EP1848896A1 - Procede de stabilisation d'un objet en sustentation magnetique - Google Patents

Procede de stabilisation d'un objet en sustentation magnetique

Info

Publication number
EP1848896A1
EP1848896A1 EP06709318A EP06709318A EP1848896A1 EP 1848896 A1 EP1848896 A1 EP 1848896A1 EP 06709318 A EP06709318 A EP 06709318A EP 06709318 A EP06709318 A EP 06709318A EP 1848896 A1 EP1848896 A1 EP 1848896A1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
magnetic
flywheel
subjected
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06709318A
Other languages
German (de)
English (en)
Inventor
Michel Saint-Mleux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Levisys SAS
Original Assignee
Levisys SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Levisys SAS filed Critical Levisys SAS
Publication of EP1848896A1 publication Critical patent/EP1848896A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a method for stabilizing an object in magnetic levitation, as well as to a magnetic levitation device.
  • Magnetic fields can be used to generate forces in various actuators, allowing them to move without friction and operate without noise.
  • Such an actuating means is used when the conventional mechanical systems reach their limits and are no longer suitable. It is more particularly applications that require very high speeds of rotation and for which it is in particular necessary to minimize friction losses, and / or avoid wear, and / or for which it is impossible to use lubricants. Examples of applications for which these advantages are particularly sought are, inter alia, the flywheels which constitute devices for storing energy in the form of kinetic energy in a wheel rotating several thousand revolutions per minute. minute, and the magnetic levitation trains for which only the friction of the air remain and which can reach speeds much higher than 400 km / h.
  • Such a material unlike a ferromagnetic material which has permanent magnetization, develops a magnetic field in response to an external magnetic field to which it is subjected.
  • This induced magnetic field tends to oppose the external magnetic field while remaining always antiparallel to it and, consequently, permanently opposes the field variations caused by the object in lift when this one deviates from its balance position. There is therefore a restoring force that keeps the object stable.
  • This solution is however difficult to implement because these materials must generally be cooled to a very low temperature in liquid nitrogen to reach the state of superconductivity. Therefore, this method, although satisfactory from a theoretical point of view, remains particularly difficult to put into practice and requires cryogenic means very energy-consuming.
  • a second solution is to use electromagnets. Indeed, in the same way that a diamagnetic material permanently develops a magnetic field opposite to the external magnetic field to which it is subjected, it is possible to modify the field developed by an electromagnet so that it is opposed to a deviation of the object in lift relative to the desired equilibrium position. Earnshaw's law is therefore not violated, magnetic levitation remaining impossible if the electromagnets are traversed by constant electric currents and thus develop stable magnetic fields, but bypassed by adjusting the magnetic fields developed by the electromagnets which are therefore variable as well as the resulting directions of these fields.
  • a third solution is to use alternating fields generated by coils. Field variations generate induced currents, called eddy currents, in a conductive object, creating a repulsive force that may be sufficient to lift it.
  • These second and third solutions have major drawbacks because of the electrical power required to generate sufficiently intense magnetic fields using electromagnets and coils.
  • the need to constantly monitor the magnetic field developed by the electromagnets requires the establishment of a complex control system, also consuming electricity, which must have an extremely short response time. This constraint is difficult to achieve because of transfer functions of such a generally non-linear system. Such a mode of levitation is said to be active, as opposed to a lift using permanent magnets, which do not consume additional energy, and which is therefore called passive levitation.
  • Inertia flywheels are used to store energy in kinetic form in a rotating flywheel whose axis is held by magnetic bearings, in order to restore it in case of power failure or irregular supply.
  • part of this current is used to drive the flywheel by means of a motor-generator and maintain its speed to several thousand Rotations per minute.
  • the speed of the flywheel is transformed, thanks to the same engine-generator then operating in generator mode, in electricity. This ensures a constant power supply while waiting for an increase in electricity production.
  • the steering wheel lift In order to optimize the storage of energy, to minimize friction losses, and to restore it with maximum efficiency over the longest possible time, the steering wheel lift must be very precisely controlled and must consume the less electric current possible to control this lift. As explained above, most of the current solutions do not achieve these objectives, a lift using permanent magnets, thus not consuming electrical energy, is impossible because of Earnshaw's law, while that an active levitation requires in particular a too important electrical energy. This problem can also be applied to magnetic levitation trains, where the cost of operation, in addition to an already high installation cost, is excessive compared to the expected profitability, that the lift is ensured by means of coils requiring a very large power supply, or that it uses superconductors to generally be maintained in a bath of liquid nitrogen.
  • the object of the present invention is to overcome the drawbacks mentioned above, and for this purpose consists in a method of stabilizing an object in magnetic levitation subjected to at least one constant magnetic field, said object being stable in at least one direction and unstable according to at least one other direction, characterized in that it comprises a stabilization step, repeated as often as necessary, of applying an electric current through at least one conductive element subjected to a secondary magnetic field so as to generate a force of Compensatory laplace in the direction of instability.
  • the magnetic field allowing the levitation of the object can be generated by one or more sources of magnetic field according to the geometry of the object. Indeed, the use of at least two magnetic sources to create a magnetic field in the desired direction may be necessary to enhance the stability of the object.
  • the stabilization step aims at keeping the object between an upper bound and a lower bound around a desired mean equilibrium position. Indeed, depending on the desired degree of stability it will be necessary to exert a force of Laplace more or less important. The more precisely the balance has to be maintained, the more it is necessary to compensate for the instabilities of the system by applying larger compensating forces.
  • it will be possible to take a Laplace force providing approximately 10% of the total lift required to lift the object, the remaining 90% being ensured by the permanent magnets.
  • the method according to the invention comprises a step of detecting the position of the object able to control and / or interrupt the passage of the electric current through the conductive element.
  • the electric current is applied only when necessary to return the object to its middle equilibrium position, which further reduces consumption.
  • the present invention also relates to a magnetic levitation device comprising a levitating object subjected to at least one constant magnetic field in interaction with corresponding magnetization means of the levite object, characterized in that it comprises: on the one hand, secondary magnetic elements capable of generating a secondary magnetic field, and on the other hand, at least one conductive element subjected to the secondary magnetic field, so that a compensating Laplace force is generated on the levite object when the conductive element is traversed by an electric current.
  • corresponding magnetization means any material sensitive to a surrounding magnetic field. Such materials are of course the magnets, reacting to another magnet, but also the ferromagnetic materials, not magnetic in themselves but oriented magnetically when placed in a magnetic field.
  • the constant magnetic field is generated by at least one field source, the magnetic field source and the corresponding magnetization means being interchangeable in such a way that the field source is located on the object and interacts with an external corresponding magnetization means.
  • the magnetic field develops, with the corresponding magnetization means, an attraction force exerted on It is also possible for the magnetic field to develop, with the corresponding magnetization means, attractive forces and repulsion forces acting on the levite object.
  • the magnetic field is generated by at least two magnetic field sources, the magnetic field sources and the corresponding magnetization means of the levite object having a parallel magnetic orientation and in the same direction.
  • the magnetic field sources for example, in the case of a symmetry of revolution system, it will be necessary to have two concentric permanent magnet rings in interaction, one of the rings being secured to one stator while the other ring is integral with the levite object, for example a rotor.
  • the conductive element is a coil.
  • a silver conductive element will be preferred, this metal being one of the best known conductors. It may also be envisaged to use carbon nanotubes.
  • the intensity of the developed Laplace force can vary according to a shape ratio of the coil, this shape ratio being preferably defined so as to make the maximum Laplace force in the direction contributing to the stability for a minimum electric current in the coil.
  • the coil is wide and thin.
  • the magnetic field sources and / or the complementary magnetization means and / or the secondary magnetic elements are permanent magnets.
  • the permanent magnets are magnets based on neodymium boron iron.
  • the magnets are arranged in a so-called Halbach configuration, so as to obtain both a maximum main field and minimum parasitic fields.
  • the secondary magnetic elements interact with at least one ferromagnetic material shaped so as to allow the reorientation of the secondary magnetic field.
  • the device comprises at least one sensor capable of controlling or interrupting the passage of current through the conductive element as a function of the position of the levitated object.
  • the conductive element can also be controlled by an all-or-nothing, proportional, integral or derivative type servocontrol circuit, or any combination thereof depending on the position of the levitated object.
  • the senor comprises a point integral with the levite object and able to come into contact with a switch to close it.
  • Figure 1 is a schematic representation in longitudinal section of a first embodiment of an axially stabilized flywheel according to the method of the invention.
  • Figure 2 is a schematic representation in longitudinal section of a second embodiment of a flywheel stabilized radially according to the method of the invention.
  • Figure 3 is a schematic representation in longitudinal section of a third embodiment of an axially stabilized flywheel according to the method of the invention.
  • Figure 4 is a schematic representation in longitudinal section of a fourth embodiment of a stabilized flywheel according to the invention, and using soft iron to redirect the magnetic fields.
  • FIG. 5 is a sectional top view of the flywheel of FIG. 4.
  • Figures 6 and 7 show two variants of magnetic field reorientation using soft iron.
  • Figure 8 is a schematic representation of a first embodiment of an instability detector.
  • Figure 9 is a schematic representation of a second embodiment of an instability detector.
  • FIG. 10 is a view from above of the sensor of FIG. 9.
  • Figure 11 is a schematic representation of an alternative application of the stabilization method according to the invention to a magnetic levitation train.
  • An flywheel 1 as shown in Figure 1, comprises a cylindrical flywheel 2 magnetically levitating between a lower magnetic source 3 and a higher magnetic source 4.
  • Each source 3, 4 comprises respectively a circular magnet 5, 6 facing a corresponding circular magnet 7, 8 of the flywheel 2.
  • the flywheel 2 has a lower central cavity 9 and a central upper cavity.
  • the lower cavity 9 houses two pairs of additional magnets 11a, 11b, 12a, 12b superimposed, the radial magnetic field developed by one of the two pairs of additional magnets 11a, 11b, 12a, 12b being opposite to the field developed by the other pair of additional magnets 12a, 12b, 11a, 11b.
  • the upper cavity 10 houses two pairs of additional magnets 13a, 13b, 14a, 14b superimposed.
  • the lower cavity 9 and the upper cavity 10 are each intended to receive respectively a set of conducting wires 15a, 15b, 15c, 16a, 16b, 16c integral with the corresponding magnetic source 3, 4 and arranged perpendicularly to the axis of the flywheel 2
  • Each set of lead wires 15a, 15b, 15c, 16a, 16b, 16c is connected to a power supply circuit (not shown).
  • the orientation of the poles of the circular magnets 5 to 8 is chosen so that the circular magnets 5, 7, on the one hand, and 6, 8, on the other hand respectively develop between them a magnetic attraction force.
  • the powers of the circular magnets 5 to 8 are chosen so that the force of attraction tending to bring the steering wheel 2 closer to the upper source 4 is in equilibrium with the force of attraction tending to bring the steering wheel 2 closer to the lower source. 3 increased by the force exerted by the gravity (symbolized by an arrow), that is to say the weight of the steering wheel 2.
  • the magnets 5, 6 exert on the flywheel 2 a significant centering force, these tending to align the magnetic axis of the corresponding magnets 7, 8 with theirs. This centering force is sufficient to stabilize the steering wheel radially.
  • the flywheel 2 in lift between the lower source 3 and the upper source 4 can not be stable. Indeed, the centering force of magnets 5 to 8 arranged in attraction is particularly important, it gives the steering wheel 2 a radial stability and imposes axial instability. Thus, in the absence of any complementary field regulation, the flywheel 2 naturally tends to come into contact with the lower magnetic source 3 or the upper magnetic source 4. The axial stability is ensured by the interactions between each of the additional magnets 11a. at 14b and sets of lead wires 15a to 16c correspondents.
  • each of the sets of conducting wires 15a to 16c traversed by an electric current interact with the corresponding additional magnets 11a to 14b.
  • the orientation of the additional magnet pairs 11a to 14b and the direction of the electric current flowing through the conducting wires 15a to 16c are chosen so that when the flywheel 2 approaches the lower source 3, the Laplace force generated is directed axially and tends to move the flywheel 2 from the lower source 3.
  • the generated Laplace force when the flywheel 2 approaches the upper source 4, the generated Laplace force must be directed axially and tend to move the steering wheel 2 away. of the upper source 4.
  • the steering wheel 2 when the steering wheel 2 is at equilibrium, one half of the conducting wires 15a to 16c is subjected to the radial magnetic field of the additional magnet pairs 11a, 11b, 14a, 14b, while another half of the conducting wires 15a to 16c is subjected to the radial magnetic field of the pairs of additional magnets 12a, 12b, 13a, 13b, of the same direction but in the opposite direction to the field of the pairs of pairs.
  • additional elements 11a, 11b, 14a, 14b The force of Laplace resulting from this double influence is therefore null.
  • the flywheel 2 is axially unstable and tends to approach either the lower source 3 or the upper source 4.
  • the conductors son 15a to 15c are then mainly subjected to the magnetic field of the pair of additional magnets 12a, 12b, while the conductive wires 16a to 16c are mainly subjected to the magnetic field of the pair of additional magnets 13a, 13b of the same magnetic orientation as the pair of additional magnets 12a, 12b.
  • the direction of the electric current flowing through the conductor wires 15a to 16c is chosen so that a Laplace force is exerted on the steering wheel 2 tending to move the steering wheel 2 away from the lower source 3 to the upper source 4. It should be noted that this case is also applicable to the steering wheel before it is raised, the Laplace force thus created participating in its take-off from the lower magnetic source 3.
  • the set of conducting wires 15a to 15c is mainly subjected to the field of the pair of additional magnets 11a, 11b while the conducting wires 16a to 16c are mainly subject to the field of the pair of additional magnets 14a, 14b of the same magnetic orientation.
  • the magnetic orientation of the pairs 11a, 11b and 14a, 14b being opposite to that of the pairs 12a, 12b, on the one hand, and 13a, 13b, on the other hand, the resulting Laplace force therefore has an opposite direction and tends moving the flywheel 2 away from the upper source 4 to return it to its initial unstable equilibrium position.
  • the flywheel 2 is stabilized axially without using any sensor or control system of the electric current and oscillates on both sides of a position of average equilibrium.
  • the intensity of the electric current needed to stabilize a flywheel 2 having a mass of 2.4 kg is only about 15 milliamps.
  • An flywheel 20 as shown in FIG. 2, comprises a flywheel 21 distinguished from the steering wheel 2 mainly in that it is subjected to a lower magnetic source 3a comprising a circular magnet 5a interacting with a circular magnet 7a. corresponding steering wheel 21, so as to develop between them a repulsive force opposing the fall of the steering wheel 21 by gravity (symbolized by an arrow).
  • the flywheel 21 is axially stable but has a radial instability, the lower magnetic source 3 tending to push the flywheel laterally 21. As a result, the flywheel 21 must be stabilized. radially thanks to the method according to the invention.
  • the flywheel 21 comprises a peripheral peripheral groove 22 comprising adjacent upper and lower circular and adjacent circular upper and lower magnets 23, 24, said lateral groove 22 being intended to receive a set of conducting wires 27a, 27b 27c forming turns of a coil 27 traversed by a constant electric current.
  • the additional magnets 23 and 25 are located opposite one another and have identical magnetic orientation.
  • the additional magnets 24 and 26 are also located opposite one another and have a magnetic orientation identical but opposite to the magnetic orientation of the additional magnets 23, 25.
  • the coil 27 has as many turns subjected to the magnetic field of the additional magnets 23, 25 as the turns subjected to the magnetic field of the additional magnets 24, 26, and the resulting Laplace force is therefore zero.
  • the coil 27 is, in the direction in which the flywheel 21 deviates and regardless of this direction, mainly subject to the magnetic field of the additional magnets 24, 26, while in the diametrically opposite, said coil 27 is mainly subjected to the magnetic field of the additional magnets 23, 25 opposite that of the additional magnets 24, 26.
  • the direction of the current flowing through the coil 27 in the direction in which the flywheel 21 deviates, being opposed to that of the diametrically opposed direction, the Laplace force generated on either side of the steering wheel 21 has a direction and an identical direction.
  • the direction of the current flowing through the coil 27 and the orientation of the additional magnets 23 to 26 are chosen so that the Laplace force acting in the direction in which the flywheel 21 deviates is centripetal, thus recalling the steering wheel. 21 to its position of equilibrium, the corresponding Laplace force exerted diametrically opposite being then centrifugal.
  • the flywheel 21 is stabilized radially and oscillates about its axis.
  • FIG. 3 shows a third embodiment of a stabilized flywheel according to the method of the invention.
  • This flywheel 30 comprises a cylindrical flywheel 31 having an axis 32 and magnetically levitating between a lower magnetic source 33 and an upper magnetic source 34.
  • Each magnetic source comprises a magnet 35, 36 annular through which the axis 32 passes, the magnets 35, 36 having an axial magnetic orientation and each interacting with a corresponding concentric magnet 37, 38 located on the axis 32 of the flywheel 31 at the same height as said magnets 35, 36.
  • the orientation of the magnets 35 to 38 is chosen to be identical, the magnets 35, 37, on the one hand, and 36, 38, on the other hand, developing respectively between them a magnetic force operating a centering of the axis 32.
  • flying 31 is therefore radially stable and has an axial instability stabilized by the method according to the invention.
  • the flywheel 31 has an upper peripheral groove 39 housing two outer superposed superimposed magnets 40,41 and two additional inner magnets 42, 43 superimposed, said groove 39 being intended to receive a set of conducting wires 44a, 44b, 44c forming turns of a coil 44 traversed by a constant electric current.
  • the additional magnets 40 and 42 are concentric and have the same magnetic orientation.
  • the additional magnets 41 and 43 are also concentric and have an identical magnetic orientation but opposite to the magnetic orientation of the additional magnets 40, 42.
  • the coil 44 has as many turns subjected to the magnetic field of the additional magnets 40, 42 as the turns subjected to the magnetic field of the additional magnets 41, 43, and the resulting Laplace force is therefore zero.
  • the flywheel 30 deviates axially and approaches the lower magnetic source 33, the coil 44 is then mainly subjected to the magnetic field of the additional magnets 41, 43.
  • the orientation of the additional magnets 41, 43 and the direction of the electric current traversing the coil 44 are chosen so that the generated Laplace force tends to move the flywheel 30 from the lower source 33 and back to its initial unstable equilibrium position.
  • the coil 44 is then mainly subjected to the magnetic field of the additional magnets 40, 42.
  • the orientation of the additional magnets 40, 42 being opposite to the orientation magnets 41, 43, the generated Laplace force tends to move the flywheel 30 away from the upper source 34 and back to its initial unstable equilibrium position.
  • the flywheel 30 is axially stabilized and oscillates around a position of average equilibrium.
  • a flywheel 50 as shown in Figure 4, is an exemplary embodiment.
  • This flywheel 50 comprises a cylindrical flywheel 52 magnetically levitating between a lower magnetic source 53 and an upper magnetic source 54.
  • Each magnetic source 53, 54 comprises respectively a circular magnet 55, 56 facing a corresponding circular magnet 57, 58 of the flywheel 52.
  • the flywheel 52 has a central annular groove 59 whose center houses an additional magnet 60 developing an axial magnetic field, said groove 59 having walls covered with a soft iron layer 61 to redirect the magnetic field of the magnet additional 60 in a radial direction.
  • a soft iron layer 61 to redirect the magnetic field of the magnet additional 60 in a radial direction.
  • the groove 59 is intended to receive a set of conductive wires 62a, 62b, 62c forming a coil 62 integral with the upper magnetic source 64, the coil 62 having an axis which coincides with the axis of the flywheel 52.
  • the coil 62 is connected to a power supply circuit (not shown).
  • the magnetic orientation of the magnets 55 to 58 is chosen so that the magnets 55, 57, on the one hand, and 56, 58, on the other hand, respectively develop between them a magnetic force of attraction.
  • the powers of the magnets 55 to 58 are chosen so that the force of attraction tending to bring the steering wheel 52 closer to the upper source 54 is in equilibrium with the force of attraction tending to bring the steering wheel 52 closer to the lower source 53 increased by the force exerted by the gravity (symbolized by an arrow), that is to say the weight of the steering wheel 52.
  • the axial stability is ensured by the interactions between the coil 62 and the magnetic field developed by the additional magnet 60 by generating a complementary Laplace force.
  • FIG. 8 represents a mechanical sensor 100 comprising a tip 101 having an extremely fine and solid tip ending in a ball of very small diameter (less than 1 mm) made of very hard material. , said tip being intended to be fixed in the center of the flywheel 52.
  • a switch 102 comprising two blades 103, 104 conductive, the latter being fixed and integral with the frame of the flywheel. These two blades 103, 104 are connected to the power supply. More specifically, the blade 103 is intended to be in contact with the tip 101 and comprises for this purpose an extremely hard plate 105 ruby.
  • the flywheel 52 When, under the effect of the Laplace force, the flywheel 52 approaches the upper source 53, the tip exerts a very weak force (a few hundred milligrams) against the plate 105 and pushes the blade 103 into contact with the blade 104, which closes the electrical circuit and allows the passage of the current. This has the effect of removing the Laplace force and the flywheel 52 then descends and moves away from the upper source 54, which distances the tip 101 and reopens the electrical circuit, with the effect of restoring the Laplace force. The same applies to a second sensor for the lower source 53.
  • a very weak force a few hundred milligrams
  • This type of operation causes the flywheel 52 to oscillate on a very small amplitude on either side of the metastable equilibrium point of Eamshaw or very closely from this point, which makes it possible to limit the power of levitation to very low values, given the mass of the steering wheel 52.
  • Figures 9 and 10 show a sensor 110 comprising a lower magnetic loop 111 and an upper magnetic loop 112 respectively above and below the passage of two magnets 114, 115 integral with the flywheel 52 and may have a magnetic orientation opposite. It is of course possible to have at regular intervals several magnets similar to the magnets 114, 115 on the periphery of the flywheel 52, possibly alternating their magnetic orientations.
  • the lower magnetic loops 111 and 112 are subjected to an alternating field inducing alternating electric currents in opposite phase in said loops 111, 112. These induced currents are added by a comparator 116 and the resulting current is directed to the coil 62 to feed it.
  • the flywheel 52 approaches the upper source 54, the upper magnetic loop 112 is subjected to a stronger magnetic field than the lower magnetic loop 111, and thus generates a greater induced electromotive force, the sum of the electromotive forces induced is therefore in favor of the upper loop 112 and the coil 62 is powered by a current flowing in the corresponding direction.
  • the flywheel 52 approaches the lower source 53
  • the upper magnetic loop 112 is subjected to a weaker magnetic field than the lower magnetic loop 111, and thus generates a less intense induced electromotive force
  • the sum of the forces induced electromotrices is therefore in favor of the lower loop 111 and the coil 62 is powered by a current flowing in the opposite direction of the previous one and generates an inverted Laplace force.
  • Figure 11 shows an alternative application of the method according to the invention to a train 200 with magnetic levitation.
  • This train 200 is levitated between a lower rail 201 and an upper rail 202 by means of magnets 203, 204 each cooperating with a magnet 205, 206 of the train so that the magnet 203 of the lower rail 201 develops with the magnet 205 corresponding to the train 200 a repulsive force, while the magnet 204 of the upper rail 202 develops with the corresponding magnet 206 of the train 200 an attractive force.
  • the train is unstable laterally and must be stabilized using the method of the invention.
  • the train 200 is equipped with side rails 207 of soft iron comprising an additional magnet 208 having a vertical magnetization.
  • This rail 207 is intended to receive a fixed complementary rail 209, secured to a track 210 along which the train moves.
  • This complementary rail 209 is traversed by conductive wires 211 supplied with electric current and subjected to the magnetic field developed by the additional magnet 208. It is therefore possible to generate a Laplace force acting on the train 200 and to correct its instabilities magnetic.
  • one of the main advantages of the method and device that is the subject of the invention lies in the fact that it does not function by modifying the magnetic lift and positioning fields and that the position of the levite object lies at the metastable equilibrium point of Eamshaw or very close to this point, which makes it possible to limit the power of levitation to extremely low values, given the importance of the mass of the levite object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

La présente invention se rapporte, d'une part, à un procédé de stabilisation d'un objet (2, 21, 31, 32, 52, 200) en sustentation magnétique soumis à un champ magnétique constant, ledit objet étant stable selon au moins une direction et instable selon au moins une autre direction, caractérisé en ce qu'il comprend une étape de stabilisation, répétée aussi souvent que nécessaire, consistant à appliquer un courant électrique à travers au moins un élément conducteur (15a à 16c, 27, 44, 62, 211) soumis à un champ magnétique secondaire de manière à générer une force de Laplace compensatrice dans la direction d'instabilité, et d'autre part, à un dispositif (1, 20, 30, 50) à sustentation magnétique stabilisé par le procédé selon l'invention.

Description

Procédé de stabilisation d'un objet en sustentation magnétique
La présente invention se rapporte à un procédé pour stabiliser un objet en sustentation magnétique, ainsi qu'à un dispositif à sustentation magnétique.
Les champs magnétiques peuvent être utilisés pour générer des forces dans divers actionneurs dont ils permettent un mouvement sans frottement et un fonctionnement sans bruit. Un tel moyen d'actionnement est utilisé lorsque les systèmes mécaniques classiques atteignent leurs limites et ne sont plus adaptés. Il s'agit plus particulièrement d'applications qui nécessitent de très hautes vitesses de rotation et pour lesquelles il est notamment nécessaire de minimiser les pertes par frottements, et/ou éviter l'usure, et/ou pour lesquelles il est impossible d'employer des lubrifiants. Des exemples d'applications pour lesquels ces avantages sont tout particulièrement recherchés sont, entre autres, les volants d'inertie qui constituent des dispositifs permettant de stocker de l'énergie sous forme d'énergie cinétique dans une roue tournant à plusieurs milliers de tours par minute, et les trains à sustentation magnétique pour lesquels seuls les frottements de l'air subsistent et qui peuvent atteindre des vitesses très supérieures à 400 km/h.
La plupart des actionneurs magnétiques actuellement disponibles n'utilisent la sustentation magnétique que suivant un degré de liberté. C'est le cas d'un moteur électrique dans lequel seules les forces magnétiques permettant l'entraînement du rotor sont utilisées.
Dans le cas de la plupart de ces applications, il est particulièrement souhaitable de réduire au maximum les frottements existant de manière à diminuer les pertes d'énergie et la pollution sonore qu'ils engendrent, et il s'avère généralement nécessaire pour cela de devoir contrôler magnétiquement un objet selon plusieurs degrés de liberté.
Or, lorsque l'on cherche à maintenir un objet en sustentation totale par l'utilisation de champs magnétiques, c'est-à-dire présentant les six degrés de liberté dans l'espace, sa stabilisation se révèle particulièrement difficile. En 1839, le scientifique S. Eamshaw a démontré qu'il était impossible de stabiliser une particule magnétiquement polarisée dans un champ statique. De ce fait, il est impossible de stabiliser un corps ferromagnétique en sustentation magnétique à l'aide d'aimants permanents ou d'éléments ferromagnétiques. Plusieurs solutions permettant de contourner la loi d'Earnshaw ont toutefois été imaginées et sont actuellement utilisées pour stabiliser des objets en sustentation magnétique. Une première solution consiste à utiliser un matériau diamagnétique. Un tel matériau, contrairement à un matériau ferromagnétique qui possède une aimantation permanente, développe un champ magnétique en réaction à un champ magnétique extérieur auquel il est soumis. Ce champ magnétique induit tend à s'opposer au champ magnétique extérieur en lui restant toujours anti-parallèle et, par conséquent, s'oppose en permanence aux variations de champs causées par l'objet en sustentation quand celui-ci s'écarte de sa position d'équilibre. Il existe donc une force de rappel qui maintient l'objet stable. C'est le cas de la sustentation magnétique à l'aide de supraconducteurs. Cette solution est toutefois difficile à mettre en œuvre car ces matériaux doivent généralement être refroidis à très basse température dans de l'azote liquide pour pouvoir atteindre l'état de supraconductivité. Par conséquent, cette méthode, bien que satisfaisante d'un point de vue théorique, demeure particulièrement délicate à mettre en pratique et nécessite des moyens cryogéniques très consommateurs en énergie. Une deuxième solution consiste à utiliser des électroaimants. En effet, de la même manière qu'un matériau diamagnétique développe en permanence un champ magnétique opposé au champ magnétique extérieur auquel il est soumis, il est possible de modifier le champ développé par un électroaimant de manière à ce qu'il s'oppose à un écart de l'objet en sustentation par rapport à la position d'équilibre souhaitée. La loi d'Earnshaw n'est donc pas violée, la sustentation magnétique restant impossible si les électroaimants sont parcourus par des courants électriques constants et développent donc des champs magnétiques stables, mais contournée en ajustant les champs magnétiques développés par les électroaimants qui sont donc variables ainsi que les directions résultantes de ces champs.
Une troisième solution consiste à utiliser des champs alternatifs générés par des bobines. Les variations de champs génèrent des courants induits, appelés courants de Foucault, dans un objet conducteur, ceux-ci créant alors une force de répulsion qui peut être suffisante pour le soulever. Ces deuxième et troisième solutions présentent toutefois des inconvénients majeurs en raison de la puissance électrique nécessaire pour générer des champs magnétiques suffisamment intenses à l'aide d'électroaimants et de bobines. Par ailleurs, la nécessité de contrôler en permanence le champ magnétique développé par les électroaimants exige la mise en place d'un système de commande complexe, également consommateur de courant électrique, qui doit posséder un temps de réponse extrêmement court. Cette contrainte est difficile à atteindre en raison de fonctions de transferts d'un tel système généralement non linéaires. Un tel mode de sustentation est dit actif, par opposition à une sustentation utilisant des aimants permanents, qui ne consomment pas d'énergie supplémentaire, et qui est donc appelée sustentation passive.
Il convient de mentionner une quatrième solution qui permet de maintenir un objet possédant une aimantation permanente en sustentation dans un champ également permanent. Cet objet est commercialisé sous la marque LEVITRON® et se présente sous la forme d'une toupie apte à se maintenir en sustentation dans un champ magnétique stable lorsqu'elle est mise en rotation. Contrairement aux apparences, cet objet ne viole pas la loi d'Earnshaw. En effet, l'instabilité inhérente à tout système en sustentation dans un champ stable est toujours présente, celle-ci étant toutefois compensée par un effet gyroscopique stabilisateur provenant de la rotation de la toupie. L'équilibre ainsi obtenu est cependant relativement instable et les conditions de stabilité sont particulièrement strictes. Ainsi, la masse de la toupie doit être très précisément ajustée, de même que sa vitesse de rotation et la direction du champ magnétique par rapport à la direction de la gravité.
Pour pallier plusieurs de ces inconvénients, il a été développé une cinquième solution reposant sur un système mixte utilisant à la fois des aimants permanents et des électroaimants, et qui permet ainsi de réduire légèrement la consommation électrique du système. Une telle sustentation est dite partiellement passive. Ainsi, on connaît une sustentation partiellement passive comprenant un rotor cylindrique en sustentation entre deux aimants permanents aux terres rares développant un champ de 1 ,1 teslas et assurant uniquement une stabilité radiale. En l'absence de stabilisation complémentaire, le système présente donc une forte instabilité axiale. Pour ce faire, chaque aimant permanent est associé à un électroaimant asservi afin d'assurer la stabilisation axiale du rotor autour d'une position d'équilibre moyen. L'utilisation d'aimants permanents permet, d'une part, d'avoir une fonction de transfert du système linéaire, et d'autre part, d'assurer un centrage par réluctance même si les électroaimants ne sont pas alimentés, ces derniers n'étant utilisés que pour renforcer ou diminuer le champ permanent appliqué, et déplacer ainsi l'équilibre des forces s'appliquant sur le rotor. La consommation électrique d'un tel système reste toutefois relativement élevée et nécessite toujours la mise en place d'un capteur associé à un système d'asservissement complexe et rapide.
En raison de ces contraintes techniques et économiques, cette technologie n'est utilisée que dans le cadre d'applications très spécifiques pour lequel le coût énergique n'entre presque pas en considération.
Une des principales applications actuelles de la sustentation magnétique sont les paliers magnétiques, notamment pour volants d'inertie et autres dispositifs en rotation. Les volants d'inertie sont utilisés pour stocker de l'énergie sous forme cinétique dans un volant en rotation dont l'axe est maintenu par des paliers magnétiques, afin de la restituer ensuite en cas de coupure de courant ou d'alimentation irrégulière. Lorsque la production électrique d'une éolienne, par exemple, est suffisante pour alimenter un système électrique, une partie de ce courant est utilisée pour entraîner le volant d'inertie au moyen d'un moteur-générateur et maintenir sa vitesse à plusieurs milliers de tours par minute. En cas de baisse de la production d'électricité par l'éolienne, la vitesse du volant d'inertie est transformée, grâce au même moteur-générateur fonctionnant alors en mode générateur, en électricité. Ceci permet d'assurer une alimentation électrique constante en attendant une rehausse de la production d'électricité. Afin d'optimiser le stockage de l'énergie, d'en minimiser les pertes par frottements, et de la restituer avec un rendement maximum sur la plus longue plage de temps possible, la sustentation du volant doit être très précisément contrôlée et doit consommer le moins de courant électrique possible pour contrôler cette sustentation. Comme expliqué précédemment, la plupart des solutions actuelles ne permettent pas d'atteindre ces objectifs, une sustentation à l'aide d'aimants permanents, ne consommant donc pas d'énergie électrique, est impossible du fait de la loi d'Earnshaw, tandis qu'une sustentation active nécessite notamment une énergie électrique trop importante. Ce problème peut également être appliqué aux trains à sustentation magnétique, pour lesquels le coût de fonctionnement, en plus d'un coût d'installation déjà élevé, est excessif par rapport à la rentabilité attendue, que la sustentation soit assurée à l'aide de bobines requerrant une alimentation électrique très importante, ou qu'elle utilise des supraconducteurs devant généralement être maintenus dans un bain d'azote liquide.
La présente invention a pour but de remédier aux inconvénients précédemment évoqués, et consiste pour cela en un procédé de stabilisation d'un objet en sustentation magnétique soumis à au moins un champ magnétique constant, ledit objet étant stable selon au moins une direction et instable selon au moins une autre direction, caractérisé en ce qu'il comprend une étape de stabilisation, répétée aussi souvent que nécessaire, consistant à appliquer un courant électrique à travers au moins un élément conducteur soumis à un champ magnétique secondaire de manière à générer une force de Laplace compensatrice dans la direction d'instabilité.
Ainsi, grâce à l'application d'une force de Laplace compensatrice, il est possible de compenser facilement les instabilités magnétiques inhérentes au système tout en minimisant sa consommation électrique. En effet, un objet dans un champ magnétique stable possède une énergie potentielle de type harmonique, dont le Laplacien, somme des dérivées partielles secondes par rapport aux coordonnées spatiales, est nul. De ce fait, les dérivées partielles secondes de l'énergie potentielle par rapport à chacune des coordonnées spatiales ne peuvent toutes être négatives, comme le voudrait un équilibre parfaitement stable. Par conséquent, il existe toujours au moins une coordonnée par rapport à laquelle la dérivée partielle seconde est positive, donc pour laquelle il n'y a pas de position d'équilibre stable. Il a été constaté de manière surprenante que l'application d'une force de Laplace, dont le potentiel est quadratique, dans la direction de l'instabilité permet de conférer au système une énergie potentielle pour laquelle il existe des points de stabilité. De ce fait, il n'est plus nécessaire de recourir à des électroaimants puissants pour stabiliser un tel système et la consommation électrique globale s'en trouve considérablement réduite.
Le champ magnétique permettant la mise en sustentation de l'objet pourra être généré par une ou plusieurs sources de champ magnétique selon la géométrie de l'objet. En effet, l'utilisation d'au moins deux sources magnétiques pour créer un champ magnétique selon la direction souhaitée peut s'avérer nécessaire afin de renforcer la stabilité de l'objet.
Avantageusement, l'étape de stabilisation vise à maintenir l'objet entre une borne supérieure et une borne inférieure autour d'une position d'équilibre moyen souhaité. En effet, selon le degré de stabilité souhaité il sera nécessaire d'exercer une force de Laplace plus ou moins importante. Plus l'équilibre doit être maintenu de manière très précise, plus il est nécessaire de compenser les instabilités du système en appliquant des forces compensatrices plus importantes. De manière avantageuse, on pourra prendre une force de Laplace assurant environ 10% de la portance totale nécessaire à la mise en sustentation de l'objet, les 90% restant étant assurés par les aimants permanents.
Avantageusement encore, le procédé selon l'invention comprend une étape de détection de la position de l'objet apte à commander et/ou interrompre le passage du courant électrique à travers l'élément conducteur. Ainsi, le courant électrique n'est appliqué que lorsque cela est nécessaire pour ramener l'objet vers sa position d'équilibre moyen, ce qui diminue encore la consommation. En acceptant une légère oscillation autour d'un point d'équilibre moyen souhaité, il est possible de réduire encore la consommation électrique du système.
La présente invention se rapporte également à un dispositif à sustentation magnétique comprenant un objet en sustentation soumis à au moins un champ magnétique constant en interaction avec des moyens d'aimantation correspondants de l'objet lévite, caractérisé en ce qu'il comprend, d'une part, des éléments magnétiques secondaires aptes à générer un champ magnétique secondaire, et d'autre part, au moins un élément conducteur soumis au champ magnétique secondaire, de façon à ce qu'une force de Laplace compensatrice soit générée sur l'objet lévite, lorsque l'élément conducteur est traversé par un courant électrique. II convient de noter que par moyens d'aimantation correspondants, on entend tout matériau sensible à un champ magnétique environnant. De tels matériaux sont bien sûrs les aimants, réagissant à un autre aimant, mais également les matériaux ferromagnétiques, non aimantés en soi mais s'orientant magnétiquement lorsque placés dans un champ magnétique. II doit être bien compris que le champ magnétique constant est généré par au moins une source de champ, la source de champ magnétique et les moyens d'aimantation correspondants pouvant être intervertis de manière telle que la source de champ est située sur l'objet et interagit avec un moyen d'aimantation correspondant externe. De manière préférentielle, le champ magnétique développe, avec les moyens d'aimantation correspondants, une force d'attraction s'exerçant sur l'objet lévite II est également possible que le champ magnétique développe, avec les moyens d'aimantation correspondants, des forces d'attraction et des forces de répulsion s'exerçant sur l'objet lévite.
Selon une variante de réalisation, le champ magnétique est généré par au moins deux sources de champ magnétique, les sources de champ magnétique et les moyens d'aimantation correspondants de l'objet lévite possédant une orientation magnétique parallèle et de même sens. Il s'agira, par exemple, dans le cas d'un système à symétrie de révolution de disposer deux bagues d'aimant permanent concentriques en interaction, l'une des bagues étant solidaire d'un stator, tandis que l'autre bague est solidaire de l'objet lévite, par exemple d'un rotor.
Préférentiellement, l'élément conducteur est une bobine. De manière générale, un élément conducteur en argent sera préféré, ce métal étant un des meilleurs conducteurs actuellement connus. Il pourra également être envisagé d'utiliser des nanotubes de carbone. Bien évidemment l'intensité de la force de Laplace développé pourra varier en fonction d'un rapport de forme de la bobine, ce rapport de forme étant de préférence défini de manière à rendre la force de Laplace maximum dans la direction contribuant à la stabilité pour un courant électrique minimum dans la bobine. Avantageusement, la bobine est large et de faible épaisseur.
Préférentiellement encore, les sources de champ magnétique et/ou les moyens d'aimantation complémentaire et/ou les éléments magnétiques secondaires sont des aimants permanents. Avantageusement, les aimants permanents sont des aimants à base de néodyme fer bore. Avantageusement encore, les aimants sont disposés selon une configuration dite de Halbach, de manière à obtenir à la fois un champ principal maximum et des champs parasites minimums.
Selon une variante de réalisation, les éléments magnétiques secondaires interagissent avec au moins un matériau ferromagnétique conformé de façon à permettre la réorientation du champ magnétique secondaire.
De manière préférentielle, le dispositif comprend au moins un capteur apte à commander ou interrompre le passage du courant à travers l'élément conducteur en fonction de la position de l'objet lévite. Ainsi, il n'est pas nécessaire d'alimenter l'élément conducteur en permanence, ce qui permet de réduire encore la consommation électrique du système. Le courant dans l'élément conducteur peut être également commandé par un circuit d'asservissement de type tout-ou-rien, proportionnel, intégral ou dérivé, ou toute combinaison de ceux-ci en fonction de la position de l'objet lévite.
Avantageusement, le capteur comprend une pointe solidaire de l'objet lévite et apte à venir au contact d'un interrupteur pour le fermer.
La mise en œuvre de l'invention sera mieux comprise à l'aide de la description détaillée qui est exposée ci-dessous en regard du dessin annexé dans lequel :
La figure 1 est une représentation schématique en coupe longitudinale d'un premier mode de réalisation d'un volant d'inertie stabilisé axialement selon le procédé de l'invention.
La figure 2 est une représentation schématique en coupe longitudinale d'un deuxième mode de réalisation d'un volant d'inertie stabilisé radialement selon le procédé de l'invention. La figure 3 est une représentation schématique en coupe longitudinale d'un troisième mode de réalisation d'un volant d'inertie stabilisé axialement selon le procédé de l'invention.
La figure 4 est une représentation schématique en coupe longitudinale d'un quatrième mode de réalisation d'un volant d'inertie stabilisé selon l'invention, et utilisant du fer doux pour réorienter les champs magnétiques.
La figure 5 est une vue du dessus en coupe du volant d'inertie de la figure 4.
Les figures 6 et 7 montrent deux variantes de réorientation de champ magnétique à l'aide de fer doux.
La figure 8 est une représentation schématique d'un premier mode de réalisation d'un détecteur d'instabilité.
La figure 9 est une représentation schématique d'un deuxième mode de réalisation d'un détecteur d'instabilité. La figure 10 est une vue du dessus du capteur de la figure 9.
La figure 11 est une représentation schématique d'une variante d'application du procédé de stabilisation selon l'invention à un train à sustentation magnétique.
Un volant d'inertie 1 , tel que représenté à la figure 1 , comprend un volant 2 cylindrique en sustentation magnétique entre une source magnétique inférieure 3 et une source magnétique supérieure 4. Chaque source magnétique 3, 4 comporte respectivement un aimant circulaire 5, 6 faisant face à un aimant 7, 8 circulaire correspondant du volant 2.
Par ailleurs, le volant 2 présente une cavité inférieure 9 centrale et une cavité supérieure 10 centrale. La cavité inférieure 9 abrite deux paires d'aimants additionnels 11a, 11b, 12a, 12b superposées, le champ magnétique radial développé par l'une des deux paires d'aimants additionnels 11a, 11 b, 12a, 12b étant opposé au champ développé par l'autre paire d'aimants additionnels 12a, 12b, 11a, 11b. De la même manière, la cavité supérieure 10 abrite deux paires d'aimants additionnels 13a, 13b, 14a, 14b superposées. La cavité inférieure 9 et la cavité supérieure 10 sont chacune destinées à recevoir respectivement un ensemble de fils conducteurs 15a, 15b, 15c, 16a, 16b, 16c solidaires de la source magnétique 3, 4 correspondante et disposés perpendiculairement à l'axe du volant 2. Chaque ensemble de fils conducteurs 15a, 15b, 15c, 16a, 16b, 16c est relié à un circuit d'alimentation électrique (non représenté).
L'orientation des pôles des aimants circulaires 5 à 8 est choisie de manière à ce que les aimants circulaires 5, 7, d'une part, et 6, 8, d'autre part, développent respectivement entre eux une force magnétique d'attraction. Les puissances des aimants circulaires 5 à 8 sont choisies de manière à ce que la force d'attraction tendant à rapprocher le volant 2 de la source supérieure 4 soit en équilibre avec la force d'attraction tendant à rapprocher le volant 2 de la source inférieure 3 augmentée de la force exercée par la gravité (symbolisée par une flèche), c'est-à-dire le poids du volant 2.
Par ailleurs, les aimants 5, 6 exercent sur le volant 2 une force de centrage importante, ceux-ci tendant à aligner l'axe magnétique des aimants correspondants 7, 8 avec le leur. Cette force de centrage est suffisante pour stabiliser radialement le volant.
Conformément à la loi d'Earnshaw, le volant 2 en sustentation entre la source inférieure 3 et la source supérieure 4 ne peut être stable. En effet, la force de centrage des aimants 5 à 8 disposés en attraction étant particulièrement importante, celle-ci confère au volant 2 une stabilité radiale et impose un instabilité axiale. Ainsi en l'absence de toute régulation de champ complémentaire, le volant 2 a naturellement tendance à venir au contact de la source magnétique inférieure 3 ou de la source magnétique supérieure 4. La stabilité axiale est assurée grâce aux interactions entre chacun des aimants additionnels 11a à 14b et les ensembles de fils conducteurs 15a à 16c correspondants. En effet, lorsqu'un conducteur soumis à un champ magnétique perpendiculaire est parcouru par un courant électrique, il subit une force de Laplace formant, avec les vecteurs courant et champ, un repère ortho normal direct. Ainsi, chacun des ensembles de fils conducteurs 15a à 16c parcourus par un courant électrique interagit avec les aimants additionnels 11a à 14b correspondants. En l'espèce, l'orientation des paires d'aimants additionnels 11a à 14b et le sens du courant électrique parcourant les fils conducteurs 15a à 16c sont choisis de manière à ce que lorsque le volant 2 se rapproche de Ia source inférieure 3, la force de Laplace générée soit dirigée axialement et tende à éloigner le volant 2 de la source inférieure 3. Respectivement, lorsque le volant 2 se rapproche de la source supérieure 4, la force de Laplace générée doit être dirigée axialement et tendre à éloigner le volant 2 de la source supérieure 4. Selon la disposition de la figure 1 , lorsque le volant 2 est à l'équilibre, une moitié des fils conducteurs 15a à 16c est soumise au champ magnétique radial des paires d'aimants additionnels 11a, 11b, 14a, 14b, tandis qu'une autre moitié des fils conducteurs 15a à 16c est soumise au champ magnétique radial des paires d'aimants additionnels 12a, 12b, 13a, 13b, de même direction mais de sens opposé au champ des paires d'aimants additionnels 11a, 11b, 14a, 14b. La force de Laplace résultant de cette double influence est donc nulle. En l'espèce, il a été considéré pour l'exemple que la puissance des aimants additionnels 11a à 14b était la même et que les fils conducteurs 15a à 16c étaient parcourus par la même intensité électrique. Il est toutefois bien évidemment possible d'obtenir un tel équilibre avec des aimants de puissance d'aimants et des intensités électriques différentes.
Cependant, comme expliqué, le volant 2 est axialement instable et a tendance à se rapprocher soit de la source inférieure 3, soit de la source supérieure 4. Lorsque le volant 2 se rapproche de la source inférieure 3, les fils conducteurs 15a à 15c sont alors principalement soumis au champ magnétique de la paire d'aimants additionnels 12a, 12b, tandis que les fils conducteurs 16a à 16c sont principalement soumis au champ magnétique de la paire d'aimants additionnels 13a, 13b de même orientation magnétique que la paire d'aimants additionnels 12a, 12b. Le sens du courant électrique parcourant les fils conducteurs 15a à 16c est choisi de manière à ce que s'exerce sur le volant 2 une force de Laplace tendant à éloigner le volant 2 de la source inférieure 3 vers la source supérieure 4. Il convient de noter que ce cas est également applicable au volant avant sa mise en sustentation, la force de Laplace ainsi créée participant à son décollage de la source magnétique inférieure 3.
De la même manière, lorsque le volant 2 se rapproche de la source supérieure 4, l'ensemble des fils conducteurs 15a à 15c est principalement soumis au champ de la paire d'aimants additionnels 11a, 11b tandis que les fils conducteurs 16a à 16c sont principalement soumis au champ de la paire d'aimants additionnels 14a, 14b de même orientation magnétique. L'orientation magnétique des paires 11a, 11b et 14a, 14b étant opposée à celle des paires 12a, 12b, d'une part, et 13a, 13b, d'autre part, la force de Laplace résultante possède donc un sens opposé et tend à éloigner le volant 2 de la source supérieure 4 pour le ramener vers sa position d'équilibre instable initiale.
De ce fait, le volant 2 est stabilisé axialement sans utiliser aucun capteur ni aucun système de régulation du courant électrique et oscille de part et d'autre d'une position d'équilibre moyen. Les expériences ont montré que l'intensité du courant électrique nécessaire pour stabiliser un volant 2 possédant une masse de 2,4 kg est d'environ 15 milliampères seulement.
Un volant d'inertie 20, tel que représenté sur la figure 2, comprend un volant 21 se distinguant du volant 2 principalement par le fait qu'il est soumis à une source magnétique inférieure 3a comprenant un aimant 5a circulaire interagissant avec un aimant 7a circulaire correspondant du volant 21 , de manière à développer entre eux une force répulsive s'opposant à la chute du volant 21 par gravité (symbolisée par une flèche). A l'inverse du volant 2 du volant d'inertie 1 , le volant 21 est stable axialement mais présente une instabilité radiale, la source magnétique inférieure 3 tendant à repousser latéralement le volant 21. De ce fait, le volant 21 doit donc être stabilisé radialement grâce au procédé selon l'invention.
Pour ce faire, le volant 21 comprend une gorge 22 latérale périphérique comprenant des aimants additionnels supérieurs 23, 24 circulaires adjacents et inférieurs 25, 26, également circulaires et adjacents, ladite gorge latérale 22 étant destinée à recevoir un ensemble de fils conducteurs 27a, 27b, 27c formant des spires d'une bobine 27 parcourue par un courant électrique constant. Les aimants additionnels 23 et 25 sont situés en regard l'un de l'autre et possèdent une orientation magnétique identiques. Les aimants additionnels 24 et 26 sont également situés en regard l'un de l'autre et possèdent une orientation magnétique identique mais opposée à l'orientation magnétique des aimants additionnels 23, 25.
Comme pour le volant d'inertie 1 , lorsque le volant 20 est à l'équilibre, la bobine 27 possède autant de spires soumises au champ magnétique des aimants additionnels 23, 25 que de spires soumises au champ magnétique des aimants additionnels 24, 26, et la force de Laplace résultante est donc nulle. Lorsque le volant 21 s'écarte radialement, la bobine 27 est, dans la direction dans laquelle le volant 21 s'écarte et quelle que soit cette direction, principalement soumise au champ magnétique des aimants additionnels 24, 26, tandis que dans la direction diamétralement opposée, ladite bobine 27 est principalement soumise au champ magnétique des aimants additionnels 23, 25 opposé à celui des aimants additionnels 24, 26. Le sens du courant parcourant la bobine 27 dans la direction selon laquelle le volant 21 s'écarte, étant opposé à celui de la direction diamétralement opposée, la force de Laplace générée de part et d'autre du volant 21 possède une direction et un sens identique. Le sens du courant parcourant la bobine 27 et l'orientation des aimants additionnels 23 à 26 sont choisis de manière à ce que la force de Laplace s'exerçant selon la direction dans laquelle le volant 21 s'écarte soit centripète, rappelant ainsi le volant 21 vers sa position d'équilibre, la force de Laplace correspondant s'exerçant diamétralement à l'opposé étant alors centrifuge.
Ainsi, le volant 21 est stabilisé radialement et oscille autour de son axe.
La figure 3 montre un troisième mode de réalisation d'un volant d'inertie stabilisé selon le procédé de l'invention. Ce volant d'inertie 30 comprend un volant 31 cylindrique possédant un axe 32 et mis en sustentation magnétique entre une source magnétique inférieure 33 et une source magnétique supérieure 34. Chaque source magnétique comporte un aimant 35, 36 annulaire traversé par l'axe 32, les aimants 35, 36 possédant une orientation magnétique axiale et interagissant chacun avec un aimant 37, 38 concentrique correspondant situé sur l'axe 32 du volant 31 à la même hauteur que lesdits aimants 35, 36.
L'orientation des aimants 35 à 38 est choisie identique, les aimants 35, 37, d'une part, et 36, 38, d'autre part, développant respectivement entre eux une force magnétique opérant un centrage de l'axe 32. Le volant 31 est donc stable radialement et présente une instabilité axiale stabilisée par le procédé selon l'invention.
Pour ce faire, le volant 31 présente une gorge 39 périphérique supérieure abritant deux aimants additionnels extérieurs 40,41 circulaires superposés et deux aimants additionnels intérieurs 42, 43 superposés, ladite gorge 39 étant destinée à recevoir un ensemble de fils conducteurs 44a, 44b, 44c formant des spires d'une bobine 44 parcourue par un courant électrique constant. Les aimants additionnels 40 et 42 sont concentriques et possèdent une orientation magnétique identique. Les aimants additionnels 41 et 43 sont également concentriques et possèdent une orientation magnétique identique mais opposée à l'orientation magnétique des aimants additionnels 40, 42.
Comme pour les volants d'inertie 1 et 20, lorsque le volant 30 est à l'équilibre, la bobine 44 possède autant de spires soumises au champ magnétique des aimants additionnels 40, 42 que de spires soumises au champ magnétique des aimants additionnels 41 , 43, et la force de Laplace résultante est donc nulle. Lorsque le volant 30 s'écarte axialement et se rapproche de la source magnétique inférieure 33, la bobine 44 est alors principalement soumise au champ magnétique des aimants additionnels 41 , 43. L'orientation des aimants additionnels 41 , 43 et le sens du courant électrique parcourant la bobine 44 sont choisis de manière à ce que la force de Laplace générée tende à éloigner le volant 30 de la source inférieure 33 et le ramène vers sa position d'équilibre instable initiale. De la même manière, lorsque le volant 30 se rapproche de la source magnétique supérieure 34, la bobine 44 est alors principalement soumise au champ magnétique des aimants additionnels 40, 42. L'orientation des aimants additionnels 40, 42 étant opposée à l'orientation des aimants 41 , 43, la force de Laplace générée tend à éloigner le volant 30 de la source supérieure 34 et le ramène vers sa position d'équilibre instable initiale.
Ainsi, le volant 30 est stabilisé axialement et oscille autour d'une position d'équilibre moyen.
En variante il est possible d'utiliser moins d'aimants et d'en contrôler l'orientation du champ à l'aide de fer doux. Un volant d'inertie 50, tel que représenté à la figure 4, en constitue un exemple de réalisation.
Ce volant d'inertie 50 comprend un volant 52 cylindrique en sustentation magnétique entre une source magnétique inférieure 53 et une source magnétique supérieure 54. Chaque source magnétique 53, 54 comporte respectivement un aimant circulaire 55, 56 faisant face à un aimant 57, 58 circulaire correspondant du volant 52.
Par ailleurs, le volant 52 présente une gorge 59 annulaire centrale dont le centre abrite un aimant additionnel 60 développant un champ magnétique axial, ladite gorge 59 présentant des parois recouvertes d'une couche de fer doux 61 pour réorienter le champ magnétique de l'aimant additionnel 60 selon une direction radiale. D'autres dispositions de fer doux au voisinage d'aimants additionnels sont représentées aux figures 6 et 7.
La gorge 59 est destinée à recevoir un ensemble de fils conducteurs 62a, 62b, 62c formant une bobine 62 solidaire de la source magnétique supérieure 64, la bobine 62 possédant un axe qui se confond avec l'axe du volant 52. La bobine 62 est reliée à un circuit d'alimentation électrique (non représenté).
Comme pour le volant d'inertie 1 , l'orientation magnétique des aimants 55 à 58 est choisie de manière à ce que les aimants 55, 57, d'une part, et 56, 58, d'autre part, développent respectivement entre eux une force magnétique d'attraction. Les puissances des aimants 55 à 58 sont choisis de manière à ce que la force d'attraction tendant à rapprocher le volant 52 de la source supérieure 54 soit en équilibre avec la force d'attraction tendant à rapprocher le volant 52 de la source inférieure 53 augmentée de la force exercée par la gravité (symbolisée par une flèche), c'est-à-dire le poids du volant 52.
La stabilité axiale est assurée grâce aux interactions entre la bobine 62 et le champ magnétique développé par l'aimant additionnel 60 en générant une force de Laplace complémentaire.
Selon la disposition des figures 4 et 5, lorsque le volant 52 est à l'équilibre, aucune force de Laplace n'est générée et la bobine 62 n'est pas alimentée. Lorsque le volant 52 se rapproche de la source inférieure 53, on applique un courant électrique aux bornes de la bobine 62 dont le sens est choisi de manière à générer une force de Laplace dirigée axialement et tendant à éloigner le volant 52 de la source inférieure 53 pour le ramener vers sa position d'équilibre instable initiale. Lorsque le volant 52 se rapproche de la source supérieure 54, il est nécessaire de générer une force de Laplace tendant à éloigner le volant 52 de la source supérieure 54. Pour ce faire, le champ magnétique de l'aimant additionnel agissant sur la bobine 62 étant constant, il est nécessaire d'inverser le sens du courant parcourant ladite bobine 62.
En complément de ce dispositif, il est donc nécessaire de prévoir un capteur permettant de détecter si le volant 52 s'approche de la source inférieure 53 ou de la source supérieure 54 de manière à appliquer du courant selon le sens souhaité lorsque nécessaire. Contrairement aux dispositifs précédents, pour lesquels aucun capteur n'est nécessaire mais dans lesquels les conducteurs électriques sont alimentés en permanence, la bobine 62 du volant d'inertie 60 n'a pas besoin d'être alimentée en permanence, ce qui réduit encore la consommation électrique du dispositif. Elle nécessite en revanche le couplage du circuit d'alimentation à un capteur.
Des exemples de capteurs sont représentés aux figures 8 à 10. La figure 8 représente un capteur 100 mécanique comprenant une pointe 101 possédant une pointe extrêmement fine et solide se terminant par une bille de très petit diamètre (inférieur à 1 mm) en matériau très dur, ladite pointe étant destinée à être fixée au centre du volant 52. Un interrupteur 102 comprenant deux lames 103, 104 conductrices, cette dernière étant fixe et solidaire du bâti du volant d'inertie. Ces deux lames 103, 104 sont reliées à l'alimentation électrique. Plus précisément, la lame 103 est destinée à être en contact avec la pointe 101 et comprend à cette fin une plaque 105 extrêmement dure en rubis. Lorsque, sous l'effet de la force de Laplace, le volant 52 se rapproche de la source supérieure 53, la pointe vient exercer une force très faible (quelques centaines de milligrammes) contre la plaque 105 et pousse la lame 103 au contact de la lame 104, ce qui ferme le circuit électrique et permet le passage du courant. Cela a pour effet de supprimer la force de Laplace et le volant 52 redescend alors et s'éloigne de la source supérieure 54, ce qui éloigne la pointe 101 et rouvre le circuit électrique, avec pour effet de rétablir la force de Laplace. Il en va de même, avec un deuxième capteur, pour la source inférieure 53. Ce type de fonctionnement fait que le volant 52 oscille sur une très faible amplitude de part et d'autre du point d'équilibre métastable d'Eamshaw ou très près de ce point, ce qui permet de limiter à des valeurs très faibles la puissance de lévitation, compte tenu de la masse du volant 52.
Les figures 9 et 10 représentent un capteur 110 comprenant une boucle magnétique inférieure 111 et une boucle magnétique supérieure 112 située respectivement au dessus et en dessous du passage de deux aimants 114, 115 solidaires du volant 52 et pouvant avoir une orientation magnétique opposée. Ii est bien évidemment possible de disposer à intervalles réguliers plusieurs aimants semblables aux aimants 114, 115 sur la périphérie du volant 52, en alternant éventuellement leurs orientations magnétiques. Lorsque le volant est en rotation, les boucles magnétiques inférieure 111 et supérieure 112 sont soumises à un champ alternatif induisant des courants électriques alternatifs en opposition de phase dans lesdites boucles 111 , 112. Ces courants induits sont additionnés par un comparateur 116 et le courant résultant est dirigé vers la bobine 62 pour l'alimenter. Il est éventuellement possible d'y ajouter un amplificateur opérationnel si les forces électromotrices induites sont insuffisantes. En effet, lorsque le volant 52 se rapproche de la source supérieure 54, la boucle magnétique supérieure 112 est soumise à un champ magnétique plus fort que la boucle magnétique inférieure 111 , et génère donc une force électromotrice induite plus grande, la somme des forces électromotrices induites est donc en faveur de la boucle supérieure 112 et la bobine 62 est alimentée par un courant circulant dans le sens correspondant. A l'inverse lorsque le volant 52 se rapproche de la source inférieure 53, la boucle magnétique supérieure 112 est soumise à un champ magnétique moins fort que la boucle magnétique inférieure 111 , et génère donc une force électromotrice induite moins intense, la somme des forces électromotrices induites est donc en faveur de la boucle inférieure 111 et la bobine 62 est alimentée par un courant circulant dans le sens inverse du précédent et génère une force de Laplace inversée.
Il convient de noter que les exemples cités décrivent des bobines ou fils conducteurs solidaires des sources supérieures et/ou inférieures tandis que les volants comprennent des aimants additionnels. Il est bien évident que cette disposition peut être inversée, la bobine ou les fils conducteurs étant intégrés au volant, tandis que les aimants additionnels sont intégrés aux sources supérieures et/ou inférieures, et que l'alimentation de la bobine ou des fils conducteurs est réalisée à l'aide d'un générateur interne au volant. Toutefois ce mode de réalisation est plus difficile à mettre en oeuvre et on préférera les dispositions telles que décrites précédemment.
La figure 11 montre une variante d'application du procédé selon l'invention à un train 200 à sustentation magnétique. Ce train 200 est mis en sustentation entre un rail inférieur 201 et un rail supérieur 202 au moyen d'aimants 203, 204 coopérant chacun avec un aimant 205, 206 du train de manière à ce que l'aimant 203 du rail inférieur 201 développe avec l'aimant 205 correspondant du train 200 une force de répulsion, tandis que l'aimant 204 du rail supérieur 202 développe avec l'aimant 206 correspondant du train 200 une force d'attraction. Conformément à la loi d'Earnshaw, le train est instable latéralement et doit être stabilisé à l'aide du procédé selon l'invention. Pour ce faire, le train 200 est équipé de rails latéraux 207 en fer doux comprenant un aimant additionnel 208 possédant une magnétisation verticale. Ce rail 207 est destiné à recevoir un rail complémentaire 209 fixe, solidaire d'une voie 210 le long de laquelle le train se déplace. Ce rail complémentaire 209 est parcouru de fils conducteurs 211 alimentés en courant électrique et soumis au champ magnétique développé par l'aimant additionnel 208. Il est donc possible de générer une force de Laplace s'exerçant sur le train 200 et permettant de corriger ses instabilités magnétiques.
Il convient de noter qu'un des avantages principaux du procédé et dispositif objet de l'invention réside dans le fait qu'il ne fonctionne pas par modification des champs magnétiques de portance et de positionnement et que la position de l'objet lévite se situe au point d'équilibre métastable de Eamshaw ou très près de ce point, ce qui permet de limiter à des valeurs extrêmement faible la puissance de lévitation compte tenu de l'importance de la masse de l'objet lévite. Bien que l'invention ait été décrite en liaison avec des exemples particuliers de réalisation, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.

Claims

REVENDICATIONS
1. Procédé de stabilisation d'un objet (2, 21 , 31 , 32, 52, 200) en sustentation magnétique soumis à au moins un champ magnétique constant, ledit objet étant stable selon au moins une direction et instable selon au moins une autre direction, caractérisé en ce qu'il comprend une étape de stabilisation, répétée aussi souvent que nécessaire, consistant à appliquer un courant électrique à travers au moins un élément conducteur (15a à 16c, 27, 44, 62, 211) soumis à un champ magnétique secondaire de manière à générer une force de Laplace compensatrice dans la direction d'instabilité.
2. Procédé selon la revendication 1 , caractérisé en ce que l'étape de stabilisation vise à maintenir l'objet (2, 31 , 32, 52, 200) entre une borne supérieure et une borne inférieure autour d'une position d'équilibre moyen souhaité.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce qu'il comprend une étape de détection de la position de l'objet (2, 21 , 31 , 52, 200) apte à commander et/ou interrompre le passage du courant électrique à travers l'élément conducteur (15a à 16c, 27, 44, 62, 211).
4. Dispositif (1 , 20, 30, 50) à sustentation magnétique comprenant un objet (2, 21 , 31 , 32, 52, 200) en sustentation soumis à au moins un champ magnétique constant apte à interagir avec des moyens d'aimantation correspondants (7, 8, 7a, 37, 38, 57, 58, 205, 206) de l'objet lévite, caractérisé en ce qu'il comprend, d'une part, des éléments magnétiques secondaires (11a à 14b, 23 à 26, 40 à 43, 60 à 62, 207, 208) aptes à générer un champ magnétique secondaire, et d'autre part, au moins un élément conducteur (15a à 16c, 27, 44, 62, 211) soumis au champ magnétique secondaire, de façon à ce qu'une force de Laplace compensatrice soit générée sur l'objet lévite, lorsque l'élément conducteur est traversé par un courant électrique.
5. Dispositif (1 , 20, 50) selon la revendication 4, caractérisé en ce que le champ magnétique développe, avec les moyens d'aimantation (7, 8, 57, 58, 206) correspondants, une force d'attraction s'exerçant sur l'objet (2, 21 , 52, 200) lévite.
6. Dispositif (30) selon la revendication 4, caractérisé en ce que le champ magnétique est généré par au moins deux sources (33, 34) de champ magnétique, les sources de champ magnétique et les moyens d'aimantation
(37, 38) complémentaires de l'objet lévite (31 , 32) possèdent une orientation magnétique parallèle et de même sens.
7. Dispositif (20, 30, 50) selon l'une quelconque des revendications
4 à 6, caractérisé en ce que l'élément conducteur est une bobine.
8. Dispositif (1 , 20, 30, 50) selon l'une quelconque des revendications 4 à 7, caractérisé en ce que les sources (3, 4, 3a, 33, 34, 53, 54, 201 , 202) de champ magnétique et/ou les moyens d'aimantation complémentaires (7, 8, 7a, 37, 38, 57, 58, 205, 206) et/ou les éléments magnétiques secondaires (11a à 14b, 23 à 26, 40 à 43, 60 à 62, 207, 208) sont des aimants permanents.
9. Dispositif (50) selon l'une quelconque des revendications 4 à 8, caractérisé en ce que les éléments magnétiques secondaires (60) interagissent avec au moins un matériau ferromagnétique (61 , 62) conformé de façon à permettre la réorientation le champ magnétique secondaire.
10. Dispositif (50) selon l'une quelconque des revendications 4 à 9, caractérisé en ce qu'il comprend au moins un capteur (100, 110) apte à commander ou interrompre le passage du courant à travers l'élément conducteur (62, 211) en fonction de la position de l'objet (52, 200) lévite.
11. Dispositif (50) selon la revendication 10, caractérisé en ce que le capteur (100) comprend une pointe (101) solidaire de l'objet (52) lévite et apte à venir au contact d'un interrupteur (102) pour le fermer.
EP06709318A 2005-02-15 2006-02-15 Procede de stabilisation d'un objet en sustentation magnetique Withdrawn EP1848896A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0501514A FR2882203B1 (fr) 2005-02-15 2005-02-15 Procede de stabilisation d'un objet en suspension dans un champ magnetique
PCT/FR2006/000340 WO2006087463A1 (fr) 2005-02-15 2006-02-15 Procede de stabilisation d'un objet en sustentation magnetique

Publications (1)

Publication Number Publication Date
EP1848896A1 true EP1848896A1 (fr) 2007-10-31

Family

ID=34982464

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709318A Withdrawn EP1848896A1 (fr) 2005-02-15 2006-02-15 Procede de stabilisation d'un objet en sustentation magnetique

Country Status (9)

Country Link
US (1) US20080122308A1 (fr)
EP (1) EP1848896A1 (fr)
JP (1) JP2008537872A (fr)
CN (1) CN101115930A (fr)
CA (1) CA2597560A1 (fr)
FR (1) FR2882203B1 (fr)
IL (1) IL184935A0 (fr)
RU (1) RU2007133582A (fr)
WO (1) WO2006087463A1 (fr)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20054704D0 (no) * 2005-10-13 2005-10-13 Sway As Fremgangsmate og metode for vindkraftverk og fremdriftssystem med magnetisk stabilt hovedlager og lastkontrollsystem
US7469604B2 (en) * 2005-10-21 2008-12-30 Stoneridge Control Devices, Inc. Sensor system including a magnetized shaft
JP2009258195A (ja) * 2008-04-14 2009-11-05 Hitachi High-Technologies Corp プロキシミティ露光装置、プロキシミティ露光装置の基板移動方法、及び表示用パネル基板の製造方法
DE102008036702A1 (de) * 2008-08-01 2010-02-04 Rothe Erde Gmbh Magnetlager und Verfahren zu dessen Betrieb
WO2010066873A1 (fr) 2008-12-11 2010-06-17 Carl Zeiss Smt Ag Compensation de la gravitation pour les éléments optiques dans les installations d'éclairage par projection
EP2275697A1 (fr) * 2009-04-23 2011-01-19 Koninklijke Philips Electronics N.V. Roulement magnétique, niveau rotatif, et appareil de lithographie de faisceau à électrons réflectifs
DE102009042972A1 (de) 2009-09-16 2011-03-24 Technische Universität Ilmenau Vorrichtung und Verfahren zum Manipulieren einer levitierten elektrisch leitfähigen Substanz
US9359991B2 (en) * 2009-10-29 2016-06-07 Oceana Energy Company Energy conversion systems and methods
US8368271B2 (en) * 2009-12-15 2013-02-05 Empire Technology Development Llc Magnetically suspended flywheel energy storage system with magnetic drive
KR100986151B1 (ko) * 2010-04-01 2010-10-08 유영실 자기력 평형 전기발생장치
DE202010017611U1 (de) * 2010-05-05 2012-03-22 Mecatronix Gmbh Elektromagnetisches Axiallager
US8633625B2 (en) * 2010-09-14 2014-01-21 The Texas A&M University System Shaft-less energy storage flywheel
DE102011018675A1 (de) 2011-04-18 2012-10-18 Technische Universität Ilmenau Vorrichtung und Verfahren zum aktiven Manipulieren einer elektrisch leitfähigen Substanz
CN102638201A (zh) * 2012-05-11 2012-08-15 李晓桓 多层磁悬浮惯性飞轮高压气能发电机
FR3001093B1 (fr) * 2013-01-15 2016-05-27 Levisys Dispositif electrique pour le stockage d'electricite par volant d'inertie
CN103151969B (zh) * 2013-02-05 2015-11-18 江苏磁谷科技股份有限公司 可开关永磁磁悬浮导轨
JP2014166131A (ja) * 2013-02-26 2014-09-08 Toru Nagaike 推力モーター及び移動体への取り付け方法
US9148077B2 (en) * 2013-03-15 2015-09-29 Arx Pax, LLC Magnetic levitation of a stationary or moving object
NL2011095C2 (en) * 2013-07-04 2015-01-06 S4 Energy B V Inertial energy accumulating device.
CN103591139B (zh) * 2013-11-22 2015-08-12 江苏理工学院 用于高速转子的被动径向永磁轴承
KR101552350B1 (ko) * 2014-05-02 2015-09-09 한국기계연구원 편향력 보상용 쓰러스트 자기 베어링
US9590469B2 (en) * 2015-02-20 2017-03-07 Lawrence Livermore National Security, Llc Transverse-displacement stabilizer for passive magnetic bearing systems
CN104895921B (zh) * 2015-05-13 2017-08-04 北京石油化工学院 一种两自由度洛伦兹力外转子球面磁轴承
JP6577300B2 (ja) * 2015-08-27 2019-09-18 国立大学法人茨城大学 磁気浮上姿勢制御装置
DE102015116767B4 (de) 2015-10-02 2020-06-18 Rubotherm GmbH Lager, insbesondere für eine Magnetschwebeanordnung
CA3032539C (fr) * 2015-11-20 2022-07-19 Kelso Energy Ltd. Construction de volant d'inertie a aimant en creux pour eoliennes a axe vertical
CN105540766A (zh) * 2015-12-07 2016-05-04 山东永春堂集团有限公司 一种利用磁化和低频共振水生产化妆品和日化品的装置
CN105857647B (zh) * 2016-03-25 2018-06-29 西北工业大学 低速自旋空间非磁化金属碎片的加速消旋磁场的产生方法
US10393173B2 (en) * 2016-06-13 2019-08-27 Lawrence Livermore National Security, Llc Halbach-array levitating passive magnetic bearing configuration
US10541586B2 (en) 2016-07-05 2020-01-21 Lawrence Livermore National Security, Llc Electrostatic generator electrode-centering and seismic-isolation system for flywheel-based energy storage modules
US11121604B2 (en) 2016-07-05 2021-09-14 Lawrence Livermore National Security, Llc Electrostatic generator electrode-centering and seismic-isolation system for flywheel-based energy storage modules
TWI709689B (zh) * 2017-05-22 2020-11-11 李受勳 交通載具的風力發電設備
DE102017212773A1 (de) 2017-07-25 2019-01-31 Carl Zeiss Smt Gmbh Gewichtskraftkompensationseinrichtung
CN110015349A (zh) * 2018-01-10 2019-07-16 李仕清 一种履带
CN110406313A (zh) * 2018-04-27 2019-11-05 长春市苏伟磁悬浮技术研究所 一种磁悬浮车轮
CN208061578U (zh) * 2018-05-10 2018-11-06 京东方科技集团股份有限公司 支撑装置和显示设备
JP7160494B2 (ja) * 2018-07-06 2022-10-25 スピンレクトリックス, インコーポレイテッド 電気機械バッテリ
KR20200006334A (ko) * 2018-07-10 2020-01-20 이종훈 중력을 회전운동 모드로 변경하여 전기를 발생시키는 발전 장치
CN109158802B (zh) * 2018-10-16 2021-02-26 宁夏吴忠市好运电焊机有限公司 用于焊接机器人的磁悬浮减震稳定连接器
CN109582023B (zh) * 2018-12-21 2019-10-11 费子偕 一种新型载人工具以及适用其的控制方法
CN110165822A (zh) * 2019-06-12 2019-08-23 大连亨利科技有限公司 一种气体悬浮飞轮电池控制装置
EP3984117A1 (fr) * 2019-06-14 2022-04-20 Indiv Srl Dispositif de stockage d'énergie dynamique
CN111115636B (zh) * 2020-01-10 2022-09-30 昆明理工大学 一种用于冶金级硅电磁悬浮处理的电磁悬浮线圈和方法
KR102429302B1 (ko) * 2020-09-04 2022-08-04 한국생산기술연구원 직선형 능동자기베어링
CN112712827B (zh) * 2020-12-22 2021-12-10 杭州职业技术学院 磁悬浮飞轮储能式低加速时间的机械硬盘
CN115102428B (zh) * 2022-08-03 2023-04-28 成都理工大学 一种扁平磁悬浮装置
CN115837841B (zh) * 2023-01-03 2023-04-28 西南交通大学 一种高温超导磁悬浮系统及其线圈尺寸的计算方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2444099C3 (de) * 1974-09-14 1979-04-12 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Berührungsloses Lagerelement für mindestens teilweise magnetisierbare Körper
US4700094A (en) * 1984-12-17 1987-10-13 The Charles Stark Draper Laboratory, Inc. Magnetic suspension system
DE4210741C2 (de) * 1992-04-01 1995-12-14 Forschungszentrum Juelich Gmbh Magnetische Lagerung eines Beleuchtungskörpers
GB9613061D0 (en) * 1995-09-02 1996-08-28 Magnetic Patent Holdings Ltd Magnetic suspension system
US6293901B1 (en) * 1997-11-26 2001-09-25 Vascor, Inc. Magnetically suspended fluid pump and control system
US5928131A (en) * 1997-11-26 1999-07-27 Vascor, Inc. Magnetically suspended fluid pump and control system
JP2002021850A (ja) * 2000-07-05 2002-01-23 Yoji Okada 磁気軸受
JP2002257136A (ja) * 2001-02-27 2002-09-11 Koyo Seiko Co Ltd 磁気軸受
JP2002257135A (ja) * 2001-02-27 2002-09-11 Koyo Seiko Co Ltd 磁気軸受装置
JP2002354767A (ja) * 2001-05-18 2002-12-06 Sankyo Seiki Mfg Co Ltd 磁気浮上電動機
JP3949916B2 (ja) * 2001-09-26 2007-07-25 日本電産サンキョー株式会社 磁気浮上モータ、及び磁気軸受装置
JP2003097555A (ja) * 2001-09-27 2003-04-03 Canon Inc ボイスコイル型スラスト磁気軸受
JP2003199288A (ja) * 2001-12-28 2003-07-11 Sankyo Seiki Mfg Co Ltd 磁気浮上モータ、及び磁気軸受装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2006087463A1 *

Also Published As

Publication number Publication date
RU2007133582A (ru) 2009-03-27
IL184935A0 (en) 2007-12-03
CN101115930A (zh) 2008-01-30
US20080122308A1 (en) 2008-05-29
WO2006087463A1 (fr) 2006-08-24
FR2882203A1 (fr) 2006-08-18
CA2597560A1 (fr) 2006-08-24
JP2008537872A (ja) 2008-09-25
FR2882203B1 (fr) 2007-06-22

Similar Documents

Publication Publication Date Title
EP1848896A1 (fr) Procede de stabilisation d'un objet en sustentation magnetique
EP1875480B1 (fr) Actionneur electromagnetique polarise bistable a actionnement rapide
FR2817088A1 (fr) Machine tournante a butee axiale magnetique integrant une generatrice de courant
EP2817870B1 (fr) Actionneur inertiel magnetohydrodynamique
FR2536473A1 (fr) Pompe turbomoleculaire
EP0642704B1 (fr) Actionneur electromagnetique monophase rotatif
FR2732734A1 (fr) Palier magnetique miniature a au moins un axe actif
EP1727998A1 (fr) Palier magnetique actif a auto-detection de position
WO2001084693A1 (fr) Systeme de support magnetique a levitation totale dote de paliers magnetiques radiaux passifs
WO2014013147A1 (fr) Actionneur comprenant deux moteur paliers magnétiques
FR2849712A1 (fr) Actionneur rotatif bistable monophase hybride
JPH08296645A (ja) 磁気軸受装置
JP7064728B2 (ja) フライホイール装置及び回転電機
CA2897891C (fr) Dispositif electrique pour le stockage d'electricite par volant d'inertie
EP3287716B1 (fr) Appareil thermique magnetocalorique
EP3728881B1 (fr) Ensemble rotatif a palier magnétique
CH704068A2 (fr) Dispositif magnétique de guidage en pivotement d'un composant horloger.
JP3385771B2 (ja) 超電導磁気軸受装置
JPH06313427A (ja) 酸化物超電導軸受
JPH08208011A (ja) ローラコンベヤのブレーキローラ
EP0890033A1 (fr) Dispositif de detection des deplacements d'un rotor monte sur des paliers magnetiques actifs
CN114378964A (zh) 一种线切割机用过轮装置和线切割设备
BE447983A (fr)
FR2993726A1 (fr) Volant d'inertie avec un arbre de rotation comprenant deux moteur paliers magnetiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161130

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190103