-l,l-diyl, 1,3-Propylen, Propan-l,l-diyl, Propan-l,2-diyl, Propan-2,2-diyl, 1,4- Butylen, Butan- 1,2-diyl, Butan-l,3-diyl, Butan-2,3-diyl, Pentan-l,5-diyl, Pentan-2,4-diyl, 3-Methyl-pentan-2,4-diyl und Hexan- 1,6-diyl.
(C2-Cτ)-Alkendiyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten di- valenten Alkenylrest mit 2 bis 7 Kohlenstoffatomen und bis zu 3 Doppelbindungen. Bevorzugt ist ein geradkettiger Alkendiylrest mit 2 bis 6 Kohlenstoffatomen und bis zu 2 Doppelbindungen. Beispielhaft und vorzugsweise seien genannt: Ethen-l,l-diyl, Ethen- 1,2-diyl, Propen- 1,1-diyl, Propen-l,2-diyl, Propen- 1, 3 -diyl, But-l-en-l,4-diyl, But-l-en-l,3-diyl, But-2-en-l,4-diyl, Buta-1,3- dien-l,4-diyl, Pent-2-en-l,5-diyl, Hex-3-en- 1,6-diyl und Hexa-2,4-dien- 1,6-diyl.
(C2-Cτ)-Alkindiyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten di- valenten Alkinylrest mit 2 bis 7 Kohlenstoffatomen und bis 3 Dreifachbindungen. Bevorzugt ist ein geradkettiger Alkindiylrest mit 2 bis 6 Kohlenstoffatomen und bis zu 2 Dreifachbindungen. Beispielhaft und vorzugsweise seien genannt: Ethin- 1,2-diyl, Propin-l,3-diyl, But-l-in-l,4-diyl, But-l-in-l,3-diyl, But-2-in-l,4-diyl, Pent-2-in-l,5-diyl, Pent-2-in-l,4-diyl und Hex-3 -in- 1,6-diyl.
(C1-CA)-AIkOXV und (C1-Q)-AIkOXy stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen. Bevorzugt ist ein gerad- kettiger oder verzweigter Alkoxyrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, tert.-Butoxy, n-Pentoxy und n-Hexoxy.
(Ci-Gi)-Alkoxycarbonyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 4 Kohlenstoffatomen, der über eine Carbonylgruppe verknüpft ist. Beispielhaft und vorzugsweise seien genannt: Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Iso- propoxycarbonyl und tert.-Butoxycarbonyl.
Halogen schließt im Rahmen der Erfindung Fluor, Chlor, Brom und Iod ein. Bevorzugt sind Chlor oder Fluor.
Wenn Reste in den erfindungsgemäßen Verbindungen substituiert sind, können die Reste, soweit nicht anders spezifiziert, ein- oder mehrfach substituiert sein. Im Rahmen der vorliegenden Erfindung gilt, dass für alle Reste, die mehrfach auftreten, deren Bedeutung unabhängig voneinander ist. Eine Substitution mit ein, zwei oder drei gleichen oder verschiedenen Substituenten ist bevorzugt. Ganz besonders bevorzugt ist die Substitution mit einem Substituenten.
Bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I), in welcher
A für eine Bindung oder (CrC7)-Alkandiyl steht,
D für Wasserstoff, Trifluormethyl oder eine Gruppe der Formel
steht, worin * die Verknüpfungsstelle mit der Gruppe A bedeutet,
n für die Zahl 1 oder 2 steht,
R1, R3, R4 und R5 unabhängig voneinander für einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Brom, (CrG})-Alkyl, Trifluormethyl, (Ci-C4)-Alkoxy und Trifluormethoxy stehen,
o, q, r und s unabhängig voneinander jeweils für die Zahl 0, 1 oder 2 stehen, wobei für den Fall, dass R1, R3, R4 oder R5 mehrfach auftreten, ihre Bedeutungen jeweils gleich oder verschieden sein können,
R2 für Fluor steht
und
für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
Besonders bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I-A)
in welcher
A für (Ci-C7)-Alkandiyl,
D für Wasserstoff oder eine Gruppe der Formel
worin * die Verknüpfungsstelle mit der Gruppe A und
R3A Wasserstoff, Fluor, Chlor, Methyl, terf.-Butyl, Trifluormethyl, Methoxy oder Tri- fluormethoxy bedeutet,
und
für die Zahl 1 oder 2 stehen,
sowie ihre Salze, Solvate und Solvate der Salze.
Die in den jeweiligen Kombinationen bzw. bevorzugten Kombinationen von Resten im einzelnen angegebenen Reste-Definitionen werden unabhängig von den jeweiligen angegebenen Kombina- tionen der Reste beliebig auch durch Reste-Definitionen anderer Kombinationen ersetzt.
Ganz besonders bevorzugt sind Kombinationen von zwei oder mehreren der oben genannten Vorzugsbereiche.
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der Formel (I), dadurch gekennzeichnet, dass man Verbindungen der Formel (II)
in welcher R2, n und p jeweils die oben angegebenen Bedeutungen haben und
T1 und T2 gleich oder verschieden sind und für Cyano oder (Ci-C4)-Alkoxycarbonyl stehen,
entweder
[A] in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (HI-A)
in welcher A, D, R und o jeweils die oben angegebenen Bedeutungen haben und für Phenyl oder o-, m- oder p-Tolyl
und
X für Halogenid oder Tosylat steht,
zu Verbindungen der Formel (IV-A)
in welcher A, D, R1, R2, n, o, p, T1 und T2 jeweils die oben angegebenen Bedeutungen haben,
umsetzt
oder
[B] in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel
(m-B)
in welcher R1, o, L und X jeweils die oben angegebenen Bedeutungen haben,
zunächst zu Verbindungen der Formel (TV-B)
in welcher R1, R2, n, o, p, T1 und T2 jeweils die oben angegebenen Bedeutungen haben,
umsetzt und diese anschließend in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (V)
D-A'-Q (V),
in welcher D die oben angegebene Bedeutung hat,
A1 die oben angegebene Bedeutung von A hat, jedoch nicht für eine Bindung steht,
und
für eine Abgangsgruppe, wie beispielsweise Halogen, Tosylat oder Mesylat, steht,
zu Verbindungen der Formel (FV-C)
in welcher A . 1 , R -T) 1 , τ R>2 , n, o, p, T und T jeweils die oben angegebenen Bedeutungen haben,
alkyliert und die resultierenden Verbindungen der Formel (FV-A) bzw. (IV-C) dann durch Hydrolyse der Ester- bzw. Nitril-Gruppen T1 und T2 in die Dicarbonsäuren der Formel (I) überfuhrt
und die Verbindungen der Formel (I) gegebenenfalls nach dem Fachmann bekannten Methoden in ihre Enantiomere und/oder Diastereomere trennt und/oder gegebenenfalls mit den entsprechenden (i) Lösungsmitteln und/oder (ii) Basen oder Säuren zu ihren Solvaten, Salzen und/oder Solvaten der Salze umsetzt.
Inerte Lösungsmittel für die Verfahrensschritte (E) + (III-A) → (IV-A) und (II) + (HI-B) → (IV-B) sind beispielsweise Ether wie Diethylether, Tetrahydrofuran, Glykoldimethylether oder Diethylen- glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Pentan, Hexan, Heptan, Cyclohexan oder Erdölfraktionen, oder Gemische dieser Lösungsmittel. Bevorzugt wird Tetrahydrofuran im Gemisch mit Hexan verwendet.
Als Basen für diese Verfahrensschritte sind die für eine Wittig-Reaktion üblichen Basen geeignet. Hierzu zählen insbesondere starke Basen wie n-, sek.- oder terf.-Butyllithium, Lithiumdiisopropyl- amid (LDA) oder Lithium-, Natrium- oder Kalium-bis(trimethylsilyl)amid. Bevorzugt ist n-Butyl- lithium.
Die Umsetzungen (II) + (ffl-A) → (IV-A) und (II) + (ITl-B) → (IV-B) werden im Allgemeinen in einem Temperaturbereich von -78°C bis +200C, bevorzugt bei -200C bis +100C durchgeführt.
Inerte Lösungsmittel für den Verfahrensschritt (FV-B) + (V) -> (FV-C) sind beispielsweise Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethyl- ether, oder andere Lösungsmittel wie Acetonitril, Dimethylformamid, Dimethylsulfoxid, NN- Dimethylpropylenhamstoff (DMPU) oder N-Methylρyπölidυn (ΝMP). Ebenso ist es möglich, Gemische der genannten Lösungsmittel einzusetzen. Bevorzugt wird Acetonitril verwendet.
Für diesen Verfahrensschritt geeignete Basen sind insbesondere Kaliumcarbonat, Natrium- oder Kaliumhydrid, Lithiumdiisopropylamid oder «-Butyllithium. Bevorzugt wird Kaliumcarbonat ver- wendet.
Die Reaktion (FV-B) + (V) -» (FV-C) wird im Allgemeinen in einem Temperaturbereich von +200C bis +1200C, bevorzugt bei +500C bis +1000C durchgeführt.
Die Hydrolyse der Ester- bzw. Nitril-Gruppen T1 und T2 in den Verfahrensschritten (FV-A) -» (I) und (FV-C) — > (I) erfolgt nach üblichen Methoden, indem man die Ester bzw. Nitrile in inerten Lösungsmitteln mit Säuren oder Basen behandelt, wobei bei letzterem die zunächst entstehenden Salze durch Behandeln mit Säure in die freien Carbonsäuren überfuhrt werden. Im Falle der tert.- Butylester erfolgt die Esterspaltung bevorzugt mit Säuren.
Bei unterschiedlichen Gruppen T1 und T2 kann die Hydrolyse gegebenenfalls simultan in einer Eintopf-Reaktion oder in zwei separaten Reaktionsschritten durchgeführt werden.
Als inerte Lösungsmittel eignen sich für diese Reaktionen Wasser oder die für eine Esterspaltung üblichen organischen Lösungsmittel. Hierzu gehören bevorzugt Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol oder terf.-Butanol, oder Ether wie Diethylether, Tetrahydro- furan, Dioxan oder Glykoldimethylether, oder andere Lösungsmittel wie Aceton, Dichlormethan, Dimethylformamid oder Dimethylsulfoxid. Ebenso ist es möglich, Gemische der genannten Lösungsmittel einzusetzen. Im Falle einer basischen Ester-Hydrolyse werden bevorzugt Gemische von Wasser mit Dioxan, Tetrahydrofuran, Methanol und/oder Ethanol, bei der Nitril-Hydrolyse bevorzugt Wasser oder n-Propanol eingesetzt. Im Falle der Umsetzung mit Trifluoressigsäure wird bevorzugt Dichlormethan und im Falle der Umsetzung mit Chlorwasserstoff bevorzugt Tetrahydrofuran, Diethylether, Dioxan oder Wasser verwendet.
Als Basen sind die üblichen anorganischen Basen geeignet. Hierzu gehören bevorzugt Alkali- oder Erdalkalihydroxide wie beispielsweise Natrium-, Lithium-, Kalium- oder Bariumhydroxid, oder Alkali- oder Erdalkalicarbonate wie Natrium-, Kalium- oder Calciumcarbonat. Besonders bevorzugt sind Natrium-, Kalium- oder Lithiumhydroxid.
Als Säuren eignen sich für die Esterspaltung im Allgemeinen Schwefelsäure, Chlorwasserstoff/ Salzsäure, Bromwasserstoff/Bromwasserstoffsäure, Phosphorsäure, Essigsäure, Trifluoressigsäure, Toluolsulfonsäure, Methansulfonsäure oder Trifluormethansulfonsäure oder deren Gemische gegebenenfalls unter Zusatz von Wasser. Bevorzugt sind Chlorwasserstoff oder Trifluoressigsäure im Falle der terf.-Butylester und Salzsäure im Falle der Methylester.
Die Esterspaltung erfolgt im Allgemeinen in einem Temperaturbereich von 00C bis +1000C, bevor- zugt bei +200C bis +600C. Die Nitril-Hydrolyse wird im Allgemeinen in einem Temperaturbereich von +500C bis +1500C, bevorzugt bei +900C bis +1100C durchgeführt.
Die genannten Umsetzungen können bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. von 0.5 bis 5 bar). Im Allgemeinen arbeitet man jeweils bei Normaldruck.
Die Aldehyde der Formel (II) können in Analogie zu literaturbekannten Verfahren beispielsweise über eine sequentielle Dialkylierung von Malonsäurediallylester mit Verbindungen der Formeln (VI) und (VII)
in welchen R , n, p, T und T jeweils die oben angegebenen Bedeutungen haben und
Y1 und Y2 gleich oder verschieden sind und für eine Abgangsgruppe, wie beispielsweise Halogen, Mesylat oder Tosylat, stehen,
zu Verbindungen der Formel (VIII)
in welcher R2, n, p, T1 und T2 jeweils die oben angegebenen Bedeutungen haben,
anschließende Esterspaltung zu Verbindungen der Formel (DC)
in welcher R2, n, p, T1 und T2 jeweils die oben angegebenen Bedeutungen haben, und nachfolgende Reduktion der Carbonsäure-Gruppierung hergestellt werden (siehe auch nachfolgende Reaktionsschemata 2 und 3).
Die Verbindungen der Formeln (HI-A) und (IE-B) können nach literaturüblichen Verfahren durch Umsetzung von Verbindungen der Formel (X-A) bzw. (X-B)
(X-A) (X-B)
in welchen A, D, R1 und o jeweils die oben angegebenen Bedeutungen haben und
Z für eine Abgangsgruppe, wie beispielsweise Halogen oder Tosylat, oder für Hydroxy steht,
mit beispielsweise Triphenylphosphin bzw. (im Falle von Z = OH) Triphenylphosphin-Hydro- bromid erhalten werden (siehe auch nachfolgendes Reaktionsschema 4).
Die Verbindungen der Formel (VI) können in Analogie zu literaturbekannten Verfahren beispielsweise aus Cyclopropanon-Acetalen über eine Wittig-Reaktion, nachfolgende Michael-Addition, Hydroborierung und Halogenierung erhalten werden (siehe nachfolgendes Reaktionsschema 1).
Die Verbindungen der Formeln (V), (VIT), (X-A) und (X-B) sind kommerziell erhältlich, literaturbekannt oder können nach literaturbekannten Verfahren hergestellt werden (zur Herstellung der erfindungsgemäßen Verbindungen insgesamt vergleiche auch die in EP 0 341 551 -Al, WO 01/19355, WO 01/19776 sowie WO 01/19778 beschriebenen Herstellverfahren).
Eine Trennung der erfindungsgemäßen Verbindungen in die entsprechenden Enantiomere und/oder Diastereomere kann gegebenenfalls, je nach Zweckmäßigkeit, auch bereits auf der Stufe der Verbindungen (FV-A), (FV-B), (FV-C) oder (FX) erfolgen, welche dann in separierter Form entspre- chend der zuvor beschriebenen Verfahrenssequenz weiter umgesetzt werden. Eine solche Auftrennung der Stereoisomeren läßt sich nach üblichen, dem Fachmann bekannten Methoden durchführen; vorzugsweise werden chromatographische Verfahren oder eine Trennung über diastereomere Salze verwendet.
Die Herstellung der erfindungsgemäßen Verbindungen kann durch die folgenden Synthese- Schemata veranschaulicht werden: Schema 1
[a) Ph3P=CHCOOEt, Benzoesäure, Toluol, 900C, 18 h; b) Vinylmagnesiumchlorid, Kupfer(I)- chlorid, Lithiumchlorid, THF, -78°C → -5°C; c) 1. Boran-THF-Komplex, THF, 00C → RT, 1 h; 2. Brom, Natriummethylat, Methanol, -50C].
Schema 2
[X = Cl oder Br, n = 1 oder 2; d) Natriumhydrid, Dioxan oder Dioxan/THF, O0C → 400C → 1100C, 4-16 h; e) Natriumhydrid, [l-(2-Bromethyl)cyclopropyl]essigsäureethylester, DMF, 00C → 1000C, 8-12 h]. Schema 3
k) Trennung der Enantiomere mittels chiraler HPLC
[f) Palladiumacetat, Triphenylphosphin, Triethylamin, Ameisensäure, Dioxan, 10O0C, 2-12 h; g) Boran-THF-Komplex, THF, -100C → O0C, 2 h; h) PCC, Dichlormethan, RT, 12 h; i) (2-Hydroxy- benzyl)-triphenylphosphoniumbromid, n-Butyllithium, THF/Hexan, O0C, 2 h; j) R-X (X = Cl, Br oder I), Kaliumcarbonat, Acetonitril, 800C, 12 h; k) Lithium- oder Natriumhydroxid, Wasser, THF oder Dioxan, 500C, 12 h]. Schema 4
[Abkürzungen: DMF = Dimethylformamid; Et = Ethyl; PCC = Pyridiniumchlorochromat; Ph = Phenyl; RT = Raumtemperatur; THF = Tetrahydrofuran].
Die erfindungsgemäßen Verbindungen besitzen wertvolle pharmakologische Eigenschaften und können zur Vorbeugung und Behandlung von Erkrankungen bei Menschen und Tieren verwendet werden.
Als besonderes und überraschendes Merkmal weisen die Verbindungen der vorliegenden Erfindung vorteilhafte pharmakokinetische Eigenschaften wie beispielsweise eine erhöhte Bioverfug- barkeit und/oder eine verlängerte Wirkdauer nach oraler Gabe auf.
Die erfϊndungsgemäßen Verbindungen führen zu einer Gefäßrelaxation, zu einer Thrombozyten- aggregationshemmung und zu einer Blutdrucksenkung sowie zu einer Steigerung des koronaren Blutflusses. Diese Wirkungen sind über eine direkte Aktivierung der löslichen Guanylatcyclase und einen intrazellulären cGMP-Anstieg vermittelt.
Die erfindungsgemäßen Verbindungen können daher in Arzneimitteln zur Behandlung von kardiovaskulären Erkrankungen wie beispielsweise zur Behandlung des Bluthochdrucks und der Herzinsuffizienz, stabiler und instabiler Angina pectoris, pulmonaler Hypertonie, peripheren und kardialen Gefäßerkrankungen, Arrhythmien, zur Behandlung von thromboembolischen Erkrankungen und Ischämien wie Myokardinfarkt, Hirnschlag, transistorischen und ischämischen Attacken, peripheren Durchblutungsstörungen, zur Verhinderung von Restenosen wie nach Thrombolysethera- pien, percutan-transluminalen Angioplastien (PTA), percutan-transluminalen Koronarangioplastien (PTCA) und Bypass sowie zur Behandlung von Arteriosklerose, asthmatischen Erkrankungen, Krankheiten des Urogenitalsystems wie beispielsweise Prostatahypertrophie, erektile Dysfunktion, weibliche sexuelle Dysfunktion und Inkontinenz, von Osteoporose, Glaukom und Gastroparese eingesetzt werden.
Außerdem können die erfindungsgemäßen Verbindungen zur Behandlung von primärem und sekundärem Raynaud-Phänomen, von Mikrozirkulationsstörungen, Claudicatio, peripheren und autonomen Neuropathien, diabetischen Mikroangiopathien, diabetischer Retinopathie, diabeti- schen Geschwüren an den Extremitäten, CREST-Syndrom, Erythematose, Onychomykose sowie von rheumatischen Erkrankungen verwendet werden.
Ferner eignen sich die erfindungsgemäßen Verbindungen zur Behandlung von Respiratory Distress-Syndromen und chronisch-obstruktiven Atemwegserkrankungen (COPD), von akuter und chronischer Niereninsuffizienz sowie zur Förderung der Wundheilung.
Die in der vorliegenden Erfindung beschriebenen Verbindungen stellen auch Wirkstoffe zur Bekämpfung von Krankheiten im Zentralnervensystem dar, die durch Störungen des NO/cGMP- Systems gekennzeichnet sind. Insbesondere sind sie geeignet zur Verbesserung der Wahrnehmung, Konzentrationsleistung, Lernleistung oder Gedächtnisleistung nach kognitiven Störungen, wie sie insbesondere bei Situationen/Krankheiten/Syndromen auftreten wie "Mild cognitive impairment", altersassoziierten Lern- und Gedächtnisstörungen, altersassoziierten Gedächtnisverlusten, vaskulärer Demenz, Schädel-Hirn-Trauma, Schlaganfall, Demenz, die nach Schlaganfällen auftritt ("post stroke dementia"), post-traumatischem Schädel-Hirn-Trauma, allgemeinen Konzentrationsstörungen, Konzentrationsstörungen bei Kindern mit Lern- und Gedächtnisproblemen, Alzhei- mer'scher Krankheit, Demenz mit Lewy-Körperchen, Demenz mit Degeneration der Frontallappen einschliesslich des Pick's-Syndroms, Parkinson'scher Krankheit, progressiver nuclear palsy, Demenz mit corticobasaler Degeneration, Amyolateralsklerose (ALS), Huntington'scher Krankheit, Multipler Sklerose, Thalamischer Degeneration, Creutzfeld-Jacob-Demenz, HTV-Demenz, Schizophrenie mit Demenz oder Korsakoff-Psychose. Sie eignen sich auch zur Behandlung von Erkrankungen des Zentralnervensystems wie Angst-, Spannungs- und Depressionszuständen, zentral-nervös bedingten Sexualdysfunktionen und Schlafstörungen sowie zur Regulierung krankhafter Störungen der Nahrungs-, Genuss- und Suchtmittelaufhahme.
Weiterhin eignen sich die erfindungsgemäßen Verbindungen auch zur Regulation der cerebralen Durchblutung und stellen wirkungsvolle Mittel zur Bekämpfung von Migräne dar. Auch eignen sie sich zur Prophylaxe und Bekämpfung der Folgen cerebraler Infarktgeschehen (Apoplexia cerebri) wie Schlaganfall, cerebraler Ischämien und des Schädel-Hirn-Traumas. Ebenso können die erfindungsgemäßen Verbindungen zur Bekämpfung von Schmerzzuständen eingesetzt werden.
Zudem besitzen die erfindungsgemäßen Verbindungen antiinflammatorische Wirkung und können daher als entzündungshemmende Mittel eingesetzt werden.
Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Behandlung und/oder Prävention von Erkrankungen, insbesondere der zuvor genannten Erkrankungen. Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prävention von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.
Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung und/oder Prä- vention von Erkrankungen, insbesondere der zuvor genannten Erkrankungen, unter Verwendung einer wirksamen Menge von mindestens einer der erfindungsgemäßen Verbindungen.
Die erfindungsgemäßen Verbindungen können allein oder bei Bedarf in Kombination mit anderen Wirkstoffen eingesetzt werden. Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, enthaltend mindestens eine der erfindungsgemäßen Verbindungen und einen oder mehrere weitere Wirkstoffe, insbesondere zur Behandlung und/oder Prävention der zuvor genannten Erkrankungen. Als geeignete Kombinationswirkstoffe seien beispielhaft und vorzugsweise genannt:
• organische Nitrate und NO-Donatoren, wie beispielsweise Natriumnitroprussid, Nitroglycerin, Isosorbidmononitrat, Isosorbiddinitrat, Molsidomin oder SDSf-I, sowie inhalatives NO;
• Verbindungen, die den Abbau von cyclischem Guanosinmonophosphat (cGMP) inhibieren, wie beispielsweise Inhibitoren der Phosphodiesterasen (PDE) 1, 2 und/oder 5, insbesondere PDE 5-Inhibitoren wie Sildenafil, Vardenafil und Tadalafil;
• NO-unabhängige, jedoch Häm-abhängige Stimulatoren der Guanylatcyclase, wie insbesondere die in WO 00/06568, WO 00/06569, WO 02/42301 und WO 03/095451 beschriebenen Ver- bindungen;
• antithrombotisch wirkende Mittel, beispielhaft und vorzugsweise aus der Gruppe der Thrombozytenaggregationshemmer, der Antikoagulantien oder der profibrinolytischen Substanzen;
• den Blutdruck senkende Wirkstoffe, beispielhaft und vorzugsweise aus der Gruppe der Calcium-Antagonisten, Angiotensin AII-Antagonisten, ACE-Hemmer, Endothelin-Antagonisten, Renin-Inhibitoren, alpha-Rezeptoren-Blocker, beta-Rezeptoren-Blocker, Mineralocor- ticoid-Rezeptor-Antagonisten sowie der Diuretika; und/oder
• den Fettstoffwechsel verändernde Wirkstoffe, beispielhaft und vorzugsweise aus der Gruppe der Thyroidrezeptor-Agonisten, Cholesterinsynthese-Inhibitoren wie beispielhaft und vor- zugsweise HMG-CoA-Reduktase- oder Squalensynthese-Inhibitoren, der ACAT-Inhibitoren,
CETP-Inhibitoren, MTP-Inhibitoren, PPAR-alpha-, PPAR-gamma- und/oder PPAR-delta- Agonisten, Cholesterin-Absorptionshemmer, Lipase-Inhibitoren, polymeren Gallensäure- adsorber, Gallensäure-Reabsorptionshemmer und Lipoprotein(a)-Antagonisten.
Unter antithrombotisch wirkenden Mittel werden vorzugsweise Verbindungen aus der Gruppe der Thrombozytenaggregationshemmer, der Antikoagulantien oder der profibrinolytischen Substanzen verstanden.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Thrombozytenaggregationshemmer, wie beispielhaft und vorzugsweise Aspirin, Clopidogrel, Ticlopidin oder Dipyridamol, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbin- düngen in Kombination mit einem Thrombin-Inhibitor, wie beispielhaft und vorzugsweise Ximela- gatran, Melagatran, Bivalirudin oder Clexane, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfϊndungsgemäßen Verbindungen in Kombination mit einem GPÜb/IIIa-Antagonisten, wie beispielhaft und vorzugsweise Tirofiban oder Abciximab, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Faktor Xa-Inhibitor, wie beispielhaft und vorzugsweise BAY 59-7939, DU-176b, Fidexaban, Razaxaban, Fondaparinux, Idraparinux, PMD-3112, YM-150, KFA-1982, EMD-503982, MCM-17, MLN-1021, DX 9065a, DPC 906, JTV 803, SSR-126512 oder SSR- 128428, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit Heparin oder einem low molecular weight (LMW)-Heparin-Derivat verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Vitamin K-Antagonisten, wie beispielhaft und vorzugsweise Coumarin, verabreicht.
Unter den Blutdruck senkenden Mitteln werden vorzugsweise Verbindungen aus der Gruppe der Calcium-Antagonisten, Angiotensin Aü-Antagonisten, ACE-Hemmer, Endothelin-Antagonisten, Renin-Inhibitoren, alpha-Rezeptoren-Blocker, beta-Rezeptoren-Blocker, Mineralocorticoid-Rezep- tor-Antagonisten sowie der Diuretika verstanden. Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Calcium-Antagonisten, wie beispielhaft und vorzugsweise Nifedipin, Amlodipin, Verapamil oder Diltiazem, verabreicht.
Bei einer bevorzugten Ausfuhrungsform der Erfindung werden die erfindungsgemäßen Verbin- düngen in Kombination mit einem alpha-1-Rezeptoren-Blocker, wie beispielhaft und vorzugsweise Prazosin, verabreicht.
Bei einer bevorzugten Ausfuhrungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem beta-Rezeptoren-Blocker, wie beispielhaft und vorzugsweise Propranolol, Atenolol, Timolol, Pindolol, Alprenolol, Oxprenolol, Penbutolol, Bupranolol, Meti- pranolol, Nadolol, Mepindolol, Carazalol, Sotalol, Metoprolol, Betaxolol, Celiprolol, Bisoprolol, Carteolol, Esmolol, Labetalol, Carvedilol, Adaprolol, Landiolol, Nebivolol, Epanolol oder Bucin- dolol, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Angiotensin AH-Antagonisten, wie beispielhaft und vorzugs- weise Losartan, Candesartan, Valsartan, Telmisartan oder Embursatan, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem ACE-Hemmer, wie beispielhaft und vorzugsweise Enalapril, Captopril, Lisinopril, Ramipril, Delapril, Fosinopril, Quinopril, Perindopril oder Trandopril, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Endotheün-Λntagonistcn, wie beispielhaft und vorzugsweise Bosentan, Darusentan, Ambrisentan oder Sitaxsentan, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Renin-Inhibitor, wie beispielhaft und vorzugsweise Aliskiren, SPP-600 oder SPP-800, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Mineralocorticoid-Rezeptor-Antagonisten, wie beispielhaft und vorzugsweise Spironolacton oder Eplerenon, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbin- düngen in Kombination mit einem Diuretikum, wie beispielhaft und vorzugsweise Furosemid, verabreicht. Unter den Fettstoffwechsel verändernden Mitteln werden vorzugsweise Verbindungen aus der Gruppe der CETP-Inhibitoren, Thyroidrezeptor-Agonisten, Cholesterinsynthese-Inhibitoren wie HMG-CoA-Reduktase- oder Squalensynthese-Inhibitoren, der ACAT-Inhibitoren, MTP-Inhibi- toren, PPAR-alpha-, PPAR-gamma- und/oder PPAR-delta-Agonisten, Cholesterin-Absorptions- hemmer, polymeren Gallensäureadsorber, Gallensäure-Reabsorptionshemmer, Lipase-Inhibitoren sowie der Lipoprotein(a)-Antagonisten verstanden.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem CETP-Inhibitor, wie beispielhaft und vorzugsweise Torcetrapib (CP-529 414), JJT-705 oder CETP-vaccine (Avant), verabreicht.
Bei einer bevorzugten Ausfuhrungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Thyroidrezeptor-Agonisten, wie beispielhaft und vorzugsweise D-Thyroxin, 3,5,3'-Triiodothyronin (T3), CGS 23425 oder Axitirome (CGS 26214), verabreicht.
Bei einer bevorzugten Ausfuhrungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem HMG-CoA-Reduktase-Inhibitor aus der Klasse der Statine, wie beispielhaft und vorzugsweise Lovastatin, Simvastatin, Pravastatin, Fluvastatin, Atorvastatin, Rosuvastatin, Cerivastatin oder Pitavastatin, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Squalensynthese-Inhibitor, wie beispielhaft und vorzugsweise BMS-188494 oder TAK-475, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem ACAT-ϊnhibitoi, wie beispielhaft und vorzugsweise Avasimibe, Melinamide, Pactimibe, Eflucimibe oder SMP-797, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem MTP-Inhibitor, wie beispielhaft und vorzugsweise Implitapide, BMS-201038, R-103757 oder JTT-130, verabreicht.
Bei einer bevorzugten Ausfuhrungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem PPAR-gamma-Agonisten, wie beispielhaft und vorzugsweise Pioglitazone oder Rosiglitazone, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbin- düngen in Kombination mit einem PPAR-delta-Agonisten, wie beispielhaft und vorzugsweise GW 501516 oder BAY 68-5042, verabreicht. Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Cholesterin-Absorptionshemmer, wie beispielhaft und vorzugsweise Ezetimibe, Tiqueside oder Pamaqueside, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbin- düngen in Kombination mit einem Lipase-Inhibitor, wie beispielhaft und vorzugsweise Orlistat, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem polymeren Gallensäureadsorber, wie beispielhaft und vorzugsweise Cholestyramin, Colestipol, Colesolvam, CholestaGel oder Colestimid, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbindungen in Kombination mit einem Gallensäure-Reabsorptionshemmer, wie beispielhaft und vorzugsweise ASBT (= IBAT)-Inhibitoren wie z.B. AZD-7806, S-8921, AK-105, BARI-1741, SC-435 oder SC-635, verabreicht.
Bei einer bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen Verbin- düngen in Kombination mit einem Lipoprotein(a)- Antagonisten, wie beispielhaft und vorzugsweise Gemcabene calcium (CI-1027) oder Nicotinsäure, verabreicht.
Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, die mindestens eine erfindungsgemäße Verbindung, üblicherweise zusammen mit einem oder mehreren inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.
Die erfindungsgemäßen Verbindungen können systemisch und/oder lokal wirken. Zu diesem Zweck können sie auf geeignete Weise appliziert werden, wie z.B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctivae otisch oder als Implantat bzw. Stent.
Für diese Applikationswege können die erfindungsgemäßen Verbindungen in geeigneten Applikationsformen verabreicht werden.
Für die orale Applikation eignen sich nach dem Stand der Technik funktionierende, die erfindungsgemäßen Verbindungen schnell und/oder modifiziert abgebende Applikationsformen, die die erfindungsgemäßen Verbindungen in kristalliner und/oder amorphisierter und/oder gelöster Form enthalten, wie z.B. Tabletten (nicht-überzogene oder überzogene Tabletten, beispielsweise mit magensaftresistenten oder sich verzögert auflösenden oder unlöslichen Überzügen, die die Freisetzung der erfindungsgemäßen Verbindung kontrollieren), in der Mundhöhle schnell zer- fallende Tabletten oder Filme/Oblaten, Filme/Lyophylisate, Kapseln (beispielsweise Hart- oder Weichgelatinekapseln), Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Aerosole oder Lösungen.
Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (z.B. intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder unter Einschaltung einer Resorption (z.B. intramuskulär, subcutan, intracutan, percutan oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u.a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten oder sterilen Pulvern.
Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhalatoren, Nebulizer), Nasentropfen, -lösungen oder -sprays, lingual, sublingual oder buccal zu applizierende Tabletten, Filme/Oblaten oder Kapseln, Suppositorien, Ohren- oder Augen- präparationen, Vaginalkapseln, wäßrige Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben, Cremes, transdermale therapeutische Systeme (z.B. Pflaster), Milch, Pasten, Schäume, Streupuder, Implantate oder Stents.
Bevorzugt sind die orale oder parenterale Applikation, insbesondere die orale Applikation.
Die erfϊndungsgemäßen Verbindungen können in die angeführten Applikationsformen überführt werden. Dies kann in an sich bekannter Weise durch Mischen mit inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen geschehen. Zu diesen Hilfsstoffen zählen u.a. Trägerstoffe (beispielsweise mikrokristalline Cellulose, Lactose, Mannitol), Lösungsmittel (z.B. flüssige PoIy- ethylenglycole), Emulgatoren und Dispergier- oder Netzmittel (beispielsweise Natriumdodecyl- sulfat, Polyoxysorbitanoleat), Bindemittel (beispielsweise Polyvinylpyrrolidon), synthetische und natürliche Polymere (beispielsweise Albumin), Stabilisatoren (z.B. Antioxidantien wie beispielsweise Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie beispielsweise Eisenoxide) und Geschmacks- und/oder Geruchskorrigentien.
Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 0.001 bis 1 mg/kg, vorzugsweise etwa 0.01 bis 0.5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Dosierung etwa 0.01 bis 100 mg/kg, vorzugsweise etwa 0.01 bis 20 mg/kg und ganz besonders bevorzugt 0.1 bis 10 mg/kg Körper- gewicht.
Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.
Die nachfolgenden Ausführungsbeispiele erläutern die Erfindung. Die Erfindung ist nicht auf die Beispiele beschränkt.
Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich jeweils auf das Volumen.
A. Beispiele
Abkürzungen:
abs. absolut aq. wässrig
Bsp. Beispiel
CI chemische Ionisation (bei MS)
DC Dünnschichtchromatographie
DCI direkte chemische Ionisation (bei MS)
DMF Dimethylformamid
DMSO Dimethylsulfoxid d. Th. der Theorie (bei Ausbeute) ee Enantiomerenüberschuss
EI Elektronenstoß-Ionisation (bei MS) eq. Äquivalent(e)
ESI Elektrospray-Ionisation (bei MS)
GC Gaschromatographie h Stunde(n)
HPLC Hochdruck-, Hochleistungsflüssigchromatographie
LC/MS Flüssigchromatographie-gekoppelte Massenspektroskopie min Minute(n)
MS Massenspektroskopie
NMR Kernresonanzspektroskopie
Rf Ketentionsindex (bei DC)
RT Raumtemperatur
R, Retentionszeit (bei HPLC)
THF Tetrahydrofuran
UV Ultraviolett-Spektroskopie v/v Volumen zu Volumen-Verhältnis (einer Lösung)
LC/MS-Methoden:
Methode 1 (LC-MS)
Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 1 Wasser + 0.5 ml 50%-ige Ameisen- säure, Eluent B: 1 1 Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min → 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 500C; UV-Detektion: 210 nm.
Methode 2 (LC-MS)
Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 1 Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 1 Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A -> 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min → 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 500C; UV-Detektion: 210 nm.
Methode 3 (LC-MS)
Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 1 Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 1 Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A -> 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min → 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 500C; UV-Detektion: 210 nm.
Methode 4 (LC-MS)
Instrument: Micromass Quattro LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 1 Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 1 Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A -> 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min ϊ mi/min → 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 500C; UV-Detektion: 208-400 nm.
Methode 5 (LC-MS)
Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Thermo Hypersil GOLD 3μ 20 mm x 4 mm; Eluent A: 1 1 Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 1 Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 100% A → 0.2 min 100% A → 2.9 min 30% A → 3.1 min 10% A → 5.5 min 10% A; Ofen: 5O0C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.
Methode 6 (LC-MS)
Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Phenomenex Gemini 3μ 30 mm x 3.00 mm; Eluent A: 1 1 Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 1 Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min → 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 500C; UV-Detektion: 210 nm.
GC/MS-Methoden:
Methode 1 (GC-MS)
Instrument: Micromass GCT, GC6890; Säule: Restek RTX-35MS, 30 m x 250 μm x 0.25 μm; konstanter Fluss mit Helium: 0.88 ml/min; Ofen: 6O0C; Inlet: 2500C; Gradient: 600C (0.30 min halten), 50°C/min → 1200C, 16°C/min → 2500C, 30°C/min → 3000C (1.7 min halten).
Methode 2 (GC-MS')
Instrument: Micromass GCT, GC6890; Säule: Restek RTX-35MS, 30 m x 250 μm x 0.25 μm; konstanter Fluss mit Helium: 0.88 ml/min; Ofen: 600C; Inlet: 25O0C; Gradient: 600C (0.30 min halten), 50°C/min → 1200C, 16°C/min → 2500C, 30°C/min → 3000C (8.7 min halten).
HPLC-Methoden:
Methode 1 (HPLO
Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil 100 RP-18, 60 mm x 2.1 mm, 3.5 μm; Eluent A: 5 ml HClO4 (70%-ig) / 1 Wasser, Eluent B: Acetonitril; Gradient: 0 min 2% B → 0.5 min 2% B → 4.5 min 90% B → 9 min 90% B → 9.2 min 2% B → 10 min 2% B; Fluss: 0.75 ml/min; Säulentemperatur: 300C; UV-Detektion: 210 nm.
Methode 2 (HPLCI
Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil 100 RP-18, 60 mm x 2.1 mm, 3.5 μm; Eluent A: 5 ml HClO4 (70%-ig) / 1 Wasser, Eluent B: Acetonitril; Gradient: 0 min 2% B → 0.5 min 2% B → 4.5 min 90% B → 15 min 90% B → 15.2 min 2% B → 16 min 2% B; Fluss: 0.75 ml/min; Säulentemperatur: 300C; UV-Detektion: 210 nm. Ausgangsverbindungen und Intermediate:
Beispiel IA
Cyclopropyliden-essigsäureethylester
Eine Suspension von 38.49 g (220.80 mmol) [(1-Ethoxycyclopropyl)oxy](trimethyl)silan, 100.0 g (287.04 mmol) (Triphenylphosphoranyliden)essigsäureethylester und 3.51 g (28.70 mmol) Benzoesäure in 600 ml Toluol wird für 18 Stunden bei 900C Badtemperatur gerührt. Nach dem Erkalten wird der Ansatz auf 800 g Kieselgel-60 gegossen und sukzessive mit je 3 Liter Petrolether 40- 60 und Dichlormethan eluiert. Das Dichlormethan-Eluat wird nach Entfernen des Lösungsmittels bei 16O0C und 14 mbar im Kugelrohr destilliert. Es werden 17.95 g (64% d. Th.) der Titelverbindung als farblose Flüssigkeit erhalten.
GC-MS (Methode 1): R, = 3.38 min; MS: m/z = 98 [M-28]+.
1H-NMR (400 MHz, CDCl3): δ = 1.23 (m, 2H), 1.31 (t, 3H), 1.45 (m, 2H), 4.21 (q, 2H), 6.23 (m, IH).
Beispiel 2A
(l-Vinylcyclopropyl)essigsäureethylester
Unter Argon werden 0.55 g (5.53 mmol) Kupfer(I)chlorid und 0.59 g (13.82 mmol) Lithiumchlorid in 150 ml wasserfreiem THF suspendiert. Die Reaktionsmischung wird auf -78°C abgekühlt, mit 48.8 ml (82.95 mmol) Vinylmagnesiumchlorid-Lösung (1.7 M in THF) versetzt und für 10 min gerührt. Anschließend wird über einen Zeitraum von 30 min eine Lösung von 8.72 g (69.12 mmol) Cyclopropyliden-essigsäureethylester (Beispiel IA) in 50 ml wasserfreiem THF zugetropft. Nach beendeter Zugabe wird das Kältebad gegen ein Eis/Aceton-Bad ausgetauscht. Nach weiteren 15 min wird die Reaktion durch Zutropfen von 100 ml 1 N Salzsäure beendet. Die Reaktionsmischung wird mit Natriumchlorid gesättigt und anschließend mit 100 ml einer gesättigten Natriumchlorid- Lösung, die 5 ml einer 25%-igen wässrigen Ammoniak-Lösung enthält, versetzt. Der Ansatz wird über Celite filtriert. Das Filtrat wird mit ammoniakalischer Natriumchlorid-Lösung so lange ge- waschen, bis die wässrige Phase farblos bleibt. Die organische Phase wird mit gesättigter Natriumchlorid-Lösung gewaschen und über wasserfreiem Magnesiumsulfat getrocknet. Nach Entfernen des Lösungsmittels und Kugelrohr-Destillation des Rückstands bei 1500C und 15 mbar werden 7.10 g (67% d. Th.) der Titelverbindung als farblose Flüssigkeit erhalten.
GC-MS (Methode 1): R, = 3.60 min; MS: m/z = 154 [M]+.
1H-NMR (400 MHz, CDCl3): δ = 0.73 (m, 2H), 0.77 (m, 2H), 1.25 (t, 3H), 2.42 (s, 2H), 4.14 (q, 2H), 4.92 (d, IH), 4.95 (d, IH), 5.55 (dd, IH).
Beispiel 3A
[l-(2-Bromethyl)cyclopropyl]essigsäureethylester
Unter Argon wird eine Lösung von 14.00 g (90.79 mmol) (l-Vinylcyclopropyl)essigsäureethyl- ester (Beispiel 2A) in 80 ml wasserfreiem THF bei 00C tropfenweise mit 30.86 ml (30.86 mmol) Boran-THF-Komplex-Lösung (1 M in THF) versetzt. Nach 30 min bei 00C wird der Ansatz für weitere 30 min bei Raumtemperatur gerührt und dann mit 0.20 ml (5.00 mmol) Methanol versetzt. Bei -5°C werden anschließend zur Reaktionsmischung sukzessive 5.61 ml (108.94 mmol) Brom und 26.98 g (150.0 mmol) Natriummethylat-Lösung (30%-ig in Methanol) getropft. Nachdem der Ansatz Raumtemperatur erreicht hat, werden 30 ml gesättigte Natriumhydrogencarbonat-Lösung hinzugefügt. Die Reaktionsmischung wird dreimal mit /ert.-Butylmethylether extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen und über wasserfreiem Magnesiumsulfat getrocknet. Nach Entfernen des Lösungsmittels und Kugelrohr- Destillation des Rückstands bei 1800C und 0.04 mbar werden 12.90 g (60% d. Th.) der Titelverbindung als gelbes Öl erhalten, welches sich bei Lagerung im Kühlschrank in wenigen Stunden stark verdunkelt.
GC-MS (Methode 1): R, = 5.94 min; MS: m/z = 189 [M-45]+.
1H-NMR (400 MHz, CDCl3): δ = 0.49 (m, 2H), 0.51 (m, 2H), 1.27 (t, 3H), 1.93 (t, 2H), 2.25 (s, 2H), 3.48 (t, 2H), 4.14 (q, 2H).
Beispiel 4A
2-[4-(Methoxycarbonyl)phenyl]ethylrnalonsäurediallylester
Unter Argon wird eine Lösung von 27.28 g (148.09 mmol) Malonsäurediallylester in 220 ml wasserfreiem Dioxan bei 00C portionsweise mit 4.44 g (111.0 mmol) Natriumhydrid (60%-ige Dispersion in Mineralöl) versetzt. Nachdem der Ansatz für 30 min bei 400C gerührt wurde, wird eine Lösung von 18.00 g (74.04 mmol) 4-(2-Bromethyl)benzoesäuremethylester bei Raumtemperatur zugetropft. Die Reaktionsmischung wird anschließend für 16 Stunden auf 1100C erwärmt. Nach Zusatz von 25 ml gesättigter Ammoniumchlorid-Lösung wird das Dioxan weitgehend am Rotationsverdampfer entfernt. Der Rückstand wird in 200 ml Essigsäureethylester und 100 ml Wasser aufgenommen. Die wässrige Phase wird mit Essigsäureethylester extrahiert. Die ver- einigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen und über wasserfreiem Magnesiumsulfat getrocknet. Nach Abdestillation eines Großteils des überschüssigen Diallylmalonats wird das Rohprodukt über 100 g Kiese lgel-60 vorgereinigt (Eluent: Cyclo- hexan/Dichlormethan 2:1, dann Cyclohexan/Essigsäureethylester 4:1). Das gewünschte Produkt wird anschließend mittels präparativer HPLC isoliert. Es werden 11.60 g (22% d. Th.) eines farb- losen Öls erhalten.
LC-MS (Methode 2): R. = 2.53 min; MS (ESIpos): m/z = 347 [M+H]+.
1H-NMR (400 MHz, CDCl3): δ = 2.26 (m, 2H), 2.73 (t, 2H), 3.40 (t, IH), 3.91 (s, 3H), 4.63 (d, 4H), 5.25 (d, 2H), 5.33 (d , 2H), 5.90 (m, 2H), 7.25 (d, 2H), 7.96 (d, 2H).
Beispiel 5A
{2-[ 1 -(2-Ethoxy-2-oxoethyl)cyclopropyl]ethyl} {2-[4-(methoxycarbonyl)phenyl]ethyl} malonsäurediallylester
Unter Argon wird eine Lösung von 1.34 g (3.87 mmol) 2-[4-(Methoxycarbonyl)phenyl]ethyl- malonsäurediallester in 10 ml wasserfreiem DMF bei 00C portionsweise mit 0.22 g (5.41 mmol) Natriumhydrid (60%-ige Dispersion in Mineralöl) versetzt. Nachdem der Ansatz für 30 min bei 400C gerührt wurde, wird bei dieser Temperatur eine Lösung von 1.00 g (4.25 mmol) [l-(2-Brom- ethyl)cyclopropyl]essigsäureethylester in 5 ml wasserfreiem DMF zugetropft. Die Reaktionsmischung wird anschließend für 12 Stunden auf 1100C erwärmt. Nach Zusatz von 100 ml Wasser und 100 ml Essigsäureethylester sowie Phasentrennung wird die wässrige Phase mit Essigsäure- ethylester extrahiert. Anschließend wird die organische Phase fünfmal mit Wasser und einmal mit gesättigter Natriumchlorid-Lösung gewaschen und über wasserfreiem Magnesiumsulfat getrocknet. Die Reinigung des Rohprodukts erfolgt mittels präparativer HPLC. Es werden 0.33 g (17% d. Th.) der Titelverbindung als farbloses Öl erhalten.
LC-MS (Methode 2): R. = 3.02 min; MS (ESIpos): m/z = 501 [M+H]+.
1H-NMR (400 MHz, CDCl3): δ = 0.35 (m, 2H), 0.47 (m, 2H), 1.23 (t, 3H), 1.26 (m, 2H), 2.10 (m, 2H), 2.16 (m, 2H), 2.25 (s, 2H), 2.58 (rn, 2H), 3.90 (s, 3K), 4.1 i (q, 2H), 4.61 (d, 4H), 5.24 (m, 2H), 5.32 (m, 2H), 5.88 (m, 2H), 7.24 (d, 2H), 7.94 (d, 2H).
Beispiel 6A
4-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]-2-{2-[4-(methoxycarbonyl)phenyl]ethyl}butansäure
Eine Lösung von 650 mg (1.3 mmol) {2-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]ethyl} {2-[4-(meth- oxycarbonyl)phenyl]ethyl}malonsäurediallylester, 24 mg (0.09 mmol) Triphenylphosphin und 6 mg (0.026 mmol) Palladiumacetat in 15 ml Dioxan wird bei Raumtemperatur mit einer Lösung von 0.6 ml (4.3 mmol) Triethylamin und 0.12 ml (3.25 mmol) Ameisensäure in 15 ml Dioxan versetzt. Das Reaktionsgemisch wird anschließend bei 1000C 12 Stunden lang gerührt. Nach vollständigem Umsatz wird die Reaktionslösung abgekühlt und das Lösungsmittel im Vakuum entfernt. Anschließend wird der Rückstand in Essigsäureethylester und Wasser aufgenommen, mit 1 N Salzsäure angesäuert und die organische Phase abgetrennt. Die wässrige Phase wird noch dreimal mit Essigsäureethylester extrahiert, die organischen Phasen anschließend vereinigt, mit gesättigter Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird die Lösung im Vakuum eingeengt und der Rückstand mittels Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 4:1) gereinigt. Es werden 406 mg (83% d. Th.) eines gelben Öls erhalten.
LC-MS (Methode 4): R, = 2.55 min; m/z = 377 [M+H*].
Beispiel 7A
Methyl 4-[5-[ 1 -(2-ethoxy-2-oxoethyl)cyclopropyl]-3-(hydroxymethyl)pentyl]benzoat
Zu einer Lösung von 400 mg (1.06 mmol) 4-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]-2-{2-[4-(meth- oxycarbonyl)phenyl]ethyl}butansäure in 10 ml THF werden 2.13 ml einer 1 M Boran-THF- Komplex-Lösung (2.13 mmol) bei -100C zugetropft. Nach Erwärmen auf 00C wird bei dieser Tem- peratur noch 2 Stunden nachgerührt. Nach vollständiger Umsetzung wird das Reaktionsgemisch mit gesättigter Ammoniumchlorid-Lösung versetzt und dreimal mit 20 ml Essigsäureethylester extrahiert. Anschließend werden die vereinigten organischen Phasen über Natriumsulfat getrocknet und das Lösungsmittel bis zur Trockene eingeengt. Es werden 330 mg (85% d. Th.) eines farblosen Öls erhalten.
LC-MS (Methode 2): R, = 2.42 min; m/z = 363 [M+lT].
Beispiel 8A
Methyl 4-{5-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]-3-formylpentyl}benzoat
Eine Lösung von 330 mg (0.91 mmol) Methyl 4-[5-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]-3- (hydroxymethyl)pentyl]benzoat in 30 ml Dichlormethan wird mit 235.5 mg (1.09 mmol) Pyridi- niumchlorochromat (PCC) versetzt und 12 Stunden bei Raumtemperatur gerührt. Nach vollständigem Umsatz werden 10 g Kieselgel zugegeben und das Lösungsmittel vorsichtig im Vakuum bis zur Trockene entfernt. Der Rückstand wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 4:1) gereinigt. Es werden 192 mg (58% d. Th.) eines farb- losen Öls erhalten.
LC-MS (Methode 2): R, = 2.56 min; m/z = 361 [M+H+].
Beispiel 9A
Methyl 4-[(4£)-3-{2-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]ethyl}-5-(2-hydroxyphenyl)pent-4-en-l- yljbenzoat
Zu einer Lösung von 359 mg (0.799 mmol) (2-Hydroxybenzyl)-triphenylphosphoniumbromid in 5 ml wasserfreiem THF werden bei 00C 0.6 ml (1.5 mmol) einer 2.5 M Lösung von n-Butyllithium in Hexan langsam hinzugefügt und 45 min nachgerührt. Anschließend werden bei dieser Temperatur 192 mg (0.53 mmol) Methyl 4-{5-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]-3-formylpentyl}- benzoat langsam zugegeben und die Mischung zwei Stunden bei 00C gerührt. Nach vollständiger Umsetzung wird die Reaktionslösung mit gesättigter Ammoniumchlorid-Lösung versetzt und bis zur Trockene eingeengt. Der Rückstand wird in Essigsäureethylester aufgenommen, mit Wasser und gesättigter Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird das Lösungsmittel bis zur Trockene eingeengt. Das erhaltene Rohprodukt wird durch Flash- Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 4:1) gereinigt. Es werden 178.5 mg (74% d. Th.) eines farblosen Öls erhalten.
LC-MS (Methode 1): R, = 3.25 min; m/z = 451 [M+H*]. Beispiel IQA
Methyl 4-((4£)-5-{2-[(4-/err.-butylbenzyl)oxy]phenyl}-3-{2-[l-(2-ethoxy-2-oxoethyl)cyclo- propy 1] ethy 1} pent-4-en- 1 -y l)benzoat
Eine Lösung von 178 mg (0.395 mmol) Methyl 4-[(4£)-3-{2-[l-(2-ethoxy-2-oxoethyl)cyclo- propyl]ethyl}-5-(2-hydroxyphenyl)pent-4-en-l-yl]benzoat in 5 ml trockenem Acetonitril wird mit 134.6 mg (0.59 mmol) 4-(tert.-Butyl)benzylbromid und 163.8 mg (1.18 mmol) wasserfreiem Kaliumcarbonat versetzt und 12 Stunden unter Rückfluss erhitzt. Anschließend wird der Ansatz zur Trockene eingeengt. Der Rückstand wird in Essigsäureethylester aufgenommen, mit Wasser und gesättigter Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Die organische Phase wird eingeengt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 10:1) gereinigt. Es werden 130.6 mg (55% d. Th.) eines Feststoffs erhalten.
LC-MS (Methode 1): R4 = 3.74 min; m/z = 597 [M+FT].
Beispiel IIA
2-(4-Methoxycarbonylbenzyl)malonsäurediallylester
Eine Lösung von 56.7 g (0.3 mol) Malonsäurediallylester in 375 ml Dioxan und 75 ml THF wird bei 00C portionsweise mit 14.42 g (0.36 mol) Natriumhydrid versetzt (Vorsicht: Wasserstoffentwicklung). Nach Erwärmen auf Raumtemperatur wird der Ansatz 1 Stunde bei 400C gerührt. Anschließend werden 111.88 g (0.6 mol) 4-Chlormethyl-benzoesäuremethylester, gelöst in 375 ml Dioxan, langsam bei 400C zugetropft und die Reaktionslösung dann über Nacht bei 1100C (Badtemperatur) gerührt. Nach Abkühlen auf Raumtemperatur wird das Reaktionsgemisch auf 1200 ml Wasser gegeben. Dabei ist darauf zu achten, dass der pH- Wert <7 ist (gegebenenfalls werden wenige ml 1 M Salzsäure bis ca. pH 2 zudosiert). Der Ansatz wird dann dreimal mit Essigsäure- ethylester extrahiert, die vereinigten organischen Phasen mit gesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird das Lösungsmittel im Vakuum bis zur Trockene eingeengt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an 3 kg Kieselgel (Laufinittel: Petrolether/Essigsäureethylester 10:1) gereinigt. Es werden 85.4 g (0.26 mol, 85% d. Th.) eines farblosen Feststoffes erhalten.
1H-NMR (300 MHz, CDCl3, δ/ppm): 7.96 (2H, d), 7.29 (2H, d), 5.91-5.74 (2H, m), 5.32-5.17 (4H, m), 4.59 (4H, d), 3.93 (3H, s), 3.74 (IH, t), 3.31 (2H, d).
MS (DCI, NH3): 349 (M+NH,4).
Beispiel 12A
{2-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]ethyl}[4-(methoxycarbonyl)benzyl]malonsäurediallyl- ester
Unter Argon wird eine Lösung von 10.87 g (32.70 mmol) [4-(Methoxycarbonyl)benzyl]malon- säurediallylester in 60 ml wasserfreiem DMF bei 00C portionsweise mit 1.67 g (41.62 mmol) Natriumhydrid (60%-ige Dispersion in Mineralöl) versetzt. Nachdem der Ansatz für 30 min bei 400C gerührt wurde, wird bei dieser Temperatur eine Lösung von 6.99 g (29.73 mmol) [l-(2- Bromethyl)cyclopropyl]essigsäureethylester in 60 ml wasserfreiem DMF zugetropft. Die Reaktionsmischung wird anschließend für 8 Stunden auf 1000C erwärmt. Nach Zusatz von 600 ml Wasser und 200 ml Essigsäureethylester sowie Phasentrennung wird die wässrige Phase zweimal mit Essigsäureethylester extrahiert. Anschließend wird die organische Phase fünfmal mit Wasser und einmal mit gesättigter Natriumchlorid-Lösung gewaschen und über wasserfreiem Magnesiumsulfat getrocknet. Die Reinigung des Rohprodukts erfolgt zunächst flash-chromatographisch (400 g Kieselgel-60, Eluent: Cyclohexan/Essigsäureethylester 4:1), dann mittels präparativer HPLC. Es werden 4.87 g (28% d. Th.) der Titelverbindung in Form eines farblosen Öls erhalten.
LC-MS (Methode 2): R4 = 2.92 min; MS (ESIpos): m/z = 487 [M+H]+.
1H-NMR (400 MHz, CDCl3): δ = 0.34 (m, 2H), 0.44 (m, 2H), 1.26 (t, 3H), 1.36 (m, 2H), 1.90 (m, 2H), 2.19 (s, 2H), 3.27 (s, 2H), 3.90 (s, 3H), 4.13 (q, 2H), 4.59 (m, 4H), 5.23 (m, 2H), 5.30 (m, 2H), 5.85 (m, 2H), 7.19 (d, 2H), 7.92 (d, 2H).
Beispiel 13A
4-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]-2-[4-(methoxycarbonyl)benzyl]butansäure
Eine Lösung von 4.58 g (9.41 mmol) {2-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]ethyl}[4-(methoxy- carbonyl)benzyl]malonsäurediallylester, 173 mg (0.66 mmol) Triphenylphosphin und 42 mg (0.19 mmol) Palladiumacetat in 60 ml Dioxan wird bei Raumtemperatur mit einer Lösung von 4.33 ml (31.06 mmol) Triethylamin und 0.89 ml (23.53 mmol) Ameisensäure in 20 ml Dioxan versetzt. Das Reaktionsgemisch wird anschließend bei 1000C 2 Stunden lang gerührt. Nach vollständigem Umsatz wird die Reaktionslösung abgekühlt und das Lösungsmittel im Vakuum entfernt. An- schließend wird der Rückstand in Essigsäureethylester und Wasser aufgenommen, mit 1 N Salzsäure angesäuert und die organische Phase abgetrennt. Die wässrige Phase wird noch dreimal mit Essigsäureethylester extrahiert, die organischen Phasen anschließend vereinigt, mit gesättigter Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird die Lösung im Vakuum eingeengt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Petrolether/Essigsäureethylester 4:1) gereinigt. Es werden 2.68 g (73% d. Th., 95% Reinheit) eines farblosen Feststoffes erhalten. 1H-NMR (400 MHz, DMSO-d«, δ/ppm): 12.22-12.08 (IH, breit), 7.88 (2H, d), 7.31 (2H, d), 4.02 (2H, q), 3.84 (3H, s), 2.92-2.82 (IH, m), 2.81-2.72 (IH, m), 2.22-2.10 (2H, m), 1.63-1.45 (2H, m), 1.39-1.19 (3H, m), 1.16 (3H, t), 0.41-0.32 (2H, m), 0.31-0.22 (2H, m).
LC-MS (Methode 1): R4 = 2.62 min; m/z = 363 [M+H*].
Beispiel 14A
Methyl 4-[4-[ 1 -(2-ethoxy-2-oxoethyl)cyclopropyl]-2-(hydroxymethyl)butyl]benzoat
Zu einer Lösung von 2.23 g (6.15 mmol) 4-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]-2-[4-(methoxy- carbonyl)benzyl]butansäure in 50 ml THF werden 12.31 ml einer 1 M Boran-THF-Komplex- Lösung (12.31 mmol) bei -100C zugetropft. Nach Erwärmen auf 00C wird bei dieser Temperatur noch 2 Stunden und anschließend 1 Stunde bei Raumtemperatur nachgerührt. Nach vollständiger Umsetzung wird das Reaktionsgemisch mit gesättigter Ammoniumchlorid-Lösung versetzt und dreimal mit je 50 ml Essigsäureethylester extrahiert. Anschließend werden die vereinigten organischen Phasen über Natriumsulfat getrocknet und das Lösungsmittel bis zur Trockene entfernt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselge! (Laufmittel: Cyclohexan/ Essigsäureethylester 2:1) gereinigt. Es werden 1680 mg (78% d. Th.) eines farblosen Öls erhalten.
LC-MS (Methode 1): R, = 2.52 min; m/z = 349 [M+ϊT].
Beispiel 15A
Methyl 4-{4-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]-2-formylbutyl}benzoat
Eine Lösung von 1680 mg (4.82 mmol) Methyl 4-[4-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]-2- (hydroxymethyl)butyl]benzoat in 100 ml Dichlormethan wird mit 1247 mg (5.79 mmol) Pyridi- niumchlorochromat (PCC) versetzt und 12 Stunden bei Raumtemperatur gerührt. Nach vollständi- gern Umsatz werden 10 g Kieselgel zugegeben und das Lösungsmittel vorsichtig im Vakuum bis zur Trockene entfernt. Der Rückstand wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 4:1) gereinigt. Es werden 1270 mg (76% d. Th.) eines farblosen Öls erhalten.
LC-MS (Methode 1): R1 = 2.74 min; m/z = 347 [M+H*].
Beispiel 16A
Methyl 4-[(3£)-2-{2-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]ethyl}-4-(2-hydroxyphenyl)but-3-en-l- yl]benzoat
Zu einer Lösung von 2.471 g (5.5 mmol) (2-Hydroxybenzyl)triphenylphosphoniumbromid in 25 ml wasserfreiem THF werden bei 00C 4.11 ml (10.26 mmol) einer 2.5 M Lösung von n-Butyllithium in Hexan langsam hinzugefügt und 45 min nachgerührt. Anschließend werden bei dieser Temperatur 1.27 g (3.67 mmol) Methyl 4-{4-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]-2-formylbutyl}benzoat langsam zudosiert und die Mischung zwei Stunden bei 00C gerührt. Nach vollständiger Umsetzung wird die Reaktionslösung mit gesättigter Ammoniumchlorid-Lösung versetzt und bis zur Trockene eingeengt. Der Rückstand wird in Essigsäureethylester aufgenommen, mit Wasser und gesättigter Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird das Lösungsmittel bis zur Trockene eingeengt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 4:1) gereinigt. Es werden 757 mg (47% d. Th.) eines gelblichen Öls erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 9.41 (IH, s), 7.85 (2H, d), 7.32 (2H, d), 7.28 (IH, d), 6.99 (IH, t), 6.80-6.68 (2H, m), 6.48 (IH, d), 6.04-5.90 (IH, m), 4.00 (2H, q), 3.82 (3H, s), 2.86-2.76 (IH, m), 2.75-2.52 (IH, m), 2.47-2.32 (IH, m), 2.25-2.07 (2H, m), 1.58-1.46 (IH, m), 1.44-1.30 (2H5 m), 1.27-1.18 (IH, m), 1.11 (3H, t), 0.41-0.20 (4H, m).
LC-MS (Methode 4): R, = 3.09 min; m/z = 437 [M+H*].
Beispiel 17A
Methyl 4-((3£)-4-{2-[(4-rerΛ-butylbenzyl)oxy]phenyl}-2-{2-[l-(2-ethoxy-2-oxoethyl)cyclo- propy 1] ethy 1 } but-3 -en- 1 -y l)benzoat
Eine Lösung von 400 mg (0.92 mmol) Methyl 4-[(3.E)-2-{2-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]- ethyl}-4-(2-hydroxyphenyl)but-3-en-l-yl]benzoat in 10 ml trockenem Acetonitril wird mit 312.2 mg (1.37 mmol) 4-(/er/.-Butyl)benzylbromid und 253.3 mg (1.83 mmol) wasserfreiem Kalium- carbonat versetzt und 12 Stunden unter Rückfluss erhitzt. Anschließend wird der Ansatz zur Trockene eingeengt. Der Rückstand wird in Essigsäureethylester aufgenommen, mit Wasser und gesättigter Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Die organische Phase wird eingeengt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 1 :1) gereinigt. Es werden 289 mg (54% d. Th.) eines Feststoffs erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 7.84 (2H, d), 7.41-7.34 (3H, m), 7.31 (2H, d), 7.27 (2H, d), 7.15 (IH, t), 7.00 (IH, d), 6.88 (IH, t), 6.42 (IH, d), 6.06-5.96 (IH, m), 5.02 (2H, s), 3.98 (2H, q), 3.81 (3H, s), 2.86-2.78 (IH, m), 2.73-2.62 (IH, m), 2.48-2.38 (IH, m), 2.24-2.10 (2H, m), 1.60- 1.49 (IH, m), 1.45-1.33 (2H, m), 1.28 (9H, s), 1.25-1.18 (IH, m), 1.09 (3H, t), 0.40-0.31 (2H, m), 0.30-0.20 (2H, m).
LC-MS (Methode 1): R, = 3.68 min; m/z = 600 [MH-NH4 +].
Beispiel 18A
(5-Brompentyl)benzol
Eine Lösung von 416.7 ml (1.83 mol) 48%-iger Bromwasserstoffsäure wird bei 00C mit 50 g (0.304 mol) 5-Phenylpentan-l-ol versetzt und 30 min bei 00C nachgerührt. Anschließend wird die Reaktionslösung 12 Stunden bei 1000C gerührt. Nach vollständiger Umsetzung wird der Ansatz auf Raumtemperatur abgekühlt und mit 200 ml Essigsäureethylester versetzt. Nach Extraktion wird die organische Phase abgetrennt, mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird das Filtrat bis zur Trockene eingeengt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan) gereinigt. Es werden 59.4 g (0.26 mol, 86% d. Th.) einer farblosen Flüssigkeit erhalten.
1H-NMR (300 MHz, CDCl3, δ/ppm): 7.32-7.22 (2H, m), 7.21-7.11 (3H, m), 3.40 (2H, t), 2.61 (2H, t), 1.97-1.81 (2H, m), 1.72-1.58 (2H, m), 1.56-1.39 (2H, m).
MS (CI): 226 [M+].
Beispiel 19A
Methyl 4-((3£)-2-{2-[l -(2-ethoxy-2-oxoethyl)cyclopropyl]ethyl}-4-{2-[(5-phenylpentyl)oxy]- pheny 1 } but-3 -en- 1 -y l)benzoat
Eine Lösung von 350 mg (0.8 mmol) Methyl 4-[(3£)-2-{2-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]- ethyl}-4-(2-hydroxyphenyl)but-3-en-l-yl]benzoat in 10 ml trockenem Acetonitril wird mit 273 mg (1.2 mmol) (5-Brompentyl)benzol und 222 mg (1.6 mmol) wasserfreiem Kaliumcarbonat versetzt und 12 Stunden unter Rückfluss erhitzt. Anschließend wird der Ansatz zur Trockene eingeengt. Der Rückstand wird in Essigsäureethylester aufgenommen, mit Wasser und gesättigter Kochsalz- Lösung gewaschen und über Natriumsulfat getrocknet. Die organische Phase wird eingeengt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan/ Essigsäureethylester 9:1) gereinigt. Es werden 275 mg (58% d. Th.) eines Feststoffs erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 7.82 (2H, d), 7.37-7.22 (5H, m), 7.21-7.09 (4H, m), 6.91- 6.80 (2H, m), 6.32 (IH, d), 6.04-5.94 (IH, m), 3.99 (2H, q), 3.89 (2H, t), 3.80 (3H, s), 2.85-2.76 (IH, m), 2.73-2.62 (IH, m), 2.59 (2H, t), 2.45-2.32 (IH, m), 2.25-2.19 (2H, m), 1.75-1.49 (5H, m), 1.45-1.32 (4H, m), 1.29-1.15 (IH. m); 1.10 (3H, t), 0.41 -0.32 (2H, m), 0.31-0.23 (2H, m).
LC-MS (Methode 1): R, = 3.70 min; m/z = 600 [IVH-NH4 +].
Beispiel 2OA
Diallyl [4-(tert. -butoxycarbonyl)benzyl]malonat
Eine Lösung von 48.24 g (0.26 mol) Malonsäurediallylester in 100 ml Dioxan und 40 ml THF wird bei 00C portionsweise mit 6.29 g (0.16 mol) Natriumhydrid versetzt (Vorsicht: Wasserstoffentwicklung). Nach Erwärmen auf Raumtemperatur wird der Ansatz 1 Stunde bei 400C gerührt. Anschließend werden 29.69 g (0.13 mol) 4-Chlormethyl-benzoesäure-terf.-butylester, gelöst in 100 ml Dioxan und 40 ml THF, langsam bei 400C zugetropft und die Reaktionslösung dann über Nacht bei 1100C Badtemperatur gerührt. Nach Abkühlen auf Raumtemperatur wird das Reaktionsgemisch vorsichtig mit 40 ml gesättigter Ammoniumchlorid-Lösung sowie 100 ml Wasser versetzt. Der Ansatz wird dann dreimal mit Essigsäureethylester extrahiert, die vereinigten organischen Phasen mit gesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird das Lösungsmittel im Vakuum bis zur Trockene eingeengt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an 2 kg Kieselgel (Laufmittel: Petrolether/Essig- säureethylester 20:1) gereinigt. Es werden 30.4 g (81 mmol, 62% d. Th.) eines farblosen Feststoffs erhalten.
LC-MS (Methode 2): R. = 2.90 min; MS (ESIpos): m/z = 375 [M+H]+.
Beispiel 21A
Diallyl [4-(ferr.-butoxycarbonyl)benzyl]{2-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]ethyl}malonat
Eine Lösung von 19.85 g (43.4 mmol, Reinheit 81.85%) Diallyl [4-(tert.-butoxycarbonyl)benzyl]- malonat, 13.94 g (47.7 mmol, Reinheit 80.5%) [l-(2-Bromethyl)cyclopropyl]essigsäureethylester und 28.56 g (87 mmol) Cäsiumcarbonat in 310 ml Acetonitril wird 24 Stunden unter Rückfluss gerührt. Anschließend wird das Reaktionsgemisch filtriert und das Filtrat bis zur Trockene eingeengt. Die Reinigung des Rohprodukts erfolgt flash-chromatographisch (3000 g Kieselgel 60, Laufmittel: Cyclohexan/Essigsäureethylester 20:1). Es werden 8 g (35% d. Th.) der Titelverbindung in Form eines farblosen Öls erhalten.
LC-MS (Methode 4): R, = 3.36 min; MS (ESIpos): m/z = 529 [M+H]+. Beispiel 22A
2-[4-(tert. -Butoxycarbonyl)benzyl]-4-[ 1 -(2-ethoxy-2-oxoethyl)cyclopropyl]butansäure
Eine Lösung von 8.58 g (16.2 mmol) Diallyl [4-(terf.-butoxycarbonyl)benzyl]{2-[l-(2-ethoxy-2- oxoethyOcyclopropyllethyllmalonat, 298 mg (1.14 mmol) Triphenylphosphin und 73 mg (0.33 mmol) Palladiumacetat in 75 ml Dioxan wird bei Raumtemperatur mit einer Lösung von 7.42 ml (53.56 mmol) Triethylamin und 1.53 ml (40 mmol) Ameisensäure in 25 ml Dioxan versetzt. Das Reaktionsgemisch wird anschließend bei 1000C 2 Stunden lang gerührt. Nach vollständigem Umsatz wird die Reaktionslösung abgekühlt und das Lösungsmittel im Vakuum entfernt. Anschlie- ßend wird der Rückstand in Essigsäureethylester und Wasser aufgenommen, mit 1 N Salzsäure angesäuert (pH 4-5) und die organische Phase abgetrennt. Die wässrige Phase wird noch dreimal mit Essigsäureethylester extrahiert, die organischen Phasen anschließend vereinigt, mit gesättigter Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird die Lösung im Vakuum eingeengt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselgel (700 g; Laufmittel: Petrolether/Essigsäureethylester 1 :1) gereinigt. Es werden 4.9 g (74.6% d. Th.) eines farblosen Feststoffs erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 12.14 (IH, br. s), 7.80 (2H, d), 7.29 (2H, d), 4.02 (2H, q), 2.90-2.69 (2H, m) 2.23-2.10 (2H, m), 1.61-1.43 (3H, m), 1.54 (9H, s), 1.39-1.19 (2H, m), 1.15 (3H, t), 0.42-0.32 (2H, m), 0.32-0.21 (2H, m).
LC-MS (Methode 6): R, = 2.84 min; m/z = 405 [M+H*].
Beispiel 23A
tert.-Butyl 4-{4-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]-2-(hydroxymethyl)butyl}benzoat
Zu einer Lösung von 5199 mg (12.85 mmol) 2-[4-(terf.-Butoxycarbonyl)benzyl]-4-[l-(2-ethoxy-2- oxoethyl)cyclopropyl]butansäure in 100 ml THF werden 25.71 ml (25.71 mmol) einer 1 M Boran- THF-Komplex-Lösung bei -100C zugetropft. Nach Erwärmen auf 00C wird bei dieser Temperatur noch zwei Stunden und anschließend eine weitere Stunde bei Raumtemperatur nachgerührt. Nach vollständiger Umsetzung wird das Reaktionsgemisch mit gesättigter Ammoniumchlorid-Lösung versetzt und dreimal mit je 50 ml Essigsäureethylester extrahiert. Anschließend werden die vereinigten organischen Phasen über Natriumsulfat getrocknet und das Lösungsmittel bis zur Trockene entfernt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 2:1) gereinigt. Es werden 3412 mg (68% d. Th.) eines farblosen Öls erhalten.
LC-MS (Methode 4): R. = 2.52 min; m/z = 391 [M+ϊt].
Beispiel 24A
tert. -Buty 1 4- {4-[ 1 -(2-ethoxy-2-oxoethyl)cyclopropyl]-2-formylbutyl} benzoat
Eine Lösung von 1278 mg (3.27 mmol) ter/.-Butyl 4-{4-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]-2- (hydroxymethyl)butyl} benzoat in 60 ml Dichlormethan wird mit 846 mg (3.93 mmol) Pyridinium- chlorochromat (PCC) versetzt und 12 Stunden bei Raumtemperatur gerührt. Nach vollständigem Umsatz werden 5 g Kieselgel zugegeben und das Lösungsmittel vorsichtig im Vakuum bis zur Trockene entfernt. Der Rückstand wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 3:1) gereinigt. Es werden 1080 mg (85% d. Th.) eines farblosen Öls erhalten.
LC-MS (Methode 6): R, = 3.13 min; m/z = 389 [MH-H+].
Beispiel 25A
ferr.-Butyl 4-[(3^)-2-{2-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]ethyl}-4-(2-hydroxyphenyl)but-3-en- l-yl]benzoat
Zu einer Lösung von 1.874 g (4.2 mmol) (2-Hydroxybenzyl)triphenylphosphoniumbromid in 25 ml wasserfreiem THF werden bei 00C 3.11 ml (7.78 mmol) einer 2.5 M Lösung von n-Butyllithium in Hexan langsam hinzugefügt und 45 min nachgerührt. Anschließend werden bei dieser Temperatur 1.080 g (2.78 mmol) tert.-Butyl 4-{4-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]-2-formylbutyl}benzoat langsam zudosiert und die Mischung vier Stunden bei 00C gerührt. Nach vollständiger Umsetzung wird die Reaktionslösung mit gesättigter Ammoniumchlorid-Lösung versetzt und bis zur Trockene eingeengt. Der Rückstand wird in Essigsäureethylester aufgenommen, mit Wasser und gesättigter Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird das Lösungsmittel bis zur Trockene eingeengt. Das erhaltene Rohprodukt wird mittels präparativer HPLC gereinigt. Es werden 162 mg (8% d. Th.) eines farblosen Öls erhalten.
LC-MS (Methode 2): R, = 3.19 min; m/z = 477 [M-H ].
Beispiel 26A
tert. -Butyl 4-[(3£)-2- {2-[ 1 -(2-ethoxy-2-oxoethy l)cyclopropy l]ethyl} -4-(2- { [4-(trifluormethoxy)- benzyl]oxy}phenyl)but-3-en-l-yl]benzoat
Eine Lösung von 170 mg (0.36 mmol) tert.-Butyl 4-[(3£)-2-{2-[l-(2-ethoxy-2-oxoethyl)cyclo- propyl]ethyl}-4-(2-hydroxyphenyl)but-3-en-l-yl]benzoat in 3 ml trockenem Acetonitril wird mit 118 mg (0.46 mmol) 4-Trifluormethoxybenzylbromid und 98 mg (0.71 mmol) wasserfreiem Kaliumcarbonat versetzt und 12 Stunden unter Rückfluss erhitzt. Anschließend wird der Ansatz zur Trockene eingeengt. Der Rückstand wird in Essigsäureethylester aufgenommen, mit Wasser und gesättigter Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Die organische Phase wird eingeengt. Das erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 5:1) gereinigt. Es werden 155 mg (67% d. Th.) eines farblosen Öls erhalten.
LC-MS (Methode 6): R, = 3.66 min; m/z = 670 [MH-NH4 +].
Beispiel 27A
4-[(3£)-2- {2-[ 1 -(2-Ethoxy-2-oxoethyl)cyclopropyl]ethyl } -4-(2- { [4-(trifiuormethoxy)benzyI] oxy } - phenyl)but-3-en- 1 -yl]benzoesäure
Eine Lösung von 154 mg (0.24 mmol) tert. -Butyl 4-[(3£)-2-{2-[l-(2-ethoxy-2-oxoethyl)cyclo- propyl]ethyl}-4-(2-{[4-(trifluormethoxy)benzyl]oxy}phenyl)but-3-en-l-yl]benzoat wird mit 1.5 ml einer 4 N Lösung von HCl-Gas in Dioxan versetzt und 6 Stunden bei Raumtemperatur gerührt. Der Ansatz wird eingeengt und der Rückstand zwischen Wasser und Essigsäureethylester verteilt. Die organische Phase wird über Natriumsulfat getrocknet und eingeengt. Es werden 140 mg (0.23 mmol, 99% d. Th.) der Titelverbindung erhalten.
LC-MS (Methode 6): R, = 3.34 min; MS (ESIpos): m/z = 597 [M+H]+.
140 mg (0.23 mmol) der so erhaltenen racemischen 4-[(3£T)-2-{2-[l-(2-Ethoxy-2-oxoethyl)cyclo- propyl]ethyl}-4-(2-{[4-(trifluormethoxy)benzyl]oxy}phenyl)but-3-en-l-yl]benzoesäure werden mittels präparativer HPLC an chiraler Phase weiter aufgetrennt. Es werden jeweils enantiomeren- rein 51 mg bzw. 71 mg der beiden E-Isomere als farblose Feststoffe erhalten (siehe Beispiele 28A und 29A).
Beispiel 28A
4-[(3£)-2-{2-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]ethyl}-4-(2-{[4-(trifluormethoxy)benzyl]oxy}- phenyl)but-3-en-l-yl]benzoesäure (Enantiomer 1)
Methode Enantiomerentrennung:
Säule: Daicel Chiralcel OJ-H 250 mm x 20 mm, 5 μm; Elutionsmittel: Ethanol (mit 1% Wasser und 0.2% Eisessig) / Isohexan 30:70 (v/v); Fluss: 15 ml/min; UV-Detektion: 220 nm; Temperatur: 400C.
R, 8.90 min; Reinheit 97.5%; >99% ee
Ausbeute: 51 mg
LC-MS (Methode 4): R, = 3.32 min; MS (ESIneg): m/z = 595 [M-H]".
Beispiel 29A
4-[(3^)-2-{2-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]ethyl}-4-(2-{[4-(trifluormethoxy)benzyl]oxy}- phenyl)but-3-en-l-yl]benzoesäure {Enantiomer 2)
Methode Enantiomerentrennung: siehe Beispiel 28A.
R, 11.72 min; Reinheit 99%; >96% ee
Ausbeute: 71 mg LC-MS (Methode 4): R1 = 3.32 min; MS (ESIneg): m/z = 595 [M-H]".
Ausführungsbeispiele:
Beispiel 1
4-((4£)-5-{2-[(4-/e/'f.-Butylbenzyl)oxy]phenyl}-3-{2-[l-(carboxymethyl)cyclopropyl]ethyl}pent-4- en-l-yl)benzoesäure (Racemat)
Eine Lösung von 138 mg (0.23 mmol) Methyl 4-((4£)-5-{2-[(4-terΛ-butylbenzyl)oxy]phenyl}-3- {2-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]ethyl}pent-4-en-l-yl)benzoat in 3 ml Dioxan wird mit 0.69 ml (0.69 mmol) 1 M Natronlauge versetzt und 12 Stunden bei 500C gerührt. Nach dem Abkühlen wird das Dioxan abgezogen und die wässrige Phase mit 1 M Salzsäure auf pH 4 eingestellt. Dabei fällt das Produkt aus, welches abfiltriert, mit Wasser gewaschen und getrocknet wird. Es werden 100.4 mg (78% d. Th.) eines weißen Feststoffs erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 12.90-11.90 (2H, breit), 7.82 (2H, d), 7.47 (IH, d), 7.39 (4H, s), 7.29 (2H, d), 7.20 (IH, t), 7.08 (IH, d), 6.91 (IH, t), 6.62 (IH, d), 6.09-5.98 (IH, m), 5.11 (2H, s), 2.74-2.63 (IH, m), 2.63-2.51 (IH, m), 2.11-2.00 (IH, m), 1.79-1.68 (IH, m), 1.67-1.47 (2H, m), 1.46-1.13 (5H, m), 1.25 (9H, s), 0.40-0.30 (2H, m), 0.29-0.19 (2H, m).
LC-MS (Methode 2): R, = 3.10 min; m/z = 555 [M+H+].
100 mg (0.18 mmol) der so erhaltenen racemischen 4-((4£)-5-{2-[(4-fer/.-Butylbenzyl)oxy]- phenyl}-3-{2-[l-(carboxymethyl)cyclopropyl]ethyl}pent-4-en-l-yl)benzoesäure werden mittels präparativer HPLC an chiraler Phase weiter aufgetrennt. Es werden jeweils enantiomerenrein 6 mg bzw. 20 mg der beiden £-Isomere als farblose Feststoffe erhalten (siehe Beispiele 2 und 3). Beispiel 2
4-((4i^-5-{2-[(4-/er/.-Butylbenzyl)oxy]phenyl}-3-{2-[l-(carboxymethyl)cyclopropyl]ethyl}pent-4- en-l-yl)benzoesäure (ßnantiomer 1)
Methode Enantiomerentrennung:
Säule: Daicel Chiralpak AD-H 250 mm x 20 mm; Elutionsmittel: Isohexan (mit 1% Wasser und 0.2% Essigsäure) / Isopropanol 50:50 (v/v); Fluss: 15 ml/min; UV-Detektion: 220 nm; Temperatur: 29°C.
R, 10.05 min; Reinheit >99%; >96% ee
Ausbeute: 6 mg.
Beispiel 3
4-((4£T)-5-{2-[(4-ferf.-Butylbenzyl)oxy]phenyl}-3-{2-[l-(carboxymethyl)cyclopropyl]ethyl}pent-4- en-l-yl)benzoesäure (Enantiomer 2)
Methode Enantiomerentrennung: siehe Beispiel 2.
R, 13.04 min; Reinheit >99%; >98.5% ee
Ausbeute: 20 mg.
Beispiel 4
4-((3jE;)-4-{2-[(4-/erf.-Butylbenzyl)oxy]phenyl}-2-{2-[l-(carboxymethyl)cyclopropyl]ethyl}but-3- en-l-yl)benzoesäure {Racemai)
Eine Lösung von 285 mg (0.49 mmol) Methyl 4-((3£)-4-{2-[(4-terΛ-butylbenzyl)oxy]phenyl}-2- {2-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]ethyl}but-3-en-l-yl)benzoat in 8 ml THF und 8 ml Wasser wird mit 23 mg (0.98 mmol) Lithiumhydroxid versetzt und 12 Stunden bei 500C gerührt. Nach dem Abkühlen wird das THF abgezogen und die wässrige Phase mit 1 M Salzsäure auf pH 4 einge- stellt. Dabei fallt das Produkt aus, welches abfiltriert, mit Wasser gewaschen und getrocknet wird. Das so erhaltene Rohprodukt wird durch Flash-Chromatographie an Kieselgel (Laufmittel: Di- chlormethan/Methanol 100:1 → 50:1 → 40:1) weiter gereinigt. Es werden 179 mg (67% d. Th.) eines farblosen Feststoffs erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 12.80-12.00 (2H, breit), 7.81 (2H, d), 7.42-7.33 (3H, m), 7.31-7.22 (4H, m), 7.14 (IH, t), 7.01 (IH, d), 6.88 (IH, t), 6.42 (IH, d), 6.07-5.97 (IH, m), 5.03 (2H, s), 2.87-2.77 (IH, m), 2.72-2.62 (IH, m), 2.49-2.38 (IH, m), 2.18-2.05 (2H, m), 1.62-1.49 (IH, m), 1.48-1.34 (2H, m), 1.28 (9H, s), 1.25-1.20 (IH, m), 0.39-0.30 (2H, m), 0.29-0.19 (2H, m).
LC-MS (Methode 1): R1 = 3.16 min; m/z = 541 [MH-H+].
179 mg (0.33 mmol) der so erhaltenen racemischen 4-((3£)-4-{2-[(4-tert.-Butylbenzyl)oxy]- phenyl}-2-{2-[l-(carboxymethyl)cyclopropyl]ethyl}but-3-en-l-yl)benzoesäure werden mittels prä- parativer HPLC an chiraler Phase weiter aufgetrennt. Es werden jeweils enantiomerenrein 69 mg bzw. 79 mg der beiden E-Isomere als farblose Feststoffe erhalten (siehe Beispiele 5 und 6).
Beispiel 5
4-((3J-^-4-{2-[(4-/er/.-Butylbenzyl)oxy]phenyl}-2-{2-[l-(carboxymethyl)cyclopropyl]ethyl}but-3- en-l-yl)benzoesäure (Enantiomer T)
Methode Enantiomerentrennung:
Säule: Daicel Chiralpak AD-H 250 mm x 20 mm; Elutionsmittel: Isohexan / Isopropanol (mit 1% Wasser und 0.2% Trifluoressigsäure) 78:22 (v/v); Fluss: 15 ml/min; UV-Detektion: 220 nm; Temperatur: 25°C.
R, 6.97 min; Reinheit >99%; >99.5% ee
Ausbeute: 69 mg
1H-NMR (400 MHz, DMSOd6, δ/ppm): 12.80-12.00 (2H, breit), 7.81 (2H, d), 7.42-7.33 (3H, m), 7.31-7.22 (4H, m), 7.14 (IH, t), 7.01 (IH, d), 6.88 (IH, t), 6.42 (IH, d), 6.07-5.97 (IH, m), 5.03 (2H, s), 2.87-2.77 (IH, m), 2.72-2.62 (IH, m), 2.49-2.38 (IH, m), 2.18-2.05 (2H, m), 1.62-1.49 (IH, m), 1.48-1.34 (2H, m), 1.28 (9H, s), 1.25-1.20 (IH, m), 0.39-0.30 (2H, m), 0.29-0.19 (2H, m). Beispiel 6
4-((3£)-4-{2-[(4-/err.-Butylbenzyl)oxy]phenyl}-2-{2-[l-(carboxymethyl)cyclopropyl]ethyl}but-3- en-l-yl)benzoesäure {Enantiomer 2)
Methode Enantiomerentrennung: siehe Beispiel 5.
R, 7.61 min; Reinheit >99%; >99.5% ee
Ausbeute: 79 mg
1H-NMR (400 MHz, DMSOd6, δ/ppm): 12.80-12.00 (2H, breit), 7.81 (2H, d), 7.42-7.33 (3H, m), 7.31-7.22 (4H, m), 7.14 (IH, t), 7.01 (IH, d), 6.88 (IH, t), 6.42 (IH, d), 6.07-5.97 (IH, m), 5.03 (2H, s), 2.87-2.77 (IH, m), 2.72-2.62 (IH, m), 2.49-2.38 (IH, m), 2.18-2.05 (2H, m), 1.62-1.49 (IH, m), 1.48-1.34 (2H, m), 1.28 (9H, s), 1.25-1.20 (IH, m), 0.39-0.30 (2H, m), 0.29-0.19 (2H, m).
Beispiel 7
4-((3JE)-2-{2-[l-(Carboxymethyl)cyclopropyl]ethyl}-4-{2-[(5-phenylpentyl)oxy]phenyl}but-3-en- l-yl)benzoesäure (Racemat )
Eine Lösung von 270 mg (0.46 mmol) Methyl 4-((3is)-2-{2-[l-(2-ethoxy-2-oxoethyl)cyclopropyl]- ethyl}-4-{2-[(5-phenylpentyl)oxy]phenyl}but-3-en-l-yl)benzoat in 5 ml THF wird mit 1.39 ml (1.39 mmol) 1 M Natronlauge versetzt und 12 Stunden bei 500C gerührt. Nach dem Abkühlen wird das THF abgezogen und die wässrige Phase mit 1 M Salzsäure auf pH 4 eingestellt. Dabei fallt das Produkt aus, welches abfiltriert, mit Wasser gewaschen und getrocknet wird. Es werden 228 mg (91 % d. Th.) eines leicht gelben Feststoffs erhalten.
LC-MS (Methode 1): R, = 3.18 min; m/z = 541 [M+H+]. 228 mg (0.42 mmol) der so erhaltenen racemischen 4-((3£)-2-{2-[l-(Carboxymethyl)cyclopropyl]- ethyl}-4-{2-[(5-phenylpentyl)oxy]phenyl}but-3-en-l-yl)benzoesäure werden mittels präparativer HPLC an chiraler Phase weiter aufgetrennt. Es werden jeweils enantiomerenrein 77 mg bzw. 79 mg der beiden E-Isomere als farblose Feststoffe erhalten (siehe Beispiele 8 und 9).
Beispiel 8
4-((3£)-2- {2-[ 1 -(CarboxymethyOcyclopropyllethyl) -4- {2-[(5-phenylpentyl)oxy]phenyl} but-3-en- l-yl)benzoesäure (Enantiomer 1)
Methode Enantiomerentrennung:
Säule: KBD 6328 [chirale Kieselgel-Phase basierend auf dem Selektor Poly(N-methacryloyl-L-iso- leucin-pentylamid)], 430 mm x 40 mm; Elutionsmittel: Essigsäureethylester; Fluss: 80 ml/min; UV-Detektion: 270 nm; Temperatur: 24°C.
R1 6.86 min; Reinheit 99%; >99.5% ee
Ausbeute: 77 mg
1H-NMR (400 MHz, DMSOd6, δ/ppm): 12.80-11.90 (2H, breit), 7.80 (2H, d), 7.33 (IH, d), 7.30- 7.21 (4H, m), 7.20-7.07 (4H, m), 6.93-6.81 (2H, m), 6.34 (IH, d), 6.05-5.94 (IH, m), 3.95-3.78 (2H, m), 2.88-2.74 (IH, m), 2.72-2.61 (IH, m), 2.59 (2H, t), 2.45-2.33 (IH, m), 2.20-2.02 (2H, m), 1.74-1.50 (5H, m), 1.48-1.31 (4H, m), 1.30-1.16 (IH, m), 0.44-0.31 (2H, m), 0.31-0.20 (2H, m).
LC-MS (Methode 2): R, = 2.98 min; MS (ESIneg): m/z = 539 [M-H]".
Beispiel 9
4-((3£)-2-{2-[l-(Carboxymethyl)cyclopropyl]ethyl}-4-{2-[(5-phenylpentyl)oxy]phenyl}but-3-en- l-yl)benzoesäure (Enantiomer 2)
Methode Enantiomerentrennung: siehe Beispiel 8.
R, 10.04 min; Reinheit 99%; 99.1% ee
Ausbeute: 79 mg
1H-NMR (400 MHz, DMSOd6, δ/ppm): 12.80-11.90 (2H, breit), 7.80 (2H, d), 7.33 (IH, d), 7.30- 7.21 (4H, m), 7.20-7.07 (4H, m), 6.93-6.81 (2H, m), 6.34 (IH, d), 6.05-5.94 (IH, m), 3.95-3.78 (2H, m), 2.88-2.74 (IH, m), 2.72-2.61 (IH, m), 2.59 (2H, t), 2.45-2.33 (IH, m), 2.20-2.02 (2H, m), 1.74-1.50 (5H, m), 1.48-1.31 (4H, m), 1.30-1.16 (IH, m), 0.44-0.31 (2H, m), 0.31-0.20 (2H, m). LC-MS (Methode 4): R4 = 3.18 min; MS (ESIneg): m/z = 539 [M-H]'.
Beispiel 10
4-[(3£)-2-{2-[l-(Carboxymethyl)cyclopropyl]ethyl}-4-(2-{[4-(trifluormethoxy)benzyl]oxy}- phenyl)but-3-en-l-yl]benzoesäure (Enantiomer 1)
F3
Eine Lösung von 50 mg (0.08 mmol) 4-[(3.E)-2-{2-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]ethyl}-4- (2-{[4-(trifluormethoxy)benzyl]oxy}phenyl)but-3-en-l-yl]benzoesäure {Enantiomer 1) in 2 ml THF und 1 ml Wasser wird mit 4 mg (0.17 mmol) Lithiumhydroxid versetzt und 12 Stunden bei 500C gerührt. Nach dem Abkühlen wird das THF abgezogen und die wässrige Phase mit 1 M SaIz- säure auf pH 4 eingestellt. Dabei fallt das Produkt aus, welches abfiltriert, mit Wasser gewaschen und getrocknet wird. Es werden 38 mg (79% d. Th.) eines leicht weißen Feststoffs erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 12.90-11.90 (2H, br. s), 7.81 (2H, d), 7.48 (2H, d).. 7.38 (3H, d), 7.28 (2H, d), 7.15 (IH, t), 6.99 (IH, d), 6.90 (IH, t), 6.40 (IH, d), 6.07-5.94 (IH, m), 5.09 (2H, s), 2.89-2.76 (IH, m), 2.73-2.60 (IH, m), 2.47-2.38 (IH, m), 2.19-2.02 (2H, m), 1.63-1.49 (IH, m), 1.48-1.32 (2H, m), 1.31-1.18 (IH, m), 0.40-0.30 (2H, m), 0.29-0.16 (2H, m).
LC-MS (Methode 2): R, = 2.81 min; MS (ESIneg): m/z = 567 [M-H]".
Beispiel 11
4-[(3£)-2-{2-[l-(Carboxymethyl)cyclopropyl]ethyl}-4-(2-{[4-(trifluormethoxy)benzyl]oxy}- phenyl)but-3-en-l-yl]benzoesäure (Enantiomer 2)
Eine Lösung von 70 mg (0.12 mmol) 4-[(3£)-2-{2-[l-(2-Ethoxy-2-oxoethyl)cyclopropyl]ethyl}-4- (2-{[4-(trifluormethoxy)benzyl]oxy}phenyl)but-3-en-l-yl]benzoesäure (Enantiomer 2) in 1 ml THF und 0.5 ml Wasser wird mit 5.6 mg (0.24 mmol) Lithiumhydroxid versetzt und 12 Stunden bei 500C gerührt. Nach dem Abkühlen wird das THF abgezogen und die wässrige Phase mit 1 M Salzsäure auf pH 4 eingestellt. Dabei fallt das Produkt aus, welches abfiltriert, mit Wasser gewaschen und getrocknet wird. Es werden 30 mg (45% d. Th.) eines leicht weißen Feststoffs erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 12.90-11.90 (2H, br. s), 7.81 (2H, d), 7.48 (2H, d), 7.38 (3H, d), 7.28 (2H, d), 7.15 (IH, t), 6.99 (IH, d), 6.90 (IH, t), 6.40 (IH, d), 6.07-5.94 (IH, m), 5.09 (2H, s), 2.89-2.76 (IH, m), 2.73-2.60 (IH, m), 2.47-2.38 (IH, m), 2.19-2.02 (2H, m), 1.63-1.49 (IH, m), 1.48-1.32 (2H, m), 1.31-1.18 (IH, m), 0.40-0.30 (2H, m), 0.29-0.16 (2H, m).
LC-MS (Methode 2): R, = 2.81 min; MS (ESIneg): m/z = 567 [M-H]'.
B. Bewertung der pharmakologischen Wirksamkeit
Die pharmakologische Wirkung der erfindungsgemäßen Verbindungen kann in folgenden Assays gezeigt werden:
B-I. Gefäßrelaxierende Wirkung in vitro:
Kaninchen werden durch intravenöse Injektion von Thiopental-Natrium narkotisiert bzw. getötet (ca. 50 mg/kg) und entblutet. Die Arteria Saphena wird entnommen und in 3 mm breite Ringe geteilt. Die Ringe werden einzeln auf je einem triangelförmigen, am Ende offenen Häkchenpaar aus 0.3 mm starkem Spezialdraht (Remanium®) montiert. Jeder Ring wird unter Vorspannung in 5 ml-Organbäder mit 37°C warmer, carbogenbegaster Krebs-Henseleit-Lösung folgender Zusam- mensetzung gebracht: NaCl 119 mM; KCl 4.8 mM; CaCl2 x 2 H2O 1 mM; MgSO4 x 7 H2O 1.4 mM; KH2PO4 1.2 mM; NaHCO3 25 mM; Glucose 10 mM; Rinderserumalbumin 0.001%. Die Kontraktionskraft wird mit Statham UC2-Zellen erfasst, verstärkt und über A/D- Wandler (DAS- 1802 HC, Keithley Instruments, München) digitalisiert sowie parallel auf Linienschreibern registriert. Kontraktionen werden durch Zugabe von Phenylephrin induziert.
Nach mehreren (allgemein 4) Kontrollzyklen wird die zu untersuchende Substanz in jedem weiteren Durchgang in steigender Dosierung zugesetzt und die Höhe der unter dem Einfluss der Testsubstanz erzielten Kontraktion mit der Höhe der im letzten Vordurchgang erreichten Kontraktion verglichen. Daraus wird die Konzentration errechnet, die erforderlich ist, um die in der Vorkontrolle erreichte Kontraktion auf 50% zu reduzieren (IC50-WeIt). Das Standard-Applikations- volumen beträgt 5 μl. Der DMSO- Anteil in der Badlösung entspricht 0.1%.
Repräsentative Ergebnisse zu den erfindungsgemaßen Verbindungen sind in Tabelle 1 aufgeführt:
Tabelle 1 : Gefaßrelaxierende Wirkung in vitro
B-2. Stimulation der rekombinanten löslichen Guanylatcvclase TsGQ in vitro:
Die Untersuchungen zur Stimulation der rekombinanten löslichen Guanylatcyclase (sGC) durch die erfindungsgemäßen Verbindungen mit und ohne Natriumnitroprussid sowie mit und ohne den Häm-abhängigen sGC-Inhibitor lH-l,2,4-Oxadiazol-(4,3a)-chinoxalin-l-on (ODQ) werden nach der in folgender Literaturstelle im Detail beschriebenen Methode durchgeführt: M. Ηoenicka, E.M. Becker, Η. Apeler, T. Sirichoke, Η. Schroeder, R. Gerzer und J.-P. Stasch, "Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 System: Stimulation by YC-I, nitric oxide, and carbon oxide", J. Mol. Med. 77 (1999), 14-23. Die Ηäm-freie Guanylatcyclase wird durch Zugabe von Tween 20 zum ProbenpufFer (0.5% in der Endkonzentration) erhalten.
Die Aktivierung der sGC durch eine Prüfsubstanz wird als n-fache Stimulation der Basalaktivität angegeben. Das Ergebnis für Beispiel 9 ist in Tabelle 2 gezeigt:
Tabelle 2: Stimulation (n-fach) der rekombinanten löslichen Guanylatcyclase (sGC) in vitro durch Beispiel 9
[DEA/NO = 2-(N,N-Diethylamino)diazenolat-2-oxid; ODQ = lH-l,2,4-Oxadiazol-(4,3a)-chinoxa- lin-l-on].
Aus Tabelle 2 ist ersichtlich, dass eine Stimulation sowohl des Ηäm-haltigen als auch des Ηäm- freien Enzyms erreicht wird. Weiterhin zeigt die Kombination aus Beispiel 9 und 2-(N,N-Diethyl- amino)diazenolat-2-oxid (DEA/ΝO), einem ΝO-Donor, keinen synergistischen Effekt, d.h. die Wirkung von DEA/ΝO wird nicht potenziert, wie dies bei einem über einen Ηäm-abhängigen Mechanismus wirkenden sGC-Aktivator zu erwarten wäre. Darüber hinaus wird die Wirkung des erfindungsgemäßen sGC-Aktivators durch den Ηäm-abhängigen Inhibitor der löslichen Guanylatcyclase ODQ nicht blockiert, sondern sogar gesteigert. Die Ergebnisse aus Tabelle 2 belegen somit den Wirkmechanismus der erfindungsgemäßen Verbindungen als Aktivatoren der löslichen Gua- nylatcyclase. B-3. Radiotelemetrische Messung von Blutdruck und Herzfrequenz an wachen SH-Ratten
Für die im Folgenden beschriebenen Messungen an wachen SH-Ratten wird ein im Handel erhältliches Telemetriesystem der Firma Data Sciences International DSI, USA, eingesetzt.
Das System besteht aus 3 Hauptkomponenten: (i) Implantierbare Sender, (2) Empfanger, die über einen Multiplexer mit einem (3) Datenakquisitionscomputer verbunden sind. Die Telemetrieanlage ermöglicht eine kontinuierliche Erfassung von Blutdruck und Herzfrequenz an wachen Tieren in ihrem gewohnten Lebensraum.
Die Untersuchungen werden an ausgewachsenen weiblichen, spontan-hypertensiven Ratten (SH- Ratten) mit einem Körpergewicht von >200 g durchgeführt. Die Versuchstiere werden nach Senderimplantation einzeln in Makrolon-Käfigen Typ 3 gehalten. Sie haben freien Zugang zu Standardfutter und Wasser. Der Tag/Nacht-Rhythmus im Versuchslabor wird per Raumbeleuchtung um 6:00 Uhr morgens und um 19:00 Uhr abends gewechselt.
Die eingesetzten Telemetriesender (TAM PA-C40, DSI) werden den Versuchstieren mindestens 14 Tage vor dem ersten Versuchseinsatz unter aseptischen Bedingungen chirurgisch implantiert. Die so instrumentierten Tiere sind nach Abheilen der Wunde und Einwachsen des Implantats wiederholt einsetzbar.
Zur Implantation werden die nüchternen Tiere mit Pentobarbital (Nembutal, Sanofi, 50 mg/kg i.p.) narkotisiert und an der Bauchseite weiträumig rasiert und desinfiziert. Nach Eröffnung des Bauchraumes entlang der Linea alba wird der flüssigkeitsgefüllte Messkatheter des Systems oberhalb der Bifurcation nach cranial in die Aorta descendens eingesetzt und mit Gewebekleber (VetBonD™, 3M) befestigt. Das Sendergehäuse wird intraperitoneal an der Bauchwandmuskulatur fixiert und die Wunde schichtweise verschlossen. Postoperativ wird zur Infektionsprophylaxe ein Antibiotikum verabreicht (Tardomyocel COMP, Bayer, 1 ml/kg s.c).
Versuchsablauf:
Die zu untersuchenden Substanzen werden jeweils einer Gruppe von Tieren (n = 6) per Schlundsonde oral verabreicht. Entsprechend einem Applikationsvolumen von 5 ml/kg Körpergewicht werden die Testsubstanzen in geeigneten Lösungsmittelgemischen gelöst oder in 0.5%-iger Tylose suspendiert. Eine Lösungsmittel-behandelte Gruppe von Tieren wird als Kontrolle eingesetzt.
Die Telemetrie-Messeinrichtung ist für 24 Tiere konfiguriert. Jeder Versuch wird unter einer Ver- suchsnummer registriert. Den in der Anlage lebenden instrumentierten Ratten ist jeweils eine eigene Empfangsantenne zugeordnet (1010 Receiver, DSI). Die implantierten Sender sind über einen eingebauten Magnetschalter von außen aktivierbar und werden bei Versuchsvorlauf auf Sendung geschaltet. Die ausgestrahlten Signale können durch ein Datenakquisitionssystem (Dataquest™ A.R.T. for Windows, DSI) online erfasst und entsprechend aufgearbeitet werden. Die Ablage der Daten erfolgt jeweils in einem hierfür eröffneten Ordner, der die Versuchsnummer trägt.
Im Standardablauf werden über je 10 Sekunden Dauer gemessen: (7) systolischer Blutdruck (SBP), (2) diastolischer Blutdruck (DBP), (3) arterieller Mitteldruck (MAP) und (4) Herzfrequenz (HR).
Die Messwerterfassung wird rechnergesteuert in 5 Minuten-Abständen wiederholt. Die als Abso- lutwert erhobenen Quelldaten werden im Diagramm mit dem aktuell gemessenen Barometerdruck korrigiert und in Einzeldaten abgelegt. Weitere technische Details sind in der Dokumentation der Herstellerfirma (DSI) aufgeführt.
Die Verabreichung der Prüfsubstanzen erfolgt am Versuchstag um 9:00 Uhr. Im Anschluss an die Applikation werden die oben beschriebenen Parameter über 24 Stunden gemessen. Nach Versuchs- ende werden die erhobenen Einzeldaten mit der Analysis-Software (Dataquest™ A.R.T. Analysis) sortiert. Als Leerwert wird der Zeitpunkt 2 Stunden vor Substanz-Applikation angenommen, so dass der selektierte Datensatz den Zeitraum von 7:00 Uhr am Versuchstag bis 9:00 Uhr am Folgetag umfasst.
Die Daten werden über eine voreinstellbare Zeit durch Mittelwertbestimmung geglättet (15 Minuten-Mittelwert, 30 Minuten-Mittelwert) und als Textdatei auf einen Datenträger übertragen. Die so vorsortierten und komprimierten Messwerte werden in Excel-Vorlagen übertragen und tabellarisch dargestellt.
C. Ausführungsbeispiele für pharmazeutische Zusammensetzungen
Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überfuhrt werden:
Tablette:
Zusammensetzung:
100 mg der erfindungsgemäßen Verbindung, 50 mg Lactose (Monohydrat), 50 mg Maisstärke (nativ), 10 mg Polyvinylpyrrolidon (PVP 25) (Fa. BASF, Ludwigshafen, Deutschland) und 2 mg Magnesiumstearat.
Tablettengewicht 212 mg. Durchmesser 8 mm, Wölbungsradius 12 mm.
Herstellung:
Die Mischung aus erfindungsgemäßer Verbindung, Lactose und Stärke wird mit einer 5%-igen Lösung (m/m) des PVPs in Wasser granuliert. Das Granulat wird nach dem Trocknen mit dem Magnesiumstearat 5 Minuten gemischt. Diese Mischung wird mit einer üblichen Tablettenpresse verpresst (Format der Tablette siehe oben). Als Richtwert für die Verpressung wird eine Presskraft von 15 kN verwendet.
Oral applizierbare Suspension:
Zusammensetzung:
10Ö0 mg der eriϊndungsgemäiien Verbindung, 1000 mg Ethanol (96%), 400 mg Rhodigel® (Xanthan gum der Firma FMC, Pennsylvania, USA) und 99 g Wasser.
Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 10 ml orale Suspension.
Herstellung:
Das Rhodigel wird in Ethanol suspendiert, die erfindungsgemäße Verbindung wird der Suspension zugefügt. Unter Rühren erfolgt die Zugabe des Wassers. Bis zum Abschluß der Quellung des Rhodigels wird ca. 6 h gerührt. Oral applizierbare Lösung;
Zusammensetzung:
500 mg der erfmdungsgemäßen Verbindung, 2.5 g Polysorbat und 97 g Polyethylenglycol 400. Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 20 g orale Lösung.
Herstellung:
Die erfindungsgemäße Verbindung wird in der Mischung aus Polyethylenglycol und Polysorbat unter Rühren suspendiert. Der Rührvorgang wird bis zur vollständigen Auflösung der erfindungsgemäßen Verbindung fortgesetzt.
i.v.-Lösung:
Die erfindungsgemäße Verbindung wird in einer Konzentration unterhalb der Sättigungslöslichkeit in einem physiologisch verträglichen Lösungsmittel (z.B. isotonische Kochsalzlösung, Glucose- lösung 5% und/oder PEG 400-Lösung 30%) gelöst. Die Lösung wird steril filtriert und in sterile und pyrogenfreie Injektionsbehältnisse abgefüllt.

Claims

Patentansprüche
1. Verbindung der Formel (I)
in welcher
A für eine Bindung, (CrC7)-Alkandiyl, (C2-C7)-Alkendiyl oder (C2-C7)-Alkindiyl steht,
D für Wasserstoff, Trifluormethyl oder eine Gruppe der Formel
steht, worin * die Verknüpfungsstelle mit der Gruppe A und
E eine Bindung, CH2, -CH2-CH2- oder -CH=CH- bedeutet,
n für die Zahl 1 oder 2 steht,
R1, R2, R3, R4 und R5 unabhängig voneinander für einen Substituenten ausgewählt aus der Reihe Halogen, (Ci-C6)-Alkyl, Trifluormethyl, (CrC6)-Alkoxy, Trifluormethoxy, Cyano und Nitro stehen,
und o, p, q, r und s unabhängig voneinander jeweils für die Zahl O, 1, 2, 3 oder 4 stehen,
wobei für den Fall, dass R1, R2, R3, R4 oder R5 mehrfach auftreten, ihre Bedeutungen jeweils gleich oder verschieden sein können,
sowie ihre Salze, Solvate und Solvate der Salze.
2. Verbindung der Formel (T) nach Anspruch 1, in welcher
A für eine Bindung oder (Ci-C7)-Alkandiyl steht,
D für Wasserstoff, Trifluormethyl oder eine Gruppe der Formel
steht, worin * die Verknüpfungsstelle mit der Gruppe A bedeutet,
n für die Zahl 1 oder 2 steht,
R1, R3, R4 und R5 unabhängig voneinander für einen Substituenten ausgewählt aus der Reihe Fluor. Chlor, Brom, (C;-C4)-A!ky!, Trifluormethyl, (Q-C^-Alkυxy und Tri- fluormethoxy stehen,
o, q, r und s unabhängig voneinander jeweils für die Zahl 0, 1 oder 2 stehen,
wobei für den Fall, dass R1, R3, R4 oder R5 mehrfach auftreten, ihre Bedeutungen jeweils gleich oder verschieden sein können,
R2 für Fluor steht
und
für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
3. Verbindung der Formel (I-A)
in welcher
für (CrC7)-Alkandiyl,
D für Wasserstoff oder eine Gruppe der Formel
worin * die Verknüpfungsstelle mit der Gruppe A und
R3A Wasserstoff, Fluor, Chlor, Methyl, tert.-Butyl, Trifluormethyl, Methoxy oder Triflυormethoxy bedeutet,
und
für die Zahl 1 oder 2
stehen,
sowie ihre Salze, Solvate und Solvate der Salze.
4. Verfahren zur Herstellung einer Verbindung der Formel (I) bzw. (I-A), wie in den Ansprüchen 1 bis 3 definiert, dadurch gekennzeichnet, dass man Verbindungen der Formel (II)
in welcher R2, n und p jeweils die in den Ansprüchen 1 bis 3 angegebenen Bedeutungen haben und
T1 und T2 gleich oder verschieden sind und für Cyano oder (Ci-C4)-Alkoxycarbonyl stehen,
entweder
[A] in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (DI-A)
in welcher A, D, R1 und o jeweils die in den Ansprüchen 1 bis 3 angegebenen Bedeutungen haben und
L für Phenyl oder o-, m- oder p-Tolyl
und
X für Halogenid oder Tosylat steht,
zu Verbindungen der Formel (IV-A)
in welcher A, D, R1, R2, n, o, p, T! und T2 jeweils die oben angegebenen Bedeutungen haben,
umsetzt
oder
[B] in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (III-B)
in welcher R1, o, L und X jeweils die oben angegebenen Bedeutungen haben,
zunächst zu Verbindungen der Formel (IV-B)
in welcher R1, R2, n, o, p, T1 und T2 jeweils die oben angegebenen Bedeutungen haben, umsetzt und diese anschließend in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (V)
D-A'-Q (V),
in welcher D die oben angegebene Bedeutung hat,
A1 die in den Ansprüchen 1 bis 3 angegebene Bedeutung von A hat, jedoch nicht für eine Bindung steht,
und
Q für eine Abgangsgruppe, wie beispielsweise Halogen, Tosylat oder Mesylat, steht,
zu Verbindungen der Formel (IV-C)
in weicher A1, D, R1, R% n, o, p, T1 und T2 jeweils die oben angegebenen Bedeutungen haben,
alkyliert
und die resultierenden Verbindungen der Formel (TV-A) bzw. (IV-C) dann durch Hydrolyse der Ester- bzw. Nitril-Gruppen T1 und T2 in die Dicarbonsäuren der Formel (I) überfuhrt
und die Verbindungen der Formel (I) gegebenenfalls mit den entsprechenden (i) Lösungsmitteln und/oder (ii) Basen oder Säuren zu ihren Solvaten, Salzen und/oder Solvaten der Salze umsetzt.
5. Verbindung, wie in einem der Ansprüche 1 bis 3 definiert, zur Behandlung und/oder Prävention von Krankheiten.
6. Verwendung einer Verbindung, wie in einem der Ansprüche 1 bis 3 definiert, zur Herstellung eines Arzneimittels zur Behandlung und/oder Prävention von Herzinsuffizienz, Angina pectoris, Hypertonie, pulmonaler Hypertonie, Ischämien, Gefäßerkrankungen, thromboembolischen Erkrankungen und Arteriosklerose.
7. Arzneimittel enthaltend eine Verbindung, wie in einem der Ansprüche 1 bis 3 definiert, in Kombination mit einem inerten, nicht-toxischen, pharmazeutisch geeigneten Hilfsstoff.
8. Arzneimittel enthaltend eine Verbindung, wie in einem der Ansprüche 1 bis 3 definiert, in Kombination mit einem weiteren Wirkstoff ausgewählt aus der Gruppe bestehend aus organischen Nitraten, NO-Donatoren, cGMP-PDE-Inhibitoren, Stimulatoren der Guanylat- cyclase, antithrombotisch wirkenden Mitteln, den Blutdruck senkenden Mitteln sowie den
Fettstoffwechsel verändernden Mitteln.
9. Arzneimittel nach Anspruch 7 oder 8 zur Behandlung und/oder Prävention von Herzinsuffizienz, Angina pectoris, Hypertonie, pulmonaler Hypertonie, Ischämien, Gefäßerkrankungen, thromboembolischen Erkrankungen und Arteriosklerose.
10. Verfahren zur Behandlung und/oder Prävention von Herzinsuffizienz, Angina pectoris, Hypertonie, pulmonaler Hypertonie, Ischämien, Gefäßerkrankungen, thromboembolischen Erkrankungen und Arteriosklerose in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens einer Verbindung, wie in einem der Ansprüche 1 bis 3 definiert, oder eines Arzneimittels, wie in einem der Ansprüche 7 bis 9 definiert.
EP06806108A 2005-10-21 2006-10-09 Cyclopropylessigsäure-derivate und ihre verwendung Withdrawn EP1940768A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005050498A DE102005050498A1 (de) 2005-10-21 2005-10-21 Cyclopropylessigsäure-Derivate und ihre Verwendung
PCT/EP2006/009723 WO2007045367A1 (de) 2005-10-21 2006-10-09 Cyclopropylessigsäure-derivate und ihre verwendung

Publications (1)

Publication Number Publication Date
EP1940768A1 true EP1940768A1 (de) 2008-07-09

Family

ID=37606823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06806108A Withdrawn EP1940768A1 (de) 2005-10-21 2006-10-09 Cyclopropylessigsäure-derivate und ihre verwendung

Country Status (12)

Country Link
US (1) US8168821B2 (de)
EP (1) EP1940768A1 (de)
JP (1) JP5228165B2 (de)
KR (1) KR20080063321A (de)
CN (1) CN101346339A (de)
AU (1) AU2006303526A1 (de)
BR (1) BRPI0617662A2 (de)
CA (1) CA2626451A1 (de)
DE (1) DE102005050498A1 (de)
IL (1) IL190953A0 (de)
RU (1) RU2008119465A (de)
WO (1) WO2007045367A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007026392A1 (de) 2007-06-06 2008-12-11 Bayer Healthcare Ag Lösungen für die Perfusion und Konservierung von Organen und Geweben
DE102007028320A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007028319A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007028406A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007028407A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
EP2138178A1 (de) 2008-06-28 2009-12-30 Bayer Schering Pharma Aktiengesellschaft Oxazolidninone zur Behandlung der chronisch obstruktiven Lungenerkrankung (COPD) und/oder Asthma
US9783614B2 (en) 2012-05-10 2017-10-10 Bayer Pharma Aktiengesellschaft Antibodies capable of binding to the coagulation Factor XI and/or its activated form factor Xia and uses thereof
CN107580495A (zh) 2015-05-06 2018-01-12 拜耳制药股份公司 单独和与PDE5抑制剂组合的sGC刺激剂、sGC活化剂用于治疗伴随系统性硬化症(SSc)的指溃疡(DU)的用途
DK3325013T4 (da) 2015-07-23 2023-10-16 Bayer Pharma AG Stimulatorer og/eller aktivatorer af den opløselige guanylatcyklase (sgc) i kombination med en inhibitor af den neutrale endopeptidase (nep inhibitor) og en angiotensin aii-antagonist og deres anvendelse
CN109890379A (zh) 2016-10-11 2019-06-14 拜耳制药股份公司 包含sGC活化剂和盐皮质激素受体拮抗剂的组合产品
WO2019081456A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft USE OF SGC ACTIVATORS AND STIMULATORS COMPRISING A BETA2 SUBUNIT
EP3498298A1 (de) 2017-12-15 2019-06-19 Bayer AG Verwendung von sgc-stimulatoren und sgc-aktivatoren alleine oder in kombination mit pde5-inhibitoren zur behandlung von knochenerkrankungen einschliesslich osteogenesis imperfecta (oi)
CA3098475A1 (en) 2018-04-30 2019-11-07 Bayer Aktiengesellschaft The use of sgc activators and sgc stimulators for the treatment of cognitive impairment
WO2019219672A1 (en) 2018-05-15 2019-11-21 Bayer Aktiengesellschaft 1,3-thiazol-2-yl substituted benzamides for the treatment of diseases associated with nerve fiber sensitization
US11508483B2 (en) 2018-05-30 2022-11-22 Adverio Pharma Gmbh Method of identifying a subgroup of patients suffering from dcSSc which benefits from a treatment with sGC stimulators and sGC activators in a higher degree than a control group
WO2020148379A1 (en) 2019-01-17 2020-07-23 Bayer Aktiengesellschaft Methods to determine whether a subject is suitable of being treated with an agonist of soluble guanylyl cyclase (sgc)
WO2020164008A1 (en) 2019-02-13 2020-08-20 Bayer Aktiengesellschaft Process for the preparation of porous microparticles
TW202412753A (zh) 2022-06-09 2024-04-01 德商拜耳廠股份有限公司 用於治療女性心臟衰竭合併保留射出分率的可溶性鳥苷酸環化酶活化劑

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2218416A (en) 1988-05-13 1989-11-15 Bayer Ag Leukotriene disease antagonists
DE19642255A1 (de) * 1996-10-14 1998-04-16 Bayer Ag Verwendung von 1-Benzyl-3-(substituierten-hetaryl) -kondensierten Pyrazol-Derivaten
AU736303B2 (en) * 1996-10-14 2001-07-26 Bayer Aktiengesellschaft New heterocyclylmethyl-substituted pyrazol derivates
DE19649460A1 (de) 1996-11-26 1998-05-28 Bayer Ag Neue substituierte Pyrazolderivate
US6451805B1 (en) * 1997-11-14 2002-09-17 Bayer Aktiengesellschaft Substituted pyrazole derivatives for the treatment of cardiocirculatory diseases
DE19943635A1 (de) * 1999-09-13 2001-03-15 Bayer Ag Neuartige Aminodicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE19943636A1 (de) * 1999-09-13 2001-03-15 Bayer Ag Neuartige Dicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE19943634A1 (de) * 1999-09-13 2001-04-12 Bayer Ag Neuartige Dicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE19943639A1 (de) 1999-09-13 2001-03-15 Bayer Ag Dicarbonsäurederivate mit neuartigen pharmazeutischen Eigenschaften
DE10110749A1 (de) 2001-03-07 2002-09-12 Bayer Ag Substituierte Aminodicarbonsäurederivate
DE10110750A1 (de) * 2001-03-07 2002-09-12 Bayer Ag Neuartige Aminodicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE102005050377A1 (de) * 2005-10-21 2007-04-26 Bayer Healthcare Ag Heterocyclische Verbindungen und ihre Verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007045367A1 *

Also Published As

Publication number Publication date
WO2007045367A1 (de) 2007-04-26
DE102005050498A1 (de) 2007-06-06
JP2009519210A (ja) 2009-05-14
US20090286882A1 (en) 2009-11-19
JP5228165B2 (ja) 2013-07-03
CN101346339A (zh) 2009-01-14
RU2008119465A (ru) 2009-11-27
IL190953A0 (en) 2009-09-22
AU2006303526A1 (en) 2007-04-26
BRPI0617662A2 (pt) 2011-08-02
US8168821B2 (en) 2012-05-01
CA2626451A1 (en) 2007-04-26
KR20080063321A (ko) 2008-07-03

Similar Documents

Publication Publication Date Title
WO2007045367A1 (de) Cyclopropylessigsäure-derivate und ihre verwendung
EP1940769B1 (de) Dicarbonsäure-derivate und ihre verwendung
EP1940808B1 (de) Difluorphenol-derivate und ihre verwendung
EP2142495B1 (de) Substituierte dibenzoesäure-derivate und ihre verwendung
EP1940809B1 (de) Tetrazol-derivate und ihre verwendung zur behandlung von herz-kreislauf-erkrankungen
EP2142504B1 (de) Lactam-substituierte dicarbonsäuren und ihre verwendung
EP1940811B1 (de) Heterocyclische verbindungen mit carboxyl-isosteren gruppen und ihre verwendung zur behandlung von herz-kreislauf-erkrankungen
EP2569277B1 (de) Substituierte 8-alkoxy-2-aminotetralin-derivate und ihre verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080521

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090320

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER SCHERING PHARMA AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER PHARMA AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130611