EP1891325B1 - Procede de commande de l'alimentation d'un demarreur electrique - Google Patents

Procede de commande de l'alimentation d'un demarreur electrique Download PDF

Info

Publication number
EP1891325B1
EP1891325B1 EP05762776.2A EP05762776A EP1891325B1 EP 1891325 B1 EP1891325 B1 EP 1891325B1 EP 05762776 A EP05762776 A EP 05762776A EP 1891325 B1 EP1891325 B1 EP 1891325B1
Authority
EP
European Patent Office
Prior art keywords
starter
supply
temperature
predetermined
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05762776.2A
Other languages
German (de)
English (en)
Other versions
EP1891325A1 (fr
Inventor
Michel-Lou Mottier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volvo Truck Corp
Original Assignee
Volvo Lastvagnar AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volvo Lastvagnar AB filed Critical Volvo Lastvagnar AB
Publication of EP1891325A1 publication Critical patent/EP1891325A1/fr
Application granted granted Critical
Publication of EP1891325B1 publication Critical patent/EP1891325B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/10Safety devices
    • F02N11/101Safety devices for preventing engine starter actuation or engagement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0848Circuits or control means specially adapted for starting of engines with means for detecting successful engine start, e.g. to stop starter actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/10Safety devices
    • F02N11/106Safety devices for stopping or interrupting starter actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/10Safety devices
    • F02N11/101Safety devices for preventing engine starter actuation or engagement
    • F02N11/105Safety devices for preventing engine starter actuation or engagement when the engine is already running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/10Safety devices
    • F02N11/108Safety devices for diagnosis of the starter or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/067Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement the starter comprising an electro-magnetically actuated lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/045Starter temperature or parameters related to it
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2011Control involving a delay; Control involving a waiting period before engine stop or engine start

Definitions

  • the invention relates to electric starters used for starting thermal engines, especially on vehicles.
  • the invention relates more particularly to a method of controlling the supply of such a starter, which is intended to provide protection against overheating phenomena that may occur in certain cases.
  • an electric starter is used to drive a heat engine in its starting phase, until the latter reaches a range of autonomy. More specifically, and particularly on diesel engines, the objective of the starter is to drive the engine to a so-called regime of "first engine explosion”, then accompany his training until reaching a regime called “autorotation”. Beyond this autorotation, it is detrimental to the integrity of the starter that it continues to rotate at the speed of the engine. It is therefore necessary to disengage the engine starter beyond a certain speed, to avoid damage due to overspeed phenomena.
  • a known solution to prevent excessive temperature rise of the starter is to equip it with a thermal circuit breaker opening its supply circuit when the temperature exceeds a predetermined threshold. It is conceivable that the addition of such a protection component greatly increases the overall cost of the starter.
  • start-up phases can be longer or shorter depending on the ambient temperature, and systems including temperature sensors to take this into account have already been proposed. These sensors are arranged either inside the starter or in the cooling circuit of the engine. Such solutions are described in the documents JP 08- 093 609 , JP 09-296 772 , and JP 11-148,449 .
  • the devices described in these documents vary the maximum duration of the starter supply phases according to the measured temperatures and require that the starter is not solicited for a specified period after a power phase.
  • These different devices also have multiple disadvantages. Indeed, in the case where the temperature sensor is integrated inside the starter, the cost of the latter is increased. When the temperature is sensed outside the starter, the risk exists to chain several power phases causing a rapid increase in the internal temperature of the starter, without the ambient or cooling system temperature varies. In other words, the risks of degradation by overheating of the starter remain very important.
  • US 4,296,334 A describes a programmable electronic timer for starting an engine at predetermined intervals.
  • US 2004 / 0036296A describes a combined alternator / starter system.
  • One of the objectives of the invention is to provide a thermal protection of the starter that is effective and does not require the use of specific components or sensors.
  • the invention therefore relates to a power control method of an electric starter driving the heat engine of a vehicle according to claim 1. In known manner, it prevents the starter supply after each feeding phase, during a first predetermined period, relatively short, said period of "non-solicitation".
  • the power supply of the starter is inhibited for a second predetermined period, longer than the first non-biasing period, when the number of consecutive phases of power supply of the starter exceeds a predetermined value, without the heat engine has reached an autorotation regime.
  • the invention therefore consists in imposing a relatively long rest period, allowing the decrease of the temperature of the starter which has increased following the sequence of start-up cycles.
  • the protection is obtained by counting the number of operating cycles, as well as measuring the duration of the rest period. This measurement can be performed via an on-board computer, using software and / or hardware programmed for this purpose.
  • the maximum number of supply and non-solicitation cycles is determined according to the thermal parameters of the starter, which can be modeled after real-time tests.
  • the method according to the invention may include a step of estimating the internal temperature of the starter. This estimate is made by cumulating the estimates of the positive variations of the temperature corresponding to the supply phases and the estimates of negative variations of this same temperature during the non-solicitation phases. When this temperature estimate exceeds a predetermined temperature threshold, the starter supply may be inhibited for a predetermined time, allowing the starter's internal temperature to drop.
  • This predetermined duration may advantageously be of the same duration as the inhibition time which is imposed when the number of starter cycles of the starter becomes too high, as explained above.
  • the thermal behavior of the starter is modeled by evaluating the temperature rise that can occur when the starter is energized. This rise in temperature is reduced by the evaluation of the temperature decrease that occurs during the non-solicitation phases. To maintain a margin of safety in this estimate, the parameters considered are evaluated under the most unfavorable conditions.
  • the temperature rises are estimated by taking into account measured values for operation at maximum torque and at a minimum ambient temperature, while the engine is still cold and the lubrication is not optimal.
  • the evaluation of the decrease in temperature is based on actual measurements based on maximum ambient temperature operation.
  • each power supply phase by limiting each power supply phase to a predetermined duration, of the order of ten seconds, it protects the starter windings, avoiding their temperature rises too high, if the power supply was prolonged.
  • the starter is associated with an electrotechnical device called "launcher”, which aims to ensure the engagement of the output gear of the starter with the crown of the engine.
  • This launcher mainly comprises two solenoids, acting as electromagnets to mechanically move the pinion in the direction of the crown.
  • One of these solenoids, called solenoid “series” is mounted in series with the starter. It is traversed by a current at the beginning of the starter power supply phase. Then, when the starter gear meshes the crown of the engine, a contact mechanically connected to the pinion shunts solenoid "series" which is then no longer traversed by a current.
  • the engine if during a supply phase, it is found that the engine remains at a zero speed, then we can automatically cut the power of the starter. Indeed, it is generally considered that if the autorotation regime is not reached after a given period of time it is not necessary to continue the training, because the non-starting is due to another cause. Among these causes includes a fault engagement of the starter gear with the motor crown. In this case, the non-engagement of the pinion means that the heat engine is not driven, which thus causes, in accordance with the invention, a break in the feed control of the starter. This prevents the solenoid "series" of the launcher from being degraded by overheating due to prolonged feeding.
  • a starter 1 installed on a vehicle is an electric motor for meshing by its pinion 2 a heat engine 3, and more precisely on a truck, the ring 4 at the output of the latter.
  • the starter 1 is controlled by a relay whose contact 6 supplies the starter's collector via the electric battery 7 present in the vehicle.
  • the control of the contact 6 of this relay is obtained by an electrotechnical device 8 called “launcher” comprising different solenoids intended to allow the engagement of the pinion 2 of the starter in the ring 4 of the engine 3. More precisely, the launcher 8 comprises a first solenoid 10, said solenoid “shunt”, connected in parallel with the starter 1. A second solenoid, said solenoid “series” 12 is connected in series with the starter 1. The winding of the solenoid “series” 12 is made with a wire supporting a current stronger than that of the solenoid "shunt” 10. These two solenoids 10, 12 are connected to the battery when the contact 6 is closed.
  • the magnetic flux generated by the two solenoids "shunt” 10 and “series” 12 causes the displacement of a claw mechanism or fork 16, which causes the movement of the pinion 2 towards the crown 4 of the engine thermal.
  • the resistance of the "series” solenoid 12 in addition to the resistance of the winding of the starter 1, causes the starter 1 to be driven at a reduced speed.
  • a contact 20 is mechanically and automatically closed. This contact 20 is connected in parallel with the solenoid "series" 12, so that the latter is short-circuited.
  • the starter 1 is then directly connected to the battery 7, and its rotational speed therefore increases, so as to drive the engine at a higher speed.
  • the contact 6 ensuring the launch of the starter is controlled by an on-board computer 9 generating appropriate orders 11.
  • This computer 9 receives the information that the driver wishes to start the vehicle, and therefore actuates a starting device, which is illustrated schematically by the rotation of a contact key 13 to the figure 1 .
  • the information 14 of a desired solicitation of the starter can pass, as illustrated in FIG. figure 1 by a second computer 15, but it could also be sent directly to the computer 9 responsible for controlling the contact 6 upstream of the launcher 8.
  • the computer 15 may be interfaced with various members of the vehicle, and for example the speed lever 17, so as to detect, for example, the position of this gear lever in neutral, to prevent other solicitations from the starter. when the gear lever 17 is not in neutral.
  • the computer 9 is interfaced with a speed sensor 18 giving an image of the rotational speed of the engine.
  • the computer 9 provides control of the contact 6 so as to prevent any risk of overheating of the starter.
  • the computer 9 allows the starter 1 to be powered by the launcher 8 when an order is given by the driver, by means of the ignition key 13 or a similar device, such as for example a remote control device.
  • a clock device 22 provides information relating to the flow of time to the computer 9 or to a computer to which the latter is connected.
  • the method of the invention can be implemented by this computer 9, or multiple computers, and using hardware components and / or software aspects, taken independently or in combination.
  • control of the starter power supply is inhibited when the heat engine 3 has reached its autorotation regime, to avoid the risk of driving the starter 1 at too high speed.
  • the process according to the invention is carried out as illustrated in figure 2 .
  • the computer 9 when it is powered up, the computer 9 performs an initialization step 30, by which the counter of the number of consecutive phases of starter power supply is set to zero.
  • the computer 9 is in the waiting step 31 of a start command from the driver.
  • a test is performed on the number N ON of consecutive supply phases since the last powering up of the computer 9. If this number is less than a predetermined value N max , then, the process can continue to allow the power supply of the starter.
  • the maximum number N max of consecutive phases of supply of the starter is determined by taking into account the thermal behavior of the starter, through prior modeling.
  • the thermal modelizations of different starters make it possible to know the rate of temperature rise of a starter, as well as the rate of decrease of the temperature when it is not requested. To maintain a margin of safety vis-à-vis the risks of overheating, this modeling is done under the most unfavorable conditions.
  • the estimate of the temperature growth during the starter supply results from tests carried out at very low ambient temperature, while the engine is still cold and the lubrication is not optimal.
  • This optimum heating is modeled considering that the motor must provide the maximum torque, which occurs especially when the clutch of the gearbox is engaged.
  • Tests performed on different types of starter lead to temperature rise coefficients of the order of 3 to 15 ° Celsius per second, and typically between 5 and 10 ° C / sec.
  • the decay rate of the starter temperature is estimated under the most unfavorable conditions, that is to say when the ambient temperature, and therefore that of the starter, is particularly high.
  • the tests carried out indicate, under these conditions, that the rate of temperature decay is of the order of one to several degrees Celsius per second.
  • the maximum number N max is determined so that the increase in temperature after N max cycles, combining a supply phase and no power, does not risk to degrade the starter. It is indeed detrimental to the service life, or even the correct operation of the starter that its temperature exceeds 180 ° C to 250 ° C, depending on the type of starter, including insulation classes of its coils. For each type of starter, the maximum number N max is therefore determined to prevent any exceeding of a critical temperature threshold. In practice, this maximum number is close to 4 or 5.
  • the computer 9 also provides protection against other phenomena likely to cause degradation of the starter, including the engagement of the starter while the engine is not completely immobile.
  • a step 33 for monitoring the speed of the motor is executed before authorizing the power supply of the starter.
  • the speed sensor 18 makes it possible to ensure that the speed of the engine 3 has fallen below a certain low threshold, of the order of a few tens of revolutions per minute, taking into account the accuracy of the sensor 18. Passing below this speed threshold is not, however, synonymous with a total engine shutdown, so that it is necessary to count an additional period T BAL , of the order of a few seconds, at the end of from which it is considered that the speed of the engine is effectively totally canceled. This avoids meshing of the starter motor in situations called “crown balance" in which the engine is in slight movement decreasing.
  • the computer can then authorize the power supply of the starter, according to step 34.
  • a test 35 of the engine speed is then performed, to avoid the risk of overheating the solenoid "series" 12 of the launcher. Indeed, if the heat engine 1 has remained at zero speed despite the power supply of the starter, and after a duration T V0 , typically of the order of one second, the process proceeds to step 38, so that the control of the starter is inhibited by the opening of the contact 6. It is considered, indeed, that if the speed of the engine has not quickly exceeded the accuracy threshold of the speed sensor 18, it is not necessary to continue the power supply of the starter, because it can then be assumed a failure of engagement of the pinion 2 in the ring 4. In other words, it limits the duration of the supply phases to a predetermined time T V0 , if the speed of the engine remains zero during a starter power supply phase
  • step 36 the process proceeds to step 36, during which computer 9 monitors, thanks to the information 24 from the speed sensor 18, if the engine speed has reached the speed of the engine. autorotation. If this test indicates that the speed of the engine is sufficient, the process proceeds to the next step 37, during which the power supply of the starter is interrupted, so as to cause its disengagement of the ring gear.
  • the invention ends in step 39 because the starter has fulfilled its starting function of the engine.
  • the step 38 is triggered, so that the power supply of the starter is interrupted for a duration T OFF so as to avoid overheating of the starter windings.
  • the computer 9 prevents any solicitation of the starter, even if a command order is initiated by the driver.
  • the duration T OFF of non-solicitation is determined in estimating the temperature decrease that occurs during this non-solicitation phase.
  • step 40 is incremented by a counter of the number N ON of the supply phases.
  • the system then returns, via the transition 42, in a waiting state of a driver's order, according to step 31.
  • test 32 causes the passage to a step 43 of inhibition for a relatively long period, of a duration T PW , to ensure a sufficient decrease of the starter temperature.
  • this inhibition period is completed, the counter of the number N ON of consecutive supply phases is reinitialized, by the step 44, and the system then returns, via the transition 45, in a waiting state of a driver's order according to step 31.
  • the method may also comprise a test 46 on the estimated temperature ⁇ of the starter.
  • This test 46 may be optional, since the limitation of the number of consecutive supply phases makes it possible to avoid an excessive increase in the temperature of the starter.
  • a complementary control of the temperature makes it possible to reinforce the protection of the starter. Indeed, in the case where the computer 9 is no longer supplied, for example in the case of a contact cut by the driver, the counter of the number of consecutive supply phases is reset. In this case, an estimation of the evolution of the temperature of the starter makes it possible to benefit from a complementary protection.
  • the temperature of the starter can be estimated by adding the estimated temperature variations corresponding to the supply phases, and subtracting the estimated variations for the non-supply phases. These temperature variations can be estimated using the temperature rise coefficients mentioned above, a few degrees Celsius second. In the case of a contact cutoff which led to a shutdown of the computer 9, the estimate of the temperature is calculated taking into account the time elapsed since the switch-off.
  • the temperature test 46 makes it possible to verify whether the estimated temperature of the starter exceeds a predetermined threshold ⁇ max .
  • This threshold is determined according to the temperature that we do not want to see reached by the starter. If the temperature of the starter exceeds this threshold ⁇ max , proceed to step 43 causing the inhibition of starter power during a rest period of a duration T REP . On the other hand, if the estimated temperature remains below the threshold ⁇ max , then the process continues normally towards the authorization 34 of the starter supply.
  • the evolution of the estimated temperature ⁇ is illustrated in figure 3 .
  • the computer 9 counts the number of power cycles and non-solicitation, to estimate the temperature likely to reign within the starter. Beyond four cycles, as given as an example to the figure 3 , this calculator imposes a longer period of non-solicitation T REP , to allow a substantial lowering of the temperature inside the starter.
  • This long non-solicitation period, or rest period has a PWR time greater than a few tens of seconds, and typically greater than 2 minutes, allowing the starter temperature to drop significantly. At the end of this period, it can then again solicit the starter by feeding it during an ON phase 5 , and so on.
  • the method therefore provides a temperature limitation within the starter, without resorting to an effective measurement of this temperature, but only through a count of the number of power cycles, combined with a thermodynamic modeling of the starter.
  • the method according to the invention has multiple advantages, and in particular to prevent the risk of overheating of the starter or the associated launcher due to too much stress.
  • This protection is obtained without the need to equip the starter with temperature sensors in particular, or temperature-sensitive protection devices such as thermal circuit breakers. On the contrary, this protection uses the resources of calculators already present on the vehicle, without generating material overcost.
  • controlling the temperature rise of the starter makes it possible to ensure the dimensioning of its components by using materials whose temperature resistance is not oversized.

Description

    Domaine technique
  • L'invention se rapporte aux démarreurs électriques utilisés pour le démarrage de moteurs thermiques, notamment sur véhicules. L'invention concerne plus particulièrement un procédé de commande de l'alimentation d'un tel démarreur, qui est destiné à assurer une protection contre les phénomènes de surchauffe qui peuvent intervenir dans certains cas de figures.
  • Techniques antérieures
  • De façon générale, un démarreur électrique est utilisé pour entraîner un moteur thermique dans sa phase de démarrage, jusqu'à ce que ce dernier atteigne un régime d'autonomie. Plus précisément, et notamment sur les moteurs diesel, l'objectif du démarreur est d'entraîner le moteur jusqu'à un régime dit de "première explosion moteur", puis d'accompagner son entraînement jusqu'à l'atteinte d'un régime dit "d'autorotation". Au-delà de ce régime d'autorotation, il est préjudiciable pour l'intégrité du démarreur que celui-ci continue sa rotation à la vitesse du moteur. Il est donc nécessaire de désengager le démarreur du moteur au-delà d'un certain régime, pour éviter des dégradations dues à des phénomènes de survitesse.
  • Différents dispositifs et procédés ont été décrits dans les documents US 4 994 683 , US 6 202 615 et EP 0 812 986 , dans le but de prévenir tout disfonctionnement du démarreur qui serait consécutif à un entraînement par le moteur alors que ce dernier a atteint son régime d'autorotation.
  • Une autre cause connue de dégradation des démarreurs électriques concerne les phénomènes de surchauffe. Ces phénomènes de surchauffe peuvent avoir différentes origines, parmi lesquelles figurent les sollicitations excessives.
  • En effet, en cas de problème au niveau du circuit d'injection, le carburant n'arrive pas dans la chambre de combustion du moteur, qui ne peut donc pas atteindre son régime de première explosion, malgré une alimentation électrique prolongée du démarreur et donc un entraînement du moteur. Or, ces problèmes d'injection peuvent notamment intervenir lors d'une tentative de démarrage, lorsque le circuit d'injection n'est pas gavé.
  • Une solution connue pour empêcher une trop forte élévation de température du démarreur consiste à l'équiper d'un disjoncteur thermique ouvrant son circuit d'alimentation lorsque la température dépasse un seuil prédéterminé. On conçoit que l'ajout d'un tel composant de protection augmente fortement le coût global du démarreur.
  • On sait également que les phases de démarrage peuvent être plus ou moins longues en fonction de la température ambiante, et des systèmes incluant des capteurs de température pour en tenir compte ont déjà été proposés. Ces capteurs sont disposés soit à l'intérieur du démarreur, soit dans le circuit de refroidissement du moteur thermique. De telles solutions sont décrites dans les documents JP 08- 093 609 , JP 09-296 772 , et JP 11-148 449 .
  • Plus précisément, les dispositifs décrits dans ces documents font varier la durée maximale des phases d'alimentation du démarreur en fonction des températures mesurées et imposent que le démarreur ne soit pas sollicité pendant une durée déterminée après une phase d'alimentation. Ces différents dispositifs présentent également de multiples inconvénients. En effet, dans le cas où le capteur de température est intégré à l'intérieur du démarreur, le coût de ce dernier est augmenté. Lorsque la température est captée à l'extérieur du démarreur, le risque existe d'enchaîner plusieurs phases d'alimentation provoquant une augmentation rapide de la température interne du démarreur, sans que la température ambiante ou du circuit de refroidissement ne varie. Autrement dit, les risques de dégradation par surchauffe du démarreur demeurent très importants.
  • US 4 296 334 A décrit une minuterie électronique programmable pour démarrer un moteur à des intervalles prédéterminés.
    US 2004 / 0036 296 A décrit un système combiné alternateur/démarreur.
  • Exposé de l'invention
  • Un des objectifs de l'invention est d'assurer une protection thermique du démarreur qui soit efficace et qui ne nécessite pas l'emploi de composants ou de capteurs spécifiques.
  • L'invention concerne donc un procédé de commande d'alimentation d'un démarreur électrique entraînant le moteur thermique d'un véhicule selon la revendication 1. De façon connue, on empêche l'alimentation du démarreur après chaque phase d'alimentation, pendant une première période prédéterminée, relativement courte, dite période de "non sollicitation".
  • Conformément à l'invention, on inhibe l'alimentation du démarreur pendant une seconde période prédéterminée, plus longue que la première période de non sollicitation, lorsque le nombre de phases consécutives d'alimentation du démarreur dépasse une valeur prédéterminée, sans que le moteur thermique soit parvenu à un régime d'autorotation.
  • Autrement dit, lorsque le nombre de cycles d'alimentation puis de non sollicitation du démarreur devient trop important, on impose au démarreur une phase de repos calculée, en empêchant sa sollicitation pendant une durée plus longue.
  • L'invention consiste donc à imposer un temps de repos relativement important, permettant la baisse de la température du démarreur qui a augmenté suite à l'enchaînement des cycles de démarrage.
  • Il est important de noter que cette mesure de protection intervient sans qu'il ne soit nécessaire d'effectuer une quelconque mesure de température, de sorte qu'une protection efficace est obtenue sans l'ajout de composants coûteux qu'il est nécessaire d'implanter dans les démarreurs ou les circuits avoisinants existants à ce jour.
  • La protection est obtenue par une comptabilisation du nombre de cycles de fonctionnement, ainsi que la mesure de la durée du temps de repos. Cette mesure peut être réalisée par l'intermédiaire d'un calculateur embarqué, grâce à des moyens logiciels et/ou matériels programmés à cet effet.
  • En pratique, le nombre maximal de cycles d'alimentation et de non sollicitation est déterminé en fonction des paramètres thermiques du démarreur, qui peuvent être modélisés suite à des essais en grandeur réelle.
  • Complémentairement, le procédé conforme à l'invention peut intégrer une étape consistant à estimer la température interne du démarreur. Cette estimation se fait en cumulant les estimations des variations positives de la température correspondant aux phases d'alimentation et les estimations de variations négatives de cette même température pendant les phases de non sollicitation. Lorsque cette estimation de température dépasse un seuil de température prédéterminé, l'alimentation du démarreur peut être inhibée pendant une durée prédéterminée, permettant à la température interne du démarreur de s'abaisser. Cette durée prédéterminée peut avantageusement être de durée identique à la durée d'inhibition qui est imposée lorsque le nombre de cycles de sollicitation du démarreur devient trop élevé, comme exposé précédemment.
  • Autrement dit, on modélise le comportement thermique du démarreur en évaluant l'élévation de température susceptible d'intervenir lorsque le démarreur est alimenté. Cette élévation de température est diminuée de l'évaluation de l'abaissement de température qui intervient lors des phases de non sollicitation. Pour conserver une marge de sécurité dans cette estimation, les paramètres pris en considération sont évalués dans des conditions les plus défavorables. Ainsi, les élévations de température sont estimées en prenant en compte des mesures relevées pour un fonctionnement à couple maximum et sous une température ambiante minimum, alors que le moteur thermique est encore froid et que la lubrification n'est pas optimale. A l'inverse, l'évaluation de la décroissance de la température s'effectue à partir de mesures réelles basées sur un fonctionnement à température ambiante maximale.
  • Complémentairement, il est possible de combiner l'invention avec des aspects permettant la protection contre d'autres risques de dégradation, et notamment des risques d'échauffement des bobinages, de survitesse ou de défaut d'enclenchement.
  • Ainsi, en limitant chaque phase d'alimentation à une durée prédéterminée, de l'ordre de la dizaine de secondes, on protège les bobinages du démarreur, en évitant que leur température ne s'élève trop fortement, si l'alimentation se prolongeait.
  • Par ailleurs, on sait que le démarreur est associé à un dispositif électrotechnique appelé "lanceur", qui a pour but d'assurer l'enclenchement du pignon de sortie du démarreur avec la couronne du moteur thermique. Ce lanceur comporte principalement deux solénoïdes, jouant le rôle d'électro-aimants pour déplacer mécaniquement le pignon en direction de la couronne. Un de ces solénoïdes, dit solénoïde "série" est monté en série avec le démarreur. Il est parcouru par un courant lors du début de la phase électrique d'alimentation du démarreur. Puis, lorsque le pignon du démarreur engrène la couronne du moteur thermique, un contact mécaniquement relié au pignon shunte ce solénoïde "série" qui n'est alors plus parcouru par un courant.
  • Selon une autre caractéristique de l'invention, si au cours d'une phase d'alimentation, on constate que le moteur thermique reste à une vitesse nulle, on peut alors couper automatiquement l'alimentation du démarreur. En effet, on considère généralement que si le régime d'autorotation n'est pas atteint après une durée donnée il n'est pas nécessaire de poursuivre l'entraînement, car le non démarrage est dû à une autre cause. Parmi ces causes figure notamment un défaut d'engagement du pignon du démarreur avec la couronne du moteur. Dans ce cas, le non engagement du pignon fait que le moteur thermique n'est pas entraîné, ce qui provoque donc, conformément à l'invention, une coupure de la commande d'alimentation du démarreur. On évite ainsi que le solénoïde "série" du lanceur ne se dégrade par surchauffe due à une alimentation prolongée.
  • Par ailleurs, il est possible grâce à l'invention de prévenir les risques d'engagement du pignon du démarreur sur la couronne du moteur alors que cette dernière n'est pas totalement stabilisée. Il est en effet préjudiciable à l'intégrité mécanique de ce pignon que le démarreur soit réengagé alors que la couronne n'est pas totalement immobile. Or, la vitesse de rotation de cette couronne, qui correspond à la vitesse du moteur, est estimée au moyen d'un capteur dont la précision est de l'ordre de quelques dizaines de tours par minute. Il se peut donc que la vitesse de la couronne ne soit pas strictement nulle, alors que la valeur renvoyée par le capteur peut le laisser penser.
  • Selon une autre caractéristique de l'invention, on impose donc un temps minimum de l'ordre de quelques secondes avant d'autoriser une nouvelle sollicitation du démarreur, après que la vitesse du moteur est passée en dessous du seuil de précision du capteur. On est ainsi certain qu'après l'expiration de cette durée complémentaire, la couronne du moteur est réellement immobile, et qu'un nouvel enclenchement du démarreur ne présente pas de risque mécanique.
  • Description sommaire des figures
  • La manière de réaliser l'invention, ainsi que les avantages qui en découlent ressortiront bien de la description du mode de réalisation qui suit, à l'appui des figures annexées dans lesquelles :
    • La figure 1 est un schéma simplifié illustrant les différents éléments intervenants dans la commande d'un démarreur conformément à l'invention.
    • La figure 2 est un organigramme illustrant le déroulement du procédé conforme à l'invention.
    • La figure 3 est un chronogramme simplifié illustrant l'évolution de l'estimation de la température du démarreur, en fonction du temps.
    Manière de réaliser l'invention
  • Comme déjà évoqué et illustré à la figure 1, un démarreur 1 installé sur un véhicule est un moteur électrique destiné à engrener par son pignon 2 un moteur thermique 3, et plus précisément sur un camion, la couronne 4 située en sortie de ce dernier. La commande du démarreur 1 s'effectue par un relais dont le contact 6 permet d'alimenter le collecteur du démarreur par l'intermédiaire de la batterie électrique 7 présente dans le véhicule.
  • La commande du contact 6 de ce relais est obtenue par un dispositif électrotechnique 8 appelé "lanceur" comportant différents solénoïdes destinés à permettre l'enclenchement du pignon 2 du démarreur dans la couronne 4 du moteur 3. Plus précisément, le lanceur 8 comporte un premier solénoïde 10, dit solénoïde "shunt", monté en parallèle du démarreur 1. Un second solénoïde, dit solénoïde "série" 12 est monté en série avec le démarreur 1. Le bobinage du solénoïde "série" 12 est réalisé avec un fil supportant un courant plus fort que celui du solénoïde "shunt" 10. Ces deux solénoïdes 10, 12 sont connectés à la batterie dès lors que le contact 6 est fermé. Dans un premier temps, le flux magnétique généré par les deux solénoïdes "shunt" 10 et "série" 12 provoque le déplacement d'un mécanisme de crabot ou fourchette 16, qui engendre le mouvement du pignon 2 en direction de la couronne 4 du moteur thermique. La résistance du solénoïde "série" 12, s'ajoutant à la résistance de l'enroulement du démarreur 1, fait que ce dernier est entraîné à vitesse réduite. Lorsque le pignon 2 parvient dans une position où il engrène la couronne 4, un contact 20 est mécaniquement et automatiquement fermé. Ce contact 20 est monté en parallèle du solénoïde "série" 12, de sorte que ce dernier est court-circuité. Le démarreur 1 est alors directement connecté à la batterie 7, et sa vitesse de rotation augmente donc, de façon à entraîner le moteur thermique à un régime plus élevé.
  • D'autres architectures électrotechniques alternatives peuvent être employées pour réaliser le lanceur, sans sortir du cadre de l'invention.
  • En pratique, le contact 6 assurant le lancement du démarreur est commandé par un calculateur embarqué 9 générant des ordres appropriés 11. Ce calculateur 9 reçoit l'information que le chauffeur souhaite démarrer le véhicule, et actionne donc un dispositif de démarrage, qui est illustré schématiquement par la rotation d'une clef de contact 13 à la figure 1. L'information 14 d'une sollicitation souhaitée du démarreur peut transiter, comme illustré à la figure 1, par un second calculateur 15, mais elle pourrait également être envoyée directement au calculateur 9 responsable de la commande du contact 6 en amont du lanceur 8.
  • A titre indicatif, le calculateur 15 peut être interfacé avec différents organes du véhicule, et par exemple le levier de vitesse 17, de manière à détecter par exemple la position de ce levier de vitesse au point mort, pour empêcher d'autres sollicitations du démarreur lorsque le levier de vitesse 17 n'est pas au point mort. De même, le calculateur 9 est interfacé avec un capteur de vitesse 18 donnant une image de vitesse de rotation du moteur.
  • Conformément à l'invention, le calculateur 9 assure la commande du contact 6 de manière à prévenir tout risque de surchauffe du démarreur. Pour ce faire, le calculateur 9 autorise l'alimentation du démarreur 1 par le lanceur 8 lorsqu'un ordre est donné par le conducteur, par l'intermédiaire de la clef de contact 13 ou d'un dispositif analogue, tel que par exemple un dispositif de télécommande à distance.
  • Un dispositif d'horloge 22 fournit une information relative à l'écoulement du temps au calculateur 9 ou à un calculateur auquel ce dernier est relié. De façon générale, le procédé de l'invention peut être mis en oeuvre par ce calculateur 9, ou des calculateurs multiples, et utilisant des composants matériels et/ou des aspects logiciels, pris indépendamment ou en combinaison.
  • En outre, la commande de l'alimentation du démarreur est inhibée lorsque le moteur thermique 3 a atteint son régime d'autorotation, pour éviter les risques d'entraînement du démarreur 1 à vitesse trop élevée.
  • Le procédé conforme à l'invention se déroule comme illustré à la figure 2. Ainsi, à sa mise sous tension, le calculateur 9 effectue une étape 30 d'initialisation, par laquelle le compteur du nombre de phases consécutives d'alimentation du démarreur est mis à zéro. Le calculateur 9 se trouve dans l'étape d'attente 31 d'un ordre de démarrage de la part du conducteur.
  • Dès qu'un tel ordre est reçu, on effectue au cours d'une étape 32 un test sur le nombre NON de phases d'alimentation consécutives depuis la dernière mise sous tension du calculateur 9. Si ce nombre est inférieur à une valeur prédéterminé Nmax, alors, le procédé peut se poursuivre en vue d'autoriser l'alimentation du démarreur. Le nombre maximal Nmax de phases consécutives d'alimentation du démarreur est déterminé par la prise en compte du comportement thermique du démarreur, grâce à une modélisation préalable.
  • Plus précisément, les modélisations thermiques de différents démarreurs permettent de connaître le taux de montée en température d'un démarreur, ainsi que le taux de décroissance de la température lorsqu'il n'est pas sollicité. Pour conserver une marge de sécurité vis-à-vis des risques de surchauffe, cette modélisation est faite dans les conditions les plus défavorables. Ainsi, l'estimation de la croissance de température lors de l'alimentation du démarreur résulte d'essais effectués à très faible température ambiante, alors que le moteur thermique est encore froid et que la lubrification n'est pas optimale. Cet échauffement optimum est modélisé en considérant que le moteur doit fournir le couple maximum, ce qui intervient notamment lorsque l'embrayage de la boîte de vitesse est enclenché.
  • Les essais réalisés sur différents types de démarreur conduisent à des coefficients d'élévation de température de l'ordre de 3 à 15° Celsius par seconde, et typiquement entre 5 et 10°C/s
  • Complémentairement, le taux de décroissance de la température du démarreur est estimé dans les conditions les plus défavorables, c'est-à-dire lorsque la température ambiante, et donc celle du démarreur, est particulièrement élevée. Les essais effectués indiquent dans ces conditions, que le taux de décroissance de température est de l'ordre de un à quelques degrés Celsius par seconde.
  • Ainsi, le nombre maximal Nmax est déterminé pour que l'accroissement de la température après Nmax cycles, combinant une phase d'alimentation et de non alimentation, ne risque pas de dégrader le démarreur. Il est en effet préjudiciable à la durée de vie, voire même au bon fonctionnement du démarreur que sa température dépasse 180°C à 250° C environ, en fonction du type de démarreur, et notamment des classes d'isolation de ses bobinages. Pour chaque type de démarreur, le nombre maximal Nmax est donc déterminé pour éviter tout dépassement d'un seuil critique de température. En pratique, ce nombre maximal est voisin de 4 ou 5.
  • Le calculateur 9 permet également d'assurer la protection contre d'autres phénomènes susceptibles de provoquer une dégradation du démarreur, et notamment l'enclenchement du démarreur alors que le moteur n'est pas totalement immobile.
  • Ainsi, une étape 33 de surveillance de la vitesse du moteur est exécutée avant d'autoriser l'alimentation du démarreur. Ainsi, le capteur de vitesse 18 permet de s'assurer que la vitesse du moteur 3 est descendue en dessous d'un certain seuil bas, de l'ordre de quelques dizaines de tours par minute, compte tenu de la précision du capteur 18. Le passage en dessous de ce seuil de vitesse n'est toutefois pas synonyme d'un arrêt total du moteur, de sorte qu'il est nécessaire de comptabiliser une période supplémentaire TBAL, de l'ordre de quelques secondes, à l'issue de laquelle on considère que la vitesse du moteur est effectivement totalement annulée. Ceci évite l'engrènement du démarreur sur le moteur dans des situations dites de "couronne en balance" dans lesquelles le moteur est en léger mouvement s'amenuisant.
  • Lorsque la condition de vitesse nulle du moteur est remplie, après la temporisation 33, le calculateur peut alors autoriser l'alimentation du démarreur, selon l'étape 34.
  • Un test 35 de la vitesse du moteur est alors effectué, pour éviter les risques de surchauffe du solénoïde "série" 12 du lanceur. En effet, si le moteur thermique 1 est resté à vitesse nulle malgré l'alimentation du démarreur, et ce après une durée TV0, typiquement de l'ordre de la seconde, le procédé passe dans l'étape 38, de sorte que la commande du démarreur est inhibée, par l'ouverture du contact 6. On considère en effet, que si la vitesse du moteur thermique n'a pas rapidement dépassé le seuil de précision du capteur de vitesse 18, il n'est pas utile de poursuivre l'alimentation du démarreur, car on peut alors supposer un défaut d'engagement du pignon 2 dans la couronne 4. En d'autres termes, on limite la durée des phases d'alimentation à une durée prédéterminée TV0, si la vitesse du moteur thermique reste nulle pendant une phase d'alimentation du démarreur
  • En revanche, si la vitesse du moteur croît, le procédé passe dans l'étape 36, au cours de laquelle calculateur 9 surveille, grâce à l'information 24 issue du capteur de vitesse 18, si la vitesse du moteur a atteint le régime d'autorotation. Si ce test 36 indique que la vitesse du moteur est suffisante, le procédé passe à l'étape suivante 37, au cours de laquelle l'alimentation du démarreur est interrompue, de manière à provoquer son désenclenchement de la couronne 4. Le procédé de l'invention se termine à l'étape 39, car le démarreur a rempli sa fonction de démarrage du moteur thermique.
  • A l'inverse, si le test 36 est négatif, c'est-à-dire si la vitesse du moteur n'atteint pas le régime d'autorotation après une durée TON de l'ordre de la dizaine de secondes, l'étape 38 est déclenchée, de sorte que l'alimentation du démarreur est interrompue pendant une durée TOFF de manière à éviter la surchauffe des bobinages du démarreur. Ainsi, après une phase d'alimentation, le calculateur 9 empêche toute sollicitation du démarreur, même si un ordre de commande est lancé par le conducteur. La durée TOFF de non sollicitation est déterminée en estimant la décroissance de température qui s'opère pendant cette phase de non sollicitation.
  • Dès lors que l'alimentation a été interrompue suite à un échec du démarrage du moteur thermique, on incrémente, à l'étape 40, un compteur du nombre NON de phases d'alimentation. Le système retourne alors, via la transition 42, dans un état d'attente d'un ordre du chauffeur, selon l'étape 31.
  • Si le nombre de phases consécutives infructueuses NON atteint la valeur critique Nmax, alors le test 32 provoque le passage dans une étape 43 d'inhibition pendant une période relativement longue, d'une durée TREP, pour assurer une décroissance suffisante de la température du démarreur. Lorsque cette période d'inhibition est achevée, le compteur du nombre NON de phases d'alimentation consécutives est réinitialisé, par l'étape 44, et le système retourne alors, via la transition 45, dans un état d'attente d'un ordre du chauffeur selon l'étape 31.
  • Tel qu'illustré à la figure 2, le procédé peut également comporter un test 46 sur la température θ estimée du démarreur. Ce test 46 peut être optionnel, dans la mesure où la limitation du nombre de phases d'alimentation consécutives permet d'éviter une augmentation excessive de la température du démarreur. Cependant, un contrôle complémentaire de la température permet de renforcer la protection du démarreur. En effet, dans l'hypothèse où le calculateur 9 n'est plus alimenté, par exemple dans le cas d'une coupure de contact par le chauffeur, le compteur du nombre de phases consécutives d'alimentation est réinitialisé. Dans ce cas, une estimation de l'évolution de la température du démarreur permet de bénéficier d'une protection complémentaire.
  • Ainsi, la température du démarreur peut être estimée, en additionnant les variations estimées de température correspondant aux phases d'alimentation, et en soustrayant les variations estimées pour les phases de non alimentation. Ces variations de températures peuvent être estimées en utilisant les coefficients d'élévation de température évoqués ci-dessus, de quelques degrés Celsius par seconde. Dans le cas d'une coupure de contact qui a conduit à un arrêt du calculateur 9, l'estimation de la température est calculée en tenant compte de la durée écoulée depuis la coupure de contact.
  • Ainsi, le test de température 46 permet de vérifier si la température estimée du démarreur excède un seuil prédéterminé θmax. Ce seuil est déterminé en fonction de la température que l'on ne souhaite pas voir atteindre par le démarreur. Si la température du démarreur dépasse ce seuil θmax, on passe à l'étape 43 provoquant l'inhibition de l'alimentation du démarreur pendant une période de repos d'une durée TREP. En revanche, si la température estimée reste inférieure au seuil θmax, alors le procédé se poursuit normalement vers l'autorisation 34 de l'alimentation du démarreur.
  • L'évolution de la température estimée θ est illustrée à la figure 3. Ainsi, pendant une phase d'alimentation ON1, ON2, ON3, ON4, la température du démarreur croît, et elle décroît pendant les phases de non sollicitation OFF1, OFF2, OFF3. Conformément à l'invention, le calculateur 9 comptabilise le nombre de cycles d'alimentation et de non sollicitation, pour estimer la température susceptible de régner au sein du démarreur. Au-delà de quatre cycles, comme donné à titre d'exemple à la figure 3, ce calculateur impose une période plus longue de non sollicitation TREP, pour permettre un abaissement substantiel de la température à l'intérieur du démarreur. Cette période longue de non sollicitation, ou période de repos, présente une durée TREP supérieure à quelques dizaines de seconde, et typiquement supérieure à 2 minutes, permettant à la température du démarreur de s'abaisser de manière importante. A l'expiration de cette période, on peut alors à nouveau solliciter le démarreur en l'alimentant pendant une phase ON5, et ainsi de suite.
  • Le procédé assure donc une limitation de la température au sein du démarreur, sans avoir recours à une mesure effective de cette température, mais uniquement grâce à un décompte du nombre de cycles d'alimentation, combiné à une modélisation thermodynamique du démarreur.
  • Il ressort de ce qui précède que le procédé conforme à l'invention présente de multiples avantages, et notamment celui de prévenir les risques de surchauffe du démarreur ou du lanceur associé consécutif à une trop forte sollicitation. Cette protection s'obtient sans qu'il soit nécessaire d'équiper le démarreur de capteurs de température notamment, ou de dispositifs de protection sensibles à la température tels que des disjoncteurs thermiques. Au contraire, cette protection utilise les ressources de calculateurs d'ores et déjà présents sur le véhicule, sans engendrer donc de surcoût de matériel.
  • En outre, la maîtrise de la montée en température du démarreur permet d'assurer le dimensionnement de ses composants en utilisant des matériaux dont la résistance en température n'est pas surdimensionnée.

Claims (6)

  1. Procédé de commande de l'alimentation d'un démarreur électrique (1) entraînant le moteur thermique (3) d'un véhicule, comportant un lanceur destiné à permettre l'enclenchement d'un pignon du démarreur dans une couronne dudit moteur thermique (3), et dans lequel on empêche l'alimentation du démarreur (1), après chaque phase d'alimentation, pendant une première période prédéterminée (TOFF), caractérisée en ce que l'on inhibe l'alimentation du démarreur (1) pendant une seconde période prédéterminée (TREP) plus longue que ladite première période (TOFF), lorsque le nombre (NON) de phases consécutives d'alimentation (ON1, ON2, ON3, ON4) du démarreur dépasse une valeur prédéterminée (Nmax), sans que le moteur thermique (3) soit parvenu à un régime d'autorotation, et en ce qu'on limite la durée des phases d'alimentation du démarreur à une durée prédéterminée (TV0), de l'ordre de la seconde, si la vitesse du moteur thermique reste nulle pendant la phase d'alimentation du démarreur, et en ce que les phases d'alimentation du démarreur ont une durée maximale (TON) de l'ordre de la dizaine de secondes.
  2. Procédé selon la revendication 1, caractérisé en ce que si la durée d'une phase d'alimentation a été limitée parce que la vitesse du moteur thermique est restée nulle pendant une phase d'alimentation du démarreur, on empêche l'alimentation du démarreur pendant une durée prédéterminée (TOFF), et on incrémente un compteur du nombre (NON) de phases d'alimentation.
  3. Procédé selon la revendication 2, caractérisé en ce qu'après avoir incrémenté le compteur, le système retourne dans un état d'attente.
  4. Procédé selon la revendication 1, caractérisé en ce que l'on estime la température interne du démarreur (1) en cumulant les estimations des variations positives de ladite température correspondant à des phases d'alimentation (ON1, ON2, ON3, ON4), et les estimations des variations négatives de ladite température pendant les phases de non alimentation (OFF1, OFF2, OFF3), et en ce que l'on inhibe l'alimentation du démarreur pendant une troisième période prédéterminée, si la température estimée dépasse un seuil de température prédéterminé (θmax).
  5. Procédé selon la revendication 6, caractérisé en ce que les seconde et troisième périodes prédéterminées sont de durées identiques (TREP).
  6. Procédé selon la revendication 1, caractérisé en ce que l'alimentation du démarreur (1) est empêchée pendant une période prédéterminée (TBAL) qui débute lorsque la mesure de la vitesse du moteur thermique (3) passe en dessous d'un seuil bas prédéterminé.
EP05762776.2A 2005-05-26 2005-05-26 Procede de commande de l'alimentation d'un demarreur electrique Active EP1891325B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2005/050380 WO2006125872A1 (fr) 2005-05-26 2005-05-26 Procede de commande de l'alimentation d'un demarreur electrique

Publications (2)

Publication Number Publication Date
EP1891325A1 EP1891325A1 (fr) 2008-02-27
EP1891325B1 true EP1891325B1 (fr) 2019-08-21

Family

ID=35462328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05762776.2A Active EP1891325B1 (fr) 2005-05-26 2005-05-26 Procede de commande de l'alimentation d'un demarreur electrique

Country Status (3)

Country Link
US (1) US7948099B2 (fr)
EP (1) EP1891325B1 (fr)
WO (1) WO2006125872A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011644A1 (de) * 2006-03-06 2007-09-13 Robert Bosch Gmbh Vorrichtung mit einem ersten Getriebeteil zum Einspuren in ein zweites Getriebeteil, insbesondere Startvorrichtung mit einem Ritzel zum Einspuren in einen Zahnkranz einer Brennkraftmaschine sowie Verfahren zum Betrieb einer derartigen Vorrichtung
FR2944326B1 (fr) * 2009-04-10 2015-10-16 Valeo Equip Electr Moteur Procede de protection thermique d'un systeme d'arret/relance automatique de moteur thermique et systeme l'utilisant
US8299639B2 (en) * 2009-04-17 2012-10-30 Denso Corporation Starter for starting internal combustion engine
DE102010030830A1 (de) 2010-07-01 2012-01-05 Robert Bosch Gmbh Verfahren zum Betreiben einer Temperaturbegrenzungseinrichtung, Temperaturbegrenzungseinrichtung sowie elektrisches Gerät
FR2964157B1 (fr) * 2010-09-01 2013-04-12 Peugeot Citroen Automobiles Sa Dispositif et procede de protection d'un demarreur a grande inertie de rotation
WO2013046387A1 (fr) * 2011-09-29 2013-04-04 トヨタ自動車株式会社 Dispositif de démarrage de moteur et procédé de commande
FR3012528B1 (fr) * 2013-10-29 2018-01-12 Peugeot Citroen Automobiles Sa Vehicule automobile a redemarrage ameliore
WO2016093779A1 (fr) * 2014-12-08 2016-06-16 Turk Traktor Ve Ziraat Makinalari Anonim Système de protection de démarreur
DE102017210981A1 (de) * 2017-06-28 2019-01-03 Bayerische Motoren Werke Aktiengesellschaft Verarbeitungseinheit zur Überwachung eines Starters für einen Verbrennungsmotor
US10487791B1 (en) * 2018-05-01 2019-11-26 GM Global Technology Operations LLC Temperature control strategy for electric starter system with polyphase brushless starter motor
CN109236535A (zh) * 2018-09-27 2019-01-18 潍柴动力股份有限公司 一种起动机过热的判断方法及装置
FR3101430B1 (fr) * 2019-09-27 2021-09-03 Continental Automotive Procédé d’estimation du vieillissement d’une batterie d’un véhicule
WO2021064890A1 (fr) * 2019-10-02 2021-04-08 Honda Motor Co., Ltd. Système de démarrage pour moteur à combustion interne et équipement électrique le comprenant
CN111262503B (zh) * 2020-02-15 2021-08-31 杭州电子科技大学 一种直流无刷电机热保护方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696333A (en) * 1970-06-10 1972-10-03 Willard Mott Automatic engine starter
US4296334A (en) * 1978-09-07 1981-10-20 Gim Wong Programmable electronic starting device for autos and the like with means selectable to actuate accessories
US4392059A (en) * 1980-10-08 1983-07-05 Tony Nespor Automatic remote car starter
US4577599A (en) * 1982-09-27 1986-03-25 Brunswick Corporation Remote starter for internal combustion engine
US4490620A (en) * 1983-09-12 1984-12-25 Eaton Corporation Engine starter protective and control module and system
US4606307A (en) * 1983-12-01 1986-08-19 Cook Norman E Automatic starting system
US4653442A (en) * 1985-10-15 1987-03-31 Onan Corporation Engine starting cycle and overcrank control system
JPH061067B2 (ja) * 1989-04-13 1994-01-05 いすゞ自動車株式会社 エンジン始動装置
JP2522060B2 (ja) * 1989-06-14 1996-08-07 いすゞ自動車株式会社 エンジン始動装置
US5042439A (en) * 1990-03-15 1991-08-27 Gene Tholl Remote, safe, and secure operational control of an internal combustion engine
FR2770349B1 (fr) * 1997-10-24 2000-01-14 Valeo Equip Electr Moteur Dispositif pour la commande d'un demarreur de vehicule automobile
DE19946808A1 (de) * 1999-09-29 2001-04-19 Bosch Gmbh Robert Elektrische Startervorrichtung für eine Brennkraftmaschine
DE10029714A1 (de) * 2000-06-16 2001-12-20 Bosch Gmbh Robert Startervorrichtung für eine Verbrennungsmaschine
SE521421C2 (sv) * 2002-03-15 2003-10-28 Scania Cv Abp Fjärrstyrning
US7156063B2 (en) * 2002-03-21 2007-01-02 Robert Bosch Gmbh Starter device for an internal combustion engine as well as a method for starting an internal combustion engine
FR2839344B1 (fr) * 2002-03-29 2005-12-02 Valeo Equip Electr Moteur Circuit de commande electronique d'un contacteur de demarreur de vehicule automobile, equipe de moyens de correction en cas de non fermeture du contact de puissance
US6800952B2 (en) * 2002-06-18 2004-10-05 Dana Corporation Method of protection and fault detection for starter/alternator operating in the starter mode
JP4092503B2 (ja) * 2004-03-26 2008-05-28 日産自動車株式会社 エンジン始動装置およびエンジン始動方法
US7667438B2 (en) * 2004-11-10 2010-02-23 Chrysler Group Llc Energy storage system with ultracapacitor and switched battery
FR2881479B1 (fr) * 2005-02-02 2010-09-10 Valeo Equip Electr Moteur Dispositif de commande d'un demarreur de moteur thermique, notamment de vehicule automobile et demarreur comportant un tel dispositif
US8210145B2 (en) * 2005-05-17 2012-07-03 Panasonic Corporation Engine start device
KR101502794B1 (ko) * 2007-07-12 2015-03-16 로베르트 보쉬 게엠베하 시동 장치
US7806095B2 (en) * 2007-08-31 2010-10-05 Vanner, Inc. Vehicle starting assist system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1891325A1 (fr) 2008-02-27
WO2006125872A1 (fr) 2006-11-30
US7948099B2 (en) 2011-05-24
US20080258472A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
EP1891325B1 (fr) Procede de commande de l'alimentation d'un demarreur electrique
EP3092389B1 (fr) Procède et système de démarrage fiabilisé de turbomachine
FR2925615A1 (fr) Procede de commande pour demarreur d'un moteur a combustion et son application
EP0911953A1 (fr) Dispositif pour la commande d'un démarreur de véhicule automobile
WO2009083370A1 (fr) Procede de commande pour demarreur d'un moteur a combustion et son application
WO2012085414A2 (fr) Procede d'arret automatique d'un moteur a combustion interne par un systeme d'arret et de redemarrage automatique
EP0833052B1 (fr) Perfectionnements à la gestion de la coupure d'un démarreur de véhicule automobile
FR2960265A1 (fr) Dispositif de demarrage de moteur thermique
EP0833051B1 (fr) Procédé et dispositif pour la commande de la coupure d'un démarreur de véhicule automobile
JP2002519587A (ja) 内燃機関のスタート遮断方法
EP3436685B1 (fr) Stratégie de démarrage par temps froid avec un alterno-demarreur dans un véhicule pourvu d'une courroie entraînée par un moteur à combustion interne
EP1161629B1 (fr) Procede pour l'entrainement d'un moteur thermique de vehicule, notamment automobile, et ensemble formant demarreur pour sa mise en oeuvre
EP1994277A2 (fr) Procede et systeme de commande d'une bougie de prechauffage, a alimentation a basse tension electrique, d'un melange air/carburant de moteur diesel
EP2612019B1 (fr) Procédé de protection d'un démarreur à grande inertie de rotation
EP1378661B1 (fr) système de démarrage à organe de contrôle séparé du démarreur
WO2019141612A1 (fr) Procédé et système de démarrage à froid d'un moteur à combustion interne
FR2925977A1 (fr) Dispositif de commande pour un solenoide, demarreur electrique l'incorporant, et procedes de commande correspondants.
EP1041276A1 (fr) Démarreur de véhicule automobile à usure réduite
FR2927301A1 (fr) Procede et systeme de gestion des demarrages du moteur d'un vehicule
EP2647830A1 (fr) Dispositif de commande d'un démarreur d'un moteur thermique de véhicule automobile, et démarreur correspondant
FR2986277A1 (fr) Procede de detection et de determination des defaillances d'un demarreur de type a post-pre engagement
FR2809138A1 (fr) Dispositif de protection pour demarreur de vehicule
FR3088399A1 (fr) Evaluation dynamique de l’usure d’une courroie d’un vehicule automobile
FR2931120A1 (fr) Procede et dispositif d'autorisation de l'activation d'au moins une fonction hybride dans un vehicule
FR2841941A1 (fr) Demarreur a lanceur perfectionne pour un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090406

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLVO LASTVAGNAR AB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02N 11/08 20060101ALI20190312BHEP

Ipc: F02N 11/10 20060101AFI20190312BHEP

Ipc: F02N 15/06 20060101ALN20190312BHEP

INTG Intention to grant announced

Effective date: 20190403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005056170

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1170044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191122

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1170044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005056170

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200526

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220526

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220526

Year of fee payment: 18

Ref country code: DE

Payment date: 20220527

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005056170

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601