EP1843115B1 - Rohr/Rippenblock-Wärmeübertrager mit umgelenkter Strömung - Google Patents

Rohr/Rippenblock-Wärmeübertrager mit umgelenkter Strömung Download PDF

Info

Publication number
EP1843115B1
EP1843115B1 EP20070006459 EP07006459A EP1843115B1 EP 1843115 B1 EP1843115 B1 EP 1843115B1 EP 20070006459 EP20070006459 EP 20070006459 EP 07006459 A EP07006459 A EP 07006459A EP 1843115 B1 EP1843115 B1 EP 1843115B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
flow
exchanger according
chamber
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20070006459
Other languages
English (en)
French (fr)
Other versions
EP1843115A2 (de
EP1843115A3 (de
Inventor
Thomas Fricker
Matthias Dipl.-Ing. Jung
Ronny Dipl.-Ing. Kiel
Christian Proksch
Matthias Dipl.-Ing. Traub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1843115A2 publication Critical patent/EP1843115A2/de
Publication of EP1843115A3 publication Critical patent/EP1843115A3/de
Application granted granted Critical
Publication of EP1843115B1 publication Critical patent/EP1843115B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0096Radiators for space heating

Definitions

  • the invention relates to a heat exchanger according to the preamble of claim 1.
  • Heat exchangers of known design have a tube / rib block, which consists of pipes or flow passages through which a first fluid can flow and ribs which can be flowed over by a second fluid.
  • Tubes and ribs are in heat-conducting connection; For example, they are soldered or mechanically connected.
  • the tubes have over the block protruding pipe ends, which each open into a collection or distribution box, ie communicate with this on the first fluid.
  • the first fluid for. B. a coolant is supplied to the heat exchanger via a connecting piece (inlet nozzle) and withdrawn after flowing through the tube / rib block via a second connecting piece (outlet nozzle) again.
  • the tube / fin block As it flows through the tube / fin block, heat is transferred from one fluid to the other via the fins. For example, air flows through the tube / fin block, which is heated by the coolant.
  • the tube / fin block generally has a plurality of tubes, e.g. As round tubes or flat tubes, which can be arranged in one or more rows.
  • the tubes can be hydraulically connected in parallel, ie all flowed through in the same direction, or individual pipe groups can be connected in series, so that they are flowed through successively and the fluid covers a longer path in the heat exchanger.
  • the deflection of the fluid flow, which from a Pipe group exits, takes place in the collection boxes, which have divided by partitions diverting chambers.
  • a deflection of the fluid flow can either transversely to the second fluid flow, for. B. an air flow - it is then called a deflection in the width of the heat exchanger - or in or against the flow direction of the second fluid (air flow) - one then speaks of a deflection in depth.
  • an at least two-row or two-pipe arrangement of the tubes or flow channels is required.
  • a double-flow design with deflection in the depth can be realized for example by a flat tube with inner partition.
  • radiators of a heating and air conditioning such a temperature stratification is desired: So should the emerging from the radiator in the upper air cooler and the exiting air in the lower area to be warmer. The cooler air is supplied to the head area of the vehicle occupant and the heat air to the foot area of the vehicle occupant.
  • a so-called right / left separation i. H. independent heating of the driver and front passenger side usual.
  • the applicant has been known such a radiator for a motor vehicle heating system, which has a right / left separation.
  • the radiator is divided into two blocks, which are supplied from a common flow with coolant, but each have their own return with flow control. This allows the flow in each sub-block (for right or left) to be set independently, thereby individually controlling the air temperature for the driver and front-passenger sides.
  • the known radiator has additional means to produce a temperature stratification in the above sense (cool head - warm feet).
  • transversely extending distribution pipes are provided both in the lower and in the upper collecting box of the radiator, which effect a different loading of the radiator pipes and thus a stratification of the air temperature.
  • the known heating system is referred to as a water-regulated system, since the air temperature is adjusted via the regulation of the coolant throughput. In air-controlled systems, the coolant flow rate is not regulated, but hot and cold air streams are brought by mixing to the desired temperature.
  • the first fluid flow supplied to the heat exchanger can be deflected both in width and in depth, not in succession but simultaneously.
  • the incoming fluid flow is divided into a first partial flow, which is deflected in depth, and a second partial flow, which is deflected in width.
  • the advantage is achieved that at least two different temperature zones are created for the exiting fluid flow in a relatively narrow space, namely, a first, warm zone from the fluid inlet to the division and deflection of the fluid flow, a second, approximately lukewarm zone, which adjacent to the warm zone is placed, and in a third, cold zone.
  • the tube / rib block can be soldered or mechanically be made, ie consist of flat tubes with corrugated ribs or round or oval tubes with flat ribs.
  • the first collection box has an inlet chamber and the second collection box a deflection chamber, in which the division and deflection of the fluid flow takes place.
  • the first collection box further has an exit chamber which is separated from the entry chamber by a longitudinal dividing wall.
  • an outlet chamber section is arranged in the first collection box, into which the second partial flow diverted into the width opens.
  • the exit chamber section is in fluid communication with the exit chamber.
  • the heat exchanger can be extended by "reflection" in a heat exchanger with separate right / left control. This is done by providing a second inlet chamber with a further connection piece, extended collection boxes with a further deflection chamber and a further outlet chamber portion, which is combined with the first outlet chamber portion.
  • the heat exchanger is designed as a radiator of a Kraft mecanicungs- and / or air conditioning, ie the manifolds and pipes are flowed through by a coolant of a cooling circuit of an internal combustion engine, while the ribs are overflowed by ambient air.
  • the radiator according to the invention is advantageously part of a water-regulated heating system withrezlLinks control. Due to the air temperature profile according to the invention are different tempered air streams, which can be taken directly behind the radiator through channels and the corresponding points in the vehicle can be supplied. For example, the cold air is supplied to the defrost and the head area of the vehicle occupant and the warm air to the foot and rear area of the vehicle. This can be dispensed with devices for mixing cold and warm air such as channels, flaps and mixing rooms.
  • the two flow connection stubs are each arranged on the front side of the heat exchanger, with other arrangements, for. B. side or up abragend possible.
  • the return pipe is preferably also arranged frontally next to one of the two flow nozzles - here are arrangements on the side, top or center possible.
  • An advantage of a central arrangement of the return nozzle is a symmetrical flow in the second row of tubes.
  • the direction of flow of the air is preferably in the direction of the deflection in the depth (cross-DC) - the opposite direction (cross-countercurrent) is also possible.
  • the first partial flow can be throttled by a suitable choke element, so that the ratio of the mass flows changes in favor of the second partial stream: the coolant volume flow V 1 is thus relatively small and the volume flow V 2 relatively larger.
  • a suitable choke element may be formed as a baffle, which is preferably arranged in the outlet chamber section of the return pipe. The baffle is thus transverse to the flow direction of the exiting first partial flow and acts much like a baffle plate - thereby the desired throttling is achieved. The strength of the throttle effect can be adjusted by the arrangement and size of the baffle.
  • the entire radiator can be designed as a soldered all-aluminum heat exchanger, d. H. with flat tubes and corrugated ribs.
  • Fig. 1 shows a heat exchanger 1, which is designed as a radiator of a heating and / or air conditioning, not shown, of a motor vehicle.
  • the radiator 1 has a double-row or double-flow tube / rib block 2 with a first flat tube row 2a and a second flat tube row 2b.
  • the flow channels 2a, 2b can be formed by separate flat tubes or a common flat tube with a partition wall. Between the flat tubes are corrugated ribs, which are not shown.
  • Flat tubes and corrugated ribs are soldered together and form the tube / rib block 2, which of ambient air, represented by an arrow L, can be flowed through (an opposite air flow direction in the sense of a countercurrent flow is also possible).
  • the radiator 1 also has two manifolds, a first (upper), only partially illustrated collection box 3 and a second (lower) collection box 4, in which unillustrated pipe ends of the tube / rib block 2 open.
  • the upper header 3 which has a tube bottom 3a, is divided into a first inlet chamber 5, a second inlet chamber 6 and an outlet chamber 7, consisting of three communicating outlet chamber sections 7a, 7b, 7c.
  • the first inlet chamber 5 has a first inlet or feed pipe 8 and the second inlet chamber 6 has a second inlet or feed nozzle 9, the outlet chamber 7 with its sections 7a, 7b, 7c has an outlet or return pipe 10, wherein all nozzles are arranged frontally.
  • the outlet nozzle 10 may be arranged, for example, centrally and above the outlet chamber section 7b.
  • the first inlet chamber 5 is bounded by the tube bottom 3a, a central longitudinal partition wall 5a and a half transverse wall 5b (longitudinal partition wall 5a and transverse partition wall 5b may also be integrally formed as a longitudinal / transverse partition wall).
  • the symmetrically arranged and symmetrically formed second inlet chamber 6 is bounded by a centrally extending longitudinal partition wall 6a and a transverse half transverse wall 6b, wherein - as mentioned - the lid of the collecting tank 3 is not shown.
  • the lower collection box 4 has a first deflection chamber 11 and a second deflection chamber 12, which is partitioned off from the first deflection chamber 11 by a partition wall 13.
  • the illustrated embodiment has two Schuungsvorin and a common return and is thus suitable for independent heating of the driver and passenger side in a motor vehicle. Deviating from the illustrated embodiment, however, a "halved" heat exchanger or radiator is conceivable, which ends in the plane of the partition wall 13, d. H. has only one flow and one return.
  • the function of the radiator 1 in a Kratt familialoomungsstrom will be described below.
  • the radiator 1 is connected via the two supply line 8, 9 connected to the coolant circuit of an internal combustion engine of the motor vehicle, both heats are independently controllable with respect to their coolant flow rate (water-side control). It is considered at first only the left half of the radiator 1 with the flow pipe 8.
  • the coolant flow passes through the inlet chamber 5 in a tube group of the first row of tubes 2a and flows through them in the direction of the arrow V ⁇ , where V ⁇ denotes the coolant mass flow (mass per unit time).
  • the coolant thus flows into a first passage from the inlet chamber 5 in which is arranged in the lower header box 4 diversion chamber 11, where the total current V into two partial flows V 1, V 2 divided and is deflected in depth and in width.
  • V ⁇ V ⁇ 1 + V ⁇ 2 ,
  • the partial flow with the mass flow rate V ⁇ 1 passes according to the arrow V ⁇ 1 in the rear row of pipes 2b and flows through them from bottom to top.
  • the second partial flow V 2 is deflected according to the arrow V 2 in the width and flow both in the front and in the rear row of tubes up into the section 7b of the exhaust chamber 7.
  • the deflected in the depth partial flow V 1 passes after passing through the rear Tube row 2b in the section 7a of the outlet chamber 7, where both partial flows V ⁇ 1 and V ⁇ 2 reunite and emerge as a total flow through the return pipe 10.
  • temperature zones are shown as rectangles 1a, 1b, II and III in the right half.
  • the two fields Ia and Ib indicate a zone of relatively warm air, i. H. Air with a relatively high outlet temperature.
  • Zone II is a zone of lower air temperature and may be said to be lukewarm, while
  • Zone III is a zone of relatively low air temperature, i. H. less heated air.
  • the air these fields Ia, 1b, II III isolated taken and directed to the desired locations in the passenger compartment.
  • the warm air emerging from the fields Ia, Ib would be supplied to the footwell, while the cold air leaving the region III would be sent to the defroster jets.
  • the illustrated heat exchanger 1 with two feeders and a return can also be in a through the partition 13th divided plane and completed there each front side. This would result in a functioning radiator with a flow and a return, which has the flow pattern shown on the left and the temperature profile shown on the right (mirrored).
  • the nozzles for flow and return can be implemented as desired.
  • Fig. 2 shows an upper section of the radiator 1 according to Fig. 1 , Wherein like reference numerals are used for the same parts. Shown is the upper header 3 with the first flow nozzle 8 and outlet nozzle 10, which is followed by the outlet chamber section 7a.
  • the flow of the coolant corresponds to the in Fig. 1 , ie, the flow of coolant entering through the feed pipe 8 first flows downward in accordance with the arrow V ⁇ and is there - as in Fig. 1 shown - divided into two partial streams V ⁇ 1 and V ⁇ 2 , so that the first deflected in the depth partial flow V ⁇ 1 flows upwards and enters the outlet chamber section 7 a .
  • baffle 14 an approximately parallel and above the tube sheet 3a extending baffle 14 is arranged.
  • the coolant flow entering from the rear row of tubes 2 a into the outlet chamber section 7 a strikes the guide plate 14 approximately perpendicularly, which thus acts like a baffle plate and increases the flow resistance of the coolant flow or throttles the partial flow V 1 .
  • the guide plate 14 in the drawing on the left side of the radiator 1 of the entering through the right, not shown second inlet nozzle coolant flow increases.
  • the result of the arrangement of the guide plate 14 is a gleichrichte, ie approximately symmetrical temperature distribution, which compensates for the asymmetrical arrangement of the single outlet nozzle 10 (return pipe).
  • a symmetrical arrangement of the return neck 10 z. B. in the middle of the radiator, such a baffle would not be required.
  • the baffle 14 can be modified in terms of its overlap of the partial stream V 1 and with respect to its height above the tube plate 3a so as to achieve the desired air temperature distribution on the heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft einen Wärmeübertrager nach dem Oberbegriff des Patentanspruches 1.
  • Wärmeübertrager bekannter Bauart weisen einen Rohr/Rippen-Block auf, welcher aus von einem ersten Fluid durchströmbaren Rohren oder Strömungskanälen und von einem zweiten Fluid überströmbaren Rippen besteht. Rohre und Rippen stehen in wärmeleitender Verbindung; sie sind beispielsweise verlötet oder mechanisch miteinander verbunden. Die Rohre weisen über den Block hinausstehende Rohrenden auf, welche jeweils in einen Sammel- bzw. Verteilerkasten münden, d. h. mit diesem über das erste Fluid kommunizieren. Das erste Fluid, z. B. ein Kühlmittel wird dem Wärmeübertrager über einen Anschlussstutzen (Eintrittsstutzen) zugeführt und nach Durchströmen des Rohr/Rippen-Blockes über einen zweiten Anschlussstutzen (Austrittsstutzen) wieder entzogen. Beim Durchströmen des Rohr/Rippen-Blockes wird Wärme über die Rippen von einem Fluid auf das andere übertragen. Beispielsweise strömt Luft durch den Rohr/Rippen-Block, welche durch das Kühlmittel erwärmt wird. Der Rohr/Rippen-Block weist im Allgemeinen eine Vielzahl von Rohren, z. B. Rundrohren oder Flachrohren auf, welche in einer oder mehreren Reihen angeordnet sein können. Je nach Einsatzzweck des Wärmeübertragers können die Rohre hydraulisch parallel geschaltet sein, d. h. alle gleichsinnig durchströmt werden, oder einzelne Rohrgruppen können hintereinander geschaltet sein, sodass sie nacheinander durchströmt werden und das Fluid einen längeren Weg im Wärmeübertrager zurücklegt. Die Umlenkung des Fluidstromes, welcher aus einer Rohrgruppe austritt, erfolgt in den Sammelkästen, welche durch Trennwände abgeteilte Umlenkkammern aufweisen. Eine Umlenkung des Fluidstromes kann entweder quer zu dem zweiten Fluidstrom, z. B. einem Luftstrom erfolgen - man spricht dann von einer Umlenkung in der Breite des Wärmeübertragers - oder in oder entgegen der Strömungsrichtung des zweiten Fluids (Luftstromes) - man spricht dann von einer Umlenkung in der Tiefe. Für diesen Fall ist eine mindestens zweireihige oder zweiflutige Anordnung der Rohre bzw. Strömungskanäle erforderlich. Eine zweiflutige Bauweise mit Umlenkung in der Tiefe kann beispielsweise durch ein Flachrohr mit innerer Trennwand realisiert werden. Durch die Umlenkung des ersten Fluidstromes im Wärmeübertrager lassen sich unterschiedliche Austrittstemperaturen für den zweiten Fluidstrom erreichen. Beispielsweise erhält der aus dem Wärmeübertrager austretende Luftstrom, welcher durch das Kühlmittel erwärmt wird, eine bestimmte Temperaturschichtung bzw. eine gewünschtes Temperaturprofil.
  • Bei Wärmeübertragern für Kraftfahrzeuge, z. B. Heizkörpern einer Heiz- und Klimaanlage ist eine derartige Temperaturschichtung erwünscht: So soll die aus dem Heizkörper im oberen Bereich austretende Luft kühler und die im unteren Bereich austretende Luft wärmer sein. Die kühlere Luft wird dem Kopfbereich der Fahrzeuginsassen und die wärme Luft dem Fußbereich der Fahrzeuginsassen zugeleitet. Darüber hinaus ist in heutigen Fahrzeugen eine so genannte Rechts/Links-Trennung, d. h. eine unabhängige Beheizung der Fahrer- und der Beifahrerseite üblich.
  • Durch die DE 33 17 983 C1 der Anmelderin wurde ein derartiger Heizkörper für eine Kraftfährzeugheizungsanlage bekannt, welche eine Rechts/Links-Trennung aufweist. Der Heizkörper ist dabei in zwei Blöcke geteilt, welche aus einem gemeinsamen Vorlauf mit Kühlmittel versorgt werden, jedoch jeweils einen eigenen Rücklauf mit Durchsatzregelung aufweisen. Dadurch kann der Durchfluss in jedem Teilblock (für rechts oder links) unabhängig eingestellt und damit die Lufttemperatur für die Fahrer- und die Beifahrerseite individuell geregelt werden.
  • Durch die DE 43 13 567 C1 wurde ein Heizkörper für eine Rechts/Links-Regelung bekannt. Der bekannte Heizkörper weist zusätzlich Mittel auf, um eine Temperaturschichtung im oben erwähnten Sinne (kühler Kopf - warme Füße) zu erzeugen. Dazu sind sowohl im unteren als auch im oberen Sammelkasten des Heizkörpers quer verlaufende Verteilerrohre vorgesehen, welche eine unterschiedliche Beaufschlagung der Heizkörperrohre und damit eine Schichtung der Lufttemperatur bewirken. Die bekannte Heizungsanlage wird als wassergeregelte Anlage bezeichnet, da über die Regelung des Kühlmitteldurchsatzes die Lufttemperatur eingestellt wird. Bei luftgeregelten Anlagen wird der Kühlmitteldurchsatz nicht geregelt, vielmehr werden warme und kalte Luftströme durch Mischung auf die gewünschte Temperatur gebracht.
  • Durch die DE 101 58 436 A1 wurde ein Heizkörper mit Teilstromumlenkung und den Merkmalen des Oberbegriffs von Anspruch 1 bekannt.
  • Es ist Aufgabe der vorliegenden Erfindung, für einen Wärmeübertrager der eingangs genannten Art mit einfachen Mitteln ein vorgegebenes Temperaturprofil für den austretenden Fluidstrom (Sekundärstrom) zu erzielen, wobei darüber hinaus auch eine unabhängige Regelung von Teilblöcken möglich sein soll.
  • Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Erfindungsgemäß ist vorgesehen, dass der dem Wärmeübertrager zugeführte erste Fluidstrom sowohl in der Breite als auch in der Tiefe umlenkbar ist, und zwar nicht nacheinander, sondern gleichzeitig. Dies bedeutet, dass der eintretende Fluidstrom geteilt wird, und zwar in einen ersten Teilstrom, der in der Tiefe umgelenkt wird, und in einen zweiten Teilstrom, welcher in der Breite umgelenkt wird. Damit wird der Vorteil erreicht, dass auf relativ engem Raum mindestens zwei unterschiedliche Temperaturzonen für den austretenden Fluidstrom geschaffen werden, nämlich eine erste, warme Zone vom Fluideintritt bis zur Teilung und Umlenkung des Fluidstromes, eine zweite, etwa lauwarme Zone, welche neben der warmen Zone angeordnet ist, und in eine dritte, kalte Zone. Für die Umlenkung in der Tiefe ist eine zweireihige bzw. zweiflutige Bauweise erforderlich, was durch zwei getrennte Rohrreihen oder ein Flachrohr mit zwei diskreten, parallelen Strömungskanälen dargestellt werden kann. Der Rohr/Rippen-Block kann gelötet oder mechanisch gefertigt sein, d. h. aus Flachrohren mit Wellrippen oder aus Rund- bzw. Ovalrohren mit Flachrippen bestehen.
  • In vorteilhafter Ausgestaltung der Erfindung weist der erste Sammelkasten eine Eintrittskammer und der zweite Sammelkasten eine Umlenkkammer auf, in welcher die Teilung und Umlenkung des Fluidstromes erfolgt. Der erste Sammelkasten weist ferner eine Austrittskammer auf, welche durch eine Längstrennwand von der Eintrittskammer getrennt ist. Ferner ist im ersten Sammelkasten ein Austrittskammerabschnitt angeordnet, in welchen der zweite, in die Breite umgelenkte Teilstrom mündet. Der Austrittskammerabschnitt steht mit der Austrittskammer in Fluidverbindung. Mit dieser Anordnung wird der Vorteil erreicht, dass sich infolge der reduzierten Strömungsgeschwindigkeit des zweiten Teilstromes eine relativ starke Abkühlung erreicht, d. h. eine kalte Zone für das Lufttemperaturprofil.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung kann der Wärmeübertrager durch "Spiegelung" in einen Wärmeübertrager mit getrennter Rechts/Links-Regelung erweitert werden. Dies geschieht dadurch, dass eine zweite Eintrittskammer mit einem weiteren Anschlussstutzen, verlängerte Sammelkästen mit einer weiteren Umlenkkammer und einem weiteren Austrittskammerabschnitt, der mit dem ersten Austrittskammerabschnitt vereinigt ist, vorgesehen werden. Durch eine derartige Erweiterung mit spiegelbildlicher Anordnung der beiden Eintrittsstutzen und Eintrittskammern sowie einem mittleren Austrittskammerabschnitt kann einerseits die erwähnte Temperaturschichtung warm/lau/kalt beibehalten und andererseits eine unabhängige Durchsatzregelung für die beiden den Eintrittskammern zugeführten Fluidströme ermöglicht werden.
  • Vorteilhafterweise ist der Wärmeübertrager als Heizkörper einer Kraftfahrzeugheizungs- und/oder Klimaanlage ausgebildet, d. h. die Sammelkästen und Rohre werden von einem Kühlmittel eines Kühlkreislaufes einer Brennkraftmaschine durchströmt, während die Rippen von Umgebungsluft überströmt werden. Der erfindungsgemäße Heizkörper ist vorteilhafterweise Teil einer wassergeregelten Heizungsanlage mit RechtslLinks-Steuerung. Aufgrund des erfindungsgemäßen Lufttemperaturprofils ergeben sich unterschiedlich temperierte Luftströme, welche unmittelbar hinter dem Heizkörper über Kanäle entnommen und den entsprechenden Stellen im Kraftfahrzeug zugeführt werden können. Beispielsweise wird die kalte Luft dem Defrostsowie dem Kopfbereich der Fahrzeuginsassen und die warme Luft dem Fuß- und Fondbereich des Fahrzeuges zugeführt. Damit kann auf Vorrichtungen zur Mischung von kalter und warmer Luft wie Kanäle, Klappen und Mischräume verzichtet werden.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung sind die beiden Vorlauf anschlussstutzen jeweils stirnseitig am Wärmeübertrager angeordnet, wobei andere Anordnungen, z. B. seitlich oder nach oben abragend möglich sind. Der Rücklaufsstutzen ist vorzugsweise ebenfalls stirnseitig neben einem der beiden Vorlaufsstutzen angeordnet - auch hier sind Anordnungen auf der Seite, oben oder mittig möglich. Vorteilhaft bei einer mittigen Anordnung des Rücklaufsstutzens ist eine symmetrische Strömung in der zweiten Rohrreihe. Die Strömungsrichtung der Luft erfolgt vorzugsweise in Richtung der Umlenkung in der Tiefe (Kreuzgleichstrom) - die entgegengesetzte Richtung (Kreuzgegenstrom) ist jedoch auch möglich.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung kann der erste Teilstrom durch ein geeignetes Drosselelement angedrosselt werden, sodass sich das Verhältnis der Massenströme zu Gunsten des zweiten Teilstromes ändert: der Kühlmittelvolumenstrom von 1 wird somit relativ kleiner und der Volumenstrom von 2 relativ größer. Vorteilhaft bei dieser Androsselung ist auch, dass eine unsymmetrische Anordnung des Rücklaufstutzens kompensiert wird. Darüber hinaus ist bei einer Heizkörperausbildung mit zwei sich gegenüber liegenden Eintrittsstutzen von Vorteil, dass der Kühlmittelvolumenstrom auf der rechten Seite bei Androsselung des ersten Teilstromes auf der linken Seite gesteigert wird. In vorteilhafter Ausgestaltung kann das Drosselelement als Leitblech ausgebildet sein, welches vorzugsweise im Austrittskammerabschnitt des Rücklaufstutzens angeordnet ist. Das Leitblech liegt somit quer zur Strömungsrichtung des austretenden ersten Teilstromes und wirkt ähnlich wie ein Prallblech - dadurch wird die gewünschte Androsselung erreicht. Die Stärke des Drosseleffektes kann durch Anordnung und Größe des Leitbleches eingestellt werden.
  • Nach einer bevorzugten Ausführungsform kann der gesamte Heizkörper als gelöteter Ganzaluminiumwärmeübertrager ausgeführt sein, d. h. mit Flachrohren und Wellrippen.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen
  • Fig. 1
    einen erfindungsgemäßen, als Heizkörper ausgebildeten Wärmeübertrager und
    Fig. 2
    einen Ausschnitt des Heizkörpers mit einem Leitblech.
  • Fig. 1 zeigt einen Wärmeübertrager 1, der als Heizkörper einer nicht dargestellten Heizungs- und/oder Klimaanlage eines Kraftfahrzeuges ausgebildet ist. Der Heizkörper 1 weist einen zweireihigen bzw. zweiflutigen Rohr/Rippen-Block 2 auf mit einer ersten Flachrohrreihe 2a und einer zweiten Flachrohrreihe 2b. Die Strömungskanäle 2a, 2b können durch separate Flachrohre oder ein gemeinsames Flachrohr mit Trennwand gebildet werden. Zwischen den Flachrohren befinden sich Wellrippen, welche nicht dargestellt sind. Flachrohre und Wellrippen werden miteinander verlötet und bilden den Rohr/Rippen-Block 2, welcher von Umgebungsluft, dargestellt durch einen Pfeil L, durchströmbar ist (eine entgegengesetzte Luftströmungsrichtung im Sinne eines Kreuzgegenstromes ist ebenfalls möglich). Der Heizkörper 1 weist ferner zwei Sammelkästen, einen ersten (oberen), nur teilweise dargestellten Sammelkasten 3 und einen zweiten (unteren) Sammelkasten 4 auf, in welche nicht dargestellte Rohrenden des Rohr/Rippen-Blockes 2 münden. Der obere Sammelkasten 3, der einen Rohrboden 3a aufweist, ist unterteilt in eine erste Eintrittskammer 5, eine zweite Eintrittskammer 6 sowie eine Austrittskammer 7, bestehend aus drei miteinander kommunizierenden Austrittskammerabschnitten 7a, 7b, 7c. Die erste Eintrittskammer 5 weist einen ersten Eintritts- oder Vorlaufstutzen 8 und die zweite Eintrittskammer 6 weist einen zweiten Eintritts- oder Vorlaufstutzen 9 auf, die Austrittskammer 7 mit ihren Abschnitten 7a, 7b, 7c weist einen Austritts- oder Rücklaufstutzen 10 auf, wobei sämtliche Stutzen stirnseitig angeordnet sind. Dies muss notwendigerweise nicht der Fall sein, vielmehr kann der Austrittsstutzen 10 beispielsweise mittig und oberhalb des Austrittskammerabschnittes 7b angeordnet sein. Die erste Eintrittskammer 5 wird durch den Rohrboden 3a, eine mittig verlaufende Längstrennwand 5a sowie eine halbe Querwand 5b begrenzt (Längstrennwand 5a und Quertrennwand 5b können auch einstückig als Längs/Quertrennwand ausgebildet sein). In analoger Weise wird die symmetrisch angeordnete und symmetrisch ausgebildete zweite Eintrittskammer 6 durch eine mittig verlaufende Längstrennwand 6a und eine quer verlaufende halbe Querwand 6b begrenzt, wobei - wie erwähnt - der Deckel des Sammelkastens 3 nicht dargestellt ist. Der untere Sammelkasten 4 weist eine erste Umlenkkammer 11 und eine zweite Umlenkkammer 12 auf, welche von der ersten Umlenkkammer 11 durch eine Trennwand 13 abgeteilt ist.
  • Das dargestellte Ausführungsbeispiel weist zwei Heizungsvorläufe und einen gemeinsamen Rücklauf auf und ist somit für eine unabhängige Beheizung von Fahrer und Beifahrerseite in einem Kraftfahrzeug verwendbar. Abweichend von dem dargestellten Ausführungsbeispiel ist jedoch ein "halbierte" Wärmeübertrager bzw. Heizkörper vorstellbar, welcher in der Ebene der Trennwand 13 endet, d. h. nur einen Vorlauf und einen Rücklauf aufweist.
  • Die Funktion des Heizkörpers 1 in einer Krattfahrzeugheizungsanlage wird im Folgenden beschrieben. Der Heizkörper 1 wird über die beiden Vorlauf stutzen 8, 9 an den Kühlmittelkreislauf einer Brennkraftmaschine des Kraftfahrzeuges angeschlossen, wobei beide Vorläufe hinsichtlich ihres Kühlmitteldurchsatzes unabhängig voneinander regelbar sind (wasserseitige Regelung). Es wird zunächst nur die linke Hälfte des Heizkörpers 1 mit dem Vorlaufstutzen 8 betrachtet. Der Kühlmittelstrom gelangt über die Eintrittskammer 5 in eine Rohrgruppe der ersten Rohrreihe 2a und durchströmt diese in Richtung des Pfeiles V̇, wobei den Kühlmittelmassenstrom (Masse pro Zeiteinheit) bezeichnet. Das Kühlmittel strömt somit in einem ersten Durchgang von der Eintrittskammer 5 in die im unteren Sammelkasten 4 angeordnete Umlenkkammer 11, wo der Gesamtstrom in zwei Teilströme 1, 2 geteilt und in der Tiefe sowie in der Breite umgelenkt wird. Es gilt die Beziehung: V ˙ = V ˙ 1 + V ˙ 2 .
    Figure imgb0001
  • Der Teilstrom mit dem Massendurchsatz 1 gelangt entsprechend dem Pfeil 1 in die hintere Rohrreihe 2b und durchströmt diese von unten nach oben. Der zweite Teilstrom 2 wird entsprechend dem Pfeil 2 in der Breite umgelenkt und strömt sowohl in der vorderen als auch in der hinteren Rohrreihe nach oben in den Abschnitt 7b der Austrittskammer 7. Der in der Tiefe umgelenkte Teilstrom 1 gelangt nach Durchströmen der hinteren Rohrreihe 2b in den Abschnitt 7a der Austrittskammer 7, wo sich beide Teilströme 1 und 2 wieder vereinigen und als Gesamtstrom durch den Rücklaufstutzen 10 austreten. Der für die (in der Zeichnung) links gelegene Hälfte des Heizkörpers 1 beschriebene und durch Pfeile dargestellte Strömungsverlauf trifft analog auf die rechte Hälfte mit Vorlaufstutzen 9, zweiter Eintrittskammer 6, zweiter Umlenkkammer 12 und die Abschnitte 7b, 7c der Austrittskammer 7 zu. Es ergibt sich somit - was in der rechten Hälfte nicht eingezeichnet ist - ein spiegelbildlicher Strömungsverlauf mit einem Gesamtstrom V̇', der sich im unteren Unlenkkasten 12 in einen Teilstrom V ˙ 1 ʹ
    Figure imgb0002
    und einen Teilstrom V ˙ 2 ʹ
    Figure imgb0003
    aufteilt und in der Tiefe und in der Breite umgelenkt wird.
  • Anstelle des in der linken Hälfte eingezeichneten Strömungsverlaufes sind in der rechten Hälfte Temperaturzonen als Rechtecke Ia, Ib, II und III eingezeichnet. Die beiden Felder Ia und Ib kennzeichnen eine Zone relativ warmer Luft, d. h. Luft mit relativ hoher Austrittstemperatur. Die Zone II ist eine Zone geringerer Lufttemperatur und kann als lauwarm bezeichnet werden, während die Zone III eine Zone mit relativ niedriger Lufttemperatur ist, d. h. weniger stark erwärmter Luft. Durch nicht dargestellte Mittel wie Kanäle und/oder Trennwände kann die Luft diesen Feldern Ia, 1b, II III isoliert entnommen und an die gewünschten Stellen im Fahrgastraum geleitet werden. Beispielsweise würde die aus den Feldern Ia, Ib austretende warme Luft dem Fußraum zugeleitet werden, während die aus dem Bereich III austretende Kaltluft den Defrosterdüsen zugeleitet würde. Die gleiche Temperaturverteilung ergibt sich auf der linken Seite - allerdings kann das Temperaturniveau für die rechte und die linke Seite aufgrund der unabhängigen Reglung beider Seiten verschieden sein.
  • Wie bereits oben angedeutet, kann der dargestellte Wärmeübertrager 1 mit zwei Vorläufen und einem Rücklauf auch in einer durch die Trennwand 13 verlaufenden Ebene geteilt und dort jeweils stirnseitig abgeschlossen werden. Damit würde sich ein funktionsfähiger Heizkörper mit einem Vorlauf und einem Rücklauf ergeben, welcher den links dargestellten Strömungsverlauf und das rechts dargestellte Temperaturprofil (gespiegelt) aufweist. Die Stutzen für Vorlauf und Rücklauf können beliebig umgesetzt werden.
  • Fig. 2 zeigt einen oberen Ausschnitt des Heizkörpers 1 gemäß Fig. 1, wobei für gleiche Teile gleiche Bezugszahlen verwendet werden- Dargestellt ist der obere Sammelkasten 3 mit erstem Vorlaufsstutzen 8 und Austrittsstutzen 10, an welchen sich der Austrittskammerabschnitt 7a anschließt. Der Strömungsverlauf des Kühlmittels entspricht dem in Fig. 1, d. h. der durch den Vorlaufstutzen 8 eintretende Kühlmittelstrom strömt zunächst entsprechend dem Pfeil nach unten und wird dort - wie in Fig. 1 dargestellt - in zwei Teilströme 1 und 2 geteilt, sodass der erste in der Tiefe umgelenkte Teilstrom 1 nach oben strömt und in den Austrittskammerabschnitt 7a eintritt. Dort ist erfindungsgemäß ein etwa parallel und oberhalb des Rohrbodens 3a verlaufendes Leitblech 14 angeordnet. Die aus der hinteren Rohrreihe 2a in den Austrittskammerabschnitt 7a eintretende Kühlmittelströmung trifft etwa senkrecht auf das Leitblech 14, welches somit wie ein Prallblech wirkt und den Durchflusswiderstand der Kühlmittelströmung erhöht bzw. den Teilstrom 1 drosselt. Damit wird das Verhältnis der Kühlmittelmassenströme zu Gunsten des Teilstromes 2 verändert. Darüber hinaus wird durch die Anordnung des Leitbleches 14 (in der Zeichnung auf der linken Seite des Heizkörpers 1) der durch den rechten, nicht dargestellten zweiten Eintrittsstutzen eintretende Kühlmittelvolumenstrom erhöht. Insgesamt ergibt sich durch die Anordnung des Leitbleches 14 eine vergleichmäßigte, d. h. etwa symmetrische Temperaturverteilung, die die unsymmetrische Anordnung des einzigen Austrittsstutzens 10 (Rücklaufstutzen) ausgleicht. Bei symmetrischer Anordnung des Rücklaufstutzens 10, z. B. in der Mitte des Heizkörpers, wäre ein solches Leitblech nicht erforderlich. Das Leitblech 14 kann hinsichtlich seiner Überdeckung des Teilstromes 1 und hinsichtlich seiner Höhe über dem Rohrboden 3a modifiziert werden, um die gewünschte Lufttemperaturverteilung am Heizkörper zu erzielen.

Claims (26)

  1. Wärmeübertrager, im Wesentlichen bestehend aus einem zweireihigen oder zweiflutigen Rohr/Rippen-Block (2), einem ersten Sammelkasten (3) und einem zweiten Sammelkasten (4), wobei die Rohre des Rohr/Rippen-Blockes (2) mit den Sammelkästen (3, 4) über ein erstes Fluid kommunizieren, welches dem Wärmeübertrager über mindestens einen ersten Anschluss (8) zuführbar und über einen zweiten Anschluss (10) entziehbar ist, wobei der Rohr/Rippen-Block (2) von einem zweiten Fluid quer zu den Rohren durchströmbar ist, wobei das erste Fluid im Wärmeübertrager sowohl quer zur Strömungsrichtung (L) des zweiten Fluids, d. h. in Breitenrichtung des Wärmeübertragers als auch in oder entgegen der Strömungsrichtung (L) des zweiten Fluids, d. h. in Tiefenrichtung des Wärmeübertragers umlenkbar ist, dadurch gekennzeichnet, dass der erste Sammelkasten (3) eine erste Eintrittskammer (5) aufweist und dass der der Eintrittskammer (5) zuführbare Fluidstrom () nach einem ersten Durchgang durch den Rohr/Rippen-Block (2) in einen ersten Teilstrom ( 1) und einen zweiten Teilstrom ( 2) teilbar ist, wobei der erste Teilstrom ( 1) in der Tiefe und der zweite Teilstrom ( 2) in der Breite umlenkbar sind.
  2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass der erste Teilstrom ( 1) und der zweite Teilstrom ( 2) zum ersten Sammelkasten (3) zurückführbar sind.
  3. Wärmeübertrager nach Anspruch 2, dadurch gekennzeichnet, dass der erste Sammelkasten (3) eine Austrittskammer (7) aufweist.
  4. Wärmeübertrager nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der erste Teilstrom ( 1) mit dem zweiten Teilstrom ( 2) in der Austrittskammer (7) vereinigbar ist.
  5. Wärmeübertrager nach Anspruch 4, dadurch gekennzeichnet, dass die wiedervereinigten Teilströme ( 1) und ( 2) als Austrittsstrom dem zweiten Anschluss (10) zuführbar sind.
  6. Wärmeübertrager nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der zweite Sammelkasten (4) mindestens eine Umlenkkammer (11) für die Umlenkung des Fluidstromes () in der Breite und in der Tiefe aufweist.
  7. Wärmeübertrager nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die mindestens eine Eintrittskammer (5) durch eine Längstrennwand (5a) und eine Quertrennwand (5b) oder durch eine einstückige Längs/Quertrennwand begrenzt ist.
  8. Wärmeübertrager nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Austrittskammer (7) einen Kammerabschnitt (7a) aufweist, welcher benachbart zur Längstrennwand (5a) der Eintrittskammer (5) angeordnet ist.
  9. Wärmeübertrager nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der erste Anschluss (8) stirnseitig an der Eintrittskammer (5) angeordnet ist.
  10. Wärmeübertrager nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der zweite Anschluss (10) stirnseitig an der Austrittskammer (7), respektive an dem Kammerabschnitt (7a) angeordnet ist.
  11. Wärmeübertrager nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Austrittskammer (7) einen zweiten Kammerabschnitt (7b) aufweist, dem der zweite Teilstrom ( 2) zuführbar ist.
  12. Wärmeübertrager nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der erste Sammelkasten (3) eine zweite Einrittskammer (6) mit einem dritten Anschluss (9) aufweist, dem ein zweiter Fluidstrom zuführbar ist.
  13. Wärmeübertrager nach Anspruch 12, dadurch gekennzeichnet, dass der zweite Sammelkasten (4) eine zweite Umlenkkammer (12) aufweist, die symmetrisch zur ersten Umlenkkammer (11) angeordnet ist.
  14. Wärmeübertrager nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der erste Sammelkasten (3) einen dritten Austrittskammerabschnitt (7c) aufweist, welcher symmetrisch zu dem ersten Austrittskammerabschnitt (7a) angeordnet ist.
  15. Wärmeübertrager nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er als Heizkörper (1) einer Kraftfahrzeugheizungsanlage ausgebildet ist.
  16. Wärmeübertrager nach Anspruch 15, dadurch gekennzeichnet, dass der Heizkörper (1) primärseitig vom Kühlmittel eines Kühlkreislaufes einer Brennkraftmaschine des Kraftfahrzeuges und sekundärseitig von Umgebungsluft (L) durchströmbar ist.
  17. Wärmeübertrager nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass der erste Sammelkasten (3) zwei außen angeordnete Eintrittskammern (5, 6) mit je einem Vorlaufstutzen (8, 9) aufweist.
  18. Wärmeübertrager nach Anspruch 17, dadurch gekennzeichnet, dass zwischen den Eintrittskammern (5, 6) ein gemeinsamer Kammerabschnitt (7b) der Austrittskammer (7) angeordnet ist.
  19. Wärmeübertrager nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass der Heizkörper (1) eine gemeinsame Austrittskammer (7) mit den drei Kammerabschnitten (7a, 7b, 7c) und einem Rücklaufstutzen (10) aufweist.
  20. Wärmeübertrager nach Anspruch 19, dadurch gekennzeichnet, dass der Rücklaufstutzen (10) vorzugsweise stirnseitig am Heizkörper (1) angeordnet ist.
  21. Wärmeübertrager nach einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, dass der Heizkörper (1) einen Heizkörperblock (2) aus Flachrohren (2a, 2b) und Wellrippen aufweist.
  22. Wärmeübertrager nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Teilstrom 1 durch ein Drosselelement (14) androsselbar ist.
  23. Wärmeübertrager nach Anspruch 22, dadurch gekennzeichnet, dass das Drosselelement als Leitblech (14) ausgebildet und quer zur Strömungsrichtung des Teilstromes 1 angeordnet ist.
  24. Wärmeübertrager nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass das Leitblech (14) im Austrittskammerabschnitt (7a) angeordnet ist.
  25. Wärmeübertrager nach einem der vorangehenden Ansprüche, insbesondere nach Anspruch 24, dadurch gekennzeichnet, dass das Leitblech (14) im Abstand und parallel zum Rohrboden (3a) und/oder der Kontur des Sammelkastens folgend angeordnet ist.
  26. Wärmeübertrager nach Anspruch 23, 24 oder 25, dadurch gekennzeichnet, dass das Leitblech (14) eine Länge aufweist, die der gesamten Breite des Strömungsweges des Teilstromes 1 oder einem Teil der Breite entspricht.
EP20070006459 2006-04-05 2007-03-29 Rohr/Rippenblock-Wärmeübertrager mit umgelenkter Strömung Not-in-force EP1843115B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610016341 DE102006016341A1 (de) 2006-04-05 2006-04-05 Wärmeübertrager

Publications (3)

Publication Number Publication Date
EP1843115A2 EP1843115A2 (de) 2007-10-10
EP1843115A3 EP1843115A3 (de) 2008-06-11
EP1843115B1 true EP1843115B1 (de) 2010-05-26

Family

ID=38288538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070006459 Not-in-force EP1843115B1 (de) 2006-04-05 2007-03-29 Rohr/Rippenblock-Wärmeübertrager mit umgelenkter Strömung

Country Status (2)

Country Link
EP (1) EP1843115B1 (de)
DE (2) DE102006016341A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021118138A1 (de) 2021-07-14 2022-05-19 Audi Aktiengesellschaft Kühlmittelkühler für ein Kraftfahrzeug sowie entsprechendes Kraftfahrzeug

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006035994A1 (de) * 2006-08-02 2008-02-21 Behr Gmbh & Co. Kg Kraftfahrzeugklimaanlage, Wärmeübertrager, insbesondere Heizkörper, für eine derartige Kraftfahrzeugklimaanlage sowie Verfahren zum Betreiben eines Wärmeübertragers einer Kraftfahrzeugklimaanlage
KR101409196B1 (ko) * 2012-05-22 2014-06-19 한라비스테온공조 주식회사 증발기
CN109724235B (zh) * 2017-10-30 2022-02-25 杭州三花微通道换热器有限公司 换热器、换热系统和空调器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3317983C1 (de) * 1983-05-18 1985-01-03 Daimler-Benz Ag, 7000 Stuttgart Wärmetauscher, insbesondere für die Beheizung eines Fahrgastraumes von Personenkraftwagen
DE4313567C1 (de) * 1993-04-26 1994-09-01 Daimler Benz Ag Wärmetauscher für die unabhängige Beheizung der Fahrer- und Beifahrerseite eines Fahrgastraumes von Personenkraftwagen
JPH07305990A (ja) * 1994-05-16 1995-11-21 Sanden Corp 多管式熱交換器
JP3810875B2 (ja) * 1997-01-24 2006-08-16 カルソニックカンセイ株式会社 一体型熱交換器
FR2803378B1 (fr) * 1999-12-29 2004-03-19 Valeo Climatisation Echangeur de chaleur a tubes a plusieurs canaux, en particulier pour vehicule automobile
KR100389698B1 (ko) * 2000-12-11 2003-06-27 삼성공조 주식회사 고/저온 수냉식 냉각시스템
JP2003063239A (ja) * 2001-08-29 2003-03-05 Denso Corp 車両用空調装置
DE10158436A1 (de) * 2001-11-29 2003-06-12 Behr Gmbh & Co Wärmetauscher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021118138A1 (de) 2021-07-14 2022-05-19 Audi Aktiengesellschaft Kühlmittelkühler für ein Kraftfahrzeug sowie entsprechendes Kraftfahrzeug

Also Published As

Publication number Publication date
DE102006016341A1 (de) 2007-10-11
DE502007003899D1 (de) 2010-07-08
EP1843115A2 (de) 2007-10-10
EP1843115A3 (de) 2008-06-11

Similar Documents

Publication Publication Date Title
EP1454106B1 (de) Wärmetauscher
EP0841201B2 (de) Heiz- oder Klimaanlage für ein Kraftfahrzeug
EP1459027B1 (de) Wärmeübertrager, insbesondere für ein kraftfahrzeug
DE69209859T2 (de) Verdampfer
DE602006000470T2 (de) Luftgekühlter Ölkühler
EP2232183B1 (de) Wärmeübertrager, insbesondere heizkörper für kraftfahrzeuge
WO2007135021A1 (de) Abgasrückführeinrichtung
DE102006002194A1 (de) Verdampfer, insbesondere für eine Klimaanlage eines Kraftfahrzeuges
EP1682840A1 (de) Wärmeübertrager, insbesondere für kraftfahrzeuge
EP2064510B1 (de) Zweiflutiger wärmeübertrager mit integriertem bypasskanal
EP1843115B1 (de) Rohr/Rippenblock-Wärmeübertrager mit umgelenkter Strömung
EP2187157B1 (de) Wärmeübertrager zur Beheizung eines Kraftfahrzeuges
DE60306291T2 (de) Wärmetauscher
EP1298405B1 (de) Wärmeübertrager, insbesondere Gaskühler für CO2-Klimaanlagen
WO2005100895A1 (de) Wärmeübertrager für kraftfahrzeuge
DE19819249C2 (de) Heizungswärmetauscher für Kraftfahrzeuge mit mehreren Klimatisierungszonen
DE19804389B4 (de) Klimaanlage mit Trennwand zur Unterteilung von Luftdurchlässen
DE102008025910A1 (de) Wärmeübertrager
DE3317982C1 (de) Wärmetauscher, insbesondere für die Beheizung eines Fahrgastraumes von Personenkraftwagen
EP2049859B1 (de) Kraftfahrzeugklimaanlage
DE102004056814A1 (de) Klimaanlage
EP0599107A2 (de) Heizkörper für ein Kraftfahrzeug
DE8805401U1 (de) Wärmetauscher für eine Heizungs- und/oder Klimaanlage eines Fahrzeuges
DE102006035993A1 (de) Kraftfahrzeug-Klimaanlage und Wärmeübertrager, insbesondere Heizkörper, für eine Kraftfahrzeug-Klimaanlage
DE3306499C2 (de) Lufterhitzer fuer ein kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JUNG, MATTHIAS, DIPL.-ING.

Inventor name: TRAUB, MATTHIAS, DIPL.-ING.

Inventor name: KIEL, RONNY, DIPL.-ING.

Inventor name: FRICKER, THOMAS

Inventor name: PROKSCH, CHRISTIAN

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081211

AKX Designation fees paid

Designated state(s): CZ DE ES FR GB

17Q First examination report despatched

Effective date: 20090128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CZ DE ES FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502007003899

Country of ref document: DE

Date of ref document: 20100708

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007003899

Country of ref document: DE

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120405

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120327

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100906

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130329

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007003899

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007003899

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150304

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007003899

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210518

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007003899

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001