WO2010037670A1 - Pile à combustible tubulaire à haute température, procédé pour sa fabrication et système de piles à combustible comprenant une telle pile à combustible - Google Patents

Pile à combustible tubulaire à haute température, procédé pour sa fabrication et système de piles à combustible comprenant une telle pile à combustible Download PDF

Info

Publication number
WO2010037670A1
WO2010037670A1 PCT/EP2009/062275 EP2009062275W WO2010037670A1 WO 2010037670 A1 WO2010037670 A1 WO 2010037670A1 EP 2009062275 W EP2009062275 W EP 2009062275W WO 2010037670 A1 WO2010037670 A1 WO 2010037670A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell according
cathode
functional layers
porous
Prior art date
Application number
PCT/EP2009/062275
Other languages
German (de)
English (en)
Inventor
Alessandro Zampieri
Robert Fleck
Horst Greiner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP09783291A priority Critical patent/EP2342777A1/fr
Publication of WO2010037670A1 publication Critical patent/WO2010037670A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/122Corrugated, curved or wave-shaped MEA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a tubular high-temperature fuel cell according to the preamble of claim 1.
  • the invention relates to the thus constructed fuel cell system and to a method for their production.
  • Solid electrolyte high-temperature fuel cells are essentially characterized by a ceramic solid electrolyte, which is generally formed as an oxide ceramic layer between two see electrodes.
  • a ceramic solid electrolyte S_olid Oxide Fuel Cell
  • SOFC S_olid Oxide Fuel Cell
  • Such a fuel cell generally has an operating temperature between 600 0 C and 1000 0 C. At this temperature, the electrochemical conversion is optimized. Low operating temperatures tend to lower the costs of a fuel cell system.
  • the object is solved erfmdungsgebound by a fuel cell according to claim 1.
  • the use of a series connection of such fuel cells for constructing a corresponding fuel cell system is the subject matter of patent claim 15 and a method for producing such a fuel cell or fuel cell system constructed therewith. Further developments of the fuel cell or fuel cell system and of the associated production method are disclosed in US Pat given the dependent claims.
  • An essential object of the new hard ceramic fuel cell ⁇ that on the cathode side, a porous metallic exchangers for the functional layers (cathode, electrolyte, anode) is present. With such metallic carriers such fuel cells can be operated in the range of 400 ° C to 800 ° C (optimally at 600 0 C).
  • the life of such a fuel cell is hardly affected by the use of a metallic carrier.
  • the wall thickness of the metallic Tragers can be significantly reduced compared to the ceramic execution.
  • the polarization resistances influencing the oxygen diffusion also become smaller on the cathode side.
  • high-alloyed stainless steel powders are significantly less expensive than ceramic cathode powders such as the well-known LSM or LCM.
  • the new porous metallic carrier for the functional layers can be produced by conventional powder metallurgical processes. These are rather cheaper compared to ceramic manufacturing processes. From the prior art, in particular the publication NP Branden et al. Although the construction of a fuel cell with a metallic carrier on the anode side is known in particular in "Journal of Materials Engineering and Performance" 13 (2004), pages 253 to 256. However, the use of a metal substrate on the cathode side becomes first-time with the invention presented as technically feasible for a functioning fuel cell system.
  • a further significant advantage of the present invention with the metal substrate on the cathode side is that the sheet resistance on the cathode side can thereby be kept negligible. This is one of the weak points in all SOFCs with anodal side truncated tubular cell design. There, the electrons z. B. be distributed with silver wire on the cathode.
  • the chromium oxide cover layers which form on the surface of the chromium-containing metal structures are relatively poorly conductive and the chromium compounds which escape from these surfaces evaporate the electrochemical properties of the cathode can affect negatively.
  • These properties are taken into account in the invention in that special alloys are selected which show a particularly slow growth of the chromium oxide topcoat (eg Plansee Werk ⁇ ITIl fabric). Since the ohmic resistance is dependent on the layer thickness, a very small voltage drop across the oxide layer can be expected here.
  • the chromium evaporation is also highly temperature-dependent and is therefore significantly reduced when the operating temperature is lowered. In the event that the evaporation rates have to be lowered even further, the carrier can be provided with corresponding barrier layers.
  • SOFC As suitable materials for use as a porous carrier substrate for the cathode, electrolyte and anode in the According to the invention SOFC are known from the prior art Sin ⁇ termetalle, for example, provided on the basis of high-alloy, ferritic stainless steels with high chromium contents.
  • types of materials known in the art as CROFER22APU (Thyssen Krupp) or IT11-IT14-ITM26 (Plansee) or ZMG32 (Hitachi) appear suitable.
  • FIG. 1 shows the longitudinal section through a tubular fuel cell
  • FIG. 2 shows the cross section through a tubular fuel cell according to FIG. 1,
  • FIG. 3 shows the cross-section through an arrangement with several adjacent triangular air ducts ( ⁇ design)
  • FIG. 4 shows the structure of the metallic carrier in a fuel cell according to the HPD principle
  • FIG. 5 shows the layer sequence of the functional layers on a ⁇ me-metallic substrate and Figure 6 is a metallographic micrograph of a porous metal structure for use as a substrate in FIG. 5
  • FIG. 1 shows the section through a tubular fuel cell 1 with a closed end.
  • 10 represents the metallic carriers of a sintered material having a specified differently bene porosity, wherein the functional layers are applied to the outer side of such tubular assembly.
  • the functional layers consist in detail of the cathode K, the electrolyte E and the anode A. In each case intermediate layers may be present.
  • FIG. 3 such a structure 2 is illustrated in FIG. 3, in which a metal substrate is folded in such a way that triangular structures with individual air channels 35 are formed.
  • the individual air ducts 35 have an approximately ⁇ -shaped form.
  • the functional layers are again applied with cathode, electrolyte and anode.
  • the base surface of the metallic carrier is formed by a metallically dense plate 25 of conductive material, whereby an interconnector is realized.
  • a metallic porous carrier part 40 which has a plurality of rectangular air channels 45 and on one side the functional layers with cathode K, electrolyte E and anode A and on the other side again with a metallically dense layer 25 ', which forms the interconnector , is completed.
  • 5 shows a specific sequence of layers of function is ⁇ layers with layer structure 100 shows.
  • the porous metallic structure 50 as a carrier of the functional layers.
  • the porosity is> 5%, for example about 10%.
  • the structures described above have considerable advantages over the all-ceramic structures. It is essential that the metallic substrates allow lower operating temperatures than the ceramic fuel cells. This is also associated with lower temperatures in the units of the fuel cell periphery. Although these properties are known in principle. However, not be ⁇ denied the use of a porous metallic Tragers for the functional layers on the air side. If appropriate, the metallic carrier can also be coated with further layers in order to hinder the penetration of Cr into the cathode. In particular, a diffusion barrier layer can be applied between the substrate and the cathode. The diffusion barrier layer may be:
  • porous mesh eg LaCrO 3
  • Possible manufacturing processes are z. Plasma spraying, LPPS, APS or wet
  • the production of a metallic cathode-substrate cell can, for. B. be done as follows. - Preparation of a tubular metallic cathode substrate carrier z. B. by extrusion or so-called.
  • LSF low-density dielectric
  • LSCF low-density dielectric
  • LSC nickel latex or mixed oxides
  • LiSM / YSZ, ScSZ, GCO nickel latex or mixed oxides
  • the electrolyte is applied in a process which yields directly dense layers.
  • APS APS
  • the electrolyte can be made from the following materials: YSZ, ScSZ, GDC, SDC.
  • the electrolyte may also consist of several of these materials to z. B. to prevent interfacial reactions with the cathode and anode.
  • Ni and / or Cu-based cermets which are applied by the abovementioned processes are suitable as the anode.
  • the interconnector can be applied either as a ceramic layer on the metal substrate, wherein the above-mentioned methods can be used. Alternatively, the relevant surface areas of the substrate are sealed with a metal solder.
  • the stack of functional layers in this case consists of a diffusion barrier layer 101 ', the cathode 101, the electrolyte layer 102 and the anode 103, which are applied to the metallic support 50 as a porous structure.
  • the porous metal layer 50 consists of sintered metal particles, as already described above with reference to FIG.
  • stainless steels there are stainless steels in question. Since stainless steels have proven with comparatively high chromium content than ge ⁇ suitable for the support layer, however, care must be taken that little chrome material cell when operating the fuel evaporates even at the low operating temperature.
  • the support for the functional layers has a porous metal structure on the air side (cathode side) of the fuel cell.
  • the functional layers can be applied thereon, for example by means of PVD methods, if necessary magnetron sputtering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

les piles à combustible à haute température, en particulier entièrement céramiques, sont connues de par l'état de la technique. Dans ces piles, un substrat céramique côté cathode constitue le support de l'électrolyte solide et des électrodes. Selon l'invention, un substrat métallique (10, 20, 40, 50) constitue le support des couches fonctionnelles, le substrat métallique étant poreux pour permettre le passage des réactifs et des produits de la réaction. Un système de piles à combustible composé de telles piles à combustible convient pour travailler à de plus basses températures de service, en particulier à des températures comprises entre 500 et 700°C. Les nouvelles piles à combustible peuvent être fabriquées au moyen de procédés relativement simples de la métallurgie des poudres.
PCT/EP2009/062275 2008-09-30 2009-09-22 Pile à combustible tubulaire à haute température, procédé pour sa fabrication et système de piles à combustible comprenant une telle pile à combustible WO2010037670A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09783291A EP2342777A1 (fr) 2008-09-30 2009-09-22 Pile à combustible tubulaire à haute température, procédé pour sa fabrication et système de piles à combustible comprenant une telle pile à combustible

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008049694.4 2008-09-30
DE102008049694A DE102008049694A1 (de) 2008-09-30 2008-09-30 Tubulare Hochtemperatur-Brennstoffzelle, damit aufgebaute Brennstoffzellenanlage und Verfahren zu deren Herstellung

Publications (1)

Publication Number Publication Date
WO2010037670A1 true WO2010037670A1 (fr) 2010-04-08

Family

ID=41319765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/062275 WO2010037670A1 (fr) 2008-09-30 2009-09-22 Pile à combustible tubulaire à haute température, procédé pour sa fabrication et système de piles à combustible comprenant une telle pile à combustible

Country Status (3)

Country Link
EP (1) EP2342777A1 (fr)
DE (1) DE102008049694A1 (fr)
WO (1) WO2010037670A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013020997A1 (fr) 2011-08-09 2013-02-14 Robert Bosch Gmbh Pile à combustible, système de piles à combustible et procédé de fabrication d'une pile à combustible
DE102011081553A1 (de) 2011-08-25 2013-02-28 Robert Bosch Gmbh Inert geträgerte tubulare Brennstoffzelle
DE102011081545A1 (de) 2011-08-25 2013-02-28 Robert Bosch Gmbh Inert geträgerte tubulare Brennstoffzelle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320087A1 (fr) * 1987-12-10 1989-06-14 Westinghouse Electric Corporation Combinaison de cellules électrochimiques à forme allongée
WO2003092046A2 (fr) * 2002-04-24 2003-11-06 The Regents Of The University Of California Dispositif electrochimique planaire
GB2400723A (en) * 2003-04-15 2004-10-20 Ceres Power Ltd Solid oxide fuel cell for a novel substrate and a method for fabricating the same
WO2005117192A1 (fr) * 2004-05-28 2005-12-08 Siemens Aktiengesellschaft Cellule de pile a combustible a electrolyte solide a haute temperature et pile a combustible comportant ladite cellule
US20060051643A1 (en) * 2002-01-16 2006-03-09 Alberta Research Council Inc. Metal-supported tubular fuel cell
US20060234112A1 (en) * 1999-07-31 2006-10-19 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841149B2 (ja) * 2001-05-01 2006-11-01 日産自動車株式会社 固体電解質型燃料電池用単セル
US6824907B2 (en) * 2002-01-16 2004-11-30 Alberta Reasearch Council, Inc. Tubular solid oxide fuel cell stack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320087A1 (fr) * 1987-12-10 1989-06-14 Westinghouse Electric Corporation Combinaison de cellules électrochimiques à forme allongée
US20060234112A1 (en) * 1999-07-31 2006-10-19 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US20060051643A1 (en) * 2002-01-16 2006-03-09 Alberta Research Council Inc. Metal-supported tubular fuel cell
WO2003092046A2 (fr) * 2002-04-24 2003-11-06 The Regents Of The University Of California Dispositif electrochimique planaire
GB2400723A (en) * 2003-04-15 2004-10-20 Ceres Power Ltd Solid oxide fuel cell for a novel substrate and a method for fabricating the same
WO2005117192A1 (fr) * 2004-05-28 2005-12-08 Siemens Aktiengesellschaft Cellule de pile a combustible a electrolyte solide a haute temperature et pile a combustible comportant ladite cellule

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013020997A1 (fr) 2011-08-09 2013-02-14 Robert Bosch Gmbh Pile à combustible, système de piles à combustible et procédé de fabrication d'une pile à combustible
DE102011081553A1 (de) 2011-08-25 2013-02-28 Robert Bosch Gmbh Inert geträgerte tubulare Brennstoffzelle
DE102011081545A1 (de) 2011-08-25 2013-02-28 Robert Bosch Gmbh Inert geträgerte tubulare Brennstoffzelle
WO2013026647A1 (fr) 2011-08-25 2013-02-28 Robert Bosch Gmbh Pile à combustible tubulaire avec support inerte

Also Published As

Publication number Publication date
EP2342777A1 (fr) 2011-07-13
DE102008049694A1 (de) 2010-04-01

Similar Documents

Publication Publication Date Title
DE19681750B4 (de) Elektrische Verbindungsvorrichtung für eine planare Brennstoffzelle und deren Verwendung
EP0868759B1 (fr) Plaque bipolaire a placage selectif
DE4237602A1 (de) Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung
DE10324396A1 (de) Brennstoffzelle
EP2025025B1 (fr) Interconnecteur pour un empilement de cellules à combustible et procédé de fabrication
EP1844513B1 (fr) Dispositif d'interconnexion pour piles a combustible a haute temperature
WO2022127984A1 (fr) Procédé de fabrication d'une plaque bipolaire pour une cellule électrochimique, et plaque bipolaire
EP1793444B1 (fr) Pile à combustible haute température et méthode de fabrication d'une telle pile à combustible
WO2010037670A1 (fr) Pile à combustible tubulaire à haute température, procédé pour sa fabrication et système de piles à combustible comprenant une telle pile à combustible
EP2335314B1 (fr) Pile à combustible plane à haute température
WO2018165682A1 (fr) Pièce moulée poreuse destinée à un module électrochimique
DE10342691A1 (de) Stapelbare Hochtemperaturbrennstoffzelle
DE102007058907A1 (de) Chromhaltiges, metallisches Substrat und Verfahren zu dessen Herstellung
DE102009037206B4 (de) Verfahren zum Herstellen einer Bipolarplatte für einen Brennstoffzellenstack und Bipolarplatte für einen Brennstoffzellenstack
WO2008064938A1 (fr) Cellule à combustible à haute température à composant ferritique
WO2018165683A1 (fr) Élément de guidage de gaz poreux, fonctionnalisé et destiné à un module électrochimique
DE10339613A1 (de) Festoxidbrennstoffzelle und Verfahren zu ihrer Herstellung
EP1790025B1 (fr) Pile a combustible haute temperature empilable
EP3697944B1 (fr) Électrode à gaz combustible ainsi que procédé de fabrication d'une électrode à gaz combustible
DE102008032498A1 (de) Stromlos abgeschiedene Schutzschichten
DE102004050087B4 (de) SOFC-Brenstoffzellenanode, Verfahren zu ihrer Herstellung und SOFC-Brennstoffzelle
DE102009037207A1 (de) Verfahren zum Verbinden einer Bipolarplatte mit einer Elektrode und mit einem weiteren Bauteil eines Brennstoffzellenstacks und eine solche Bipolarplatte umfassende Baugruppe eines Brennstoffzellenstacks
DE102010028893B4 (de) Verfahren zur Herstellung eines Interkonnektors für einen Brennstoffzellenstapel
DE112023000196T5 (de) Elektrochemische zelle
DE102022108748A1 (de) Interkonnektor-elektrochemische Reaktionseinzelzelle-Verbundkörper und elektrochemischer Reaktionszellenstapel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09783291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009783291

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009783291

Country of ref document: EP