EP1886024B1 - Compresseur frigorifique a spirales - Google Patents

Compresseur frigorifique a spirales Download PDF

Info

Publication number
EP1886024B1
EP1886024B1 EP06764668A EP06764668A EP1886024B1 EP 1886024 B1 EP1886024 B1 EP 1886024B1 EP 06764668 A EP06764668 A EP 06764668A EP 06764668 A EP06764668 A EP 06764668A EP 1886024 B1 EP1886024 B1 EP 1886024B1
Authority
EP
European Patent Office
Prior art keywords
shaft
oil
duct
compressor
return duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06764668A
Other languages
German (de)
English (en)
Other versions
EP1886024A1 (fr
Inventor
Pierre Ginies
David Genevois
Jean De Bernardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss Commercial Compressors SA
Original Assignee
Danfoss Commercial Compressors SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss Commercial Compressors SA filed Critical Danfoss Commercial Compressors SA
Publication of EP1886024A1 publication Critical patent/EP1886024A1/fr
Application granted granted Critical
Publication of EP1886024B1 publication Critical patent/EP1886024B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S418/00Rotary expansible chamber devices
    • Y10S418/01Non-working fluid separation

Definitions

  • the subject of the present invention is a scroll refrigeration compressor, as described in EP-A-0 341 408 disclosing the preamble of claim 1.
  • a scroll compressor also known as a Scroll compressor, comprises a tight enclosure delimited by a ferrule, containing a suction volume and a compression volume separated by a compression stage, and disposed respectively on the sides of the two ends of the compressor. the enclosure.
  • An electric motor is arranged in the suction volume, with a stator located on the outer side, mounted fixed relative to the shell, and a rotor disposed in a central position, integral with a drive shaft or crankshaft.
  • the drive shaft comprises an off-axis lubrication duct extending over the entire length thereof, fed from oil contained in a casing located in the lower part of the enclosure by an oil pump arranged at a first end of the tree.
  • the lubrication duct has lubrication holes at the various guide bearings of the shaft.
  • the compression stage contains a fixed volute equipped with a spiral engaged in a spiral of a moving volute, the two spirals delimiting at least one compression chamber of variable volume.
  • the second end of the drive shaft is equipped with an eccentric driving the moving volute in an orbital motion, to achieve the compression of the refrigerant gas sucked.
  • the shell defining the sealed enclosure comprises a refrigerant gas inlet.
  • This inlet opens into the annular volume between the engine and the ferrule. From a practical point of view, gas arrives from outside and enters this annular space. Part of the gas is sucked directly towards the compression stage, while the other part of the gas passes through the engine before flowing in the direction of the compression stage.
  • All the incoming gas is directly to the compression stage, or after passing through the engine, is sucked by the compression stage, penetrating into at least one compression chamber defined by the two spirals, the inlet is forming at the periphery of the compression stage, and the gas being conveyed towards the center of the spirals as compression occurs by decreasing the volume of the compression chambers, resulting from the movement of the mobile scroll relative to the fixed scroll.
  • the gas compressed leaves in central part in the direction of the compressed gas recovery chamber.
  • This structure has a certain number of drawbacks, and in particular the fact that, when the lubricating oil of the various bearings close to the compression zone returns towards the casing, this cascade flows through the interstices provided at the level of the casing. engine and thus comes into contact with the refrigerant gas passing through the engine, which can generate an excessive oil content in the refrigerant gas leaving the compressor.
  • This excessive rate of oil in the gas is a loss of efficiency of the heat exchange of the exchangers located downstream of the compressor, given the fact that the oil droplets contained in the gas tend to place on the exchangers and form a layer of oil on them.
  • a known gas and oil flow separation solution is to provide deflectors in the flow path of the refrigerant gas. Due to the changes of direction and speed differences due to the presence of the deflectors, the oil is separated from the gas flow and falls by gravity into the housing.
  • the degassing of the refrigerant gas limits the oil supply flow of the bearings, which can generate a risk of deterioration of the compressor.
  • a known solution is to provide radial vent holes in the drive shaft at the different bearings, these vent holes opening on the one hand in the lubrication conduit and on the other hand in the wall of the shaft opposite the lubrication ports.
  • This solution involves providing, by construction, a pressure gradient favoring the expulsion of gas from the lubrication duct through the vent holes, however the pressure gradient is limited so as not to disturb the flow of oil in the duct. In fact, a pressure gradient that is too high could lead to an expulsion of oil through the vent holes.
  • the conditions of use of the compressor over its application range involve pressure gradients at the terminals of the vent holes which vary in large proportions and therefore greatly modify the venting efficiency of the vent holes.
  • the pressure gradient can be reversed and create a vacuum in the lubrication duct, which prevents expulsion of the gas through the vent holes, this even reduces or limits the flow of oil out of the pump to the bearings.
  • the present invention therefore aims to remedy these drawbacks.
  • the technical problem at the base of the invention is the production of a scroll compressor with refrigeration making it possible to control the oil content in the gas leaving the compressor under all the operating conditions of the compressor, while ensuring effective lubrication of the compressor.
  • different guide bearings of the drive shaft are different guide bearings of the drive shaft.
  • the lubrication duct allows an oil flow from the oil sump to the compression stage to ensure lubrication of the various bearings of the shaft. After the oil supply of all the bearings, if there is residual oil, it can be discharged into the return conduit through the communication means. Due to the rotation of the shaft, the centrifugally pressed oil on the outer part is forced to flow towards the housing. This residual oil is conveyed directly to the oil sump without passing through the engine, thus limiting its contact with the refrigerant gas.
  • the structure of the compressor according to the invention makes it possible to ensure a separation of the oil and gas flows which is not linked to the gas velocities and therefore to the operating conditions of the compressor.
  • the structure of the compressor makes it possible to control the rate of oil in the gas leaving the compressor under all the operating conditions of the latter.
  • the communication means allow a passage of the gas from the degassing of the lubrication duct in the return duct to its lower end regardless of the flow rate and the speed of rotation of the shaft and the speed of the gas flowing in the compressor.
  • the evacuation of gases from degassing is effective in all operating conditions of the compressor.
  • the second end of the return duct opens at the end of the shaft located on the side of the moving spiral, the means for placing in fluid communication having a space delimited by the end of the shaft located on the side of the mobile spiral and the bottom of a housing receiving this end of the tree.
  • the fluidic communication means comprise at least one transverse orifice formed in the shaft, the two ends of which respectively open into the lubrication and return ducts.
  • the transverse orifice extends radially with respect to the shaft.
  • the end of the return duct opening at the end of the shaft located on the side of the mobile spiral opens near the center of the shaft.
  • the end of the return duct opening, on the side of the housing, in the wall of the shaft is located substantially at the second end of the shaft.
  • the end of the return duct opening on the housing side comprises a vacuum pump for accelerating the flow of fluid in the return duct.
  • the diameter of the return duct is less than or equal to the diameter of the lubrication duct.
  • the lubrication duct is inclined relative to the axis of the shaft.
  • the body of the compressor forms an oil collector intended to collect the leakage rates of the bearings situated on the side of the mobile spiral, recirculation means being provided for conveying the oil collected by the collector in the return duct.
  • the recirculation means comprise a duct formed in the drive shaft opening on the one hand in the return duct and on the other hand in an annular groove formed in the shaft or in the body of the compressor, a duct fed oil from the manifold by an oil pump opening into the annular groove.
  • the figure 1 describes a scroll compressor with a vertical position.
  • the compressor according to the invention could occupy an inclined position, or a horizontal position, without its structure being modified.
  • the compressor shown in figure 1 comprises a sealed enclosure delimited by a shell 2 whose upper and lower ends are respectively closed by a cover 3 and a base 4.
  • the intermediate portion of the compressor is occupied by a body 5 which delimits two volumes, a suction volume located in below the body 5, and a compression volume disposed above it.
  • On the body is fixed a tube 6 inside which is mounted an electric motor comprising a stator 7 at the center of which is disposed a rotor 8.
  • the tube 6 is for example crimped on the stator so as to carry the motor.
  • the tube 6 rests on a centering piece 9 itself attached to the shell 2.
  • an orifice 10 which is associated with a connector 12 to achieve the supply of gas to the compressor.
  • This connector 12 opens into an annular volume 13 formed between the shell 2 and the tube 6 containing the motor, at the top of the engine.
  • the connector 12 is extended, at the annular volume 13 by a sleeve 14 passing through this annular space and opening into a high chamber 11 defined by the tube 6, containing the motor coil head.
  • the sleeve 14 has a bypass opening 15.
  • the body 5 serves for mounting a compression stage 16 of the gas.
  • This compression stage comprises a fixed volute 17 equipped with a fixed spiral 18 facing downwards, and a mobile scroll 19 equipped with a spiral 20 facing upwards.
  • the two spirals 18 and 20 of the two volutes interpenetrate to provide compression chambers 22 of variable volume.
  • the admission of the gas is from outside, the compression chambers 22 having a variable volume which decreases from the outside towards the inside, during the movement of the mobile scroll 19 relative to the fixed scroll 17, the gas compressed escaping at the center of the scrolls through an opening 23 towards a chamber 24 from which it is discharged through a connector 25.
  • a shaft 26 On the rotor 8 is wedged a shaft 26 whose upper end is offset in the manner of a crankshaft. This upper part is engaged in a housing delimited by a portion 27 in the form of a sleeve, which comprises the mobile volute 19. During its driving in rotation by the motor, the shaft 26 drives the moving volute which is guided through a connecting member 28 vis-à-vis the fixed scroll 17, in an orbital motion.
  • the shaft 26 is guided relative to the other parts by means of a lower bearing 29 formed in the centering part 9, an intermediate bearing 30 formed in the body 5 and an upper bearing 32 formed between the 26 and the sleeve 27.
  • the volume containing the upper bearing 32 communicates with the chamber 11 through openings 21 formed in the body 5.
  • the base 4 delimits a casing 31 containing oil, the oil level being marked by the reference 33.
  • the end of the intake duct of the pump 34 which supplies oil lubricating the different bearings, via a lubrication conduit 35 inclined relative to the axis of the shaft, opening into the end thereof located from side of the movable scroll 19, as well as by lubrication holes 36 at the bearings, to perform the lubrication thereof.
  • the lubricating oil can return to the housing passing through the openings 21 formed in the body 5, as well as in interstices provided at the motor, allowing the leakage flow of the bearings 30,32 and mobile scroll 19 to flow towards the engine.
  • the fat arrows represent the flow of gas and the fine arrows represent the oil flow.
  • the shaft 26 also comprises a return line 37 of the oil, inclined relative to the axis of the shaft, one end of which opens at the end of the rotated shaft on the side of the mobile scroll 19 and in the center of the shaft, and the other end of which opens into the peripheral wall of the shaft, in the zone of the latter located at the end of the engine opposite to the compression volume .
  • Means for placing in fluid communication between the lubrication and return ducts 37 are provided. These communication means comprises a space 38 delimited by the end of the shaft located on the side of the mobile spiral and the bottom of the housing receiving this end of the shaft.
  • the means for setting fluid communication further comprise transverse orifices 39 formed in the shaft, the two ends of each orifice opening respectively into the lubrication and return ducts 37.
  • the tube 6 serving as support for the engine comprises in its lower part, one or more radial orifices 40 each being able to be equipped with a diffuser such as a grid 41.
  • this compressor refrigerant gas loaded with oil and potentially liquid particles arrives through the connector 12. A significant portion of the flow of gas passes through the sleeve 14 in the volume defined by the tube 6 , lying above the engine. Another part of the flow passes the bypass duct 15 in the annular volume 13 to flow directly towards the compression stage 16.
  • the gas arriving in the volume above the engine is mixed with the lubricating oil which flows towards the lower bearing 29, in particular from the upper bearing 32 and the intermediate bearing 30.
  • the mixture of gas and lubricating oil flows through the engine downwards, evacuating heat losses from the engine.
  • This passage is made in particular by a space 42 located between the rotor and the stator, as well as by a space 43 situated between the stator and the tube 6.
  • the mixed flow flowing through the motor arrives in the lower part of the engine where In addition, there is the flow of oil from the lower bearing.
  • the gas-oil mixture then passes through the radial orifices 40 through the diffusers 41 constituted for example by a wire mesh forming a grid. This mesh allows a diffusion of the gas flow all around the motor tube, in the annular volume 13. Due to the changes of direction and differences in speed, the oil is separated from the gas flow and falls back into the housing 31. The flow gaseous then travels through the annular volume 13 to the compression stage 16. The separation of gas and oil continues during the path in the annular volume due to gravity and / or controlled gas velocities and a suitable separation time.
  • the lubrication duct 35 allows an oil flow from the oil sump 31 to the compression stage to ensure lubrication of the different bearings for guiding the shaft. After the oil supply of all the bearings, the residual oil is discharged into the return duct 37 through the space 38. Due to the rotation of the shaft 26, the oil is plated by centrifugation. on the outside of the return duct is forced to flow towards the housing. This residual oil is conveyed directly to the oil sump without passing through the engine, thus limiting its contact with the refrigerant gas.
  • the transverse holes 39 allow a passage of the gas from the degassing in the return duct 37 to its lower end regardless of the flow rate and the speed of rotation of the shaft and the speed of the gas flowing in the compressor .
  • the flow of gas in the return duct is possible taking into account that the oil plated by centrifugation allows free passage of gas from the bearing of the mobile scroll to the other end of the return duct. This free passage makes it possible to evacuate the gas coming from the degassing of the various bearings under excellent conditions even if there is surplus oil for feeding the bearings.
  • the figure 2 represents an alternative embodiment of the compressor of figure 1 in which the same elements are designated by the same references than previously.
  • the end of the return duct 37 opening, on the housing side 31, in the wall of the shaft 26 is located substantially at the second end of the shaft and beyond the lower bearing 29.
  • the return duct 37 makes it possible to evacuate a large oil flow, while being ensured of the return thereof to the casing, whatever the flow rate brought by the pump and the speed of rotation of the pump. 'tree.
  • FIGS. 3 and 4 represent an alternative embodiment of the compressor of figure 2 .
  • the end of the return duct 37 located on the housing side 31 opens into a transverse orifice 39 formed in the shaft, the two ends of which respectively open into the lubrication duct 35 and into the wall of the shaft.
  • this end of the return duct 37 is equipped with a vacuum pump 44 intended to accelerate the flow of fluid in the return duct.
  • the vacuum pump is formed by a tube comprising a first portion 45 disposed longitudinally in the return duct, a second portion 46 perpendicular to the first portion and extending in the transverse orifice 39 radially outwardly from the first portion and a third portion 47 perpendicular to the plane defined by the first and second portions and extending from the second portion in a direction opposite to the direction of rotation of the shaft.
  • first and second portions have sections respectively lower than those of the return duct and the transverse orifice 39, to allow free passage to a certain amount of fluid flowing in the return duct and in the transverse orifice.
  • this tube creates a vacuum in the return duct and therefore a suction effect in the latter, It results in an acceleration of the fluid located near the opening of the tube disposed in the return duct, and therefore, gradually, the flow of the fluid flowing in the return duct.
  • the Figures 5 to 7 represent a fourth variant of execution of the compressor of figure 1 .
  • the body 5 of the compressor has no openings 21 and thus forms an oil collector for collecting the leakage rates of the upper bearing 32 and intermediate 30.
  • Recirculation means are provided for conveying the oil collected by the collector into the return duct 37.
  • the recirculation means comprise a duct 50 formed in the drive shaft 26 and opening on the one hand in the return duct 37 and secondly in an annular groove 51 formed in the body 5 of the compressor.
  • the recirculation means also comprise a conduit 52 formed in the body 5 and opening into the annular groove 51.
  • the conduit 52 is supplied with oil from the manifold by an oil pump 53 disposed in a housing 54 formed in the body 5.
  • the oil pump 53 comprises a first gearwheel 55 arranged around the shaft 26 and meshing with a second idler gear 56.
  • the invention is not limited to the embodiments of this compressor, described above as examples, it encompasses, on the contrary, all variants.
  • the end of the return duct facing the compression stage could be closed for specific needs of use.
  • the connection 12 could lead into the annular volume 13 at the bottom of the engine.
  • this arrangement could be associated with compressor structures different from those described, in particular with compressors having different gas circuits without departing from the scope of the invention, which is defined by the attached claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Compressor (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

  • La présente invention a pour objet un compresseur frigorifique à spirales, tel que décrit dans EP-A-0 341 408 divulgant le préambule de la revendication 1.
  • Un compresseur à spirales, encore connu sous le terme de compresseur Scroll, comprend une enceinte étanche délimitée par une virole, contenant un volume d'aspiration et un volume de compression séparés par un étage de compression, et disposés respectivement des côtés des deux extrémités de l'enceinte.
  • Un moteur électrique est disposé dans le volume d'aspiration, avec un stator situé du côté extérieur, monté fixe par rapport à la virole, et un rotor disposé en position centrale, solidaire d'un arbre d'entraînement ou vilebrequin. L'arbre d'entraînement comporte un conduit de lubrification désaxé s'étendant sur toute la longueur de celui-ci, alimenté à partir d'huile contenue dans un carter situé dans la partie inférieure de l'enceinte par une pompe à huile disposée à une première extrémité de l'arbre. Le conduit de lubrification comporte des orifices de lubrification au niveau des différents paliers de guidage de l'arbre.
  • L'étage de compression contient une volute fixe équipée d'une spirale engagée dans une spirale d'une volute mobile, les deux spirales délimitant au moins une chambre de compression de volume variable. La seconde extrémité de l'arbre d'entraînement est équipée d'un excentrique entraînant la volute mobile suivant un mouvement orbital, pour réaliser la compression du gaz frigorigène aspiré.
  • La virole délimitant l'enceinte étanche comprend une entrée de gaz frigorigène. Cette entrée débouche dans le volume annulaire ménagé entre le moteur et la virole. D'un point de vue pratique, du gaz arrive de l'extérieur et pénètre dans cet espace annulaire. Une partie du gaz est directement aspirée en direction de l'étage de compression, tandis que l'autre partie du gaz passe à travers le moteur avant de s'écouler en direction de l'étage de compression. L'ensemble du gaz arrivant soit directement à l'étage de compression, soit après passage à travers le moteur, est aspiré par l'étage de compression, pénétrant dans au moins une chambre de compression délimitée par les deux spirales, l'entrée se faisant en périphérie de l'étage de compression, et le gaz étant véhiculé vers le centre des spirales au fur et à mesure que se produit la compression par diminution du volume des chambres de compression, résultant du mouvement de la volute mobile par rapport à la volute fixe. Le gaz comprimé sort en partie centrale en direction de la chambre de récupération du gaz comprimé.
  • Cette structure présente un certain nombre d'inconvénients, et notamment du fait que, lorsque l'huile de lubrification des différents paliers proches de la zone de compression retourne vers le carter, celle-ci s'écoule à travers des interstices ménagés au niveau du moteur et entre donc en contact avec le gaz frigorigène traversant le moteur, ce qui peut générer un taux d'huile excessif dans le gaz frigorigène sortant du compresseur. La conséquence directe de ce taux excessif d'huile dans le gaz est une perte d'efficacité de l'échange thermique des échangeurs situés en aval du compresseur, compte tenu du fait que les gouttelettes d'huile contenues dans le gaz ont tendance à se déposer sur les échangeurs et à former une couche d'huile sur ces derniers.
  • De plus, un taux excessif d'huile dans le gaz peut également entraîner un vidage de la réserve d'huile du carter, ce qui pourrait conduire à la destruction du compresseur.
  • Pour pallier ces inconvénients, une séparation des flux de gaz et d'huile est souvent utilisée.
  • Une solution de séparation des flux de gaz et d'huile connue consiste à prévoir des déflecteurs sur le trajet d'écoulement du gaz frigorigène. En raisons des changements de direction et des différences de vitesse dus à la présence des déflecteurs, l'huile est séparée du flux gazeux et retombe par gravité dans le carter.
  • Toutefois, l'efficacité de cette solution est directement liée aux vitesses des gaz. En effet, lorsque les vitesses des gaz sont trop élevées, le temps de séparation de l'huile et du gaz est fortement diminué, ce qui peut engendrer un taux d'huile excessif dans le gaz et donc une diminution de l'efficacité du compresseur voir une destruction de ce dernier.
  • Ainsi, cette solution de séparation des flux de gaz et d'huile n'est pas suffisament efficace et sûre dans toutes les conditions d'application du compresseur.
  • Un autre problème rencontré dans ce type de compresseur est lié au dégazage du gaz frigorigène contenu dans l'huile de lubrification lorsque cette dernière s'écoule dans le conduit de lubrification. Ce dégazage du gaz dans le conduit de lubrification est une conséquence de la centrifugation générée par la rotation de l'arbre d'entraîenement.
  • Dans certaines conditions de fonctionnement du compresseur, le dégazage du gaz frigorigène limite le débit d'alimentation en huile des paliers, ce qui peut générer un risque de détérioration du compresseur.
  • Afin d'éviter cette situation, différentes solutions d'évacuation de ces gaz sont proposées.
  • Une solution connue consiste à ménager des trous d'évent radiaux dans l'arbre d'entraînement au niveau des différents paliers, ces trous d'évent débouchant d'une part dans le conduit de lubrification et d'autre part dans la paroi de l'arbre à l'opposée des orifices de lubrification. Cette solution implique de ménager, par construction, un gradient de pression favorisant l'expulsion du gaz du conduit de lubrification par les trous d'évent, le gradient de pression étant toutefois limité pour ne pas perturber le débit d'huile dans le conduit. En effet, un gradient de pression trop élevé pourrait entraîner une expulsion d'huile par les trous d'évent.
  • Les conditions d'utilisation du compresseur sur sa plage d'application impliquent des gradients de pression aux bornes des trous d'évent qui varient dans de grandes proportions et qui modifient donc fortement l'efficacité de dégazage des trous d'évent. En outre, dans certains cas, le gradient de pression peut s'inverser et créer une dépression dans le conduit de lubrification, ce qui empêche une expulsion du gaz à travers les trous d'évents, cela même réduit ou limite le débit d'huile sortant de la pompe à destination des paliers.
  • La présente invention vise donc à remédier à ces inconvénients.
  • Le problème technique à la base de l'invention est la réalisation d'un compresseur frigorifique à spirales permettant de maîtriser le taux d'huile dans le gaz sortant du compresseur dans toutes les conditions de fonctionnement du compresseur, tout en assurant une lubrification efficace des différents paliers de guidage de l'arbre d'entraînement.
  • A cet effet, la présente invention concerne un compresseur frigorifique à spirales, comprenant :
    • une enceinte étanche contenant un volume d'aspiration et un volume de compression disposés respectivement du côté des deux extrémités de l'enceinte de part et d'autre d'un corps, l'enceinte comprenant une entrée de gaz frigorigène,
    • un moteur électrique disposé du côté de l'aspiration ayant un stator, et un rotor solidaire d'un arbre d'entraînement, en forme de vilebrequin,
    • l'arbre d'entraînement comportant un conduit de lubrification désaxé s'étendant sur toute la longueur de celui-ci, alimenté à partir d'huile contenue dans un carter situé dans la partie inférieure de l'enceinte par une pompe à huile disposée à une première extrémité de l'arbre, le conduit de lubrification comportant des orifices de lubrification au niveau de différents paliers de guidage de l'arbre,
    • la seconde extrémité de l'arbre d'entraînement étant équipée d'un dispositif d'entraînement de la spirale mobile du compresseur suivant un mouvement orbital,
    caractérisé en ce que l'arbre d'entraînement comporte un conduit de retour parallèle ou incliné par rapport à l'axe de l'arbre et s'étendant sur au moins une partie de la longueur de l'arbre, une des extrémités du conduit de retour débouchant dans la paroi de l'arbre, dans la zone de celui-ci située au-delà du rotor, du côté du carter d'huile, des moyens de mise en communication fluidique entre les conduits de lubrification et de retour étant prévus.
  • Le conduit de lubrification permet une circulation d'huile du carter d'huile vers l'étage de compression afin d'assurer une lubrification des différents paliers de guidage de l'arbre. Après l'alimentation en huile de tous les paliers, s'il existe de l'huile résiduelle, celle-ci peut être évacuée dans le conduit de retour grâce aux moyens de mise en communication. Du fait de la rotation de l'arbre, l'huile plaquée par centrifugation sur la partie extérieure est forcée de s'écouler en direction du carter. Cette huile résiduelle est acheminée directement jusqu'au carter d'huile sans passer par le moteur, ce qui permet donc de limiter son contact avec le gaz frigorigène.
  • De ce fait, la structure du compresseur selon l'invention permet d'assurer une séparation des flux d'huile et de gaz qui n'est pas liée aux vitesses du gaz et donc aux conditions de fonctionnement du compresseur. Ainsi, la structure du compresseur permet de maîtriser le taux d'huile dans le gaz sortant du compresseur dans toutes les conditions de fonctionnement de ce dernier.
  • En outre, les moyens de mise en communication permettent un passage du gaz provenant du dégazage du conduit de lubrification dans le conduit de retour jusqu'à son extrémité inférieure quels que soient le débit et la vitesse de rotation de l'arbre et la vitesse des gaz circulant dans le compresseur. Ainsi, l'évacuation des gaz issus du dégazage est efficace dans toutes les conditions de fonctionnement du compresseur.
  • De plus, compte tenu du fait que l'huile résiduelle est plaquée par centrifugation dans la partie extérieure du conduit de retour, celle-ci laisse un passage libre pour le gaz jusqu'à l'extrémité inférieure du conduit de retour. Ce libre passage permet d'évacuer le gaz provenant du dégazage dans d'excellentes conditions même s'il existe de l'huile en surplus pour l'alimentation des paliers.
  • Avantageusement, la seconde extrémité du conduit de retour débouche à l'extrémité de l'arbre située du côté de la spirale mobile, les moyens de mises en communication fluidique comportant un espace délimité par l'extrémité de l'arbre située du côté de la spirale mobile et le fond d'un logement recevant cette extrémité de l'arbre.
  • Selon une autre caractéristique de l'invention, les moyens de mise en communication fluidique comportent au moins un orifice transversal ménagé dans l'arbre dont les deux extrémités débouchent respectivement dans les conduits de lubrification et de retour.
  • Avantageusement, l'orifice transversal s'étend radialement par rapport à l'arbre.
  • Selon encore une autre caractéristique de l'invention, l'extrémité du conduit de retour débouchant à l'extrémité de l'arbre située du côté de la spirale mobile débouche à proximité du centre de l'arbre.
  • Avantageusement, l'extrémité du conduit de retour débouchant, du côté du carter, dans la paroi de l'arbre est située sensiblement au niveau de la seconde extrémité de l'arbre.
  • Selon une autre caractéristique de l'invention, l'extrémité du conduit de retour débouchant du côté du carter comporte une pompe à dépression destinée à accélérer l'écoulement de fluide dans le conduit de retour.
  • Préférentiellement, le diamètre du conduit de retour est inférieur ou égal au diamètre du conduit de lubrification.
  • Selon une autre caractéristique de l'invention, le conduit de lubrification est incliné par rapport à l'axe de l'arbre.
  • Selon encore une autre caractéristique de l'invention, le corps du compresseur forme un collecteur d'huile destiné à collecter les débits de fuite des paliers situés du côté de la spirale mobile, des moyens de recirculation étant prévus pour acheminer l'huile collectée par le collecteur dans le conduit de retour.
  • Avantageusement, les moyens de recirculation comportent un conduit ménagé dans l'arbre d'entraînement débouchant d'une part dans le conduit de retour et d'autre part dans une rainure annulaire ménagée dans l'arbre ou dans le corps du compresseur, un conduit alimenté en huile à partir du collecteur par une pompe à huile débouchant dans la rainure annulaire.
  • De toute façon l'invention sera bien comprise à l'aide de la description qui suit, en référence au dessin schématique annexé, représentant, à titre d'exemples non limitatifs, plusieurs formes d'exécution de ce compresseur.
    • Figure 1 est une vue en coupe longitudinale d'un premier compresseur.
    • Figure 2 est une vue en coupe longitudinale d'un second compresseur.
    • Figure 3 est une vue partielle agrandie, en coupe transversale, d'un troisième compresseur.
    • Figure 4 est une vue partielle en coupe selon la ligne IV-IV de figure 3.
    • Figure 5 est une vue partielle en coupe longitudinale d'un quatrième compresseur.
    • Figure 6 est une vue en coupe selon la ligne B-B de figure 5.
    • Figure 7 est une vue en coupe selon la ligne C-C de figure 6.
  • La figure 1 décrit un compresseur frigorifique à spirales occupant une position verticale. Toutefois, le compresseur selon l'invention, pourrait occuper une position inclinée, ou une position horizontale, sans que sa structure soit modifiée.
  • Le compresseur représenté à la figure 1 comprend une enceinte étanche délimitée par une virole 2 dont les extrémités supérieures et inférieures sont fermées respectivement par un couvercle 3 et une embase 4. La partie intermédiaire du compresseur est occupée par un corps 5 qui délimite deux volumes, un volume d'aspiration situé en dessous du corps 5, et un volume de compression disposé au-dessus de celui-ci. Sur le corps est fixé un tube 6 à l'intérieur duquel est monté un moteur électrique comprenant un stator 7 au centre duquel est disposé un rotor 8. Le tube 6 est par exemple serti sur le stator de façon à porter le moteur. A son extrémité inférieure, le tube 6 repose sur une pièce de centrage 9 elle-même fixée sur la virole 2. Dans la virole 2 est ménagé un orifice 10 auquel est associé un raccord 12 pour réaliser l'amenée de gaz au compresseur. Ce raccord 12 débouche dans un volume annulaire 13 ménagé entre la virole 2 et le tube 6 contenant le moteur, en partie haute du moteur.
  • Le raccord 12 est prolongé, au niveau du volume annulaire 13 par une manchette 14 traversant cet espace annulaire et débouchant dans une chambre haute 11 délimitée par le tube 6, contenant la tête de bobine du moteur. Dans le volume annulaire 13, la manchette 14 présente une ouverture de by-pass 15.
  • Le corps 5 sert au montage d'un étage de compression 16 du gaz. Cet étage de compression comprend une volute fixe 17 équipée d'une spirale fixe 18 tournée vers le bas, et une volute mobile 19 équipée d'une spirale 20 tournée vers le haut. Les deux spirales 18 et 20 des deux volutes s'interpénètrent pour ménager des chambres de compression 22 à volume variable. L'admission du gaz se fait depuis l'extérieur, les chambres de compression 22 ayant un volume variable qui diminue de l'extérieur vers l'intérieur, lors du mouvement de la volute mobile 19 par rapport à la volute fixe 17, le gaz comprimé s'échappant au centre des volutes par une ouverture 23 en direction d'une chambre 24 à partir de laquelle il est évacué par un raccord 25.
  • Sur le rotor 8 est calé un arbre 26 dont l'extrémité supérieure est désaxée à la façon d'un vilebrequin. Cette partie supérieure est engagée dans un logement délimité par une partie 27 en forme de manchon, que comporte la volute mobile 19. Lors de son entraînement en rotation par le moteur, l'arbre 26 entraîne la volute mobile qui est guidée par l'intermédiaire d'un élément de liaison 28 vis-à-vis de la volute fixe 17, suivant un mouvement orbital.
  • L'arbre 26 est guidé par rapport aux autres pièces par l'intermédiaire d'un palier inférieur 29 ménagé dans la pièce de centrage 9, d'un palier intermédiaire 30 ménagé dans le corps 5 et d'un palier supérieur 32 ménagé entre l'arbre 26 et le manchon 27. Le volume contenant le palier supérieur 32 communique avec la chambre 11 par des ouvertures 21 ménagées dans le corps 5.
  • L'embase 4 délimite un carter 31 contenant de l'huile, le niveau d'huile étant repéré par la référence 33. Dans le bain d'huile baigne l'extrémité du conduit d'admission de la pompe 34, qui alimente en huile de lubrification les différents paliers, par l'intermédiaire d'un conduit de lubrification 35 incliné par rapport à l'axe de l'arbre, débouchant dans l'extrémité de celui-ci situé du côté de la volute mobile 19, ainsi que par des orifices de lubrification 36 au niveau des paliers, pour réaliser le graissage de ceux-ci.
  • Dans la partie haute, l'huile de graissage peut retourner vers le carter en passant à travers les ouvertures 21 ménagées dans le corps 5, ainsi que dans des interstices ménagés au niveau du moteur, permettant au débit de fuite des paliers 30,32 et de la volute mobile 19 de s'écouler en direction du moteur.
  • A la figure 1, les flèches grasses représentent l'écoulement de gaz et les flèches fines représentent l'écoulement d'huile.
  • Selon une caractéristique important de l'invention, l'arbre 26 comprend également un conduit de retour 37 de l'huile, incliné par rapport à l'axe de l'arbre, dont une extrémité débouche à l'extrémité de l'arbre tournée du côté de la volute mobile 19 et au centre de l'arbre, et dont l'autre extrémité débouche dans la paroi périphérique de l'arbre, dans la zone de celui-ci située à l'extrémité du moteur opposée au volume de compression.
  • Des moyens de mise en communication fluidique entre les conduits de lubrification 35 et de retour 37 sont prévus. Ces moyens de mise en communication comporte un espace 38 délimité par l'extrémité de l'arbre située du côté de la spirale mobile et le fond du logement recevant cette extrémité de l'arbre.
  • Les moyens de mise en communication fluidique comportent en outre des orifices transversaux 39 ménagés dans l'arbre, les deux extrémités de chaque orifice débouchant respectivement dans les conduits de lubrification 35 et de retour 37.
  • Le tube 6 servant de support au moteur comprend dans sa partie inférieure, un ou plusieurs orifices radiaux 40 pouvant être équipés chacun d'un diffuseur telle qu'une grille 41.
  • Le fonctionnement de ce compresseur est le suivant : du gaz frigorigène chargé en huile et potentiellement en particules liquides arrive par le raccord 12. Une partie importante du flux de gaz passe par l'intermédiaire de la manchette 14 dans le volume délimité par le tube 6, se trouvant au-dessus du moteur. Une autre partie du flux passe le conduit de by-pass 15 dans le volume annulaire 13 pour s'écouler directement en direction de l'étage de compression 16. Le gaz arrivant dans le volume situé au-dessus du moteur vient se mélanger à l'huile de lubrification qui s'écoule en direction du palier inférieur 29, notamment à partir du palier supérieur 32 et du palier intermédiaire 30. Le mélange de gaz et d'huile de lubrification circule au travers du moteur vers le bas, en évacuant les pertes thermiques du moteur. Ce passage se fait notamment par un espace 42 situé entre le rotor et le stator, ainsi que par un espace 43 situé entre le stator et le tube 6. Le flux mélangé s'écoulant au travers du moteur arrive dans la partie inférieure du moteur où s'ajoute l'écoulement de l'huile du palier inférieur. Le mélange gaz-huile passe ensuite par les orifices radiaux 40 à travers les diffuseurs 41 constitués par exemple par un treillis métallique formant grille. Ce treillis permet une diffusion du flux de gaz tout autour du tube moteur, dans le volume annulaire 13. En raison des changements de direction et des différences de vitesse, l'huile est séparée du flux gazeux et retombe dans le carter 31. Le flux gazeux chemine alors par le volume annulaire 13 vers l'étage de compression 16. La séparation du gaz et de l'huile se poursuit pendant le trajet dans le volume annulaire en raison de la gravité et/ou des vitesses de gaz contrôlées et d'un temps de séparation adapté.
  • Le conduit de lubrification 35 permet une circulation d'huile du carter d'huile 31 vers l'étage de compression afin d'assurer une lubrification des différents paliers de guidage de l'arbre. Après l'alimentation en huile de tous les paliers, l'huile résiduelle est évacuée dans le conduit de retour 37 par l'intermédiaire de l'espace 38. Du fait de la rotation de l'arbre 26, l'huile plaquée par centrifugation sur la partie extérieure du conduit de retour est forcée de s'écouler en direction du carter. Cette huile résiduelle est acheminée directement jusqu'au carter d'huile sans passer par le moteur, ce qui permet donc de limiter son contact avec le gaz frigorigène.
  • En outre, les orifices transversaux 39 permettent un passage du gaz provenant du dégazage dans le conduit de retour 37 jusqu'à son extrémité inférieure quels que soient le débit et la vitesse de rotation de l'arbre et la vitesse des gaz circulant dans le compresseur. L'écoulement du gaz dans le conduit de retour est possible compte tenu du fait que l'huile plaquée par centrifugation laisse libre passage au gaz depuis le palier de la volute mobile jusqu'à l'autre extrémité du conduit de retour. Ce libre passage permet d'évacuer le gaz provenant du dégazage des différents paliers dans d'excellentes conditions même s'il existe de l'huile en surplus pour l'alimentation des paliers.
  • La figure 2 représente une variante d'exécution du compresseur de figure 1 dans lequel les mêmes éléments sont désignés par les mêmes références que précédemment. Dans ce compresseur, l'extrémité du conduit de retour 37 débouchant, du côté du carter 31, dans la paroi de l'arbre 26 est située sensiblement au niveau de la seconde extrémité de l'arbre et au-delà du palier inférieur 29.
  • Dans ce cas, le conduit de retour 37 permet d'évacuer un débit d'huile important, tout en étant assuré du retour de celui-ci vers le carter, quel que soit le débit apporté par la pompe et la vitesse de rotation de l'arbre.
  • Les figures 3 et 4 représentent une variante d'exécution du compresseur de figure 2. Dans ce compresseur, l'extrémité du conduit de retour 37 située du côté du carter 31 débouche dans un orifice transversal 39 ménagé dans l'arbre dont les deux extrémités débouchent respectivement dans le conduit de lubrification 35 et dans la paroi de l'arbre.
  • En outre, cette extrémité du conduit de retour 37 est équipée d'une pompe à dépression 44 destinée à accélérer l'écoulement de fluide dans le conduit de retour. La pompe à dépression est formée par un tube comprenant une première portion 45 disposée longitudinalement dans le conduit de retour, une seconde portion 46 perpendiculaire à la première portion et s'étendant dans l'orifice transversal 39 radialement vers l'extérieur depuis la première portion, et une troisième portion 47 perpendiculaire au plan défini par les première et seconde portions et s'étendant depuis la seconde portion dans une direction opposée au sens de rotation de l'arbre.
  • Il doit être noté que les première et seconde portions présentent des sections respectivement inférieures à celles du conduit de retour et de l'orifice transversal 39, afin de laisser libre passage à une certaine quantité de fluide s'écoulant dans le conduit de retour et dans l'orifice transversal.
  • Durant la rotation de l'arbre 26, dont le sens de rotation est représenté par la flèche w sur la figure 4, la structure de ce tube crée une dépression dans le conduit de retour et donc un effet d'aspiration dans ce dernier, Il en résulte une accélération du fluide se trouvant à proximité de l'ouverture du tube disposée dans le conduit de retour, et donc, de proche en proche, de l'écoulement du fluide circulant dans le conduit de retour.
  • La présence de cette pompe à dépression favorise ainsi le retour d'huile vers le carter.
  • Les figures 5 à 7 représentent une quatrième variante d'exécution du compresseur de figure 1.
  • Selon cette variante d'exécution, le corps 5 du compresseur ne comporte pas d'ouvertures 21 et forme donc un collecteur d'huile destiné à collecter les débits de fuite des paliers supérieur 32 et intermédiaire 30.
  • Des moyens de recirculation sont prévus pour acheminer l'huile collectée par le collecteur dans le conduit de retour 37. Les moyens de recirculation comportent un conduit 50 ménagé dans l'arbre d'entraînement 26 et débouchant d'une part dans le conduit de retour 37 et d'autre part dans une rainure annulaire 51 ménagée dans le corps 5 du compresseur. Les moyens de recirculation comportent également un conduit 52 ménagé dans le corps 5 et débouchant dans la rainure annulaire 51. Le conduit 52 est alimenté en huile à partir du collecteur par une pompe à huile 53 disposée dans un logement 54 ménagé dans le corps 5.
  • La pompe à huile 53 comporte une première roue dentée 55 disposée autour de l'arbre 26 et engrenant une seconde roue dentée folle 56.
  • Durant la rotation de l'arbre 26, et donc des roues dentée 55 et 56, l'huile collectée dans le corps 5 est aspirée dans le logement 54, puis comprimée dans les espaces ménagés entre les roues dentées et le corps 5, avant d'être évacuée dans le conduit 52. Ensuite, l'huile comprimée s'écoule dans la rainure annulaire 51 pour être enfin acheminée dans le conduit de retour 37 à l'aide du conduit 50.
  • Comme il va de soi, l'invention ne se limite pas aux seules formes d'exécution de ce compresseur, décrites ci-dessus à titre d'exemples, elle en embrasse au contraire, toutes les variantes de réalisation. C'est ainsi, notamment, que l'extrémité du conduit de retour tournée vers l'étage de compression pourrait être obturée pour des besoins spécifiques d'utilisation. De plus, le raccord 12 pourrait déboucher dans le volume annulaire 13 en partie basse du moteur. En outre, cet agencement pourrait être associé à des structures de compresseur différentes de celles décrites, notamment à des compresseurs possédant des circuits de gaz différents sans que l'on sorte pour autant du cadre de l'invention, celle-ci étant définie par les revendications jointes.

Claims (11)

  1. Compresseur frigorifique à spirales, comprenant :
    - une enceinte étanche contenant un volume d'aspiration et un volume de compression disposés respectivement du côté des deux extrémités de l'enceinte de part et d'autre d'un corps, l'enceinte comprenant une entrée (10) de gaz frigorigène,
    - un moteur électrique ayant un stator (7), et un rotor (8) solidaire d'un arbre d'entraînement (26), en forme de vilebrequin,
    - l'arbre d'entraînement comportant un conduit de lubrification (35) désaxé s'étendant sur toute la longueur de celui-ci, alimenté à partir d'huile contenue dans un carter (31) situé dans la partie inférieure de l'enceinte par une pompe à huile (34) disposée à une première extrémité de l'arbre, le conduit de lubrification comportant des orifices de lubrification (36) au niveau de différents paliers de guidage de l'arbre,
    - la seconde extrémité de l'arbre d'entraînement étant équipée d'un dispositif d'entraînement de la spirale mobile du compresseur suivant un mouvement orbital,
    caractérisé en ce que le moteur électrique est disposé du côté de l'aspiration et l'arbre d'entraînement comporte un conduit de retour (37) parallèle ou incliné par rapport à l'axe de l'arbre et s'étendant sur au moins une partie de la longueur de l'arbre, une des extrémités du conduit de retour débouchant dans la paroi de l'arbre, dans la zone de celui-ci située au-delà du rotor, du côté du carter d'huile, des moyens de mise en communication fluidique (38, 39) entre les conduits de lubrification et de retour étant prévus.
  2. Compresseur selon la revendication 1, caractérisé en ce que la seconde extrémité du conduit de retour (37) débouche à l'extrémité de l'arbre située du côté de la spirale mobile, les moyens de mises en communication fluidique comportant un espace (38) délimité par l'extrémité de l'arbre située du côté de la spirale mobile et le fond d'un logement recevant cette extrémité de l'arbre.
  3. Compresseur selon l'une des revendications 1 et 2, caractérisé en ce que les moyens de mise en communication fluidique comportent au moins un orifice transversal (39) ménagé dans l'arbre dont les deux extrémités débouchent respectivement dans les conduits de lubrification et de retour.
  4. Compresseur selon la revendication 3, caractérisé en ce que l'orifice transversal s'étend radialement par rapport à l'arbre.
  5. Compresseur selon l'une des revendications 2 et 4, caractérisé en ce que l'extrémité du conduit de retour (37) débouchant à l'extrémité de l'arbre située du côté de la spirale mobile débouche à proximité du centre de l'arbre.
  6. Compresseur selon l'une des revendications 1 à 5, caractérisé en ce que l'extrémité du conduit de retour débouchant, du côté du carter, dans la paroi de l'arbre est située sensiblement au niveau de la seconde extrémité de l'arbre.
  7. Compresseur selon l'une des revendications 1 à 6, caractérisé en ce que l'extrémité du conduit de retour débouchant du côté du carter comporte une pompe à dépression (44) destinée à accélérer l'écoulement de fluide dans le conduit de retour.
  8. Compresseur selon l'une des revendications 1 à 7, caractérisé en ce que le diamètre du conduit de retour est inférieur ou égale au diamètre du conduit de lubrification.
  9. Compresseur selon l'une des revendications 1 à 8, caractérisé en ce que le conduit de lubrification est incliné par rapport à l'axe de l'arbre.
  10. Compresseur selon l'une des revendications 1 à 9, caractérisé en ce que le corps du compresseur forme un collecteur d'huile destiné à collecter les débits de fuite des paliers situés du côté de la spirale mobile, des moyens de recirculation (50 à 53) étant prévus pour acheminer l'huile collectée par le collecteur dans le conduit de retour.
  11. Compresseur selon la revendication 10, caractérisé en ce que les moyens de recirculation comportent un conduit (50) ménagé dans l'arbre d'entraînement débouchant d'une part dans le conduit de retour (37) et d'autre part dans une rainure annulaire (51) ménagée dans l'arbre ou dans le corps (5) du compresseur, un conduit (52) alimenté en huile à partir du collecteur par une pompe à huile (53) débouchant dans la rainure annulaire.
EP06764668A 2005-05-23 2006-05-23 Compresseur frigorifique a spirales Not-in-force EP1886024B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0505153A FR2885966B1 (fr) 2005-05-23 2005-05-23 Compresseur frigorifique a spirales
PCT/FR2006/001175 WO2006125908A1 (fr) 2005-05-23 2006-05-23 Compresseur frigorifique a spirales

Publications (2)

Publication Number Publication Date
EP1886024A1 EP1886024A1 (fr) 2008-02-13
EP1886024B1 true EP1886024B1 (fr) 2009-07-22

Family

ID=35518088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06764668A Not-in-force EP1886024B1 (fr) 2005-05-23 2006-05-23 Compresseur frigorifique a spirales

Country Status (8)

Country Link
US (2) US7708536B2 (fr)
EP (1) EP1886024B1 (fr)
KR (1) KR100938798B1 (fr)
CN (2) CN101223364B (fr)
AT (1) ATE437307T1 (fr)
DE (2) DE602006007987D1 (fr)
FR (1) FR2885966B1 (fr)
WO (2) WO2006125908A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104350280A (zh) * 2012-03-23 2015-02-11 比策尔制冷机械制造有限公司 具有形成于马达和外壳之间的回油通道的压缩机

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110378A1 (fr) * 2006-03-24 2007-10-04 Siemens Aktiengesellschaft Groupe compresseur et son procédé de montage
KR100869929B1 (ko) * 2007-02-23 2008-11-24 엘지전자 주식회사 스크롤 압축기
FR2915534B1 (fr) 2007-04-25 2009-05-29 Danfoss Commercial Compressors Procede d'assemblage d'un compresseur frigorifique.
FR2916813B1 (fr) 2007-05-29 2013-02-08 Danfoss Commercial Compressors Compresseur frigorifique a spirales a vitesse variable
US7878780B2 (en) * 2008-01-17 2011-02-01 Bitzer Kuhlmaschinenbau Gmbh Scroll compressor suction flow path and bearing arrangement features
US8133043B2 (en) 2008-10-14 2012-03-13 Bitzer Scroll, Inc. Suction duct and scroll compressor incorporating same
FR2942656B1 (fr) 2009-02-27 2013-04-12 Danfoss Commercial Compressors Dispositif de separation de lubrifiant d'un melange lubrifiant-gaz frigorigene
WO2012028098A1 (fr) * 2010-08-31 2012-03-08 Emerson Climate Technologies (Suzhou) Research & Development Co., Ltd. Compresseur à volute
BRPI1103384A2 (pt) * 2011-07-29 2013-07-30 Whirlpool Sa sistema de bombeamento e eixo para sistema de bombeamento de àleo para compressores hermÉticos e compressor compreendendo o sistema e/ou eixo
CN102305208A (zh) * 2011-08-30 2012-01-04 刘明辉 往复式变速密封压缩机的油泵
KR101285617B1 (ko) * 2011-09-09 2013-07-23 엘지전자 주식회사 스크롤 압축기
US8814537B2 (en) * 2011-09-30 2014-08-26 Emerson Climate Technologies, Inc. Direct-suction compressor
FR2984424B1 (fr) 2011-12-14 2018-06-01 Danfoss Commercial Compressors Compresseur frigorifique a spirales a vitesse variable
FR2984425B1 (fr) 2011-12-14 2014-05-16 Danfoss Commercial Compressors Dispositif d’injection d’huile pour compresseur frigorifique a spirales a vitesse variable
US9039384B2 (en) * 2012-03-23 2015-05-26 Bitzer Kuehlmaschinenbau Gmbh Suction duct with adjustable diametric fit
US9441631B2 (en) 2012-03-23 2016-09-13 Bitzer Kuehlmaschinenbau Gmbh Suction duct with heat-staked screen
US9458850B2 (en) 2012-03-23 2016-10-04 Bitzer Kuehlmaschinenbau Gmbh Press-fit bearing housing with non-cylindrical diameter
US8920139B2 (en) 2012-03-23 2014-12-30 Bitzer Kuehlmaschinenbau Gmbh Suction duct with stabilizing ribs
FR2989433B1 (fr) 2012-04-16 2018-10-12 Danfoss Commercial Compressors Compresseur a spirales
JP5931563B2 (ja) * 2012-04-25 2016-06-08 アネスト岩田株式会社 スクロール膨張機
CN103452857B (zh) * 2012-05-31 2015-08-05 基益企业股份有限公司 电动水泵
US9689386B2 (en) 2012-07-31 2017-06-27 Bitzer Kuehlmaschinenbau Gmbh Method of active oil management for multiple scroll compressors
US10634137B2 (en) 2012-07-31 2020-04-28 Bitzer Kuehlmaschinenbau Gmbh Suction header arrangement for oil management in multiple-compressor systems
US10495089B2 (en) 2012-07-31 2019-12-03 Bitzer Kuehlmashinenbau GmbH Oil equalization configuration for multiple compressor systems containing three or more compressors
EP2909480B1 (fr) 2012-09-13 2020-06-24 Emerson Climate Technologies, Inc. Ensemble compresseur à aspiration dirigée
FR2998340A1 (fr) * 2012-11-19 2014-05-23 Danfoss Commercial Compressors Compresseur a spirale a vitesse variable.
CN103967784B (zh) * 2013-01-29 2019-03-22 艾默生环境优化技术(苏州)有限公司 压缩机
US9051934B2 (en) 2013-02-28 2015-06-09 Bitzer Kuehlmaschinenbau Gmbh Apparatus and method for oil equalization in multiple-compressor systems
US9528517B2 (en) 2013-03-13 2016-12-27 Emerson Climate Technologies, Inc. Alignment feature for a lower bearing assembly for a scroll compressor
JP2015036525A (ja) * 2013-08-12 2015-02-23 ダイキン工業株式会社 スクロール圧縮機
CN105443377A (zh) * 2014-06-10 2016-03-30 丹佛斯(天津)有限公司 涡旋压缩机
WO2016093361A1 (fr) * 2014-12-12 2016-06-16 ダイキン工業株式会社 Compresseur
CN106151047B (zh) * 2015-04-24 2019-11-15 艾默生环境优化技术(苏州)有限公司 涡旋压缩机和用于涡旋压缩机的驱动轴
WO2016169348A1 (fr) * 2015-04-24 2016-10-27 艾默生环境优化技术(苏州)有限公司 Compresseur à spirale et arbre d'entraînement pour compresseur à spirale
US11078913B2 (en) * 2015-06-30 2021-08-03 Bitzer Kuehlmaschinenbau Gmbh Two-piece suction fitting
US9939179B2 (en) 2015-12-08 2018-04-10 Bitzer Kuehlmaschinenbau Gmbh Cascading oil distribution system
US10760831B2 (en) 2016-01-22 2020-09-01 Bitzer Kuehlmaschinenbau Gmbh Oil distribution in multiple-compressor systems utilizing variable speed
US11446619B2 (en) 2017-10-24 2022-09-20 Dow Global Technologies Llc Pulsed compression reactors and methods for their operation
CN112424475B (zh) * 2018-07-20 2022-09-02 三菱电机株式会社 压缩机
KR102546708B1 (ko) 2018-11-20 2023-06-22 삼성전자주식회사 압축기 및 이를 이용한 전자기기
KR20200085559A (ko) * 2019-01-07 2020-07-15 엘지전자 주식회사 전동식 압축기
US11236748B2 (en) 2019-03-29 2022-02-01 Emerson Climate Technologies, Inc. Compressor having directed suction
WO2020202515A1 (fr) * 2019-04-03 2020-10-08 日立ジョンソンコントロールズ空調株式会社 Compresseur et climatiseur
US11767838B2 (en) * 2019-06-14 2023-09-26 Copeland Lp Compressor having suction fitting
FR3102812B1 (fr) * 2019-11-06 2021-11-19 Danfoss Commercial Compressors Compresseur à spirales ayant un moteur monté en force et une entrée d’aspiration verticalement centrale
CN113123972B (zh) 2019-12-31 2023-06-06 丹佛斯(天津)有限公司 油泵和涡旋压缩机
CN211737452U (zh) * 2020-02-21 2020-10-23 艾默生环境优化技术(苏州)有限公司 压缩机
US11248605B1 (en) 2020-07-28 2022-02-15 Emerson Climate Technologies, Inc. Compressor having shell fitting
FR3114623B1 (fr) * 2020-09-29 2022-09-09 Danfoss Commercial Compressors Compresseur à spirales ayant un système d’injection d’huile
US11619228B2 (en) 2021-01-27 2023-04-04 Emerson Climate Technologies, Inc. Compressor having directed suction

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2718666B2 (ja) * 1986-07-21 1998-02-25 株式会社日立製作所 スクロール流体機械の給油装置
US4875840A (en) 1988-05-12 1989-10-24 Tecumseh Products Company Compressor lubrication system with vent
US4928503A (en) * 1988-07-15 1990-05-29 American Standard Inc. Scroll apparatus with pressure regulation
JPH0765578B2 (ja) * 1988-12-07 1995-07-19 三菱電機株式会社 スクロール圧縮機
US5240389A (en) * 1991-07-26 1993-08-31 Kabushiki Kaisha Toshiba Scroll type compressor
JPH109160A (ja) * 1996-06-24 1998-01-13 Daikin Ind Ltd スクロール圧縮機
JP2000179481A (ja) * 1998-12-14 2000-06-27 Hitachi Ltd スクロール圧縮機
JP2001065474A (ja) * 1999-08-27 2001-03-16 Mitsui Seiki Kogyo Co Ltd 無給油式スクロール圧縮機における軸受給油装置
JP2004104895A (ja) * 2002-09-09 2004-04-02 Hitachi Ltd 圧縮機駆動装置及び冷凍空調装置
JP3760748B2 (ja) * 2000-09-20 2006-03-29 株式会社日立製作所 密閉形電動圧縮機
CN1153841C (zh) * 2000-10-31 2004-06-16 杰富意钢铁株式会社 高强度热轧钢板和它的制造方法
DE10065821A1 (de) * 2000-12-22 2002-07-11 Bitzer Kuehlmaschinenbau Gmbh Kompressor
JP2002295380A (ja) * 2001-03-29 2002-10-09 Mitsubishi Electric Corp 横形スクロール圧縮機
FR2830292B1 (fr) * 2001-09-28 2003-12-19 Danfoss Maneurop S A Circuit de gaz basse pression pour un compresseur
DE10248926B4 (de) * 2002-10-15 2004-11-11 Bitzer Kühlmaschinenbau Gmbh Kompressor
US7311501B2 (en) * 2003-02-27 2007-12-25 American Standard International Inc. Scroll compressor with bifurcated flow pattern
JP4175148B2 (ja) * 2003-03-12 2008-11-05 松下電器産業株式会社 密閉型圧縮機
JP4440564B2 (ja) * 2003-06-12 2010-03-24 パナソニック株式会社 スクロール圧縮機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104350280A (zh) * 2012-03-23 2015-02-11 比策尔制冷机械制造有限公司 具有形成于马达和外壳之间的回油通道的压缩机
CN104350280B (zh) * 2012-03-23 2016-10-05 比策尔制冷机械制造有限公司 具有形成于马达和外壳之间的回油通道的压缩机

Also Published As

Publication number Publication date
FR2885966A1 (fr) 2006-11-24
CN100575706C (zh) 2009-12-30
DE112006001283T5 (de) 2008-04-10
CN101223364A (zh) 2008-07-16
US20090035168A1 (en) 2009-02-05
KR20080011443A (ko) 2008-02-04
US7708536B2 (en) 2010-05-04
WO2006125908A1 (fr) 2006-11-30
KR100938798B1 (ko) 2010-01-27
US20090041602A1 (en) 2009-02-12
US7670120B2 (en) 2010-03-02
CN101223364B (zh) 2012-08-29
CN101223365A (zh) 2008-07-16
DE602006007987D1 (de) 2009-09-03
WO2006125909A1 (fr) 2006-11-30
FR2885966B1 (fr) 2011-01-14
ATE437307T1 (de) 2009-08-15
EP1886024A1 (fr) 2008-02-13
DE112006001283B4 (de) 2014-12-11

Similar Documents

Publication Publication Date Title
EP1886024B1 (fr) Compresseur frigorifique a spirales
EP2174012B1 (fr) Compresseur frigorifique à spirales à vitesse variable
BE1001192A5 (fr) Machine du type a volutes.
FR2981739A1 (fr) Compresseur frigorifique
FR2559847A1 (fr) Machine a volutes pour comprimer un fluide
FR2830292A1 (fr) Circuit de gaz basse pression pour un compresseur
FR2991733A1 (fr) Dispositif de compression et systeme thermodynamique comprenant un tel dispositif de compression
WO2008152280A2 (fr) Compresseur frigorifique à spirales à vitesse variable
FR2845434A1 (fr) Compresseur a dioxyde de carbone hermetique a deux etages
FR2694051A1 (fr) Compresseur à vis muni de moyens pour séparer l'huile du courant d'huile-gaz refoulé par ce compresseur.
FR2808308A1 (fr) Compresseur a spirale equipe d'un deflecteur en regard de l'orifice d'aspiration menage dans son enveloppe
FR2605393A1 (fr) Separateur de courants pour conduite d'aspiration et circuit de refrigeration a compresseurs multiples
FR2985552A1 (fr) Systeme thermodynamique
FR2638788A1 (fr) Pompe a vide du type roots multietage
EP2402613B1 (fr) Pompe à vide de type sèche
FR2980826A1 (fr) Assemblage de compresseur a refoulement
FR2968731A1 (fr) Systeme thermodynamique equipe d'une pluralite de compresseurs
FR2465908A1 (fr)
EP3669964B1 (fr) Dispositif de séparation d'un mélange air/huile
FR3027633A1 (fr)
WO2012056150A2 (fr) Système de réfrigération
FR2984424A1 (fr) Compresseur frigorifique a spirales a vitesse variable
WO2010097537A1 (fr) Dispositif de séparation de lubrifiant d'un mélange lubrifiant-gaz frigorigène refoulé à partir d'au moins un compresseur frigorifique
FR2556778A1 (fr) Dispositif de separation gaz-liquide et son application au deshuilage de l'air de ventilation des enceintes de paliers d'une turbomachine
EP3131656B1 (fr) Filtrage d'un flux gaz/particules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DE BERNARDI, JEAN

Inventor name: GENEVOIS, DAVID

Inventor name: GINIES, PIERRE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DE BERNARDI, JEAN

Inventor name: GINIES, PIERRE

Inventor name: GENEVOIS, DAVID

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006007987

Country of ref document: DE

Date of ref document: 20090903

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091122

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

26N No opposition filed

Effective date: 20100423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091023

BERE Be: lapsed

Owner name: DANFOSS COMMERCIAL COMPRESSORS

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130423

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140509

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140523

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601