EP1884375B1 - Procédé et agencement destinés à la commande dynamique de l'alimentation en fluide vers un moyen d'humidification - Google Patents

Procédé et agencement destinés à la commande dynamique de l'alimentation en fluide vers un moyen d'humidification Download PDF

Info

Publication number
EP1884375B1
EP1884375B1 EP20070013196 EP07013196A EP1884375B1 EP 1884375 B1 EP1884375 B1 EP 1884375B1 EP 20070013196 EP20070013196 EP 20070013196 EP 07013196 A EP07013196 A EP 07013196A EP 1884375 B1 EP1884375 B1 EP 1884375B1
Authority
EP
European Patent Office
Prior art keywords
value
tank
moistening
sealing liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20070013196
Other languages
German (de)
English (en)
Other versions
EP1884375A3 (fr
EP1884375A2 (fr
Inventor
Thomas Gerhardt
Wolfgang Muhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Francotyp Postalia GmbH
Original Assignee
Francotyp Postalia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Francotyp Postalia GmbH filed Critical Francotyp Postalia GmbH
Publication of EP1884375A2 publication Critical patent/EP1884375A2/fr
Publication of EP1884375A3 publication Critical patent/EP1884375A3/fr
Application granted granted Critical
Publication of EP1884375B1 publication Critical patent/EP1884375B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43MBUREAU ACCESSORIES NOT OTHERWISE PROVIDED FOR
    • B43M5/00Devices for closing envelopes
    • B43M5/04Devices for closing envelopes automatic
    • B43M5/042Devices for closing envelopes automatic for envelopes with only one flap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43MBUREAU ACCESSORIES NOT OTHERWISE PROVIDED FOR
    • B43M11/00Hand or desk devices of the office or personal type for applying liquid, other than ink, by contact to surfaces, e.g. for applying adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid

Definitions

  • the invention relates to a method and an arrangement for dynamically controlling the supply of liquid to a moistening device for a glueing device for the glue edge of the envelope flap of envelopes, with which the envelopes are closed.
  • Said arrangement is either part of a letter separating device with a moistening device of the aforementioned type or part of a separate envelope humidifier and make station.
  • An arrangement for supplying liquid to a moistening device for the glue edge of the envelope flap of envelopes is as part of a letter separating device from the German Offenlegungsschrift DE 19845832 A1 known.
  • the humidifying agent is supplied with liquid from a liquid tank by means of a pump, the power of which is adapted to the transport speed and paper quality of the envelopes, in particular to the nature of the glue edge of the envelope flap.
  • the pump is activated and the humectant stores a certain amount of liquid which is delivered to the glue edge of the envelope flap when the latter is the device passes.
  • a sensor is located in the area of the wetting agent (sponge) in the path of movement of the envelope flaps. Only when the sensor is passed by an envelope flap will the sensor provide a signal to trigger the pump. This replenishes liquid so that the sponge does not dry out. An unnecessary liquid transport is avoided in the transport breaks, that no signal is emitted by the sensor.
  • liquid is replenished in an amount sufficient for the largest edge of glue in mixed mail.
  • the excess amount of liquid drips off into a reservoir, which is pumped by the pump into the fluid tank.
  • the possibility of a manual triggering of the pump via the keyboard of the franking machine on the one hand allows a rough presetting of the pump performance.
  • the amount of liquid returned to the liquid tank is detected by a further sensor in the return path.
  • the conversion of the measurement result into a further signal for pump control makes it possible to optimize the amount of liquid to be delivered by the pump to the humidifying agent. As a rule, this ensures adequate moistening of each edge of the glue, thus enabling a secure closure of the envelopes.
  • the paper quality of the different envelopes is so different that the reliability is not given for all types of envelopes, especially if the transport speed of the mail pieces is very high.
  • the return flow sensor located in the liquid return path for monitoring the amount of liquid recirculated from the reservoir reacts too late to fluid volume changes in the humidifier because only the amount of excess fluid is controlled and thus the humidifier will always be at a maximum humidity level with this arrangement kept, without wasting too much liquid.
  • the determination of the correct amount of water that arrives on the envelope is therefore not yet effectively possible. This leads to problems in the closure of mixed envelopes of different types of paper (mixed mail). For physical reasons, the different types of paper or envelope require different amounts of liquid (water) in order to be optimally closed.
  • the invention aims to increase the reliability of an arrangement for supplying liquid to a moistening device for the glue edge of the envelope flap of envelopes. Regardless of the nature of the envelopes in general and the glue edges in particular, the latter should always be sufficiently moistened without too much excess liquid being produced. For the purpose of increasing the reliability of both the humectant, and the liquid should have defined properties that remain as unchanged as possible during the period of control.
  • the invention has for its object to provide a method and an arrangement for the dynamic control of the liquid supply to a humectant, with which it is possible to avoid overhydration at start and to control the liquid supply during operation more accurately. This ensures that even when processing mixed mail with different paper quality and envelope size, always a sufficient
  • Amount of liquid can be transferred to the glue edge.
  • this object is achieved by a method having the features of claim 1 and an arrangement having the features of claim 9.
  • Each fluid is characterized by physical parameters such as density, surface tension, pH, and specific electrical conductivity.
  • a measurement of the moistening agent stored Amount of liquid can be done indirectly, for example via a weight measurement, but a balance for weighing the humectant is required. Its gewichs selectedung corresponds to the change in the amount of liquid.
  • the volume of the fluid is the quotient of weight and density. If any liquid at a known density of a particular closure liquid fills a given volume, then qualitative analysis will allow the density and weight volume quotient to determine whether a particular or other conventional closure liquid is in the humidification tank. Likewise, another indirect measuring method for the closing liquid can be used. In particular, a conductivity measurement is characterized by a particularly low additional expenditure on equipment.
  • the difficulty is that, on the one hand, there are too few undefined conductivities and, on the other hand, that the glue edge is not penetrated fast enough. Therefore, on the one hand a special sealing liquid was developed, which penetrates better into the glue edge and allows a faster closing of the envelopes.
  • a size of the sealing liquid used is measured and analyzed by classification on whether the special or another conventional sealing liquid is in the tank. It is provided that a conductance or a specific electrical conductivity for the closing fluid is determined by means of an electrochemical resistance measurement, by means of which a dynamic control of the fluid supply to the humidifying agent takes place.
  • the humectant comprises an electrical non-conductive material as a liquid storage, which does not affect the measurement.
  • the preferred method of dynamically controlling the supply of liquid to a wetting agent is characterized by a qualitative analysis of the sealing liquid used in the tank and measurements of conductance or specific electrical conductivity of the wetting liquid used in the wetting agent to dynamically and more accurately control the liquid supply, the Measurements are made at different positions in the humidifying means and wherein, in response to a reduction relative to a tank base value, of a value corresponding to the conductance or specific electrical conductivity of the closing liquid used in the humidifying means, especially at the reduction in one of the glue edge of the glue Envelope is detected in the humidifying means, the moisturizing agent is supplied via a pump more closing liquid than at a measured in the close positions to the glue edge of the envelope flap reduction of a value corresponding to the conductance or the specific electrical conductivity of the closing liquid used in the humidifying.
  • An arrangement for the dynamic control of the liquid supply to a humectant comprises, among other things, a transducer with at least one voltage divider, consisting of a series resistor R v and the electrical resistance R m of the liquid between two adjacent electrodes, which form a measuring cell.
  • the frequency of the alternating voltage u s must be determined empirically.
  • the waveform of the AC voltage is arbitrary (rectangular, triangular or sinusoidal).
  • a material parameter of the electrical conductor is the specific electrical resistance ⁇ .
  • water-soluble inorganic control salts such as NaCl or KCl
  • water-soluble organic control salts such as Na acetate or Na lactate dissolved in water
  • An alternating voltage applied to the electrodes of the measuring cell leads to a movement of the ions contained in the closing liquid, which is aligned with the electrodes. The more ions, the larger the current flowing between the electrodes. From the measured resistance value R m is first computationally a conductance G m and then the value of the specific electrical conductivity ⁇ L , taking into account the measuring cell parameters, such as Cross-sectional area A and distance d of the electrodes, determined.
  • the geometric design of the measuring cell has the following effect:
  • the cross-sectional area A also increases the number of charge carriers (ions) within the cross-sectional area A , which increases the electrical conductance G m of the liquid.
  • the alternating voltage source and the series resistor R v can each be replaced by an alternating current source which supplies an alternating current i s , which via the respectively associated measuring cell (at the resistance value R m ) a corresponding measuring voltage u m generated.
  • the pump is again driven by a motor that also drives the pump to pump fluid out of the reservoir.
  • the supply of liquid to the humectant can be regulated as before by means of the control via pump, but the controller is now sensitive to the changes in conductivity in the humectant.
  • the liquid enters the humectant it is transported by the humidifier driven by the force of gravity. A certain amount of liquid is removed during wetting of a sizing edge, resulting in local depletion of charge carriers in the wetting agent.
  • the resulting changes in conductivity due to the change in the amount of liquid stored in the humidifier are linked by a mathematical function.
  • a measuring cell arranged in the humidifying means is sufficient for an approximately linear function.
  • the Fig. 1 shows an arrangement for the dynamic control of the liquid supply to the moistening means of a moistening device for applying sealing liquid on envelope flaps of envelopes, according to a 1.
  • the wetting agent 234 is preferably made of an open-celled foam or felt or fleece.
  • the humectant 234 is, for example, a sponge whose mechanical support or arrangement in a device will be described later.
  • three electrodes 2341, 2342 and 2343 are arranged in a row in the humidifying means 234 and connected via electrical lines 3341, 3342 and 3343 with a measuring circuit so that each results in a voltage divider consisting of the series connection of a first series resistor Rv1 with a first resistor R.
  • the specific electrical conductivities ⁇ 1 and ⁇ 2 are due to the wetting of the wetting agent 234 with the liquid at subordinate locations in the above-mentioned row, the row being oriented in the direction of gravity.
  • the electrodes 2341 and 2342 provide a first measuring cell and the electrodes 2342 and 2343 a second measuring cell.
  • the lines connected to the electrodes 2341, 2342 and 2343 of the measuring cells are particularly well electrically isolated and are shielded by a first cable 334.
  • Both series resistors R v1 and R v2 of the measuring circuit are arranged in a transducer 330 of an input / output unit 33, which also contains a further series resistor R v3 for a further series connection with a third resistor R m3 , which consists of a third specific electrical conductivity ⁇ 3 and the geometric dimensions of a third measuring cell 39 results.
  • the third specific electrical conductivity ⁇ 3 is determined via electrodes 391 and 392 of the third measuring cell 39 in the liquid tank 24.
  • Each voltage divider of the measuring circuit is outside the transducer 330, each with one end to the ground pole and with the each other end within the transducer 330 is connected to a voltage pole of an AC voltage source 331.
  • the AC voltage source 331 may provide a preferably symmetrical AC voltage of any waveform, such as sinusoidal, triangular, or square wave AC voltage.
  • the frequency of the AC voltage should be high enough in the range of 50 - 120 Hz, and thus on the one hand, so that polarization effects do not affect the measurement, but on the other hand low enough, so that the capacities of the lines can not affect the measurement.
  • Each voltage divider has within the transducer 330 a center tap, which is electrically connected to one contact a, b and c of a switch 333.
  • the contact a via switching means with the contact m of the switch 333 is connectable to measure at the center tap of the first voltage divider a measuring voltage u m .
  • the AC voltage source 331 is connected via the respective other voltage pole to ground potential.
  • the contacts e and s of the changeover switch 333 serve to measure the ground potential or the voltage potential applied to the voltage dividers.
  • the switch 333 can preferably be realized by means of electronically controllable switches as an analog multiplexer and is connected in terms of control with a microprocessor.
  • At the output of the changeover switch 333 at least one sample and hold circuit S & H (Sample & Hold) 337 and an analog / digital converter 338 are connected via an impedance converter 335.
  • the sample and hold circuit (S & H) 337 converts an AC measurement voltage u m into a peak DC voltage ⁇ m, which corresponds to the peak value of the DC voltage.
  • the analog peak DC voltage ⁇ m is stored analogously and then converted into a digital value U m .
  • the digital value is digitally latched in the transducer 330 until interrogated by the microprocessor.
  • the transducer 330 may be a component of an input / output unit 33 of an evaluation and control circuit 3 or may be implemented separately and connected between the electrodes and the evaluation and control circuit 3.
  • the transducer 330 is switchable over a driver circuit 339 connected to the bus of the microprocessor.
  • a sump 26 is positioned below the humidifier 234 in the direction of earth gravity.
  • a liquid tank 24 is via Feed tube 241 via a first pump chamber 253 of the pump 25 and via supply hose 251 with the humidifier 234 and the reservoir 26 for liquid drops running is connected via discharge hose 261 with a second pump chamber 254 of the pump 25.
  • the second pump chamber 254 is connected via a discharge hose 262 to the liquid tank 24, wherein the discharge hose 262 terminates at the closure piece 242 of the liquid tank 24.
  • the supply tube 241 begins at the lower level in the liquid tank 24, passes through the closure piece 242 of the liquid tank 24 and ends at the pump 25.
  • the supply hose 251 to the moisture storage 234 starts at the outlet of the pump 25 and ends above the humidifying agent 234 in a guide unit.
  • the supply tube 251 is in fluid communication with the humidifier 234 via at least one opening in the guide unit.
  • the pump 25 is designed as a multiple-hose pump, the hoses 241 and 251 and the hoses 261 and 262 are each combined into a hose and looped through by the pump 25.
  • the tank measuring cell 39 in the liquid tank 24 consists of an electrically insulating spacer 390 for two electrodes 391 and 392.
  • the electrical lines 3801, 3802 are both electrically connected to the electrodes 391 and 392, for example via glass feedthroughs 381, 382 arranged in the closure piece 242.
  • the externally connected electrical lines are protected by a second shielded cable 38.
  • the first and second shielded cables 334 and 38 should have the lowest possible cable capacity.
  • the humectant 234 has an electrically insulating memory material with sufficient capacity for storing the electrically conductive liquid and carries, for example, 3 electrodes spaced apart in a row, the row here being parallel to the perpendicular to the center of the earth.
  • the voltage readings measured at different locations allow the microprocessor to draw conclusions about the condition of the humidifier 234 and, if necessary, drive the motor 253 of the pump 25 for the purpose of fluid delivery.
  • a first variant of intelligent dynamic closing fluid supply (IDS) can be realized, by means of which the moisture in the sponge can be controlled by software. If no envelope is to be closed, the pump 25 can be turned off.
  • a switch 2374 coupled to an actuating button 2372 is used for manual switching on and off of the pump 25.
  • the switch 2374 is connected to an evaluation and control circuit 3, which in turn is connected via a control line 31 to the pump 25 or its motor 252. Depending on the nature of the motor 252 this is controlled by changing a voltage level or a pulse repetition frequency.
  • the pump 25 is designed as a symmetrical multi-chamber peristaltic pump, the first pump chamber 253 serves to supply the moisture reservoir 234 and the second pump chamber 254 to dispose of the excess fluid from the reservoir 26.
  • the tank measuring cell 39 is fastened to the inside of the closure piece 242 and is electrically connected via an insulated double line 3801, 3802 to the connection terminals x and y of the measuring transducer 330 of the input / output unit 33 of the evaluation and control circuit 3, which has an electrical alternating current via the electrodes 391, 392 flow through the liquid and evaluates the voltage drop.
  • a program memory FLASH 34, non-volatile memory NVRAM 36 and random access memory RAM 37 are operatively connected to the processor 34, which is coupled to the input / output unit 33 via the bus.
  • the evaluation and control circuit 3 is bidirectionally connected to its input / output unit 33 with a franking machine 4.
  • the latter also has an input / output unit 40 which is connected to a ⁇ P controller 43.
  • the keyboard 41 of the franking machine 4 is coupled.
  • the microprocessor 43 of the franking machine 4 and via the input / output unit 40 a presetting of the pump power is possible manually.
  • Via the display 42 a status display is possible, for example, whether the moistening device is activated or not activated. This is of particular advantage in service operation.
  • the performance of the pump 25 is adaptable to the transport speed and paper quality of the envelopes 1 so as to ensure adequate moistening of the glue edges.
  • a first sensor 2321 is located in the area of the wetting agent in the path of movement of the envelope flaps and provides a signal to trigger the pump only when the sensor 2321 is passed by an envelope flap.
  • a second envelope sensor 2322 detects the Kurvert leading edge and is used to start the IDS (inteligente dynamic closing fluid supply). The start of the IDS is advantageous before a sword detects the flap of the envelope and lifts off the envelope. This ensures adequate penetration of the wetting agent 234 with sealing liquid without over-wetting before an envelope flap passes the first sensor 2321.
  • the solution according to the invention consists in the arrangement of electrodes for conductivity measurement, for example in a sponge, the for moisturizing the envelope of the envelope flap.
  • the conductivity measurement provides a sufficiently accurate measurement of the moisture in the sponge and is sensitive enough to detect and respond to minor changes.
  • this requires the use of a sufficiently conductive sealing liquid. Since the commercially available closing fluids, including the water normally used, are not conductive enough, control salts such as NaCl, KCl, Na acetate or Na lactate dissolved in water can be used to adjust the conductivity.
  • control salts such as NaCl, KCl, Na acetate or Na lactate dissolved in water can be used to adjust the conductivity.
  • a penetrating agent is also used.
  • the ethyl lactate used as a penetration agent is stabilized with sodium lactate (Na lactate) in aqueous solution. About 1.2% Na-lactate was used. For this mixture, the increase in electrical conductivity was surprisingly evident.
  • the embodiment includes the in Fig.2 shown flow chart of a method for the dynamic control of the liquid supply according to a first variant.
  • This flowchart shows a first step 101 for starting the method 100 after switching on the machine.
  • the digital comparison values A, B and C are stored in associated registers of the nonvolatile memory (NVRAM) 36 and an admissibility value Z is set.
  • the digital comparison values A, B and C are initially used to classify the closing liquid according to its conductance or electrical conductivity.
  • the switch 333 is switched over so that its contacts c and m are electrically conductively connected.
  • a tank measuring cell 39 is interrogated while an analog partial AC voltage u m3 is sampled at the center tap of the third voltage divider.
  • the measured analog partial AC voltage u m3 is rectified and S & H circuit as analog peak DC voltage value ⁇ 3 buffered analogously. Then the analog value is converted into a digital value U 3 and digitally buffered in a memory. After its query, a digital tank base value X T is calculated by the microprocessor.
  • the digital tank base value X T is compared with the digital comparison values A, B and C.
  • the calculations are performed in accordance with Fig. 2 not shown - sub-steps of the third step 103 by means of the microprocessor.
  • a closing fluid is refilled, then one of the steps 105, 107 or 109 is carried out, and thus the sealing fluid used in the tank is classified. From the steps 105, 107 and 109, a branch is made to a fourth interrogation step 111 and the stored binary value N is compared with the stored admissibility value Z and an intelligent dynamic closing fluid supply (IDS) starting step 112 is reached when the binary value N is smaller or equal is equal to the stored admissibility value Z. Otherwise, ie if the binary value N for marking the tank state is not equal to or greater than the stored permission value Z, then the routine is terminated (step 113).
  • IDS intelligent closing fluid supply
  • the IDS routine can therefore not be started if the sealing liquid used in the tank does not comply with the specifications of the admissibility value Z.
  • a routine consisting of a number of subroutines is performed in step 114.
  • the switch 335 is switched so that its contacts a and m or b and m are electrically connected.
  • the measuring cells of the humidifying means are interrogated and thereby sampled analog partial AC voltages u 1 and u 2 at the center tap of the first and second voltage divider.
  • the measured analog partial alternating voltages u 1 and u 2 are rectified and analog in the S & H circuit as analog peak dc voltage values ⁇ 1 and ⁇ 2 cached. Then, in each case, the analog value is converted into a respective digital value U 1 and U 2 and digitally buffered in a memory.
  • the microprocessor After its interrogation, the microprocessor either calculates a first and second conductance and / or a corresponding first and second value of the specific electrical conductivity by calculation. This is followed by a comparison with the digital tank base value. However, corresponding sub-steps are in the Fig. 2 not shown in detail. If the moistening agent in the lower area near the plate is insufficiently wetted with sealing fluid (eg water), then a higher first power to operate a pump is required than a smaller second power to maintain the moistening condition. After step 114, a fifth interrogation step 115 is reached.
  • sealing fluid eg water
  • step 116 If a second conductance or second value of the specific electrical conductivity X 2 is smaller than the digital tank basic value X T , the program branches to step 116, in which the pump is switched on and its drive is set to a high first power. Otherwise, in a sixth interrogation step 117 it is queried whether a first conductance or first value of the specific electrical conductivity X 1 is smaller than the digital tank base value X T. In such a case, a branch is made to step 118, in which the pump is switched on and its drive is set to a small second power. After steps 116 and 118, a branch back to the beginning of the routine of step 114, in which the measured values of the measuring cells are interrogated and processed.
  • the first conductance or first value of the specific electrical conductivity X 1 is not smaller than the digital tank basic value X T , then in a seventh query step 119 it is checked whether X 1 in a tolerance range 0.98 X 2 ⁇ X 1 ⁇ 1.02 X 2 is. If this is the case, then in a step 120, the pump is turned off. If this is not the case, then an eighth query step 121 is reached. In the eighth interrogation step 121, it is checked whether a first conductance or first value of the specific electrical conductivity X 1 is smaller than the second conductance or second value of the electrical conductivity X 2 .
  • step 122 in which the pump is turned on and its drive is set to a small second power.
  • steps 120 and 122 a branch is made to a step 126 in which the humidifying and closing operation for a letter envelope is released when the envelope flap passes the first sensor 2321.
  • the pump is then operated for a defined time, which helps to compensate for the loss of fluid in the wetting agent during wetting.
  • step 126 a branch back to the beginning of the routine of step 114, in which the measured values of the measuring cells are interrogated and processed.
  • step 123 the pump is switched off and branched to step 124 to repeat the tank sensor query.
  • step 124 the same routine as in the third step 103 is run through again, which has already been explained above.
  • a query step 125 is branched to repeat the query known from the third interrogation step 108.
  • step 125 If it is determined in query step 125 that the digital tank base value X T falls below the third digital comparison value C, the latter being the smallest digital comparison value, then a branch is made to a last step 127 in order to signal or signal the end of the humidification. Otherwise, a branch is made to step 126, in which the moistening and closing process for a letter envelope is released.
  • FIG. 3 An arrangement for the dynamic control of the liquid supply to the humidifying means of a moistening device for applying sealing liquid to envelope flaps of envelopes, according to a second variant is explained.
  • a tank sensor 243 disposed in the tank 24, as shown in the DE 198 45 832 A1 in principle already known.
  • the tank sensor 243 is connected to the input / output unit 33 via the electrical leads 2451, 2452 of the cable 245.
  • a corresponding signal for discriminating whether the liquid tank 24 is empty or full can be supplied to the evaluation and control circuit 3.
  • the signal is used to prompt the user by means of an indicator in the display to fill the tank.
  • the rest of the arrangement corresponds to that already on the basis of Fig.1 was explained.
  • the two other electrodes 2343 and 2341 of the humectant are at the measuring points u and w of the transducer 330 connected and are at the respective measurement potential.
  • the electrode 2342 is connected to the measuring point v of the transducer 330 and is at ground potential.
  • the two electrodes 2342 and 2343 or 2342 and 2341 each form a measuring cell for the electrical conductivity and are spaced apart by a height K 1 and K 2 .
  • the specific electrical conductivity ⁇ 1, ⁇ 2 depends on the type of sealing liquid.
  • a flow chart of a method for the dynamic control of the liquid supply according to the 2nd Variant is shown.
  • a second step 202 is reached in order to query the tank sensor 243.
  • the display step 204 is reached to prompt the user: "fill the tank” or to indicate the tank condition.
  • the end 229 is reached.
  • the preparation step 205 is reached in order to set digital comparison values A, B and an admissibility value Z * in a respective register.
  • the digital comparison value A is greater than the digital comparison value B.
  • a tank measuring cell 39 is interrogated and an analog partial AC voltage u is sampled at the center tap of the third voltage divider.
  • the measured analog partial AC voltage u is rectified and S & H circuit as analog peak DC voltage value ⁇ 3 buffered analog.
  • the analog value is converted into a digital value U 3 and digitally buffered in a memory.
  • a digital tank base value X T is calculated by the microprocessor.
  • the digital comparison values A and B are again used to classify the sealing liquid according to its conductance or electrical conductivity.
  • a third interrogation step 209 it is determined that the digital tank base value X T falls below the second digital comparison value B, the latter being smaller than the larger digital comparison value A.
  • a display step 213 for example, to notify the user: "Please add cooking salt!”.
  • a fifth query step 213 it is determined in a fifth query step 213 whether the use of an alternative closing fluid is permissible. If so, then a standard program 500 is executed without measurements of conductivities. Otherwise, if not, the end is reached (step 228). If it is determined in the fourth interrogation step 211 that the permissible value Z * has not been exceeded by the state value N, then an intelligent dynamic closing fluid supply (IDS) start step 212 is reached.
  • the IDS routine comprises steps 212 to 227 and corresponds to steps 112 to 127 of the IDS routine according to the first variant, which is based on the Fig. 2 has already been explained.
  • FIGS. 5a and 5b show an electronic circuit of the transducer.
  • the transducer part after Fig. 5a It consists of an AC voltage source 331, a measuring circuit 332 and a measuring switch 333, which is followed by an impedance converter assembly 335 and rectifier assembly 336.
  • the AC voltage can be easily derived from the mains voltage.
  • the AC power source 331 is, for example, a power transformer.
  • the measuring circuit 332 consists of three voltage dividers whose series resistor R v1 , R v2 and R v3 on the one hand to a pole of the AC voltage source 331 and on the other hand at the measuring points u, v and w of the measuring circuit 330 is connected.
  • the taps of the voltage divider coincide with the aforementioned measuring points. Between each tap and ground potential are the measuring cells, whose electrical equivalent circuit diagram was shown. The respective reciprocal conductance corresponds to a resistance Rm1, Rm2 and Rm3 of the liquid in each measuring cell. In series there is a respective capacity Cp1, Cp2 and Cp3 for simulating the polarity processes in the liquid. In parallel with this RC series connection, there is a respective line capacitance CL1, CL2 and CL3 of the lines in the cables 334 and 38 (FIG. Fig. 3 ). The taps of the voltage divider are connected to the measuring switch 333, at the output m of the non-inverting input of a connected as a voltage follower first operational amplifier OP1 is connected.
  • the construction of the measuring switch 333 is based on the Fig. 7 explained below.
  • the output 1 of the first operational amplifier OP1 of the impedance converter assembly 335 is electrically connected to the non-inverting input of a second operational amplifier OP2 and via a resistor R to the inverting input of a third operational amplifier OP3 of the impedance converter assembly 335.
  • the third operational amplifier OP3 is connected as an inverter and has an output g.
  • the first and third operational amplifiers OP3 are part of an impedance converter assembly 335 having an inverting output g and a noninverting output 1 , which are respectively followed by precision rectifiers.
  • the precision rectifiers belong to a rectifier module 336 and each consist of an operational amplifier OP2 and OP4, each with a diode D1, D2 in the negative feedback branch, which establishes a connection from the output to the inverting input of the respective operational amplifier. If, for example, the output of the operational amplifier OP2 and OP4 is connected to the n-type region of the diode D1, D2, then the p-type region of the diode D1, D2 forms an output h or k.
  • the respective other noninverting input of the operational amplifier OP2 or OP4 is electrically connected to the output I of the first operational amplifier OP1 or to the output g of the third operational amplifier OP3.
  • the transducer part after Fig. 5b consists of a Sample & Hold circuit 337 with analog value memory Cs for an analog DC voltage peak ⁇ and from an analog / digital converter 338 with digital memory (Latch).
  • the analog value memory Cs is a capacitor that can be discharged before the measurement by means of a controllable switch S.
  • the latter is preferably an electronic switch that is controllable by the microprocessor.
  • the capacitor is charged via a diode D3 to a positive peak voltage, which is output by a fifth operational amplifier OP5 output side when a negative input current flows into the node n at the inverting input of the fifth operational amplifier OP5.
  • a Schmidt trigger 3301 and downstream pulse shaper 3302 provide at the output d transfer signal to a latch 3303 for data transfer of the digital value U.
  • the transducer 330 is part of an input / output circuit 33 which data, control and address connected via bus to the microprocessor is.
  • the Fig. 6 shows a field effect transistor FET as an electronic switch S which can be controlled by the microprocessor at time t to discharge the capacitor Cs and start a new measurement process.
  • the Fig. 7 shows an analog multiplexer 333, consisting of input side operational amplifiers OPa, OPb, OPc, ..., OPe and OPs, which are connected as a voltage follower and downstream electronic switches T1 to Tn, which are electrically connected at the signal output.
  • enhancement type p-channel MOSFETs are used as electronic switches.
  • an alternating voltage is applied to the voltage divider, which has a peak voltage û c at tap c. This is applied from the input side operational amplifier OPc to the drain terminal of the MOSFET.
  • a control voltage U GS is applied via a control circuit (not shown), which in turn is driven by the microprocessor in order to actuate the respective MOSFET switch.
  • the Figure 8a shows a moistening means 234 of a moistening device with a number of four electrodes, which are arranged in a row on a - concealed by the moistening means - support plate of a holding compartment of the sword.
  • the electrodes are formed, for example, as a good electrical conductive hollow cylinder, which protrude through a respective hole of the humidifying agent 234.
  • the outer surface of the hollow cylinder is preferably gold plated.
  • the hollow cylinder of the electrode 2344 is filled inside with plastic.
  • the hollow cylinders of the remaining electrodes 2341 to 2343 are open or internally filled with plastic, in each of which an opening (black) is incorporated. The openings are used for fixing a - not shown - holding plate.
  • the first and last electrodes in the series have a measurable voltage potential.
  • the middle two electrodes 2342 and 2344 become ground potential placed and are spaced by a height H from each other.
  • the distances between the electrodes of a measuring cell, ie between the first and third electrodes 2341 and 2343 and the associated applied with mass potential second electrode 2342 and fourth electrode 2344 are smaller than the height H.
  • the first and third electrode form with the respectively associated with mass potential applied electrode 2342 and 2344 each have a measuring cell for measuring the specific electrical conductivity ⁇ 2 and ⁇ 1 of the closing liquid between the electrodes.
  • the first and third electrodes 2341 and 2343 are connected via a respective line 3341 or 3343 to the measuring points u and w of the measuring transducer 330.
  • the second and fourth electrodes 2342 and 2344 are connected to a line 3342 which carries ground potential provided by the transducer 330 at point v.
  • Lines 3341, 3342, and 3343 are routed within a cable 334 to transducer 330.
  • the 8B shows a humidifying means 234 of a humidifying device with a number of four electrodes, which are arranged in two staggered rows.
  • the offset D in the surface of the humidifying agent 234 is in the order of magnitude of the distance between two electrodes of a measuring cell.
  • the four electrodes 2341 to 2344 are again electrically connected to the transducer 330 via lines 3341 to 3343, as already described with reference to FIG Fig. 8a was explained.
  • the Fig. 8c shows a humidifying means of a humidifying device with a plurality of electrodes, which are arranged offset from each other in the surface.
  • the electrodes 2341 to 234n are connected via lines 3341 to 334n - in a manner not shown - to the transducer which is in operative connection with the microprocessor to determine the fluid distribution in the humidifying means of a humidifier.
  • a holding plate for holding the moistening agent is shown with a plan view of the humidifier side facing.
  • the retaining plate is made of plastic, for example.
  • For attachment of the holding plate 235 to the hollow cylinders serve conically from the surface of the holding plate 235 upstanding and perpendicular holding body 2351 to 235n-1.
  • the base of the holding bodies 2351 to 235n-1 standing on the surface of the holding plate 235 is correspondingly shaped differently in order to compensate for tolerance-related deviations in the position of the holding bodies relative to the positions of the openings (black).
  • the openings are drilled or pressed holes, for example, in the plastic filling of the hollow cylinder, the shape of which is adapted to that of the holding body.
  • the Fig. 9 shows an envelope flap guide unit 23 in the rear left upper perspective and with a holder for the moistening agent 234 in an exploded view.
  • the holder is composed of a humidifier receptacle 2311 incorporated on the downstream post edge of the blade 231 and the aforementioned holding plate 235.
  • the tray 2311 is open to the side facing away from the envelope flap and can be closed by attaching the holding plate 235.
  • the visible side of the holding plate 235 facing away from the humidifying means shows bulges which merge seamlessly into the corresponding bulges of the sword 231 when the holding plate 235 is attached.
  • the leads 3341, 3342, and 3343 are routed outside the sword within a cable 334.
  • the aforementioned carrier plate 2310 becomes visible within the compartment 2311.
  • the leads 3341, 3342 and 3343 are guided on the support plate 2310 and are electrically connected to the three electrodes 2341, 2342 and 2343.
  • the three electrodes are formed as outer hollow cylinders, which are arranged lying in the present example in a row and equidistant from each other.
  • an inner hollow cylinder 23111, 23112 and 23113 is arranged, which is mechanically connected to the support plate 2310.
  • the wetting agent 234 is a sponge and the closing liquid is normal tap water.
  • the sword 231 serves to lift the tab, Sponge holder and holder and for mechanical attachment of the electrodes, which are intended for measuring the electrical conductivity.
  • a hose connector 236 is arranged, on which the supply hose 251 is plugged for closing fluid.
  • the electrodes 2341, 2343 may be formed as ring electrodes and the holding plate 235 as a counter electrode.
  • the retaining plate 235 is spaced from the ring electrodes in a defined manner and is secured to the pocket 2311 by at least one screw, for example.
  • the holding plate can be made of a metal plate, which is electrically contacted via the electrode and a metallic inner hollow cylinder 23112.
  • the Fig. 10 shows an arrangement of the guide unit 23 for an envelope flap in working position in the perspective from the top left rear.
  • An envelope arriving upstream is transported in the direction of the arrow and detected with the envelope sensor 2322 and the IDS program is started.
  • the flap 11 is first passed between a guide plate 232 and the hidden back of the support plate 2310 and subsequently between the guide plate 232 and the hidden side of the moistening agent 234 plugged onto the hollow cylinder , In this case, the inside rubber coating of the flap 11 is wetted with sealing liquid.
  • the guide unit 23 is pivotable by means of the actuating lever 2372 about an axis 238 in the working position.
  • a known automatic feed station with singulation of mail pieces of a franking system is designed to produce a continuous stream of envelopes. Without a gap, one envelope follows the other.
  • the speed of the feed mechanism 281 (581) is less than that of the ejection roller 282 (582). After leaving the automatic feeding station with separation of the mail pieces, this gap creates a gap to the following envelope.
  • the gap increases with the Transport distance and is about 30 mm when leaving the ejection roller.
  • the guide unit 23 of the moistening mechanism is arranged for example between the drive mechanism 281 of the separating section 28 and an ejection roller 282 of a separating device 2 and has an envelope sensor 2322.
  • the moistening mechanism consists essentially of the moistening agent 234 and a sword 231.
  • the sword is in the flow of Mail pieces (envelopes) arranged (basic position). With the front edge of the sword, the envelope flap is opened. The tab thus separated from the envelope follows a contour of the guide unit 23 which guides the tab past the moistening agent.
  • the sword 234 is movably arranged on the guide unit 23 in order to be able to adapt to the thickness of a filled envelope.
  • the now moistened flap attaches itself to the envelope and is pressed against the envelope as it passes through the ejection roller.
  • the gap between the letter envelopes in the moistening area is only approx. 12 mm. This sometimes means that while a letter envelope has not yet left the sword, a subsequent letter envelope already enters the sword.
  • the sword 231 is not in its home position, ie with its leading edge close to the letter tray. The sword does not slide along the leading edge of the letter as desired, with the result that either the tab is not separated or the envelope hits the sword.
  • a further improved solution variant in which the singulation and transport of the envelopes in the previous automatic feed station can remain essentially unchanged, uses a separate moistening module 5. Only the sword with moistening mechanism is removed from the area of the automatic feed station (AZ) and behind it arranged in separate humidification module 5.
  • the moistening mechanism guide unit 53 is disposed between the drive mechanism 581 of a feeder section 59 and an ejection roller 592, and has an envelope sensor 5322. All constituents of the moistening unit consisting of sword 531 with sponge 534 and the constituents water tank not shown. Pump and control are housed in the separate module. The arrangement of the components with respect to the mail stream remains basically unchanged.
  • the Fig. 12 shows a representation of a moistening module with opened transport path in the perspective from the top right top.
  • the additional module is arranged post-downstream of the automatic feed station with separation of the mailpieces.
  • the separation separates the envelopes and these are subsequently pulled through the ejection roller to a gap of about 30 mm apart. With this distance, the envelopes get into the separate module and their tabs are moistened.
  • the letter transport in the separate module is designed in such a way that the tab is not locked when determining the tab. This is an essential difference to the transport mechanism of the previously known automatic feed station with separation.
  • the use of the separate module is also advantageous for existing Jetmail franking possible and allows a better tab finding by the sword, although existing components are used. Another advantage is the reduction of a jam in the sword area, as the greater gap allows a better thickness compensation. In the event of a mail piece jam, the transport path of the module can be opened.
  • the Fig. 13 shows a representation of a humidification module with open tank access in the perspective from the top right top.
  • the Fig. 14 shows a franking system consisting of an improved known automatic separating and feeding station 2 with optional moistening of the letter flaps, from a franking machine 4 with franking strip dispenser, from a power-sealer station 8 and a letter tray 9, in perspective view.
  • the improvement is achieved by the arrangement of electrodes, the electrical conductivity measurement and humidification control technique, as well as an intelligent dynamic closing fluid supply (IDS) routine.
  • IDS intelligent dynamic closing fluid supply
  • the Fig. 15 shows a franking system consisting of an improved known automatic feeding station 2 with separation of the mail pieces, from a separate Befeuchterstation 5, from the franking machine 4 with franking strip and integrated static balance and from the power sealer station 8 and from the letter tray 9 in perspective view.
  • the improvement is achieved by the arrangement used in the separate humidifier station 5 for the dynamic control of the liquid supply to a humectant and the IDS method.
  • the Fig. 16 shows a franking system consisting of an improved known automatic feeding station 2 with separation of the mail pieces, from a humidifier station 5, from a dynamic weighing station 6, from the franking machine 4 with franking strip dispenser and integrated static balance and from the power-sealer station 8 and the letter tray 9 in perspective view.
  • the improvement is also achieved by the arrangement used in the separate humidifier station 5 for the dynamic control of the liquid supply to a humectant and the IDS process.
  • the conductivity measurement in step 103 or 206 includes a formation of the tank base value X T and may take into account a correction factor for compensating for measured value deviations due to temperature fluctuations and manufacturing tolerances.
  • the classification of the sealing liquid in steps 104 to 109 or 208 to 209 may be different from that in Figs Fig.2 and 4 shown type and

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Control Of Non-Electrical Variables (AREA)

Claims (25)

  1. Procédé pour le contrôle dynamique de la distribution de liquide vers un moyen d'humidification pour humidifier le bord collant du rabats d'enveloppes, avec lesquels les enveloppes sont fermées, caractérisés par
    - une mesure d'une valeur d'un liquide de collage stocké dans le réservoir d'un dispositif d'humidification, suivie d'une analyse qualitative du genre de liquide de collage utilisé à l'aide de la valeur de mesure et d'au moins un paramètre de matière comme valeur comparative et
    - au moins une autre mesure de la quantité de liquide emmagasinée dans le moyen d'humidification, ainsi
    - qu'un contrôle dynamique de la distribution de liquide vers le moyen d'humidification en dépendance du paramètre de matière et d'au moins une autre valeur de mesure qui est en corrélation avec la consommation de liquide et qui résulte de l'au moins une mesure de la quantité de liquide emmagasinée dans le moyen d'humidification.
  2. Procédé selon la revendication 1, caractérisé en ce, qu'un procédé de mesure indirect soit utilisé pour le liquide de collage.
  3. Procédé selon la revendication 1, caractérisé en ce, qu'une mesure de résistance électrochimique soit utilisée pour déterminer une conductance ou une conductibilité électrique spécifique pour le liquide de collage.
  4. Procédé selon l'une des revendications 1 ou 3, caractérisé par une analyse qualitative du liquide de collage utilisé dans le réservoir et par des mesures de la conductance ou de la conductibilité électrique spécifique du liquide de collage utilisé dans le moyen d'humidification, afin de contrôler de manière dynamique et plus précise la distribution de liquide, lesdites mesures étant effectuées à diverses positions dans le moyen d'humidification et dont, en réaction à une réduction d'une valeur, dont ladite réduction résulte en dépendance à une valeur de base du réservoir et dont ladite valeur correspond à la conductance ou à la conductibilité électrique spécifique du liquide de collage utilisé dans le moyen d'humidification, en particulier pour la réduction qui est déterminée dans le moyen d'humidification dans l'une des positions éloignées du bord collant d'un rabat d'enveloppe, soit distribué au moyen d'humidification, par l'intermédiaire d'une pompe, plus de liquide de collage que pour une des réductions d'une valeur mesurées dans les positions proches du bord collant du rabat d'enveloppe, ladite valeur correspondant à la conductance ou à la conductibilité électrique spécifique du liquide de collage utilisé dans le moyen d'humidification.
  5. Procédé selon la revendication 4, caractérisé en ce, que l'analyse qualitative soit effectuée après cela à l'aide d'une classification, en dépendance du fait que le liquide de collage contenu dans le réservoir d'un dispositif d'humidification soit un liquide de collage spécial ou classique.
  6. Procédé selon la revendication 4, caractérisé par les étapes suivantes :
    • mesure (103, 206) de la conductance ou de la conductibilité électrique spécifique du liquide de collage dans le réservoir et constitution d'une valeur de base du réservoir XT,
    • classification (104, 106, 108 ou encore 207, 209) du liquide de collage dans le réservoir selon sa conductance ou sa conductibilité électrique spécifique par comparaison numérique de la valeur de base du réservoir XT avec des valeurs comparatives correspondantes A, B et C ou encore A et B,
    • vérification (111 ou encore 211) de l'admissibilité du liquide de collage utilisé à l'aide d'une valeur d'admissibilité Z ou encore Z*, une routine pour la distribution dynamique intelligente du liquide de collage étant uniquement démarrée (112 ou encore 212) en cas d'admissibilité du liquide de collage utilisé,
    • mesures (114 ou encore 214) de la conductance ou de la conductibilité électrique spécifique du liquide de collage contenu dans le moyen d'humidification à au moins deux diverses positions dans le cadre de la routine précitée pour la distribution dynamique intelligente du liquide de collage, et constitution d'une première valeur X1 correspondant à la conductance ou à la conductibilité électrique spécifique du liquide de collage utilisé à une première position dans le moyen d'humidification, la première position étant la position la plus proche du bord collant du rabat d'enveloppe ainsi que la constitution d'une seconde valeur X2 correspondant à la conductance ou à la conductibilité électrique spécifique du liquide de collage utilisé à une seconde position dans le moyen d'humidification,
    • comparaison (115 ou encore 215) de la seconde valeur X2 avec la valeur de base du réservoir XT, ladite comparaison étant suivie, dans le cas où la seconde valeur X2 est inférieure à la valeur de base du réservoir XT, par l'activation (116 ou encore 216) de grande puissance d'une pompe de distribution du liquide de collage, et que dans l'autre cas ait lieu
    • une comparaison (117 ou encore 217) de la première valeur X1 avec la valeur de base du réservoir XT, si la seconde valeur X2 n'est pas inférieure à la valeur de base du réservoir XT,
    • et que si la première valeur X1 est inférieure à la valeur de base du réservoir XT, la pompe destinée à distribuer le liquide de collage soit activée (118 ou encore 218) avec une faible puissance et qu'autrement
    • soit effectuée une comparaison (119 ou encore 219) de la première valeur X1 avec la seconde valeur X2, si la première valeur X1 n'est pas inférieure à la valeur de base du réservoir XT, et que dans le cas, où la première valeur X1 est située dans une plage inférieure à la valeur de base du réservoir augmentée d'une valeur de tolérance 1,02 • XT mais néanmoins supérieure à la valeur de base du réservoir réduite par une valeur de tolérance 0,98 • XT, la pompe soit désactivée (120 ou encore 220) et que l'humidification d'enveloppes soit validée (126 ou encore 226), et qu'autrement
    • soit effectuée une comparaison (121 ou encore 221) de la première valeur X1 avec la seconde valeur X2, si la première valeur X1 n'est pas située dans la plage précitée, et que dans le cas où la première valeur X1 est inférieure à la seconde valeur X2, la pompe destinée à distribuer le liquide de collage soit activée avec une faible puissance (122 ou encore 222) et que l'humidification d'enveloppes soit validée (126 ou encore 226) ainsi que dans un autre cas, la pompe soit désactivée (123 ou encore 223) et que l'humidification d'enveloppes soit validée (126 ou encore 226), si la première valeur X1 n'est pas inférieure à la seconde valeur X2.
  7. Procédé selon la revendication 6, caractérisé en ce, que soit effectuée une interrogation du réservoir par un capteur (124 ou encore 224), si la pompe est désactivée (123 ou encore 223) et que la valeur de base du réservoir XT fasse alors l'objet d'une nouvelle détermination.
  8. Procédé selon la revendication 7, caractérisé en ce, que soit exécutée une comparaison de la valeur de base du réservoir XT avec une valeur comparative C, qui correspond à une très faible conductance électrique ou à une très faible conductibilité électrique spécifique, que soit déterminé au cours d'une étape d'interrogation (125) si la valeur de base du réservoir XT est inférieure à la valeur comparative C et que la validation de l'éclairage s'ensuive (126), si tel n'est pas le cas et qu'autrement une signalisation d'erreur (127) soit générée si tel est le cas.
  9. Dispositif pour le contrôle dynamique de la distribution de liquide vers un moyen d'humidification (234) d'un dispositif d'humidification destiné à l'application de liquide de collage sur des rabats (11) d'enveloppes (1), avec une pompe (25) destinée à l'alimentation du moyen d'humidification (234) par du liquide de collage stocké dans un réservoir (24), avec au moins un capteur (2321) connecté électriquement à un circuit d'évaluation et de commande (3), qui est agencé dans la zone du moyen d'humidification (234) dans la voie de déplacement des rabats d'enveloppes (11) et qui fournit un signal de déclenchement de la pompe, si un rabat d'enveloppe passe devant le capteur (2321), caractérisé en ce, que des électrodes (2341, 2342, 2343... 234n) qui forment au moins une première et une seconde cellule de mesure soient agencées dans le moyen d'humidification (234), que soient agencées dans le réservoir (24) des électrodes (391, 392) d'une troisième cellule de mesure, les électrodes précitées étant connectées en mode opérationnel au circuit d'évaluation et de commande (3), ce circuit d'évaluation et de commande (3) étant programmé :
    - pour exécuter, lors du mouillage des électrodes des cellules de mesure par le liquide de collage, une mesure d'une valeur de résistance d'un liquide de collage stocké dans le réservoir d'un dispositif d'humidification, ladite mesure étant suivie d'une analyse qualitative du genre de liquide de collage utilisé à l'aide d'au moins une conductance électrique déterminée ou d'une conductibilité électrique spécifique déterminée et d'au moins un paramètre de matière correspondant comme valeur comparative,
    - pour exécuter des mesures de valeurs de résistance selon la quantité de liquide emmagasinée dans le moyen d'humidification, ainsi que
    - pour exécuter un contrôle dynamique de la distribution de liquide vers le moyen d'humidification en fonction du paramètre de matière et d'au moins une valeur de mesure de résistance en corrélation avec la consommation de liquide ou d'une conductance déduite à partir de cela ou encore d'une conductibilité électrique spécifique résultant des mesures relatives à la quantité de liquide emmagasinée dans le moyen d'humidification.
  10. Dispositif selon la revendication 9, caractérisé en ce, qu'une unité de gestion des entrées/sorties (33) du circuit d'évaluation et de commande (3) comporte un transducteur (330), qui est connecté électriquement aux électrodes (2341, 2342 2343... 234n et 391, 392).
  11. Dispositif selon la revendication 9, caractérisé en ce, qu'une unité de gestion des entrées/sorties (33) du circuit d'évaluation et de commande (3) soit connectée électriquement aux électrodes (2341, 2342 2343... 234n et 391, 392) par l'intermédiaire d'un transducteur (330).
  12. Dispositif selon l'une des revendications 9, 10 ou 11, caractérisé en ce, que le transducteur (330) puisse être commuté ou encore commandé par l'intermédiaire d'un circuit d'attaque (339) connecté au bus d'un microprocesseur du circuit d'évaluation et de commande (3).
  13. Dispositif selon la revendication 9, caractérisé en ce, que le moyen d'humidification (234) soit constitué par une mousse à cellules ouvertes ou par du feutre ou par une étoffe non tissée, et qu'il comporte des orifices, dans lesquels les électrodes (2341, 2342 et 2343) sont agencées.
  14. Dispositif selon la revendication 10, caractérisé en ce, que les électrodes (2341, 2342 et 2343) soient connectées à un transducteur (330) par l'intermédiaire de conducteurs électriques (3341, 3342 et 3343) d'un câble (334).
  15. Dispositif selon la revendication 10, caractérisé en ce, que la capacité de câble d'un premier câble (334) et d'un second câble (38) soit faible.
  16. Dispositif selon la revendication 10, caractérisé en ce, que les trois électrodes (2341, 2342 et 2343) soient disposées en rangée dans le moyen d'humidification (234).
  17. Dispositif selon la revendication 10, caractérisé en ce, que les électrodes (2341, 2342 et 2343, 2344) soient disposées en deux rangées décalées entre elles.
  18. Dispositif selon la revendication 10, caractérisé en ce, qu'une pluralité d'électrodes (2341, 2342, ... , 234n) soient agencées dans la surface du moyen d'humidification (234) dans des positions décalées entre elles.
  19. Dispositif selon l'une des revendications 9 à 16, caractérisé en ce, que les électrodes (2341, 2342) et (2342, 2343) agencées dans le moyen d'humidification (234) forment une première et une seconde cellule de mesure et qu'elles soient connectées par l'intermédiaire de lignes électriques (3341, 3342 et 3343) à un circuit de mesure de telle manière qu'il en résulte un diviseur de tension, composé du branchement en série d'une première résistance additionnelle Rv1 avec une première résistance Rm1, qui résulte d'une première conductibilité électrique spécifique K1 du liquide de collage et des dimensions géométriques de la cellule de mesure, et composé du branchement en série d'une seconde résistance additionnelle Rv2 avec une seconde résistance Rm2, qui résulte d'une seconde conductibilité électrique spécifique K2 du liquide de collage et des dimensions géométriques de la cellule de mesure, en raison du mouillage du moyen d'humidification (234) par le liquide à des positions espacées entre elles dans les rangées susmentionnées et d'une source de tension alternative (331) connectée au sein du transducteur (330) par l'intermédiaire des résistances additionnelles Rv1 et Rv2.
  20. Dispositif selon la revendication 19, caractérisé en ce, que la source de tension alternative (331) fournit une tension alternative symétrique de forme de courbe quelconque avec une fréquence située sur une plage de 50 à 120 Hz.
  21. Dispositif selon la revendication 19, caractérisé en ce, que chaque diviseur de tension au sein du transducteur (330) comporte une prise centrale, qui est reliée d'une manière électriquement conductrice à un contact respectif (a, b et c) d'un inverseur (333) et qui par l'intermédiaire de moyens de commutation est connectable au contact m de l'inverseur (333), afin de mesurer une tension de mesure um à la prise centrale du premier diviseur de tension, le contact m étant connecté à la sortie de l'inverseur (333) à un convertisseur analogique-numérique (338) par l'intermédiaire d'un convertisseur d'impédance (335), d'un redresseur de précision (336), d'un échantillonneur-bloqueur (337).
  22. Dispositif selon la revendication 21, caractérisé en ce, que l'inverseur (333) soit réalisé en tant que multiplexeur analogique à l'aide de commutateurs pouvant être commandés électroniquement et qu'il soit relié en matière de commande à un microprocesseur (34) du circuit d'évaluation et de commande (3).
  23. Dispositif selon l'une des revendications précédentes, caractérisé en ce, qu'une cellule de mesure du réservoir (39) soit fixée à l'intérieur de la pièce d'obturation (242) et qu'elle soit reliée électriquement par une double ligne isolée (3801, 3802) aux bornes de connexion x et y du transducteur (330) de l'unité de gestion des entrées/sorties (33) du circuit d'évaluation et de commande (3), qui laisse cheminer un courant alternatif électrique à travers le liquide par l'intermédiaire des électrodes (391, 392) et qui évalue la baisse de tension, et que, pour l'évaluation numérique, une mémoire de programme FLASH (34), une mémoire non volatile NVRAM (36) et une mémoire vive RAM (37) soient connectées en mode opérationnel avec le microprocesseur (34), qui est couplé à l'unité de gestion des entrées/sorties (33) par l'intermédiaire d'un bus.
  24. Dispositif selon la revendication 16, caractérisé en ce, que la rangée soit orientée dans le sens de la gravité.
  25. Dispositif selon l'une des revendications 9 à 24, caractérisé en ce, que les électrodes soient réalisées en forme de cylindres creux ou comme électrodes annulaires.
EP20070013196 2006-08-03 2007-07-05 Procédé et agencement destinés à la commande dynamique de l'alimentation en fluide vers un moyen d'humidification Not-in-force EP1884375B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610038222 DE102006038222B4 (de) 2006-08-03 2006-08-03 Verfahren und Anordnung zur dynamischen Steuerung der Flüssigkeitszufuhr zu einem Befeuchtungsmittel

Publications (3)

Publication Number Publication Date
EP1884375A2 EP1884375A2 (fr) 2008-02-06
EP1884375A3 EP1884375A3 (fr) 2010-04-21
EP1884375B1 true EP1884375B1 (fr) 2013-08-07

Family

ID=38683567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070013196 Not-in-force EP1884375B1 (fr) 2006-08-03 2007-07-05 Procédé et agencement destinés à la commande dynamique de l'alimentation en fluide vers un moyen d'humidification

Country Status (3)

Country Link
US (1) US8245662B2 (fr)
EP (1) EP1884375B1 (fr)
DE (1) DE102006038222B4 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2106926B1 (fr) * 2008-04-04 2010-11-10 Neopost Technologies Appareil et procédé d'humidification de pattes d'enveloppe
US9132656B2 (en) * 2011-05-31 2015-09-15 Funai Electric Co., Ltd. Consumable supply item with fluid sensing and pump enable for micro-fluid applications
US10195895B2 (en) * 2016-10-13 2019-02-05 Dmt Solutions Global Corporation Inserter sealer system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2316153A (en) * 1940-06-29 1943-04-13 Rca Corp Direct reading meter
US3593337A (en) * 1968-08-23 1971-07-13 Bendix Corp Electromechanical transducer
US3876916A (en) * 1973-01-08 1975-04-08 Donald S Stoakes Capacitor for sensing contaminated oil
JPS566134A (en) * 1979-06-28 1981-01-22 Nissan Motor Co Ltd Diagnostic unit of controller for car
US4354051A (en) * 1981-04-15 1982-10-12 Automation Industries, Inc. Electrical current-carrying flexible hose and method of making same
US4879664A (en) * 1985-05-23 1989-11-07 Kabushiki Kaisha Toshiba Three-dimensional position sensor and three-dimensional position setting system
EP0288215B1 (fr) * 1987-04-24 1993-03-10 Simmonds Precision Products Inc. Détermination de capacité et de résistance électriques
US4876664A (en) * 1987-08-26 1989-10-24 Allen-Bradley Company, Inc. Programmable controller with a dual intermodule message system
IT1245065B (it) * 1991-04-15 1994-09-13 Olivetti & Co Spa Dispositivo rivelatore dell'inchiostro per un elemento di stampa a inchiostro liquido
US5220130A (en) * 1991-08-06 1993-06-15 Cooper Industries, Inc. Dual insulated data cable
US5294909A (en) * 1993-01-07 1994-03-15 Barber-Colman Company Resistive sensor for position detection of manifold failures
FR2702044B1 (fr) * 1993-02-26 1995-05-24 Marwal Systems Sa Circuit de traitement pour signal de sortie de capteur analogique résistif, notamment pour jauge de carburant sur véhicule automobile et systèmes équipés.
US6155664A (en) * 1998-06-19 2000-12-05 Lexmark International, Inc. Off-carrier inkjet print supply with memory
DE19845832A1 (de) * 1998-09-24 2000-04-06 Francotyp Postalia Gmbh Anordnung zur Flüssigkeitsversorgung einer Befeuchtungsvorrichtung für die Leimkante der Umschlagklappe von Briefumschlägen
US6423366B2 (en) * 2000-02-16 2002-07-23 Roll Coater, Inc. Strip coating method
WO2003042637A1 (fr) * 2001-11-16 2003-05-22 Westfaliasurge Gmbh Procede et dispositif permettant de determiner le debit volumetrique de lait s'ecoulant pendant le processus de traite
ITTO20020428A1 (it) * 2002-05-20 2003-11-20 Tecnost Sistemi S P A Stampante a getto di inchiostro con serbatoio ad alta capacita' e relativo sistema di rifornimento dell'inchiostro.
US7067036B2 (en) * 2003-09-25 2006-06-27 Pitney Bowes Inc. Active moistening system for mailing machine
DE102006014164A1 (de) * 2006-03-24 2007-09-27 Francotyp-Postalia Gmbh Schließflüssigkeit

Also Published As

Publication number Publication date
US8245662B2 (en) 2012-08-21
DE102006038222B4 (de) 2009-08-27
US20080029220A1 (en) 2008-02-07
EP1884375A3 (fr) 2010-04-21
DE102006038222A1 (de) 2008-02-07
EP1884375A2 (fr) 2008-02-06

Similar Documents

Publication Publication Date Title
AT508223B1 (de) Sanitärspender mit kapazitivem sensor
DE602005004158T2 (de) System zur verteilung von papierrollen mit führungskernen
DE1214905B (de) Elektrisches Zaehlgeraet fuer in einer Fluessigkeit suspendierte Teilchen
DE3228767C2 (de) Vorrichtung zur Bestimmung der Grenzfläche zwischen Blutplasma und einer Blutkörperchen-Suspension
DE2656654A1 (de) Vorrichtung zur durchfuehrung von mindestens zwei messungen von eigenschaften in einer partikelsuspension suspendierter partikel
EP2488440A2 (fr) Procédé et dispositif pour remplir des récipients avec un produit de remplissage constitué de plusieurs composants liquides.
EP1884375B1 (fr) Procédé et agencement destinés à la commande dynamique de l'alimentation en fluide vers un moyen d'humidification
DE4239808A1 (fr)
DE1598146A1 (de) Vorrichtung zur Bestimmung bestimmter Bestandteile von zur Papierherstellung dienenden faserfoermigen Partikeln sowie diese Vorrichtung anwendendes Verfahren
EP1797401B1 (fr) Systeme et procede servant a mesurer des quantites de lait, en particulier pendant le processus de traite
EP2757354B1 (fr) Détection de forces électrostatiques
DE3416127A1 (de) Vorrichtung und verfahren zur einstellung volumetrischer hohlraeume zum gravimetrischen dosieren von fluessigkeiten
EP1079203B1 (fr) Surveillance capacitive d'application de colle sur un substrat avec la permittivité imaginaire
WO2018104236A1 (fr) Capteur de niveau
DE3303177C2 (fr)
DE102008025478B4 (de) Vorrichtung zum Messen des Flüssigkeitsstandes
DE3614120A1 (de) Vorrichtung zur zufuhr von fluessigkeitsproben, insbesondere fuer eine messanordnung zur feststellung des gehalts der fluessigkeit an organischem kohlenstoff
DE1623042A1 (de) Vorrichtung und Verfahren zum Messen und Regulieren der Konzentration nichtfluechtiger Stoffe in einer Fluessigkeit
DE19930684C2 (de) Verfahren und Vorrichtung zur Verarbeitung eines viskosen Mediums
DE19607681B4 (de) Verfahren und Vorrichtung zur kontinuierlichen Messung und Regelung der Zusammensetzung einer Feuchtmittellösung für den Offsetdruck
DE102011056754A1 (de) Bodenfeuchtesensor und Kalibrierungsverfahren hierzu
EP1684062B1 (fr) Procédé et dispositif destinés au réglage de la concentration de composants d'additifs dans un liquide de processus d'imprimerie
DE102015204375B3 (de) Anordnung und Verfahren zur kapazitiven Sitzbelegungserkennung für Fahrzeugsitze
DE3327252A1 (de) Alkoholdosiergeraet fuer das feuchtwasser in einer offset-druckmaschine
DE3313464A1 (de) Verfahren zur messung der volumen- oder gewichtsspezifischen dosis von zerkleinerbaren stoffen oder zur bestimmung von deren korngroesse und einrichtung zur durchfuehrung dieses verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20100512

17Q First examination report despatched

Effective date: 20100614

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 625579

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012120

Country of ref document: DE

Effective date: 20131002

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131207

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012120

Country of ref document: DE

Effective date: 20140508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140705

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007012120

Country of ref document: DE

Owner name: FRANCOTYP-POSTALIA GMBH, DE

Free format text: FORMER OWNER: FRANCOTYP-POSTALIA GMBH, 16547 BIRKENWERDER, DE

Effective date: 20150330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150626

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150721

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150721

Year of fee payment: 9

Ref country code: CH

Payment date: 20150721

Year of fee payment: 9

Ref country code: DE

Payment date: 20150508

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150722

Year of fee payment: 9

Ref country code: SE

Payment date: 20150721

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150727

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070705

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007012120

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160801

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 625579

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160705

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160706

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160705

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160705