EP1857529A1 - Kaltfliessverbesserer für pflanzliche oder tierische Brennstofföle - Google Patents

Kaltfliessverbesserer für pflanzliche oder tierische Brennstofföle Download PDF

Info

Publication number
EP1857529A1
EP1857529A1 EP07008847A EP07008847A EP1857529A1 EP 1857529 A1 EP1857529 A1 EP 1857529A1 EP 07008847 A EP07008847 A EP 07008847A EP 07008847 A EP07008847 A EP 07008847A EP 1857529 A1 EP1857529 A1 EP 1857529A1
Authority
EP
European Patent Office
Prior art keywords
fuel oil
monomer
oil additive
mol
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07008847A
Other languages
English (en)
French (fr)
Other versions
EP1857529B2 (de
EP1857529B1 (de
Inventor
Bettina Siggelkow
Ulrike Neuhaus
Markus Kupetz
Waltraud Nagel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Clariant International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd filed Critical Clariant International Ltd
Publication of EP1857529A1 publication Critical patent/EP1857529A1/de
Application granted granted Critical
Publication of EP1857529B1 publication Critical patent/EP1857529B1/de
Publication of EP1857529B2 publication Critical patent/EP1857529B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties

Definitions

  • the present invention relates to an additive, its use as a cold flow improver for vegetable or animal fuel oils and correspondingly fueled fuel oils.
  • renewable raw materials include, in particular, natural oils and fats of plant or animal origin. These are usually triglycerides of fatty acids with 10 to 24 carbon atoms, which have a comparable calorific value to conventional fuels, but at the same time are considered to be less harmful to the environment.
  • Biofuels ie fuels derived from animal or plant material, are obtained from renewable sources and thus produce only as much CO 2 as was previously converted into biomass. It has been reported that combustion produces less carbon dioxide than equivalent amounts of petroleum distillate fuel, eg, diesel fuel, and that very little sulfur dioxide is produced. In addition, they are biodegradable.
  • Oils obtained from animal or vegetable material are mainly metabolites comprising triglycerides of monocarboxylic acids and generally of the formula in which R is an aliphatic radical of 10 to 25 carbon atoms, which may be saturated or unsaturated.
  • oils contain glycerides of a variety of acids, the number and variety of which varies with the source of the oil, and may additionally contain phosphoglycerides.
  • Such oils can be obtained by methods known in the art.
  • EP-A-0 665 873 discloses a fuel oil composition
  • a fuel oil composition comprising a biofuel, a petroleum-based fuel oil and an additive which comprises (a) an oil-soluble ethylene copolymer or (b) a comb polymer or (c) a polar nitrogen compound or (d) a compound in which at least one substantially linear alkyl group having 10 to 30 carbon atoms is bonded to a non-polymeric organic group to provide at least one linear chain of atoms including the carbon atoms of the alkyl groups and one or more non-terminal oxygen atoms, or (e) one or more of Components (a), (b), (c) and (d).
  • EP-A-0 153 176 discloses the use of polymers based on unsaturated C 4 -C 8 dicarboxylic acid di-alkyl esters having average alkyl chain lengths of 12 to 14 as cold flow improvers for certain petroleum distillate fuel oils.
  • Suitable comonomers are unsaturated esters, in particular vinyl acetate, but also ⁇ -olefins.
  • EP-A-1 491 614 discloses oils of vegetable or animal origin and blends thereof with petroleum distillate fuel oils which, to improve their low temperature properties, contain an ethylene / vinyl ester copolymer containing at least 17 mole percent vinyl ester and a degree of branching of 5 or more alkyl branches per 100 methylene groups.
  • fatty acid esters which are derived, for example, from rapeseed, waste-oil, sunflower and / or soybean oil and which contain at least 7% by weight of palmitic and stearic acid methyl esters.
  • CFPP values of -10 ° C and -20 ° C and below are to be set and the set CFPP value remains constant even after prolonged storage of the oil in the region of its cloud point or below.
  • these additives should help to prevent the sedimentation of these oils, so that even after storage for several days of the fatty acid esters, they remain homogeneous and flowable and their CFPP does not change.
  • Another object of the invention is a fuel oil composition containing a fuel oil of animal or vegetable origin and the additive defined above.
  • Another object of the invention is the use of the above-defined additive for improving the cold flow properties of fuel oils of animal or vegetable origin.
  • Another object of the invention is a method for improving the cold flow properties of fuel oils of animal or vegetable origin by adding to fuel oils of animal or vegetable origin, the additive defined above.
  • Q assumes values of 24 to 26.
  • Chain length of olefins is understood here as the chain length of the monomeric olefin minus the two olefinically bonded C atoms.
  • the chain length is equal to the total chain length of the olefin minus the two olefinically bonded carbon atoms.
  • the chain length is the length of the alkyl radicals which, introduced into the polymer by the olefin, depart from the polymer backbone.
  • Preferred ethylene copolymers A) are those which contain from 13 to 17 mol% of one or more vinyl and / or (meth) acrylic esters and from 83 to 87% by weight of ethylene. Particularly preferred are ethylene copolymers with 15 to 17 mol% of at least one vinyl ester. Suitable vinyl esters are derived from fatty acids with linear or branched alkyl groups having 1 to 30 carbon atoms. Preferred ethylene copolymers have a melt viscosity V 140 of at least 5, preferably 10 to 80, in particular 20 to 60 mPas.
  • vinyl esters examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl hexanoate, vinyl heptanoate, vinyl octanoate, vinyl laurate and vinyl stearate and branched fatty acid based esters of vinyl alcohol such as vinyl isobutyrate, vinyl pivalate, vinyl 2-ethylhexanoate, iso-nonanoic acid vinyl ester, vinyl neononanoate, vinyl neodecanoate and neoundecanoic acid vinyl ester.
  • esters of acrylic and methacrylic acid having 1 to 20 C atoms in the alkyl radical such as Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n- and isobutyl (meth) acrylate, hexyl, octyl, 2-ethylhexyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl (meth) acrylate. Also suitable are mixtures of two, three, four or more of these comonomers.
  • copolymers contain, in addition to ethylene and 13 to 17 mol% of vinyl esters, 0.5 to 10 mol% of olefins having 3 to 10 carbon atoms, such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • olefins having 3 to 10 carbon atoms, such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • the copolymers A preferably have weight-average molecular weights M w, measured by gel permeation chromatography (GPC) against polystyrene standards in THF of from 1000 to 10 000, in particular from 1500 to 5000 g / mol.
  • Their means of 1 H NMR spectroscopy (400 MHz with CDCl 3 as solvent) degrees of branching determined are preferably smaller than 6, especially less than 5 CH 3/100 CH 2 groups.
  • the methyl groups are derived from the short and long chain branches, and not from copolymerized comonomers.
  • the copolymers A can be prepared by the usual copolymerization methods such as suspension polymerization, solvent polymerization, gas phase polymerization or high pressure bulk polymerization.
  • the high-pressure mass polymerization is preferably carried out at pressures of from 50 to 400 MPa, preferably from 100 to 300 MPa, and at temperatures of from 100 to 300 ° C., preferably from 150 to 250 ° C.
  • the polymerization takes place in a multi-zone reactor, wherein the temperature difference between the peroxide dosages along the tubular reactor is kept as low as possible, i. ⁇ 50 ° C, preferably ⁇ 30 ° C, in particular ⁇ 15 ° C.
  • the temperature maxima in the individual reaction zones preferably differ by less than 30 ° C., more preferably by less than 20 ° C. and especially by less than 10 ° C.
  • free radical initiators free radical initiators
  • This class of substances includes, for example, oxygen, hydroperoxides, peroxides and azo compounds such as cumene hydroperoxide, t-butyl hydroperoxide, dilauroyl peroxide, dibenzoyl peroxide, bis (2-ethylhexyl) peroxide carbonate, t-butyl perpivalate, t-butyl permaleinate, t-butyl perbenzoate, dicumyl peroxide, t-butyl cumyl peroxide, di (t-butyl) peroxide, 2,2'-azobis (2-methylpropanonitrile), 2,2'-azobis ( 2-methylbutyronitrile).
  • the initiators are used individually or as a mixture of two or more substances in amounts of 0.01 to 20 wt .-%, preferably 0.05 to 10 wt .-%, based on the monomer mixture.
  • the high-pressure mass polymerization is carried out batchwise or continuously in known high-pressure reactors, for example autoclaves or tubular reactors, tube reactors have proven particularly useful.
  • Solvents such as aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures, benzene or toluene may be present in the reaction mixture. Preferred is the substantially solvent-free operation.
  • the mixture of the monomers, the initiator and, if used, the moderator a tubular reactor via the reactor inlet and via one or more side branches supplied.
  • Preferred moderators are, for example, hydrogen, saturated and unsaturated hydrocarbons such as propane or propene, aldehydes such as propionaldehyde, n-butyraldehyde or isobutyraldehyde, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and alcohols such as butanol.
  • the comonomers as well as the moderators can be metered into the reactor both together with ethylene and separately via side streams. In this case, the monomer streams can be composed differently ( EP-A-0 271 738 and EP-A-0 922 716 ).
  • the polymers underlying the mixtures differ in at least one characteristic.
  • they may contain different comonomers, have different comonomer contents, molecular weights and / or degrees of branching.
  • the mixing ratio of the various ethylene copolymers is preferably between 20: 1 and 1:20, preferably 10: 1 to 1:10, in particular 5: 1 to 1: 5.
  • the copolymers B are derived from the amides and imides of ethylenically unsaturated dicarboxylic acids.
  • Preferred dicarboxylic acids are maleic acid, fumaric acid and itaconic acid.
  • Monoolefins B1 having from 10 to 20, in particular from 12 to 18, carbon atoms are particularly suitable as comonomers. These are preferably linear and the double bond is preferably terminal, as for example in dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene and octadecene.
  • the molar ratio of dicarboxylic acid amide / imide to olefin or olefins in the polymer is preferably in the range 1: 1.5 to 1.5: 1, in particular it is equimolar.
  • copolymer B which are copolymerizable with ethylenically unsaturated dicarboxylic acid amides / imides and the said olefins, such as Olefins having 2 to 50 carbon atoms, allyl polyglycol ethers, C 1 -C 30 -alkyl (meth) acrylates, vinylaromatics or C 1 -C 20 -alkyl vinyl ethers.
  • the preparation of the copolymers B) according to the invention is preferably carried out at temperatures between 50 and 220 ° C, in particular 100 to 190 ° C.
  • the preferred method of preparation is solvent-free bulk polymerization, but it is also possible to carry out the polymerization in the presence of aprotic solvents such as benzene, toluene, xylene or higher-boiling aromatic, aliphatic or isoaliphatic solvents or solvent mixtures such as kerosene or solvent naphtha.
  • the polymerization is particularly preferably in less moderating, aliphatic or isoaliphatic solvents.
  • the proportion of solvent in the polymerization mixture is generally between 10 and 90% by weight, preferably between 35 and 60% by weight.
  • the reaction temperature can be set particularly easily by the boiling point of the solvent or by working under reduced or elevated pressure.
  • the average molecular weight Mw of the copolymers B according to the invention is generally between 1,200 and 200,000 g / mol, in particular between 2,000 and 100,000 g / mol, measured by gel permeation chromatography (GPC) against polystyrene standards in THF.
  • Copolymers of the invention must be oil-soluble in practice-relevant dosing quantities, ie they must dissolve in the oil to be additized at 50 ° C. without residue.
  • the reaction of the monomers is initiated by free radical initiators (free radical initiators).
  • This class of substances includes, for example, oxygen, hydroperoxides and peroxides such as cumene hydroperoxide, t-butyl hydroperoxide, dilauroyl peroxide, dibenzoyl peroxide, bis (2-ethylhexyl) peroxide carbonate, t-butyl perpivalate, t-butyl permalonate, t-butyl perbenzoate, dicumyl peroxide, t-butylcumyl peroxide, Di (t-butyl) peroxide, and azo compounds such as 2,2'-azobis (2methylpropanonitrile) or 2,2'-azobis (2-methylbutyronitrile).
  • the initiators are used individually or as a mixture of two or more substances in amounts of 0.01 to 20 wt .-%, preferably 0.05 to 10 wt .-%, based on the mono
  • the copolymers can be prepared either by reaction of maleic, fumaric and / or itaconic acid or their anhydrides with the corresponding amine and subsequent copolymerization or by copolymerization of olefin or olefins with at least one unsaturated dicarboxylic acid or its derivative such as itacon and / or Maleic anhydride and subsequent reaction with amines are produced.
  • a copolymerization with anhydrides is preferably carried out and the resulting copolymer is converted after production into an amide and / or an imide.
  • reaction with amines takes place in both cases, for example by reaction with 0.8 to 2.5 moles of amine per mole of anhydride, preferably with 1.0 to 2.0 moles of amine per mole of anhydride at 50 to 300 ° C.
  • 0.8 to 2.5 moles of amine per mole of anhydride preferably with 1.0 to 2.0 moles of amine per mole of anhydride at 50 to 300 ° C.
  • about 1 mol of amine per mol of anhydride formed at reaction temperatures of about 50 to 100 ° C preferably hemiamides, which additionally carry a carboxyl group per amide group.
  • reaction temperatures of about 100 to 250 ° C arise from primary amines with elimination of water preferably imides.
  • amine preferably 2 moles of amine per mole of anhydride formed at about 50 to 200 ° C amide ammonium salts and at higher temperatures, for example, 100 - 300 ° C, preferably 120 - 250 ° C diamides.
  • the water of reaction can be distilled off by means of an inert gas stream or discharged in the presence of an organic solvent by means of azeotropic distillation. Preference is given to 20-80, in particular 30-70, especially 35-55 wt .-% of at least one organic solvent used.
  • half-amides here are considered (50% in solvent) copolymers having acid numbers of 30 - 70 mg KOH / g, preferably from 40 - 60 mg KOH / g.
  • Corresponding copolymers with acid numbers of less than 40, especially less than 30 mg KOH / g are considered diamides or imides. Particularly preferred are hemi-amides and diamides.
  • Suitable amines are primary and secondary amines having one or two C 8 -C 16 alkyl radicals. They can carry one, two or three amino groups which are linked via alkylene radicals having two or three carbon atoms. Preference is given to monoamines. In particular, they carry linear alkyl radicals, but they can also minor amounts, eg. B. up to 30 wt .-%, preferably up to 20 wt .-% and especially up to 10 wt .-% (in 1- or 2-position) contain branched amines. Kürzerwie It is also possible to use longer-chain amines, but their proportion is preferably below 20 mol% and especially below 10 mol%, for example between 1 and 5 mol%, based on the total amount of amines used.
  • primary amines are octylamine, 2-ethylhexylamine, decylamine, undecylamine, dodecylamine, n-tridecylamine, iso-tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine and mixtures thereof.
  • Preferred secondary amines are dioctylamine, dinonylamine, didecylamine, didodecylamine, ditetradecylamine, dihexadecylamine, and amines having different alkyl chain lengths such as N-octyl-N-decylamine, N-decyl-N-dodecylamine, N-decyl-N-tetradecylamine, N-decyl N-hexadecylamine, N-dodecyl-N-tetradecylamine, N-dodecyl-N-hexadecylamine, N-tetradecyl-N-hexadecylamine.
  • Secondary amines which, in addition to a C 8 -C 16 -alkyl radical, bear shorter side chains having 1 to 5 C atoms, for example methyl or ethyl groups, are suitable according to the invention.
  • the average value of the alkyl chain lengths of C 8 to C 16 is taken into account for the calculation of the parameter Q as alkyl chain length n. Shorter and longer alkyl radicals, if present, are not included in the calculation because they do not contribute to the effectiveness of the additives.
  • Particularly preferred copolymers B contain hemiamides and diamides of primary monoamines as monomer 2.
  • the effectiveness can be further adapted to specific fatty acid ester compositions.
  • the additives may also contain polymers and copolymers based on C 10 -C 24 -alkyl acrylates or methacrylates (component C).
  • These poly (alkyl acrylates) and methacrylates have molecular weights Mw of from 800 to 1,000,000 g / mol, and are preferably derived from caprylic, capric, undecyl, lauryl, myristyl, cetyl, palmitoleyl, Stearyl alcohol or mixtures thereof such as coconut, palm tallow or behenyl from.
  • mixtures of different copolymers B are used, the average (weight average) of the parameters Q of the mixture components assuming values of 23 to 27 and preferably values of 24 to 26.
  • the mixing ratio of the additive components A and B according to the invention is (in parts by weight) 20: 1 to 1:20, preferably 10: 1 to 1:10, in particular 5: 1 to 1: 5.
  • the proportion of component C in the formulations of A, B and C may be up to 40% by weight; it is preferably less than 20% by weight, in particular between 1 and 10% by weight, based on the total weight of A, B and C.
  • the additives of the invention are added to oils in amounts of 0.001 to 5 wt .-%, preferably 0.005 to 1 wt .-% and especially 0.01 to 0.6 wt .-%. They may be dissolved as such or dissolved or dispersed in solvents such as aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures such.
  • toluene xylene, ethylbenzene, decane, pentadecane, gasoline fractions, kerosene, naphtha, diesel, fuel oil, isoparaffins or commercial solvent mixtures such as solvent naphtha, ® Hydrolsol A 200 N, ® Shellsol A 150 ND, ® Caromax 20 LN, ® Shellsol AB , ® Solvesso 150, ® Solvesso 150 ND, ® Solvesso 200, ® Exxsol, ® Isopar and ® Shellsol D types.
  • solvent naphtha ® Hydrolsol A 200 N
  • ® Shellsol A 150 ND ® Caromax 20 LN
  • ® Shellsol AB ® Solvesso 150, ® Solvesso 150 ND, ® Solvesso 200, ® Exxsol, ® Isopar and ® Shellsol D types.
  • they are dissolved in fuel oil of animal or vegetable origin based on
  • the fuel oil which is often referred to as “biodiesel” or “biofuel”
  • biodiesel is fatty acid alkyl esters of fatty acids having 12 to 24 carbon atoms and alcohols having 1 to 4 carbon atoms.
  • fatty acids having 12 to 24 carbon atoms and alcohols having 1 to 4 carbon atoms.
  • a major part of the fatty acids contains one, two or three double bonds.
  • oils derived from animal or vegetable material and in which the additive according to the invention can be used are rapeseed oil, coriander oil, soybean oil, cottonseed oil, sunflower oil, castor oil, olive oil, peanut oil, corn oil, almond oil, palm kernel oil, coconut oil, mustard seed oil, Beef tallow, bone oil, fish oils and used edible oils.
  • oils derived from wheat, jute, sesame, shea nut, arachis oil and linseed oil can be derived from these oils by methods known in the art.
  • Rapeseed oil which is a mixture of glycerol partially esterified fatty acids, is preferred because it is available in large quantities and is readily available by squeezing rapeseed. Furthermore, the also widespread oils of used fat, palm oil, sunflower and soybeans and their mixtures with rapeseed oil are preferred.
  • Particularly suitable as biofuels are lower alkyl esters of fatty acids.
  • lower alkyl esters of fatty acids are, for example, commercially available mixtures of ethyl, propyl, butyl and especially methyl esters of fatty acids having 14 to 22 carbon atoms, for example of lauric, myristic, palmitic, palmitolic, stearic, oleic, elaidic, petroselic, ricinoleic, elaeostearic, linoleic, linolenic , Eicosanoic acid, gadoleic acid, docosanoic acid or erucic acid, which preferably have an iodine value of from 50 to 150, in particular from 90 to 125.
  • Mixtures with particularly advantageous properties are those which are mainly d. H. at least 50 wt .-%, contain methyl esters of fatty acids having 16 to 22 carbon atoms and 1, 2 or 3 double bonds.
  • the preferred lower alkyl esters of fatty acids are the methyl esters of oleic, linoleic, linolenic and erucic acids.
  • a biofuel is an oil obtained from plant or animal matter or both, or a derivative thereof, which can be used as a fuel and especially as a diesel or fuel oil.
  • vegetable oil derivatives are preferred, with particularly preferred biofuels being alkyl ester derivatives of rapeseed oil, cottonseed oil, soybean oil, sunflower oil, olive oil or palm oil, with methyl rapeseed oil, methyl sunflower oil, palm oil methyl ester and soybean oil methyl ester being most preferred. Due to the high demand for biofuels, more and more manufacturers of fatty acid methyl esters are switching to other raw material sources with higher availability.
  • oil which is used as Altfettölmethylester as biodiesel alone or in admixture with other fatty acid methyl esters, such as. Rapsölklaremethylester, sunflower oil, methyl oleate and soybean oil is used.
  • RapsölTexremethylester sunflower oil, methyl oleate and soybean oil is used.
  • mixtures of rapeseed oil methyl ester with Soyaölmethylester or rapeseed oil methyl ester with a mixture of Soyaölmethylester and palm oil methyl ester are particularly noteworthy.
  • the additive may be added to the oil to be treated according to methods known in the art. If more than one additive component or co-additive component is to be used, such components may be incorporated into the oil together or separately in any combination.
  • the CFPP value of biodiesel can be adjusted to values of -10 ° C. and below -20 ° C. and in some cases to values below -25 ° C., as required for marketing, in particular in winter become.
  • the pour point of biodiesel is reduced by the addition of the additives according to the invention.
  • the additives according to the invention are particularly advantageous in problematic oils which have a high content of esters of saturated fatty acids palmitic acid and stearic acid of more than 7% by weight they are contained, for example, in fatty acid methyl esters of used oil, sunflower and soybean.
  • the additives according to the invention it is also possible with the additives according to the invention to adjust mixtures of methyl rapeseed oil and / or used fatty oil methyl ester and / or sunflower and / or soybean oil fatty acid methyl ester to CFPP values of -10.degree. C. or -20.degree. C. and below.
  • the additives according to the invention it is also possible to adjust waste oil methyl ester or sunflower oil or soya oil fatty acid methyl ester to CFPP values of -10 ° C. or -20 ° C. and below.
  • the oils thus added have a good resistance to cold chill, ie the CFPP value remains constant even when stored under winter conditions and does not tend to sediment at constant low temperatures (eg -10 ° C. or -22 ° C.).
  • the additives according to the invention can also be used together with one or more oil-soluble co-additives, which in themselves improve the cold flow properties of crude oils, lubricating oils or fuel oils.
  • oil-soluble co-additives are polar compounds which cause a paraffin dispersion (paraffin dispersants) and oil-soluble amphiphiles.
  • the additives of the invention can be used in admixture with paraffin dispersants.
  • Paraffin dispersants reduce the size of the paraffin crystals and cause the paraffin particles to not settle but remain colloidally dispersed with significantly reduced sedimentation effort.
  • paraffin dispersants both low molecular weight and polymeric, oil-soluble compounds having ionic or polar groups such.
  • amine salts and / or amides proven.
  • Particularly preferred paraffin dispersants contain reaction products of secondary fatty amines having 20 to 44 carbon atoms, in particular dicocoamine, ditallow fatty amine, distearylamine and dibehenylamine with carboxylic acids and derivatives thereof.
  • Paraffin dispersants which have been obtained by reaction of aliphatic or aromatic amines, preferably long-chain aliphatic amines, with aliphatic or aromatic mono-, di-, tri- or tetracarboxylic acids or their anhydrides have proven particularly suitable (cf. US 4 211 534 ).
  • the same are amides and ammonium salts of aminoalkylene polycarboxylic acids such as nitrilotriacetic acid or ethylenediaminetetraacetic acid with secondary amines as Paraffin dispersants suitable (see. EP 0 398 101 ).
  • paraffin dispersants are copolymers of maleic anhydride and ⁇ , ⁇ -unsaturated compounds, which can optionally be reacted with primary monoalkylamines and / or aliphatic alcohols (cf. EP 0 154 177 ) and the reaction products of alkenyl spiro-bis-lactones with amines (cf. EP 0 413 279 B1 ) and after EP-A-0 606 055 A2 Reaction products of terpolymers based on ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols.
  • the mixing ratio (in parts by weight) of the additives according to the invention with paraffin dispersants is 1:10 to 20: 1, preferably 1: 1 to 10: 1.
  • the oils treated with the additive according to the invention can also be added to middle distillates obtained from petroleum.
  • the resulting mixtures of biofuel and middle distillate can in turn be mixed with cold additives such as flow improvers or wax dispersants, and Performance Packages.
  • the middle distillate is in particular those mineral oils which are obtained by distillation of crude oil and boil in the range of 120 to 450 ° C, for example kerosene, jet fuel, diesel and fuel oil.
  • such middle distillates are used which contain 0.05% by weight of sulfur and less, more preferably less than 350 ppm of sulfur, in particular less than 200 ppm of sulfur and in special cases less than 50 ppm of sulfur.
  • These are generally those middle distillates which have been subjected to a hydrogenating refining, and therefore contain only small amounts of polyaromatic and polar compounds.
  • middle distillates which have 95% distillation points below 370.degree. C., in particular 350.degree. C. and in special cases below 330.degree.
  • synthetic Propellants such as those obtainable by the Fischer-Tropsch process, are suitable as middle distillates.
  • the additives can be used alone or together with other additives, e.g. with other pour point depressants or dewaxing aids, with antioxidants, cetane number improvers, dehazers, demulsifiers, detergents, dispersants, defoamers, colorants, corrosion inhibitors, conductivity improvers, sludge inhibitors, odorants and / or cloud point depressants.
  • other pour point depressants or dewaxing aids with antioxidants, cetane number improvers, dehazers, demulsifiers, detergents, dispersants, defoamers, colorants, corrosion inhibitors, conductivity improvers, sludge inhibitors, odorants and / or cloud point depressants.
  • V 140 The viscosity (V 140 ) was measured with a Haake Reostress 600 viscometer.
  • the total amount of additive is shown in the table header.
  • Table 6 CFPP Testing in Test Oil E1 Ex. comb polymer ethylene copolymer polyacrylate 2000 ppm 3000 ppm 4000 ppm 1 B1 A2 - -18 -22 -20 2 (V) B1 A1 - -12 -16 -10 3 B1 A2 C3 -18 -21 -21 Ex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Brennstofföladditiv, enthaltend A) ein Copolymer aus Ethylen und 13 bis 17 Mol-% mindestens eines Acryl- oder Vinylesters mit einem C 1 -C 18 -Alkylrest und einer Schmelzviskosität V 140 von höchstens 80 mPas, und B) ein Kammpolymer, enthaltend Struktureinheiten aus B1) mindestens einem Olefin als Monomer 1, welches an der olefinischen Doppelbindung wenigstens einen C 8 -C 18 -Alkylrest trägt, und B2) mindestens einer ethylenisch ungesättigten Dicarbonsäure als Monomer 2, welche mindestens einen, über eine Amid- und/oder Imidgruppe gebundenen, C 8 -C 16 -Alkylrest trägt, worin der Parameter Q Q = ˆ‘ i w 1 ¢ i ‹ n 1 ¢ i + ˆ‘ j w 2 ¢ j ‹ n 2 ¢ j worin w 1 der molare Anteil der einzelnen Kettenlängen n 1 in den Alkylresten von Monomer 1, w 2 der molare Anteil der einzelnen Kettenlängen n 2 in den Alkylresten der Amid- und/oder Imidgruppen von Monomer 2, n 1 die einzelnen Kettenlängen in den Alkylresten von Monomer 1, n 2 die einzelnen Kettenlängen in den Alkylresten der Amid- und/oder Imidgruppen von Monomer 2, i die Laufvariable für die Kettenlängen in den Alkylresten von Monomer 1, und j die Laufvariable für die Kettenlängen in den Alkylresten der Amid- und/oder Imidgruppen von Monomer 2 sind, Werte von 23 bis 27 annimmt.

Description

  • Die vorliegende Erfindung betrifft ein Additiv, seine Verwendung als Kaltfließverbesserer für pflanzliche oder tierische Brennstofföle und entsprechend additivierte Brennstofföle.
  • Im Zuge abnehmender Welterdölreserven und der Diskussion um die Umwelt beeinträchtigende Konsequenzen des Verbrauchs fossiler und mineralischer Brennstoffe steigt das Interesse an alternativen, auf nachwachsenden Rohstoffen basierenden Energiequellen. Dazu gehören insbesondere native Öle und Fette pflanzlichen oder tierischen Ursprungs. Diese sind in der Regel Triglyceride von Fettsäuren mit 10 bis 24 C-Atomen, die einen den herkömmlichen Brennstoffen vergleichbaren Heizwert haben, aber gleichzeitig als weniger schädlich für die Umwelt angesehen werden. Biokraftstoffe, d.h. von tierischem oder pflanzlichem Material abgeleitete Kraftstoffe werden aus erneuerbaren Quellen erhalten und erzeugen bei der Verbrennung somit nur soviel CO2, wie vorher in Biomasse umgewandelt wurde. Es ist berichtet worden, dass bei der Verbrennung weniger Kohlendioxid als durch äquivalente Mengen an Erdöldestillatbrennstoff, z.B. Dieselkraftstoff, gebildet wird und dass sehr wenig Schwefeldioxid gebildet wird. Zudem sind sie biologisch abbaubar.
  • Aus tierischem oder pflanzlichem Material erhaltene Öle sind hauptsächlich Stoffwechselprodukte, die Triglyceride von Monocarbonsäuren umfassen und im Allgemeinen der Formel
    Figure imgb0001
    entsprechen, in der R ein aliphatischer Rest mit 10 bis 25 Kohlenstoffatomen ist, der gesättigt oder ungesättigt sein kann.
  • Im Allgemeinen enthalten solche Öle Glyceride von einer Reihe von Säuren, deren Anzahl und Sorte mit der Quelle des Öls variiert, und sie können zusätzlich Phosphoglyceride enthalten. Solche Öle können nach im Stand der Technik bekannten Verfahren erhalten werden.
  • Auf Grund der teilweise unbefriedigenden physikalischen Eigenschaften der Triglyceride ist die Technik dazu übergegangen, die natürlich vorkommenden Triglyceride in Fettsäureester niederer Alkohole wie Methanol oder Ethanol zu überführen.
  • Als Hindernis bei der Verwendung von Triglyceriden wie auch von Fettsäureestern niederer einwertiger Alkohole als Dieselkraftstoffersatz alleine oder im Gemisch mit Dieselkraftstoff hat sich deren Fließverhalten bei niedrigen Temperaturen erwiesen. Ursache dafür ist die hohe Einheitlichkeit dieser Öle im Vergleich zu Mineralölmitteldestillaten. So weist z.B. Rapsölsäuremethylester (RME) einen Cold Filter Plugging Point (CFPP) von -14°C auf. Mit den Additiven des Standes der Technik ist es bisher nicht möglich, einen für die Verwendung als Winterdiesel in Mitteleuropa geforderten CFPP-Wert von -20°C sowie für spezielle Anwendungen von -22°C und darunter sicher einzustellen. Verschärft wird dieses Problem beim Einsatz von Ölen, die größere Mengen gesättigter Fettsäureester enthalten, wie sie in zum Beispiel in Sonnenblumenölmethylester, Altfettmethylester (AME) oder Soyaölmethylester enthalten sind.
  • EP-A-0 665 873 offenbart eine Brennstoffölzusammensetzung, die einen Biobrennstoff, ein Brennstofföl auf Erdölbasis und ein Additiv umfasst, welches (a) ein öllösliches Ethylencopolymer oder (b) ein Kammpolymer oder (c) eine polare Stickstoffverbindung oder (d) eine Verbindung, in der mindestens eine im wesentlichen lineare Alkylgruppe mit 10 bis 30 Kohlenstoffatomen mit einem nicht polymeren organischen Rest verbunden ist, um mindestens eine lineare Kette von Atomen zu liefern, die die Kohlenstoffatome der Alkylgruppen und ein oder mehrere nicht endständige Sauerstoffatome einschließt, oder (e) eine oder mehrere der Komponenten (a), (b), (c) und (d) umfasst.
  • EP-A-0 629 231 offenbart eine Zusammensetzung, die einen größeren Anteil Öl, das im wesentlichen aus Alkylestern von Fettsäuren besteht, die sich von pflanzlichen oder tierischen Ölen oder beiden ableiten, gemischt mit einem geringen Anteil Mineralölkaltfließverbesserer umfasst, der ein oder mehrere der folgenden:
    • (I) Kammpolymer, das Copolymer von Maleinsäureanhydrid oder Fumarsäure und einem anderen ethylenisch ungesättigten Monomer, wobei das Copolymer verestert sein kann, oder Polymer oder Copolymer von α-Olefin, oder Fumarat- oder Itaconatpolymer oder -copolymer ist,
    • (II) Polyoxyalkylen-ester, -ester/ether oder eine Mischung derselben,
    • (III) Ethylen/ungesättigter Ester-Copolymer,
    • (IV) polarer, organischer, stickstoffhaltiger Paraffinkristallwachstumshemmstoff,
    • (V) Kohlenwasserstoffpolymer,
    • (VI) Schwefelcarboxyverbindungen und
    • (VII) mit Kohlenwasserstoffresten versehenes aromatisches Stockpunktsenkungsmittel
    umfasst, mit der Maßgabe, dass die Zusammensetzung keine Mischungen von polymeren Estern oder Copolymeren von Estern von Acryl- und/oder Methacrylsäure umfasst, die von Alkoholen mit 1 bis 22 Kohlenstoffatomen abgeleitet sind.
  • EP-A-0 543 356 offenbart ein Verfahren zur Herstellung von Zusammensetzungen mit verbessertem Tieftemperaturverhalten zum Einsatz als Kraftstoffe oder Schmiermittel, ausgehend von den Estern der aus natürlichen Vorkommen erhaltenen langkettigen Fettsäuren mit einwertigen C1-C6-Alkoholen (FAE) dadurch gekennzeichnet, dass man
    1. a) an sich bekannte, zur Verbesserung des Tieftemperaturverhaltens von Mineralölen verwendete Additive PPD ("Pour Point Depressant") in Mengen von 0,0001 bis 10 Gew.-% bezogen auf die langkettigen Fettsäureester FAE zusetzt und
    2. b) auf eine Temperatur unterhalb des Cold Filter Plugging Point der nichtadditivierten, langkettigen Fettsäureester FAE abkühlt und
    3. c) die entstehenden Niederschläge (FAN) abtrennt.
  • DE-A-40 40 317 offenbart Mischungen von Fettsäureniedrigalkylestern mit verbesserter Kältestabilität enthaltend
    1. a) 58 bis 95 Gew.-% mindestens eines Esters im Iodzahlbereich 50 bis 150, der sich von Fettsäuren mit 12 bis 22 Kohlenstoffatomen und niederen aliphatischen Alkoholen mit 1 bis 4 Kohlenstoffatomen ableitet,
    2. b) 4 bis 40 Gew.-% mindestens eines Esters von Fettsäuren mit 6 bis 14 Kohlenstoffatomen und niederen aliphatischen Alkoholen mit 1 bis 4 Kohlenstoffatomen und
    3. c) 0,1 bis 2 Gew.-% mindestens eines polymeren Esters.
  • EP-A-0 153 176 offenbart die Verwendung von Polymeren auf Basis ungesättigter C4-C8-Dicarbonsäure-di-Alkylester mit mittleren Alkylkettenlängen von 12 bis 14 als Kaltfließverbesserer für bestimmte Erdöldestillatbrennstofföle. Als geeignete Comonomere werden ungesättigte Ester, insbesondere Vinylacetat, aber auch α-Olefine genannt.
  • EP-A-0 153 177 offenbart ein Additivkonzentrat, das eine Kombination aus
    • I) einem Copolymer mit mindestens 25 Gew.-% eines n-Alkylesters einer monoethylenisch ungesättigten C4-C8-Mono- oder Dicarbonsäure, wobei die durchschnittliche Zahl der Kohlenstoffatome in den n-Alkylresten 12 - 14 ist und einem anderen ungesättigten Ester oder einem Olefin enthält, mit
    • II) einem anderen Niedertemperaturfließverbesserer für Destillatbrennstofföle umfasst.
  • EP-A-1 491 614 offenbart Öle pflanzlicher oder tierischer Herkunft sowie deren Abmischungen mit Erdöldestillatbrennstoffölen, die zur Verbesserung ihrer Tieftemperatureigenschaften ein Ethylen/Vinylester-Copolymer enthalten, welches mindestens 17 mol-% Vinylester enthält, und einen Verzweigungsgrad von 5 oder mehr Alkylverzweigungen pro 100 Methylengruppen aufweist.
  • Mit den bekannten Additiven ist es ist es oftmals nicht möglich, Fettsäureester, insbesondere solche die in der Summe mehr als 7 Gew.-% an Palmitin- und Stearinsäuremethylester enthalten, auf einen für die Verwendung als Winterdiesel im südlichen Mitteleuropa geforderten CFPP von -10°C und im nördlichen Mitteleuropa von -20°C, sowie für spezielle Anwendungen von -22°C und darunter sicher einzustellen. Problematisch bei den bekannten Additiven ist darüber hinaus eine mangelnde Kältewechselbeständigkeit der additivierten Öle, das heißt der eingestellte CFPP-Wert der Öle steigt allmählich an, wenn das Öl längere Zeit bei wechselnden Temperaturen im Bereich seines Cloud Points oder darunter gelagert wird. Außerdem zeigen insbesondere Öle mit einem hohen Gehalt von Palmitin- und Stearinsäuremethylester eine starke Neigung zur Sedimentation bei Lagerung bei tiefen Temperaturen. Aus der Praxis ist bekannt, dass in Laborversuchen auftretende Sedimentationen der additivierten Fettsäureester in der Kälte, trotz erreichtem CFPP, zu Filterverstopfungen im Motor führen kann und somit die Verkehrsfähigkeit des Kraftstoffes nicht gegeben ist.
  • Es bestand somit die Aufgabe, Additive zur Verbesserung des Kaltfließverhaltens von Fettsäureestern, die beispielsweise aus Raps-, Altfett-, Sonnenblumen- und/oder Sojaöl abgeleitet sind und die mindestens 7 Gew.-% Palmitin- und Stearinsäuremethylester enthalten, zur Verfügung zu stellen, wobei CFPP-Werte von -10°C bzw. -20 °C und darunter einzustellen sind und der eingestellte CFPP-Wert auch bei längerer Lagerung des Öls im Bereich seines Cloud Points bzw. darunter konstant bleibt. Außerdem sollten diese Additive dazu beitragen, die Sedimentationsneigung dieser Öle zu verhindern, so dass, auch nach mehrtägiger Lagerung der Fettsäureester, diese homogen und fließfähig bleiben und auch ihr CFPP sich nicht verändert.
  • Überraschenderweise wurde nun gefunden, dass ein Ethylencopolymere und Kammpolymere enthaltendes Additiv ein ausgezeichneter Fließverbesserer für solche Fettsäureester ist.
  • Gegenstand der Erfindung ist ein Additiv, enthaltend
    • A) ein Copolymer aus Ethylen und 13 bis 17 Mol-% mindestens eines Acryl- oder Vinylesters mit einem C1-C18-Alkylrest und einer Schmelzviskosität V140 von höchstens 80 mPas, und
    • B) ein Kammpolymer, enthaltend Struktureinheiten aus
    • B1) mindestens einem Olefin als Monomer 1, welches an der olefinischen Doppelbindung wenigstens einen C8-C18-Alkylrest trägt, und
    • B2) mindestens einer ethylenisch ungesättigten Dicarbonsäure als Monomer 2, welche mindestens einen, über eine Amid- und/oder Imidgruppe gebundenen, C8-C16-Alkylrest trägt,
    worin der Parameter Q Q = i w 1 i n 1 i + j w 2 j n 2 j
    Figure imgb0002

    worin
    w1
    der molare Anteil der einzelnen Kettenlängen n1 in den Alkylresten von Monomer 1,
    w2
    der molare Anteil der einzelnen Kettenlängen n2 in den Alkylresten der Amid- und/oder Imidgruppen von Monomer 2,
    n1
    die einzelnen Kettenlängen in den Alkylresten von Monomer 1,
    n2
    die einzelnen Kettenlängen in den Alkylresten der Amid- und/oder Imidgruppen von Monomer 2,
    i
    die Laufvariable für die Kettenlängen in den Alkylresten von Monomer 1, und
    j
    die Laufvariable für die Kettenlängen in den Alkylresten der Amid- und/oder Imidgruppen von Monomer 2 sind,
  • Werte von 23 bis 27 annimmt.
  • Ein weiterer Gegenstand der Erfindung ist eine Brennstoffölzusammensetzung, enthaltend ein Brennstofföl tierischen oder pflanzlichen Ursprungs und das oben definierte Additiv.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung des oben definierten Additivs zur Verbesserung der Kaltfließeigenschaften von Brennstoffölen tierischen oder pflanzlichen Ursprungs.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Verbesserung der Kaltfließeigenschaften von Brennstoffölen tierischen oder pflanzlichen Ursprungs, indem man Brennstoffölen tierischen oder pflanzlichen Ursprungs das oben definierte Additiv zusetzt.
  • In einer bevorzugten Ausführungsform der Erfindung nimmt Q Werte von 24 bis 26 an.
  • Unter Kettenlänge von Olefinen wird hier die Kettenlänge des monomeren Olefins abzüglich der beiden olefinisch gebundenen C-Atome verstanden. Bei Olefinen mit nicht endständigen Doppelbindungen, wie z.B. Olefinen mit Vinylidengruppierung, ist die Kettenlänge gleich der Gesamtkettenlänge des Olefins, abzüglich der beiden olefinisch gebundenen Kohlenstoffatome.
  • Betrachtet man nicht die monomeren Olefine, sondern die aus den Olefinen B1) und den Dicarbonsäureamiden/imiden B2) gebildeten Polymere, so ist die Kettenlänge die Länge der Alkylreste, die - durch das Olefin in das Polymer eingebracht - vom Polymerrückgrat abgehen.
  • Als Ethylen-Copolymere A) eignen sich vorzugsweise solche, die 13 bis 17 Mol-% eines oder mehrerer Vinyl- und/oder (Meth)acrylester und 83 bis 87 Gew.-% Ethylen enthalten. Besonders bevorzugt sind Ethylen-Copolymere mit 15 bis 17 Mol-% mindestens eines Vinylesters. Geeignete Vinylester leiten sich von Fettsäuren mit linearen oder verzweigten Alkylgruppen mit 1 bis 30 C-Atomen ab. Bevorzugte Ethylen-Copolymere weisen eine Schmelzviskosität V140 von mindestens 5, vorzugsweise 10 bis 80, insbesondere 20 bis 60 mPas auf.
  • Beispiele für geeignete Vinylester sind Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylhexanoat, Vinylheptanoat, Vinyloctanoat, Vinyllaurat und Vinylstearat sowie auf verzweigten Fettsäuren basierende Ester des Vinylalkohols wie Vinyl-iso-butyrat, Pivalinsäurevinylester, Vinyl-2-ethylhexanoat, iso-Nonansäurevinylester, Neononansäurevinylester, Neodecansäurevinylester und Neoundecansäurevinylester. Als Comonomere ebenfalls geeignet sind Ester der Acryl- und Methacrylsäure mit 1 bis 20 C-Atomen im Alkylrest wie Methyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, n- und isoButyl(meth)acrylat, Hexyl-, Octyl-, 2-Ethylhexyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl(meth)acrylat. Geeignet sind auch Mischungen aus zwei, drei, vier oder auch mehreren dieser Comonomere.
  • Weitere bevorzugte Copolymere enthalten neben Ethylen und 13 bis 17 Mol-% Vinylestern noch 0,5 bis 10 Mol-% Olefine mit 3 bis 10 C-Atomen, wie beispielsweise Propen, Buten, Isobutylen, Hexen, 4-Methylpenten, Octen, Diisobutylen und/oder Norbornen.
  • Die Copolymere A haben bevorzugt gewichtsmittlere Molekulargewichte Mw, gemessen mittels Gelpermeationchromatographie (GPC) gegen Polystyrolstandards in THF von 1000 bis 10000, insbesondere 1500 bis 5000 g/mol. Ihre mittels 1H-NMR-Spektroskopie (400 MHz mit CDCl3 als Lösungsmittel) bestimmten Verzweigungsgrade sind vorzugsweise kleiner als 6, insbesondere kleiner als 5 CH3/100 CH2-Gruppen. Die Methylgruppen stammen aus den Kurz- und Langkettenverzweigungen, und nicht aus einpolymerisierten Comonomeren.
  • Die Copolymere A sind durch die üblichen Copolymerisationsverfahren wie beispielsweise Suspensionspolymerisation, Lösungsmittelpolymerisation, Gasphasenpolymerisation oder Hochdruckmassepolymerisation herstellbar. Bevorzugt wird die Hochdruckmassepolymerisation bei Drucken von 50 bis 400 MPa, bevorzugt 100 bis 300 MPa und Temperaturen von 100 bis 300°C, bevorzugt 150 bis 250°C durchgeführt. In einer besonders bevorzugten Herstellungsvariante erfolgt die Polymerisation in einem Mehrzonenreaktor, wobei die Temperaturdifferenz zwischen den Peroxiddosierungen entlang des Rohrreaktors möglichst niedrig gehalten wird, d.h. < 50°C, bevorzugt < 30°C, insbesondere < 15°C. Bevorzugt differieren die Temperaturmaxima in den einzelnen Reaktionszonen dabei um weniger als 30°C, besonders bevorzugt um weniger als 20°C und speziell um weniger als 10°C.
  • Die Reaktion der Monomeren wird durch Radikale bildende Initiatoren (Radikalkettenstarter) eingeleitet. Zu dieser Substanzklasse gehören z.B. Sauerstoff, Hydroperoxide, Peroxide und Azoverbindungen wie Cumolhydroperoxid, t-Butylhydroperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(2-ethylhexyl)peroxid-carbonat, t-Butylperpivalat, t-Butylpermaleinat, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-(t-butyl)peroxid, 2,2'-Azo-bis(2-methylpropanonitril), 2,2'-Azo-bis(2-methylbutyronitril). Die Initiatoren werden einzeln oder als Gemisch aus zwei oder mehr Substanzen in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Monomerengemisch, eingesetzt.
    Die Hochdruckmassepolymerisation wird in bekannten Hochdruckreaktoren, z.B. Autoklaven oder Rohrreaktoren, diskontinuierlich oder kontinuierlich durchgeführt, besonders bewährt haben sich Rohrreaktoren. Lösungsmittel wie aliphatische und/oder aromatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, Benzol oder Toluol, können im Reaktionsgemisch enthalten sein. Bevorzugt ist die im Wesentlichen lösungsmittelfreie Arbeitsweise. In einer bevorzugten Ausführungsform der Polymerisation wird das Gemisch aus den Monomeren, dem Initiator und, sofern eingesetzt, dem Moderator, einem Rohrreaktor über den Reaktoreingang sowie über einen oder mehrere Seitenäste zugeführt. Bevorzugte Moderatoren sind beispielsweise Wasserstoff, gesättigte und ungesättigte Kohlenwasserstoffe wie beispielsweise Propan oder Propen, Aldehyde wie beispielsweise Propionaldehyd, n-Butyraldehyd oder iso-Butyraldehyd, Ketone wie beispielsweise Aceton, Methylethylketon, Methylisobutylketon, Cyclohexanon und Alkohole wie beispielsweise Butanol. Die Comonomeren wie auch die Moderatoren können dabei sowohl gemeinsam mit Ethylen als auch getrennt über Seitenströme in den Reaktor dosiert werden. Hierbei können die Monomerenströme unterschiedlich zusammengesetzt sein ( EP-A-0 271 738 und EP-A-0 922 716 ).
  • Als geeignete Co- bzw. Terpolymere sind beispielsweise zu nennen:
    • Ethylen-Vinylacetat-Copolymere mit 10 - 40 Gew.-% Vinylacetat und 60 - 90 Gew.-% Ethylen;
    • die aus DE-A-34 43 475 bekannten Ethylen-Vinylacetat-Hexen-Terpolymere;
    • die in EP-A-0 203 554 beschriebenen Ethylen-Vinylacetat-Diisobutylen-Terpolymere;
    • die aus EP-A-0 254 284 bekannte Mischung aus einem Ethylen-Vinylacetat-Diisobutylen-Terpolymerisat und einem Ethylen/Vinylacetat-Copolymer;
    • die in EP-A-0 405 270 offenbarten Mischungen aus einem Ethylen-Vinylacetat-Copolymer und einem Ethylen-Vinylacetat-N-Vinylpyrrolidon-Terpolymerisat;
    • die in EP-A-0 463 518 beschriebenen Ethylen/Vinylacetat/iso-Butylvinylether-Terpolymere;
    • die aus EP-A-0 493 769 bekannten Ethylen/VinylacetatlNeononansäurevinylester bzw. Neodecansäurevinylester-Terpolymere, die außer Ethylen 10 - 35 Gew.-% Vinylacetat und 1 - 25 Gew.-% der jeweiligen Neoverbindung enthalten;
    • die in EP-A-0 778 875 beschriebenen Terpolymere aus Ethylen, einem ersten Vinylester mit bis zu 4 C-Atomen und einem zweiten Vinylester, der sich von einer verzweigten Carbonsäure mit bis zu 7 C-Atomen oder einer verzweigten, aber nicht tertiären Carbonsäure mit 8 bis 15 C-Atomen ableitet;
    • die in DE-A-196 20 118 beschriebenen Terpolymere aus Ethylen, dem Vinylester einer oder mehrerer aliphatischer C2- bis C20-Monocarbonsäuren und 4-Methylpenten-1;
    • die in DE-A-196 20 119 offenbarten Terpolymere aus Ethylen, dem Vinylester einer oder mehrerer aliphatischer C2- bis C20-Monocarbonsäuren und Bicyclo[2.2.1]hept-2-en;
    • die in EP-A-0 926 168 beschriebenen Terpolymere aus Ethylen und wenigstens einem olefinisch ungesättigten Comonomer, das eine oder mehrere Hydroxylgruppen enthält.
  • Bevorzugt werden Mischungen gleicher oder verschiedener Ethylencopolymere eingesetzt. Besonders bevorzugt unterscheiden sich die den Mischungen zu Grunde liegenden Polymere in mindestens einem Charakteristikum. Beispielsweise können sie unterschiedliche Comonomere enthalten, unterschiedliche Comonomergehalte, Molekulargewichte und/oder Verzweigungsgrade aufweisen. Das Mischungsverhältnis der verschiedenen Ethylencopolymere liegt dabei bevorzugt zwischen 20:1 und 1:20, bevorzugt 10:1 bis 1:10, insbesondere 5:1 bis 1:5.
  • Die Copolymere B leiten sich von den Amiden und Imiden von ethylenisch ungesättigten Dicarbonsäuren ab. Bevorzugt als Dicarbonsäuren sind Maleinsäure, Fumarsäure und Itaconsäure. Als Comonomere sind Monoolefine B1 mit 10 bis 20, insbesondere mit 12 bis 18 C-Atomen besonders geeignet. Diese sind bevorzugt linear, und die Doppelbindung ist vorzugsweise endständig, wie beispielsweise bei Dodecen, Tridecen, Tetradecen, Pentadecen, Hexadecen, Heptadecen und Octadecen. Das molare Verhältnis von Dicarbonsäureamid/imid zu Olefin bzw. Olefinen im Polymer ist bevorzugt im Bereich 1: 1,5 bis 1,5:1, speziell ist es equimolar.
  • In untergeordneten Mengen von bis zu 20 Mol-%, bevorzugt < 10 Mol-%, speziell < 5 Mol-% können auch weitere Comonomere im Copolymer B enthalten sein, die mit ethylenisch ungesättigten Dicarbonsäureamiden/imiden und den genannten Olefinen copolymerisierbar sind, wie z.B. Olefine mit 2 bis 50 Kohlenstoffatomen, Allylpolyglykolether, C1-C30-Alkyl(meth)acrylate, Vinylaromaten oder C1-C20-Alkylvinylether. Des gleichen werden in untergeordneten Mengen Poly(isobutylene) mit Molekulargewichten von bis zu 5.000 g/mol eingesetzt, wobei hochreaktive Varianten mit hohem Anteil an endständigen Vinylidengruppen bevorzugt sind. Diese weiteren Comonomere werden bei der Berechnung des für die Wirksamkeit entscheidenden Parameters Q nicht berücksichtigt.
  • Allylpolyglykolether entsprechen der allgemeinen Formel
    Figure imgb0003
    worin
  • R1
    Wasserstoff oder Methyl,
    R2
    Wasserstoff oder C1-C4-Alkyl,
    m
    eine Zahl von 1 bis 100,
    R3
    C1-C24-Alkyl, C5-C20-Cycloalkyl, C6-C18-Aryl oder -C(O)-R4,
    R4
    C1-C40-Alkyl, C5-C10-Cycloalkyl oder C6-C18-Aryl, bedeuten.
  • Die Herstellung der erfindungsgemäßen Copolymere B) erfolgt vorzugsweise bei Temperaturen zwischen 50 und 220°C, insbesondere 100 bis 190°C. Das bevorzugte Herstellungsverfahren ist die lösemittelfreie Massepolymerisation, es ist jedoch auch möglich, die Polymerisation in Gegenwart aprotischer Lösemittel wie Benzol, Toluol, Xylol oder von höhersiedenden aromatischen, aliphatischen oder isoaliphatischen Lösemitteln bzw. Lösemittelgemischen wie Kerosin oder Solvent Naphtha durchzuführen. Besonders bevorzugt ist die Polymerisation in wenig moderierenden, aliphatischen oder isoaliphatischen Lösemitteln. Der Lösemittelanteil im Polymerisationsgemisch liegt im Allgemeinen zwischen 10 und 90 Gew.-%, bevorzugt zwischen 35 und 60 Gew.-%. Bei der Lösungspolymerisation kann die Reaktionstemperatur durch den Siedepunkt des Lösemittels oder durch Arbeiten unter Unter- oder Überdruck besonders einfach eingestellt werden.
  • Die mittlere Molekülmasse Mw der erfindungsgemäßen Copolymere B beträgt im allgemeinen zwischen 1.200 und 200.000 g/mol, insbesondere zwischen 2.000 und 100.000 g/mol, gemessen mittels Gelpermeationschromatographie (GPC) gegen Polystyrolstandards in THF. Erfindungsgemäße Copolymere B müssen in praxisrelevanten Dosiermengen öllöslich sein, das heißt sie müssen sich in dem zu additivierenden Öl bei 50°C rückstandsfrei lösen.
  • Die Reaktion der Monomeren wird durch Radikale bildende Initiatoren (Radikalkettenstarter) eingeleitet. Zu dieser Substanzklasse gehören z.B. Sauerstoff, Hydroperoxide und Peroxide wie z.B. Cumolhydroperoxid, t-Butylhydroperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(2-ethylhexyl)peroxid-carbonat, t-Butylperpivalat, t-Butylpermaleinat, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-(t-butyl)peroxid, sowie Azoverbindungen wie z.B. 2,2'-Azo-bis(2methylpropanonitril) oder 2,2'-Azo-bis(2-methylbutyronitril). Die Initiatoren werden einzeln oder als Gemisch aus zwei oder mehr Substanzen in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Monomerengemisch, eingesetzt.
  • Die Copolymere können entweder durch Umsetzung von Malein-, Fumar- und/oder Itaconsäure bzw. deren Anhydriden mit dem entsprechenden Amin und anschließende Copolymerisation oder durch Copolymerisation von Olefin bzw. Olefinen mit mindestens einer ungesättigten Dicarbonsäure oder deren Derivat wie beispielsweise Itacon- und/oder Maleinsäureanhydrid und anschließende Umsetzung mit Aminen hergestellt werden. Bevorzugt wird eine Copolymerisation mit Anhydriden durchgeführt und das entstandene Copolymer nach der Herstellung in ein Amid und/oder ein Imid überführt.
  • Die Umsetzung mit Aminen erfolgt in beiden Fällen beispielsweise durch Umsetzung mit 0,8 bis 2,5 mol Amin pro mol Anhydrid, bevorzugt mit 1,0 bis 2,0 mol Amin pro mol Anhydrid bei 50 bis 300°C. Bei Einsatz von ca. 1 mol Amin pro mol Anhydrid entstehen bei Reaktionstemperaturen von ca. 50 bis 100°C bevorzugt Halbamide, die zusätzlich eine Carboxylgruppe pro Amidgruppe tragen. Bei höheren Reaktionstemperaturen von ca. 100 bis 250°C entstehen aus primären Aminen unter Wasserabspaltung bevorzugt Imide. Bei Einsatz größerer Mengen Amin, bevorzugt 2 Mol Amin pro Mol Anhydrid entstehen bei ca. 50 bis 200°C Amid-Ammoniumsalze und bei höheren Temperaturen von beispielsweise 100 - 300°C, bevorzugt 120 - 250°C Diamide. Das Reaktionswasser kann dabei mittels eines Inertgasstroms abdestilliert oder in Gegenwart eines organischen Lösemittels mittels azeotroper Destillation ausgetragen werden. Bevorzugt werden dazu 20-80, insbesondere 30-70, speziell 35-55 Gew.-% mindestens eines organischen Lösemittels eingesetzt. Als Halbamide werden hier (50 %ig in Lösemittel eingestellte) Copolymere mit Säurezahlen von 30 - 70 mg KOH/g, bevorzugt von 40 - 60 mg KOH/g betrachtet. Entsprechende Copolymere mit Säurezahlen von weniger als 40, speziell weniger als 30 mg KOH/g werden als Diamide bzw. Imide betrachtet. Besonders bevorzugt sind Halbamide und Diamide.
  • Geeignete Amine sind primäre und sekundäre Amine mit einem oder zwei C8-C16-Alkylresten. Sie können eine, zwei oder drei Aminogruppen tragen, die über Alkylenreste mit zwei oder drei C-Atomen verknüpft sind. Bevorzugt sind Monoamine. Insbesondere tragen sie lineare Alkylreste, sie können jedoch auch untergeordnete Mengen, z. B. bis zu 30 Gew.-%, bevorzugt bis zu 20 Gew.-% und speziell bis zu 10 Gew.-% (in 1- oder 2-Position) verzweigte Amine enthalten. Kürzerwie auch längerkettige Amine können eingesetzt werden, doch liegt ihr Anteil bevorzugt unter 20 mol-% und speziell unter 10 mol-% wie beispielsweise zwischen 1 und 5 mol-% bezogen auf die Gesamtmenge der eingesetzten Amine.
  • Besonders bevorzugt als primäre Amine sind Octylamin, 2-Ethylhexylamin, Decylamin, Undecylamin, Dodecylamin, n-Tridecylamin, iso-Tridecylamin, Tetradecylamin, Pentadecylamin, Hexadecylamin und deren Mischungen.
  • Bevorzugte sekundäre Amine sind Dioctylamin, Dinonylamin, Didecylamin, Didodecylamin, Ditetradecylamin, Dihexadecylamin, sowie Amine mit unterschiedlichen Alkylkettenlängen wie beispielsweise N-Octyl-N-decylamin, N-Decyl-N-dodecylamin, N-Decyl-N-tetradecylamin, N-Decyl-N-hexadecylamin, N-Dodecyl-N-tetradecylamin, N-Dodecyl-N-hexadecylamin, N-Tetradecyl-N-hexadecylamin. Auch sekundäre Amine, die neben einem C8-C16-Alkylrest kürzere Seitenketten mit 1 bis 5 C-Atomen wie beispielsweise Methyl- oder Ethylgruppen tragen, sind erfindungsgemäß geeignet. Bei sekundären Aminen wird für die Berechnung des Parameters Q als Alkylkettenlänge n der Mittelwert der Alkylkettenlängen von C8 bis C16 berücksichtigt. Kürzere wie längere Alkylreste, sofern anwesend, werden bei der Berechnung nicht berücksichtigt, da sie nicht zur Wirksamkeit der Additive beitragen.
  • Besonders bevorzugte Copolymere B enthalten Halbamide und Diamide primärer Monoamine als Monomer 2.
  • Durch Einsatz von Mischungen verschiedener Olefine bei der Polymerisation und Mischungen verschiedener Amine bei der Amidierung bzw. Imidierung kann die Wirksamkeit weiter auf spezielle Fettsäureesterzusammensetzungen angepasst werden.
  • In einer bevorzugten Ausführungsform können die Additive neben den Bestandteilen A und B noch Polymere und Copolymere auf Basis von C10-C24-Alkylacrylaten oder -methacrylaten enthalten (Bestandteil C). Diese Poly(alkylacrylate) und -methacrylate weisen Molekulargewichte Mw von 800 bis 1.000.000 g/mol auf, und leiten sich vorzugsweise von Capryl-, Caprin-, Undecyl-, Lauryl-, Myristyl-, Cetyl-, Palmitoleyl-, Stearylalkohol oder deren Mischungen wie beispielsweise Kokos-, Palm- Talgfett- oder Behenylalkohol ab.
  • In einer bevorzugten Ausführungsform werden Mischungen verschiedener Copolymere B eingesetzt, wobei der Mittelwert (Gewichtsmittel) der Parameter Q der Mischungskomponenten Werte von 23 bis 27 und bevorzugt Werte von 24 bis 26 annimmt.
  • Das Mischungsverhältnis der erfindungsgemäßen Additivbestandteile A und B beträgt (in Gewichtsteilen) 20:1 bis 1:20, vorzugsweise 10:1 bis 1:10, insbesondere 5:1 bis 1:5. Der Anteil der Komponente C an den Formulierungen aus A, B und C kann bis zu 40 Gew.-% betragen; bevorzugt ist er weniger als 20 Gew.-%, insbesondere zwischen 1 und 10 Gew.-%, bezogen auf das Gesamtgewicht von A, B und C.
  • Die erfindungsgemäßen Additive werden Ölen in Mengen von 0,001 bis 5 Gew.-%, bevorzugt 0,005 bis 1 Gew.-% und speziell 0,01 bis 0,6 Gew.-% zugesetzt. Dabei können sie als solche oder auch gelöst bzw. dispergiert in Lösemitteln, wie z.B. aliphatischen und/oder aromatischen Kohlenwasserstoffen oder Kohlenwasserstoffgemischen wie z. B. Toluol, Xylol, Ethylbenzol, Decan, Pentadecan, Benzinfraktionen, Kerosin, Naphtha, Diesel, Heizöl, Isoparaffine oder kommerziellen Lösemittelgemischen wie Solvent Naphtha, ®Hydrolsol A 200 N, ®Shellsol A 150 ND, ®Caromax 20 LN, ®Shellsol AB, ®Solvesso 150, ®Solvesso 150 ND, ®Solvesso 200, ®Exxsol-, ®lsopar- und ®Shellsol D-Typen eingesetzt werden. Bevorzugt sind sie in Brennstofföl tierischen oder pflanzlichen Ursprungs auf Basis von Fettsäurealkylestern gelöst. Bevorzugt enthalten die erfindungsgemäßen Additive 1 - 80 %, speziell 10 - 70 %, insbesondere 25 - 60 % Lösemittel.
  • In einer bevorzugten Ausführungsform handelt es sich bei dem Brennstofföl, das häufig auch als "Biodiesel" oder "Biokraftstoff" bezeichnet wird, um Fettsäurealkylester aus Fettsäuren mit 12 bis 24 C-Atomen und Alkoholen mit 1 bis 4 C-Atomen. Gewöhnlich enthält ein größerer Teil der Fettsäuren ein, zwei oder drei Doppelbindungen.
  • Beispiele für Öle, die sich von tierischem oder pflanzlichem Material ableiten, und in denen das erfindungsgemäße Additiv verwendet werden kann, sind Rapsöl, Korianderöl, Sojaöl, Baumwollsamenöl, Sonnenblumenöl, Ricinusöl, Olivenöl, Erdnussöl, Maisöl, Mandelöl, Palmkernöl, Kokosnussöl, Senfsamenöl, Rindertalg, Knochenöl, Fischöle und gebrauchte Speiseöle. Weitere Beispiele schließen Öle ein, die sich von Weizen, Jute, Sesam, Scheabaumnuß, Arachisöl und Leinöl ableiten. Die auch als Biodiesel bezeichneten Fettsäurealkylester können aus diesen Ölen nach im Stand der Technik bekannten Verfahren abgeleitet werden. Rapsöl, das eine Mischung von mit Glycerin partiell veresterten Fettsäuren ist, ist bevorzugt, da es in großen Mengen erhältlich ist und in einfacher Weise durch Auspressen von Rapssamen erhältlich ist. Des Weiteren sind die ebenfalls weit verbreiteten Öle von Altfett, Palmöl, Sonnenblumen und Soja sowie deren Mischungen mit Rapsöl bevorzugt.
  • Besonders geeignet als Biokraftstoffe sind niedrige Alkylester von Fettsäuren. Hier kommen beispielsweise handelsübliche Mischungen der Ethyl-, Propyl-, Butyl- und insbesondere Methylester von Fettsäuren mit 14 bis 22 Kohlenstoffatomen, beispielsweise von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitolsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Ricinolsäure, Elaeostearinsäure, Linolsäure, Linolensäure, Eicosansäure, Gadoleinsäure, Docosansäure oder Erucasäure in Betracht, die bevorzugt eine Iodzahl von 50 bis 150, insbesondere 90 bis 125 haben. Mischungen mit besonders vorteilhaften Eigenschaften sind solche, die hauptsächlich, d. h. zu mindestens 50 Gew.-%, Methylester von Fettsäuren mit 16 bis 22 Kohlenstoffatomen und 1, 2 oder 3 Doppelbindungen enthalten. Die bevorzugten niedrigeren Alkylester von Fettsäuren sind die Methylester von Ölsäure, Linolsäure, Linolensäure und Erucasäure.
  • Handelsübliche Mischungen der genannten Art werden beispielsweise durch Spaltung und Veresterung bzw. durch Umesterung von tierischen und pflanzlichen Fetten und Ölen mit niedrigen aliphatischen Alkoholen erhalten. Des gleichen sind auch gebrauchte Speiseöle als Ausgangsprodukte geeignet. Zur Herstellung von niedrigeren Alkylestern von Fettsäuren ist es vorteilhaft, von Fetten und Ölen mit hoher Iodzahl auszugehen, wie beispielsweise Sonnenblumenöl, Rapsöl, Korianderöl, Castoröl (Ricinusöl), Sojaöl, Baumwollsamenöl, Erdnussöl oder Rindertalg. Niedrigere Alkylester von Fettsäuren auf Basis einer neuen Rapsölsorte, deren Fettsäurekomponente zu mehr als 80 Gew.-% von ungesättigten Fettsäuren mit 18 Kohlenstoffatomen abgeleitet ist, sind bevorzugt.
  • Somit ist ein Biokraftstoff ein Öl, das aus pflanzlichem oder tierischem Material oder beidem erhalten wird oder ein Derivat derselben, welches als Kraftstoff und insbesondere als Diesel oder Heizöl verwendet werden kann. Obwohl viele der obigen Öle als Biokraftstoffe verwendet werden können, sind zum einen Pflanzenölderivate bevorzugt, wobei besonders bevorzugte Biokraftstoffe Alkylesterderivate von Rapsöl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl, Olivenöl oder Palmöl sind, wobei Rapsölsäuremethylester, Sonnenblumenölsäuremethylester, Palmölsäuremethylester und Sojaölsäuremethylester ganz besonders bevorzugt sind. Auf Grund der hohen Nachfrage nach Biokraftstoffen, weichen immer mehr Hersteller von Fettsäuremethylestern auf andere Rohstoffquellen mit höherer Verfügbarkeit aus. Besonders zu erwähnen ist hier Altfettöl, welches als Altfettölmethylester als Biodiesel alleine oder in Abmischung mit anderen Fettsäuremethylestern, wie z.B. Rapsölsäuremethylester, Sonnenblumenölsäuremethylester, Palmölsäuremethylester und Sojaölsäuremethylester verwendet wird. Außerdem sind Mischungen aus Rapsölmethylester mit Soyaölmethylester oder Rapsölmethylester mit einer Mischung aus Soyaölmethylester und Palmölmethylester besonders zu erwähnen.
  • Das Additiv kann dem zu additivierenden Öl gemäß im Stand der Technik bekannten Verfahren eingebracht werden. Wenn mehr als eine Additivkomponente oder Coadditivkomponente verwendet werden soll, können solche Komponenten zusammen oder separat in beliebiger Kombination in das Öl eingebracht werden.
  • Mit den erfindungsgemäßen Additiven lässt sich der CFPP-Wert von Biodiesel auf Werte von -10°C und unter -20°C und zum Teil auf Werte von unter -25°C einstellen, wie sie für die Vermarktung für einen Einsatz insbesondere im Winter gefordert werden. Des gleichen wird der Pour Point von Biodiesel durch den Zusatz der erfindungsgemäßen Additive herabgesetzt. Die erfindungsgemäßen Additive sind besonders vorteilhaft in problematischen Ölen, die einen hohen Anteil an Estern der gesättigter Fettsäuren Palmitinsäure und Stearinsäure von mehr als 7 Gew.-% wie sie beispielsweise in Fettsäuremethylestern aus Altfettöl, Sonnenblumen und Soja enthalten sind. Es gelingt mit den erfindungsgemäßen Additiven somit auch, Mischungen aus Rapsölsäuremethylester und/ oder Altfettölmethylester und/oder Sonnenblumen- und/oder Sojaölfettsäuremethylester auf CFPP-Werte von-10°C bzw. -20°C und darunter einzustellen. Es gelingt mit den erfindungsgemäßen Additiven somit auch, Altfettölmethylester oder Sonnenblumen- oder Sojaölfettsäuremethylester auf CFPP-Werte von -10°C bzw. -20°C und darunter einzustellen. Darüber hinaus haben die so additivierten Öle eine gute Kältewechselstabilität, das heißt der CFPP-Wert bleibt auch bei Lagerung unter winterlichen Bedingungen konstant und neigen bei konstanten tiefen Temperaturen (z. B. -10°C oder-22°C) nicht zur Sedimentation.
  • Zur Herstellung von Additivpaketen für spezielle Problemlösungen können die erfindungsgemäßen Additive auch zusammen mit einem oder mehreren öllöslichen Co-Additiven eingesetzt werden, die bereits für sich allein die Kaltfließeigenschaften von Rohölen, Schmierölen oder Brennölen verbessern. Beispiele solcher Co-Additive sind polare Verbindungen, die eine Paraffindispergierung bewirken (Paraffindispergatoren) sowie öllösliche Amphiphile.
  • Die erfindungsgemäßen Additive können in Mischung mit Paraffindispergatoren eingesetzt werden. Paraffindispergatoren reduzieren die Größe der Paraffinkristalle und bewirken, dass die Paraffinpartikel sich nicht absetzen, sondern kolloidal mit deutlich reduziertem Sedimentationsbestreben, dispergiert bleiben. Als Paraffindispergatoren haben sich sowohl niedermolekulare wie auch polymere, öllösliche Verbindungen mit ionischen oder polaren Gruppen wie z. B. Aminsalze und/oder Amide bewährt. Besonders bevorzugte Paraffindispergatoren enthalten Umsetzungsprodukte sekundärer Fettamine mit 20 bis 44 C-Atomen, insbesondere Dicocosamin, Ditalgfettamin, Distearylamin und Dibehenylamin mit Carbonsäuren und deren Derivaten. Besonders bewährt haben sich Paraffindispergatoren, die durch Reaktion aliphatischer oder aromatischer Amine, vorzugsweise langkettiger aliphatischer Amine, mit aliphatischen oder aromatischen Mono-, Di-, Tri- oder Tetracarbonsäuren oder deren Anhydriden erhalten werden (vgl. US 4 211 534 ). Des gleichen sind Amide und Ammoniumsalze von Aminoalkylenpolycarbonsäuren wie Nitrilotriessigsäure oder Ethylendiamintetraessigsäure mit sekundären Aminen als Paraffindispergatoren geeignet (vgl. EP 0 398 101 ). Andere Paraffindispergatoren sind Copolymere des Maleinsäureanhydrids und α,β-ungesättigter Verbindungen, die gegebenenfalls mit primären Monoalkylaminen und/oder aliphatischen Alkoholen umgesetzt werden können (vgl. EP 0 154 177 ) und die Umsetzungsprodukte von Alkenylspirobislactonen mit Aminen (vgl. EP 0 413 279 B1 ) und nach EP-A-0 606 055 A2 Umsetzungsprodukte von Terpolymeren auf Basis α,β-ungesättigter Dicarbonsäureanhydride, α,β-ungesättigter Verbindungen und Polyoxyalkylenether niederer ungesättigter Alkohole.
  • Das Mischverhältnis (in Gewichtsteilen) der erfindungsgemäßen Additive mit Paraffindispergatoren beträgt 1:10 bis 20:1, vorzugsweise 1:1 bis 10:1.
  • Die mit dem erfindungsgemäßen Additiv behandelten Öle können auch aus Erdöl gewonnenen Mitteldestillaten zugesetzt werden. Die so erhaltenen Mischungen aus Biokraftstoff und Mitteldestillat können ihrerseits mit Kälteadditiven wie Fließverbesserer oder Wachsdispergatoren, sowie Performance Packages versetzt werden.
  • Das Mischungsverhältnis zwischen Biokraftstoff und Mitteldestillaten kann zwischen 1:99 und 99:1 liegen. Besonders bevorzugt sind Mischungsverhältnisse von Biobrennstoff:Mitteidestillat = 3:97 bis 30:70.
  • Als Mitteldestillat bezeichnet man insbesondere solche Mineralöle, die durch Destillation von Rohöl gewonnen werden und im Bereich von 120 bis 450°C sieden, beispielsweise Kerosin, Jet-Fuel, Diesel und Heizöl. Vorzugsweise werden solche Mitteldestillate verwendet, die 0,05 Gew.-% Schwefel und weniger, besonders bevorzugt weniger als 350 ppm Schwefel, insbesondere weniger als 200 ppm Schwefel und in speziellen Fällen weniger als 50 ppm Schwefel enthalten. Es handelt sich dabei im Allgemeinen um solche Mitteldestillate, die einer hydrierenden Raffination unterworfen wurden, und die daher nur geringe Anteile an polyaromatischen und polaren Verbindungen enthalten. Vorzugsweise handelt es sich um solche Mitteldestillate, die 95 %-Destillationspunkte unter 370°C, insbesondere 350°C und in Spezialfällen unter 330°C aufweisen. Auch synthetische Treibstoffe, wie sie zum Beispiel nach dem Fischer-Tropsch-Verfahren zugänglich sind, sind als Mitteldestillate geeignet.
  • Die Additive können allein oder auch zusammen mit anderen Additiven verwendet werden, z.B. mit anderen Stockpunkterniedrigern oder Entwachsungshilfsmitteln, mit Antioxidantien, Cetanzahlverbesserern, Dehazern, Demulgatoren, Detergenzien, Dispergatoren, Entschäumern, Farbstoffen, Korrosionsinhibitoren, Leitfähigkeitsverbesserern, Schlamminhibitoren, Odorantien und/oder Zusätzen zur Erniedrigung des Cloud-Points.
  • Beispiele
  • Tabelle 1 Charakterisierung der eingesetzten Ethylen-Copolymere
    Beispiel Comonomer(e) V140 CH3/100 CH2 Gehalt an Vinylester
    A1 (V) Ethylen / VAC / Neodecansäurevinylester 110 mPas 4,2 13,3 mol%
    A2 Ethylen/VAC 35 mPas 3,9 16,6 mol%
    A3 (V) Ethylen / VAC 154 mPas 3,0 16,7 mol%
    A4 (V) Ethylen / VAC 125 mPas 3,0 13,8 mol%
    VAC = Essigsäurevinylester
    Der Vinylestergehalt wurde mittels Pyrolyse und anschließender Titration bestimmt.
    Die Viskosität (V140) wurde mit einem Haake Reostress 600 Viskosimeter gemessen.
    Der Verzweigungsgrad (CH3/100CH2) wurde an einem 1H-NMR-Gerät mit 400 MHz
    in CDCl3 gemessen, und mittels Integration der einzelnen Signale errechnet.
    Tabelle 2 Charakterisierung der eingesetzten Kammpolymere
    Beispiel Comonomere Amin Q Säurezahl [mg KOH/g]
    B1 MSA-co-C14/16-α-Olefin (1:0,5:0,5) C12 Amin 25 2
    B2 MSA-co-C14/16-α-Olefin (1:0,5:0,5) C14 Amin 25,0 57
    Tabelle 3 Acrylate
    C1 Poly(octadecylacrylat), K-Wert 32
    C2 Poly(behenylacrylat), K-Wert 18
    Tabelle 4 Charakterisierung der Testöle
    Öl - Nr.: CFPP [°C] Zusammensetzung
    E1 -8 SoyaMe / RME 30:70
    E2 -7 RME / PME 85:15
    E3 -11 RME / AME 60:40
    E4 -10 RME / AME 50:50
    E5 -8 RME / AME 40:60
    E6 -8 RME / AME 45:55
    SoyaME = Soyamethylester
    RME = Rapsölmethylester
    PME = Palmölmethylester
    AME = Altfettmethylester
    Tabelle 5 Methylesterverteilung der Testöle
    E1 E2 E3 E4 E5 E6
    C16:0 6,53 6,21 6,74 7,33 8,13 7,76
    C18:0 1,19 2,36 2,71 2,97 3,32 3,16
    C18:1 45,19 48,73 52,56 50,84 45,36 46,77
    C18:2 36,33 28,77 26,45 28,17 32,27 31,00
    C18:3 8,37 9,18 6,36 5,49 5,45 5,89
    C20:1/2/3 0,79 1,25 1,14 1,04 0,97 1,03
    C20:0 0,39 0,57 0,58 0,56 0,53 0,57
    C22:0 0,15 0,39 0,48 0,51 0,50 0,49
  • In den folgenden Tabellen ist das Mischungsverhältnis nach Gewicht der Additive A, B und C wie A:B = 4:1, oder, wenn C in den Mischungen vorhanden ist, A:B:C = 4:1:0,2. Die Gesamtmenge an Additiv geht aus dem Tabellenkopf hervor. Tabelle 6 CFPP - Austestung in Testöl E1
    Bsp. Kammpolymer Ethylencopolymer Polyacrylat 2000 ppm 3000 ppm 4000 ppm
    1 B1 A2 - -18 -22 -20
    2 (V) B1 A1 - -12 -16 -10
    3 B1 A2 C3 -18 -21 -21
    Tabelle 7 CFPP - Austestung in Testöl E2
    Bsp. Kammpolymer Ethylencopolymer Polyacrylat 2000 ppm 3000 ppm 4000 ppm
    4 (V) B1 A4 - -6 -10 -10
    5 B1 A2 C1 -8 -10 -11
    Tabelle 8 CFPP- Austestung in Testöl E3
    Bsp. Kammpolymer Ethylencopolymer Polyacrylat 2000 ppm 3000 ppm
    6 B 1 A2 - -20 -23
    7 (V) B1 A4 - -17 -19
    Tabelle 9 CFPP - Austestung in Testöl E4
    Bsp. Kammpolymer Ethylencopolymer Polyacrylat 2000 ppm 3000 ppm
    8 B1 A2 - -17 -22
    9 (V) B2 A3 -- -14 -17
    Tabelle 10 CFPP - Austestung in Testöl E5
    Bsp. Kammpolymer Ethylencopolymer Polyacrylat 2000 ppm 3000 ppm
    10 B1 A2 - -13 -18
    11 B1 A2 C2 -13 -18
    12 (V) B1 A3 -- -11 -13
    Tabelle 11 CFPP - Austestung in Testöl E6
    Bsp. Kammpolymer Ethylencopolymer Polyacrylat 4000 ppm
    13 B1 A2 - -19
    14 B1 A2 C2 -19
    15 (V) B1 A3 -- -16

Claims (15)

  1. Brennstofföladditiv, enthaltend
    A) ein Copolymer aus Ethylen und 13 bis 17 Mol-% mindestens eines Acryl- oder Vinylesters mit einem C1-C18-Alkylrest und einer Schmelzviskosität V140 von höchstens 80 mPas, und
    B) ein Kammpolymer, enthaltend Struktureinheiten aus
    B1) mindestens einem Olefin als Monomer 1, welches an der olefinischen Doppelbindung wenigstens einen C8-C18-Alkylrest trägt, und
    B2) mindestens einer ethylenisch ungesättigten Dicarbonsäure als Monomer 2, welche mindestens einen, über eine Amid- und/oder Imidgruppe gebundenen, C8-C16-Alkylrest trägt,
    worin der Parameter Q Q = i w 1 i n 1 i + j w 2 j n 2 j
    Figure imgb0004
    worin
    w1 der molare Anteil der einzelnen Kettenlängen n1 in den Alkylresten von Monomer 1,
    w2 der molare Anteil der einzelnen Kettenlängen n2 in den Alkylresten der Amid- und/oder Imidgruppen von Monomer 2,
    n1 die einzelnen Kettenlängen in den Alkylresten von Monomer 1,
    n2 die einzelnen Kettenlängen in den Alkylresten der Amid- und/oder Imidgruppen von Monomer 2,
    i die Laufvariable für die Kettenlängen in den Alkylresten von Monomer 1, und
    j die Laufvariable für die Kettenlängen in den Alkylresten der Amid- und/oder Imidgruppen von Monomer 2 sind,
    Werte von 23 bis 27 annimmt.
  2. Brennstofföladditiv nach Anspruch 1, worin Q Werte von 24 bis 26 annimmt.
  3. Brennstofföladditiv nach Anspruch 1 und/oder 2, worin Bestandteil A) 15 bis 17 mol-% mindestens eines Vinylesters umfasst.
  4. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 3, worin Bestandteil A) 0,5 bis 10 mol-% Olefine mit 3 bis 10 Kohlenstoffatomen umfasst.
  5. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 4, worin der Verzweigungsgrad des Bestandteils A) kleiner als 6 CH3/100 CH2-Gruppen, bestimmt mittels 1H-NMR-Spektroskopie, ist.
  6. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 5, worin die Olefine die Bestandteil B1) bilden, α-Olefine sind.
  7. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 6, worin das molare Verhältnis der Comonomere B1) zu den Comonomeren B2) im Copolymer B) zwischen 1,5:1 und 1:1,5 liegt.
  8. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 7, worin das Copolymer B neben den Comonomeren B1) und B2) noch bis zu 20 mol-% weiterer, von B1) und B2) verschiedenen Comonomeren, ausgewählt aus Olefinen mit 2 bis 50 Kohlenstoffatomen, Allylpolyglykolethern, C1-C30-Alkyl(meth)-acrylaten, Vinylaromaten oder C1-C20-Alkylvinylethern, sowie Polyisobutenen mit Molekulargewichten von bis zu 5.000 g/mol.
  9. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 8, worin der Bestandteil A) eine Schmelzviskosität V140 von 5 bis 80 mPas aufweist.
  10. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 9, worin der Bestandteil A) ein Molekulargewicht von 1000 bis 10.000 g/mol aufweist.
  11. Brennstofföladditiv nach einem oder mehreren der Ansprüche 1 bis 10, worin der Bestandteil B) ein Molekulargewicht von 1200 bis 200.000 g/mol aufweist.
  12. Brennstoffölzusammensetzung, enthaltend ein Brennstofföl pflanzlichen oder tierischen Ursprungs und ein Brennstofföladditiv gemäß einem oder mehreren der Ansprüche 1 bis 11.
  13. Brennstoffölzusammensetzung nach Anspruch 12, worin das Brennstofföl eine Mischung von Fettsäureestern von C1- bis C4-Alkoholen umfasst.
  14. Brennstoffölzusammensetzung nach Anspruch 13, worin die Fettsäureester Stearinsäuremethylester und Palmitinsäuremethylester in einem Anteil von mindestens 7 Gew.-% umfassen.
  15. Verwendung eines Brennstofföladditivs gemäß einem oder mehreren der Ansprüche 1 bis 11 zur Verbesserung des Kälteverhaltens von Brennstoffölen pflanzlichen oder tierischen Ursprungs.
EP07008847.1A 2006-05-16 2007-05-02 Kaltfliessverbesserer für pflanzliche oder tierische Brennstofföle Active EP1857529B2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006022719A DE102006022719B4 (de) 2006-05-16 2006-05-16 Kaltfließverbesserer für pflanzliche oder tierische Brennstofföle

Publications (3)

Publication Number Publication Date
EP1857529A1 true EP1857529A1 (de) 2007-11-21
EP1857529B1 EP1857529B1 (de) 2015-07-08
EP1857529B2 EP1857529B2 (de) 2019-03-13

Family

ID=38325368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07008847.1A Active EP1857529B2 (de) 2006-05-16 2007-05-02 Kaltfliessverbesserer für pflanzliche oder tierische Brennstofföle

Country Status (6)

Country Link
US (1) US20070266620A1 (de)
EP (1) EP1857529B2 (de)
JP (1) JP2007308700A (de)
KR (1) KR101298048B1 (de)
CA (1) CA2588539A1 (de)
DE (1) DE102006022719B4 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083130A1 (de) 2014-11-27 2016-06-02 Basf Se Copolymerisat und seine verwendung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
WO2017202642A1 (de) 2016-05-24 2017-11-30 Basf Se Copolymerisat und seine verwendung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
WO2018054892A1 (de) 2016-09-21 2018-03-29 Basf Se TERPOLYMERE AUS MALEINSÄUREANHYDRID, ACRYLATEN UND ALPHA-OLEFINEN, INSBESONDERE ZUR VERWENDUNG ALS FLIEßVERBESSERER FÜR ERDÖL
EP3913035A1 (de) 2020-05-20 2021-11-24 Basf Se Neue zusammensetzungen zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
WO2024037904A1 (de) 2022-08-16 2024-02-22 Basf Se Zusammensetzung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10349851B4 (de) 2003-10-25 2008-06-19 Clariant Produkte (Deutschland) Gmbh Kaltfließverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs
DE10357880B4 (de) * 2003-12-11 2008-05-29 Clariant Produkte (Deutschland) Gmbh Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften
JP5271594B2 (ja) * 2008-04-25 2013-08-21 株式会社Adeka バイオディーゼル燃料用低温流動性向上剤
WO2009131024A1 (ja) * 2008-04-25 2009-10-29 株式会社Adeka バイオディーゼル燃料用低温流動性向上剤
JP5271593B2 (ja) * 2008-04-25 2013-08-21 株式会社Adeka バイオディーゼル燃料用低温流動性向上剤
JP5810576B2 (ja) * 2010-04-22 2015-11-11 日油株式会社 バイオディーゼル燃料油用流動性向上剤

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926168A1 (de) * 1997-12-24 1999-06-30 Clariant GmbH Hydroxylgruppenhaltige Ethylencopolymere und Brennstofföle mit verbesserter Schmierwirkung
EP1526167A2 (de) * 2003-10-25 2005-04-27 Clariant GmbH Kaltfliessverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003858A (en) 1958-01-07 1961-10-10 Socony Mobil Oil Co Inc Stabilized distillate fuel oil
DE1914756C3 (de) 1968-04-01 1985-05-15 Exxon Research and Engineering Co., Linden, N.J. Verwendung von Ethylen-Vinylacetat- Mischpolymerisaten für Erdöl-Destillate
US4121026A (en) 1973-03-23 1978-10-17 Petrolite Corporation Copolymers of alpha-olefins and maleic anhydride reacted with amines in the presence of Lewis acids
US4211534A (en) * 1978-05-25 1980-07-08 Exxon Research & Engineering Co. Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils
DE3405843A1 (de) * 1984-02-17 1985-08-29 Bayer Ag, 5090 Leverkusen Copolymere auf basis von maleinsaeureanhydrid und (alpha), (beta)-ungesaettigten verbindungen, ein verfahren zu ihrer herstellung und ihre verwendung als paraffininhibitoren
CA1282240C (en) * 1984-02-21 1991-04-02 Albert Rossi Fuel oil with added polymer of alkyl ester
DE3926992A1 (de) * 1989-08-16 1991-02-21 Hoechst Ag Verwendung von umsetzungsprodukten von alkenylspirobislactonen und aminen als paraffindispergatoren
DE4020640A1 (de) 1990-06-29 1992-01-02 Hoechst Ag Terpolymerisate des ethylens, ihre herstellung und ihre verwendung als additive fuer mineraloeldestillate
DE4040317A1 (de) * 1990-12-17 1992-06-25 Henkel Kgaa Mischungen von fettsaeureniedrigalkylestern mit verbesserter kaeltestabilitaet
DE4042206A1 (de) 1990-12-29 1992-07-02 Hoechst Ag Terpolymerisate des ethylens, ihre herstellung und ihre verwendung als additive fuer mineraloeldestillate
DE4138429A1 (de) * 1991-11-22 1993-05-27 Roehm Gmbh Verfahren zur herstellung von kompositionen mit verbessertem tieftemperaturverhalten
GB9204709D0 (en) 1992-03-03 1992-04-15 Exxon Chemical Patents Inc Additives for oils
GB9222458D0 (en) 1992-10-26 1992-12-09 Exxon Chemical Patents Inc Oil additives and compositions
ES2110124T3 (es) * 1993-01-06 1998-02-01 Clariant Gmbh Termopolimeros a base de anhidridos de acidos carboxilicos alfa,beta-insaturados, de compuestos alfa,beta-insaturados y de polioxialquileneteres de alcoholes inferiores insaturados.
GB9417670D0 (en) * 1994-09-02 1994-10-19 Exxon Chemical Patents Inc Oil additives, compositions and polymers for use therein
DE19620118C1 (de) * 1996-05-18 1997-10-23 Hoechst Ag Terpolymerisate des Ethylens, ihre Herstellung und ihre Verwendung als Additive für Mineralöldestillate
DE19620119C1 (de) * 1996-05-18 1997-10-23 Hoechst Ag Terpolymerisate des Ethylens, ihre Herstellung und ihre Verwendung als Additive für Mineralöldestillate
US6846338B2 (en) 1997-07-08 2005-01-25 Clariant Gmbh Fuel oils based on middle distillates and copolymers of ethylene and unsaturated carboxylic esters
GB9716533D0 (en) 1997-08-05 1997-10-08 Exxon Chemical Patents Inc Additives for oil compositions
WO1999027037A1 (de) 1997-11-21 1999-06-03 Rohmax Additives Gmbh Additiv für biodiesel und biobrennstofföle
DE19754555A1 (de) 1997-12-09 1999-06-24 Clariant Gmbh Verfahren zur Herstellung von Ethylen-Mischpolymerisaten und deren Verwendung als Zusatz zu Mineralöl und Mineralöldestillaten
FR2802940B1 (fr) 1999-12-28 2003-11-07 Elf Antar France Composition d'additifs multifonctionnels d'operabilite a froid des distillats moyens
AU2002309037A1 (en) 2001-05-08 2002-11-18 Sanyo Chemical Industries, Ltd. Fluidity improver and fuel oil composition
CA2431746C (en) * 2002-07-09 2011-11-01 Clariant Gmbh Cold flow improvers for fuel oils of vegetable or animal origin
DE10260714A1 (de) 2002-12-23 2004-07-08 Clariant Gmbh Brennstofföle mit verbesserten Kälteeigenschaften
ATE552324T1 (de) * 2003-06-23 2012-04-15 Infineum Int Ltd Ölzusammensetzungen
PL1491614T3 (pl) * 2003-06-23 2012-09-28 Infineum Int Ltd Kompozycje olejów
DE10349850C5 (de) * 2003-10-25 2011-12-08 Clariant Produkte (Deutschland) Gmbh Kaltfließverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs
DE10357878C5 (de) * 2003-12-11 2013-07-25 Clariant Produkte (Deutschland) Gmbh Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften
DE10357880B4 (de) * 2003-12-11 2008-05-29 Clariant Produkte (Deutschland) Gmbh Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften
DE10357877B4 (de) * 2003-12-11 2008-05-29 Clariant Produkte (Deutschland) Gmbh Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften
DE102006022718B4 (de) * 2006-05-16 2008-10-02 Clariant International Limited Zusammensetzung von Brennstoffölen
DE102006022720B4 (de) * 2006-05-16 2008-10-02 Clariant International Limited Kaltfließverbesserer für pflanzliche oder tierische Brennstofföle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926168A1 (de) * 1997-12-24 1999-06-30 Clariant GmbH Hydroxylgruppenhaltige Ethylencopolymere und Brennstofföle mit verbesserter Schmierwirkung
EP1526167A2 (de) * 2003-10-25 2005-04-27 Clariant GmbH Kaltfliessverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083130A1 (de) 2014-11-27 2016-06-02 Basf Se Copolymerisat und seine verwendung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
US10557096B2 (en) 2014-11-27 2020-02-11 Basf Se Copolymer and use thereof for reducing crystallization of paraffin crystals in fuels
WO2017202642A1 (de) 2016-05-24 2017-11-30 Basf Se Copolymerisat und seine verwendung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
US11060044B2 (en) 2016-05-24 2021-07-13 Basf Se Copolymer and use thereof for reducing crystallization of paraffin crystals in fuels
WO2018054892A1 (de) 2016-09-21 2018-03-29 Basf Se TERPOLYMERE AUS MALEINSÄUREANHYDRID, ACRYLATEN UND ALPHA-OLEFINEN, INSBESONDERE ZUR VERWENDUNG ALS FLIEßVERBESSERER FÜR ERDÖL
EP3913035A1 (de) 2020-05-20 2021-11-24 Basf Se Neue zusammensetzungen zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
WO2024037904A1 (de) 2022-08-16 2024-02-22 Basf Se Zusammensetzung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen

Also Published As

Publication number Publication date
JP2007308700A (ja) 2007-11-29
DE102006022719B4 (de) 2008-10-02
DE102006022719A1 (de) 2007-11-22
EP1857529B2 (de) 2019-03-13
KR20070111366A (ko) 2007-11-21
EP1857529B1 (de) 2015-07-08
KR101298048B1 (ko) 2013-08-20
US20070266620A1 (en) 2007-11-22
CA2588539A1 (en) 2007-11-16

Similar Documents

Publication Publication Date Title
EP1526167B1 (de) Kaltfliessverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs
EP1857529B1 (de) Kaltfliessverbesserer für pflanzliche oder tierische Brennstofföle
DE102006022718B4 (de) Zusammensetzung von Brennstoffölen
EP1380635B1 (de) Kaltfliessverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs
EP1541663B1 (de) Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften
EP1541664B1 (de) Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften
EP1526168B1 (de) Kaltfliessverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs
DE102006022720B4 (de) Kaltfließverbesserer für pflanzliche oder tierische Brennstofföle
EP1808449B1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymere auf Basis von Ethylen-Vinylester-Copolymeren
EP1541662B1 (de) Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften
EP1674554A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymer auf Basis von Ethylen-Vinylacetat-Copolymeren
EP1808450A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymere auf Basis von Ethylen-Vinylester-Copolymeren
DE102006022698B4 (de) Zusammensetzung von Brennstoffölen
EP1935967A1 (de) Pour Point Verbesserer für pflanzliche oder tierische Brennstofföle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080521

17Q First examination report despatched

Effective date: 20080624

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT FINANCE (BVI) LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014025

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CLARIANT INTERNATIONAL LTD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007014025

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: TOTAL MARKETING SERVICES

Effective date: 20160406

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CLARIANT INTERNATIONAL LTD

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

R26 Opposition filed (corrected)

Opponent name: TOTAL MARKETING SERVICES

Effective date: 20160406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20190313

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502007014025

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210805 AND 20210811

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230523

Year of fee payment: 17

Ref country code: DE

Payment date: 20230530

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 17