EP1902485A2 - Couches retenant le chrome pour des elements de piles a combustible - Google Patents

Couches retenant le chrome pour des elements de piles a combustible

Info

Publication number
EP1902485A2
EP1902485A2 EP06761683A EP06761683A EP1902485A2 EP 1902485 A2 EP1902485 A2 EP 1902485A2 EP 06761683 A EP06761683 A EP 06761683A EP 06761683 A EP06761683 A EP 06761683A EP 1902485 A2 EP1902485 A2 EP 1902485A2
Authority
EP
European Patent Office
Prior art keywords
chromium
component
aluminum
fuel cell
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06761683A
Other languages
German (de)
English (en)
Inventor
Michael Stanislowski
Klaus Hilpert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1902485A2 publication Critical patent/EP1902485A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for producing chromium retention layers for components of high-temperature fuel cells (SOFCs).
  • a solid oxide fuel cell consists of a porous cathode, a gas-tight but oxygen ion-conducting electrolyte, and a porous anode.
  • a fuel eg CH 4 or hydrogen
  • an oxidant eg air or oxygen
  • 600 and 1000 0 C reach oxygen ions from the oxidant through the electrolyte in the anode chamber, where they react with the fuel. This creates electrons that provide electrical energy for an external consumer, and at the same time heat. Since a single cell generates only a very low voltage, generally a plurality of cells are interconnected to a fuel cell stack.
  • Components for high-temperature fuel cells are usually made of heat-resistant, chromium-containing steels.
  • the heat resistance of these steels is based on the formation of layers of Cr 2 O 3 (chromium oxide) or Al 2 O 3 (alumina) on the surface under operating conditions.
  • Cr 2 O 3 chromium oxide
  • Al 2 O 3 alumina
  • Most alumina builders contain between 5 and 6% aluminum and about 20% chromium.
  • Aluminum oxide formers are usually pre-oxidised before use at temperatures below 950 0 C, typically for one hour at temperature around 1000 0 C to build up a stable 0! -Al 2 O 3 layer.
  • This so-called degradation of the fuel cell may meet the general requirements for mobile applications a maximum of 2% of the cell output per 1000 h at 5000 - 10 000 h life and for stationary applications 0.25% maximum
  • LSM lanthanum-strontium-manganite
  • DE 44 10 711 C1 discloses a method for producing a corrosion protection layer of Al 2 O 3 , in which formed by an Alitierrea first intermetallic phases of chromium and aluminum and reacted at temperatures of about 950 0 C in 0! -Al 2 O 3 become.
  • the layers produced in this way have a limited service life, since any defects which occur do not heal automatically. Defects occur, among other things, if plating chips off due to frequent temperature changes during startup or shutdown of the fuel cell. It remains open in DE 44 10 711 Cl also open, whether the corrosion protective layer is also advantageous in terms of chromium retention.
  • DE 103 06 647 A1 discloses a method for producing a protective layer on a chromium oxide-forming substrate, which already forms at temperatures between 500 and 1000 ° C. and thus automatically regenerates at normal operating temperatures of high-temperature fuel cells.
  • the disadvantage is that the retention effect according to the state of the art is not sufficient to meet the requirements with respect to long-term applications of the fuel cell.
  • the starting materials CoO, CuO and MnO 2 are comparatively expensive, and the manufacturing process can not coat components such as pipes or heat exchangers from the inside.
  • the object of the invention is therefore to provide a method for cost- cheap production of effective chromium evaporation protective layers to provide that is able to fully coat even components with complex geometries.
  • the object of the invention is also to provide chromium evaporation protection layers which have a better chromium retention than protective layers according to the prior art.
  • a further object of the invention is to provide a component for a fuel cell which, during operation of the fuel cell, evaporates less chromium than components according to the prior art.
  • a protective layer does not necessarily have to consist of O! -Al 2 O 3 in order to effectively prevent the evaporation of chromium from a chromium-containing material.
  • Metastable Al 2 O 3 eg ⁇ - or 0-Al 2 O 3
  • These metastable phases form on an aluminum-containing surface even at relatively low temperatures of 500 to 800 ° C. This is particularly advantageous for use in a high-temperature fuel cell, since it is generally the aim, whose operating temperature of currently 900 to 1000 0 C significantly reduce.
  • the use of even the metastable phases of Al 2 O 3 is not suggested by the prior art.
  • a good cover layer which can be used as a corrosion protection layer, must consist of the densest possible 0! -Al 2 O 3 .
  • Such a layer is regularly formed only at temperatures above 950 0 C.
  • an oxide layer of ⁇ - and ⁇ -Al 2 O 3 already forms, which exceeds the chromium evaporation by more than 97% compared to pure Cr 2 O 3 layers. reduced. After 100 hours of operation at this temperature, even more than 99.7% of the chromium is retained without the component being pre-oxidized prior to commissioning.
  • the temperature range in which metastable Al 2 O 3 is formed also includes the lower end of the operating range in which high temperature fuel cells are operated.
  • the layer is regenerated in the event of any damage even if the fuel cell is operated in the lower load range or the component is arranged outside the actual fuel cell or outside the actual fuel cell stack. Examples include heat exchangers, pipelines or housings.
  • sufficient material must be available for self-repair. If the surface of the component is aluminum-containing by itself, this material is always present. However, if the surface first had to be enriched with aluminum before the formation of the chromium retention layer, the thickness of the aluminum-enriched zone is advantageously chosen to be significantly larger than required for the first-time formation of the chromium retention layer.
  • a dense layer of pure Cu-Al 2 O 3 may form from the layer according to the invention, but this does not affect the chromium retention.
  • the components which are to be coated by the method according to the invention advantageously consist of a nickel Chromium alloy, an iron-nickel-chromium alloy, a cobalt-chromium alloy or an iron-chromium alloy. Alloys of this type are relatively ductile. Aluminum oxide formers have the advantage that their surface is inherently aluminum-containing and does not have to be enriched with aluminum before the chromium retention layer is formed.
  • a gas phase alitization process with low aluminum activity.
  • the starting material used for this instead of pure aluminum usually an aluminum alloy.
  • the Alitier Anlagenen are characterized better and contain less stress.
  • the component is heated at 850 to 1080 ° C. for 2 to 24 hours in an inert atmosphere, such as
  • Argon or in a reducing atmosphere, such as hydrogen, outsourced. It is located above a powder mixture containing an aluminum alloy, an activator such as NH 4 Cl or NH 4 F and a sintering inhibitor such as Al 2 O 3 .
  • the specifications set out at the outset therefore make these materials suitable for use in long-term stationary fuel cells.
  • the build-up zone which forms on the surface during Alitieren by material deposition
  • the diffusion zone that is, the region by diffusion of aluminum from the build-up zone
  • Aluminum is enriched, a thickness between 20 and 100 microns, ideally between 20 and 50 microns.
  • Components which are advantageously equipped with the chromium retention layers according to the invention are, in particular, heat exchangers, pipelines, pumps and housings.
  • the method is suitable for all components that do not have to have high electrical conductivity.
  • Figure 1 Chromium evaporation rates of an alumina generator (Fe20Cr5Al) at different temperatures without Voroxidati- on.
  • Figure 2 Chromium evaporation rates of two alloys of the type NiCr (Ni28Cr24Fe) and FeNiCr (Fel9CrllNi) at 800 0 C without
  • FIG. 3 shows microstructure photographs of NiCr and FeNiCr- alloys without pre-oxidation after 500 h at 800 0 C.
  • Figure 4 microstructure photographs of gasphasenalit striv NiCr and FeNiCr alloy after 100 hours at 800 0 C.
  • Figure 1 shows the time course of the chromium evaporation rates of an alumina (Fe20Cr5Al) at temperatures 800, 900 and 1000 0 C without pre-oxidation.
  • the rate of chromium evaporation initially drops very rapidly, while the Al 2 O 3 layer is formed. Even after about 150 hours of operation, even at 1000 ° C., less than 6.5 ⁇ 10 -12 kg m " 2 s " 1 of chromium are evaporated off, which corresponds to the specification mentioned above for stationary long-term operation of fuel cells. Later, the evaporation rate drops much more slowly almost linearly with time.
  • Figure 2 shows the time course of Chromverdampfungs- rates of two alloys of the type NiCr (Ni28Cr24Fe) and FeNiCr (Fel9CrllNi) at 800 0 C, without pre-oxidation in the manufacturing treatment condition and after a Gasphasenalitleiter.
  • the alloys steam obviously significantly more than the chromium from only for mobile applications of fuel cell maximum permissible 4.6 * 10 "11 kg m" 2 s "1 and are thus totally unsuitable for use in fuel cells.
  • the chromium retaining layer according to the invention lowered the chromium evaporation directly to values below 6.5 * 10 "12 kg m " 2 s "1 , so that the so-tempered materials can also be used in long-term stationary fuel cells.
  • FIG. 3 shows microstructure photographs of a NiCr alloy (top) and a FeNiCr alloy (below), which were for 500 h at a temperature of 800 0 C exposed.
  • Clearly recognizable Cr 2 O 3 and (Fe, Cr) 3 O 4 layers have formed on the NiCr alloy.
  • Cr 2 O 3 - and (Mn, Cr) 3 O 4 -Scb.ich.ten have formed.
  • These oxide layers contain disadvantageous chromium, which explains their apparent from Figure 2 high Chromabdampfung.
  • Figure 4 shows photographs of a microstructure NiCr layer (top) and a FeNiCr layer (bottom), the first gas-phase senalitiert and then for 100 hours at a temperature of 800 0 C were suspended. It has clearly formed a protective layer of Al 2 O 3 , which contains no chromium. This explains the apparent from Figure 2, several orders of magnitude lower Chromabdampfung.

Abstract

L'invention concerne un procédé pour réaliser des couches retenant le chrome pour des éléments de piles à combustible haute température (SOFC) en alliages contenant du chrome. Selon l'invention, la surface de l'élément contenant de l'aluminium est soumise à des températures élevées et une couche retenant le chrome étanche aux gaz est formée. La couche ainsi obtenue empêche efficacement le chrome de s'évaporer du matériau de base. D'éventuels défauts de la pile à combustible s'autorégulent pendant son fonctionnement.
EP06761683A 2005-07-02 2006-06-23 Couches retenant le chrome pour des elements de piles a combustible Withdrawn EP1902485A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005030925A DE102005030925A1 (de) 2005-07-02 2005-07-02 Chromrückhalteschichten für Bauteile von Brennstoffzellensystemen
PCT/DE2006/001062 WO2007003156A2 (fr) 2005-07-02 2006-06-23 Couches retenant le chrome pour des elements de piles a combustible

Publications (1)

Publication Number Publication Date
EP1902485A2 true EP1902485A2 (fr) 2008-03-26

Family

ID=37545070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06761683A Withdrawn EP1902485A2 (fr) 2005-07-02 2006-06-23 Couches retenant le chrome pour des elements de piles a combustible

Country Status (5)

Country Link
US (1) US20090317679A1 (fr)
EP (1) EP1902485A2 (fr)
JP (1) JP2008547177A (fr)
DE (1) DE102005030925A1 (fr)
WO (1) WO2007003156A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283896B2 (ja) * 2007-12-19 2013-09-04 東京瓦斯株式会社 固体酸化物形燃料電池用インターコネクタへの保護膜コーティング方法
DE102008006039B4 (de) 2008-01-25 2018-04-26 Elringklinger Ag Verfahren zum Verbinden von metallischen Bauteilen eines Brennstoffzellenstacks und Baugruppe für einen Brennstoffzellenstack
EP2360288A1 (fr) 2010-02-23 2011-08-24 Siemens Aktiengesellschaft Procédé pour le réglage de la consommation d'un liquide de refroidissement dans un élément refroidi et élément
DE102010039233A1 (de) * 2010-08-12 2012-02-16 Behr Gmbh & Co. Kg Verfahren zur Herstellung eines Schichtwärmeübertragers
DE202011005693U1 (de) * 2011-04-28 2011-09-26 Behr Gmbh & Co. Kg Schichtwärmeübertager
US20190044165A1 (en) * 2017-08-04 2019-02-07 Bloom Energy Corporation Cerium oxide treatment of fuel cell components
JP6637939B2 (ja) * 2017-10-12 2020-01-29 日本碍子株式会社 燃料電池セル及びセルスタック装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3827141C1 (en) * 1988-08-10 1989-12-07 Werner Dr. 8552 Hoechstadt De Auer Process for alitising objects of austenitic steel or nickel-based alloys
DE4410711C1 (de) * 1994-03-28 1995-09-07 Forschungszentrum Juelich Gmbh Metallische bipolare Platte für HT-Brennstoffzellen und Verfahren zur Herstellung desselben
DE19547699C2 (de) * 1995-12-20 2000-01-13 Forschungszentrum Juelich Gmbh Bipolare Platte mit selektiver Beschichtung
JPH09314337A (ja) * 1996-05-23 1997-12-09 Nisshin Steel Co Ltd 溶接割れのないAl又はAl−Si合金被覆ステンレス鋼板の溶接方法
IT1292033B1 (it) * 1996-05-31 1999-01-25 Samsung Heavy Ind Metodo di trattamento anticorrosivo per un separatore di cella a combustibile di carbonato fuso
EP0908529A1 (fr) * 1997-10-10 1999-04-14 Siemens Aktiengesellschaft Empilage de piles à combustible haute température et son procédé de fabrication
DE29807832U1 (de) * 1998-04-30 1998-07-02 Siemens Ag Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzellenstapel
US7314678B2 (en) * 2003-08-25 2008-01-01 Corning Incorporated Solid oxide fuel cell device with a component having a protective coatings and a method for making such

Also Published As

Publication number Publication date
DE102005030925A1 (de) 2007-01-04
US20090317679A1 (en) 2009-12-24
WO2007003156A2 (fr) 2007-01-11
JP2008547177A (ja) 2008-12-25
WO2007003156A3 (fr) 2007-04-19

Similar Documents

Publication Publication Date Title
EP1595301B1 (fr) Couche protectrice pour substrats soumis a des temperatures elevees et son procede de realisation
EP1287571B1 (fr) Materiau pour hautes temperatures
EP2165380B1 (fr) Plaque bipolaire pour piles à combustible et empilement de piles à combustible
EP1984533B1 (fr) Acier ferritique resistant au fluage
EP1595302B1 (fr) Procede de realisation d'une couche protectrice pour substrats soumis a des temperatures elevees formant de l'oxyde de chrome
WO2007003156A2 (fr) Couches retenant le chrome pour des elements de piles a combustible
DE102005015755A1 (de) Verfahren zur Herstellung einer Chromverdampfungsschutzschicht für chromoxidbildende Metallsubstrate
EP0788175A1 (fr) Pile à combustible fonctionnant à haute température avec électrolyte à couche mince
AT521011B1 (de) Bauelement mit einer zweilagigen, oxidischen Schutzschicht
DE102008006039B4 (de) Verfahren zum Verbinden von metallischen Bauteilen eines Brennstoffzellenstacks und Baugruppe für einen Brennstoffzellenstack
EP2335314B1 (fr) Pile à combustible plane à haute température
WO2010037670A1 (fr) Pile à combustible tubulaire à haute température, procédé pour sa fabrication et système de piles à combustible comprenant une telle pile à combustible
DE102009037206B4 (de) Verfahren zum Herstellen einer Bipolarplatte für einen Brennstoffzellenstack und Bipolarplatte für einen Brennstoffzellenstack
DE102007058907A1 (de) Chromhaltiges, metallisches Substrat und Verfahren zu dessen Herstellung
AT523928B1 (de) Bauelement
DE102008032498A1 (de) Stromlos abgeschiedene Schutzschichten
DE102004050087B4 (de) SOFC-Brenstoffzellenanode, Verfahren zu ihrer Herstellung und SOFC-Brennstoffzelle
EP2038949A1 (fr) Système de pile à combustible et dispositif pour l'alimentation en fluides d'un ensemble pile à combustible
DE102009037207A1 (de) Verfahren zum Verbinden einer Bipolarplatte mit einer Elektrode und mit einem weiteren Bauteil eines Brennstoffzellenstacks und eine solche Bipolarplatte umfassende Baugruppe eines Brennstoffzellenstacks
AT523864A1 (de) Verfahren zur Herstellung einer Schutzschicht auf einem Bauelement
EP2225408A2 (fr) Couches de protection déposées sans courant
DE10325862A1 (de) Festoxid-Brennstoffzelle mit einem metallischen Trägersubstrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071207

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110915

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120126