Resistive Partikelsensoren mit Messelektroden
Stand der Technik
Die Erfindung betrifft einen Sensor zur Bestimmung der Konzentration von Partikeln in Gasen, insbesondere von Rußpartikeln, nach dem Oberbegriff des Anspruchs 1.
Im Zuge der umweltfreundlichen Bemühungen, den Rußausstoß von Dieselmotoren zu reduzieren, entsteht die Notwendigkeit, die Konzentration der Rußpartikeln im Abgas einfach bestimmen zu können. Insbesondere ist eine Überwachung des Rußgehalts nach einem Dieselpartikelfilter (DPF) während des Fahrbetriebes sinnvoll. Darüber hinaus ist eine Beladungsprognose eines Dieselpartikelfilters zur Regenerationskontrolle notwendig, um eine hohe Systemsicherheit zu erreichen.
Zur Bestimmung der Rußkonzentration im Abgas von
Brennkraftmaschinen kann ein Sensor mit einer Vorrichtung zur Detektion von Rußpartikeln im Abgasrohr montiert werden.
Aus DE 101 33 384 Al oder auch aus DE 33 04 548 Al ist jeweils ein resistiver Partikelsensor bekannt, der mindestens ein nichtleitendes Trägerelement aufweist, wobei auf einem Trägerelement Messelektroden angeordnet sind. Die Messelektroden sind üblicherweise in einer interdigitalen Kammstruktur ausgeführt. In einer interdigitalen
Kammstruktur wird jede Messelektrode aus einer Reihe von sogenannten einzelnen Fingerelektroden gebildet, die elektrisch miteinander verbunden sind. Die Fingerelektroden beider Messelektroden greifen kammartig abwechselnd ineinander, daher die Bezeichnung „interdigitale
Kammstruktur". Eine Anlagerung von Partikeln auf der zwischen den Elektroden aufgespannten Messfläche, der sogenannten Kriechstromfläche, führt zu einer Leitfähigkeits- oder Impedanzänderung der Messfläche zwischen den Fingern der Elektroden. Mit steigender Partikelkonzentration auf der Messfläche nimmt beispielsweise der Widerstand, der Realteil der Impedanz, ab. Alternativ kann ein zunehmender Strom bei konstanter angelegter Spannung zwischen den Messelektroden gemessen werden. Aus der Änderung der jeweiligen Messgröße - dem Sensorsignal - lässt sich die Anlagerung bzw. die Anlagerungsrate der Partikeln ableiten.
Dieses Messverfahren entspricht einem sammelnden Messprinzip und die verrußte Sensoroberfläche muss daher von Zeit zu
Zeit - immer wenn ein definierter Sättigungsstrom oder ein anderer Schwellwert erreicht ist - von den leitfähigen Rußpartikeln befreit werden. Für eine Regeneration der verrußten Oberfläche kann eine Hochspannung zwischen den Elektroden angelegt werden, um über den Stromfluss die
Rußpartikeln zu verbrennen. Alternativ kann ein integrierter Heizer den mit Ruß behafteten Sensor heizen, so dass der angesammelte Ruß vollständig abgebrannt wird. Der Sensor befindet sich dann nach der Verbrennung der Rußpartikeln wieder im ursprünglichen Zustand, und ein neuer Messzyklus mit erneuter Anlagerung und Messung von Partikeln wird dadurch ermöglicht. Mess- und Regenerationsphasen wechseln sich also zeitlich immer ab.
Ein Nachteil dieser Vorgehensweise ergibt sich dadurch, dass während der Verbrennung keine neue Anlagerung der Partikeln möglich ist. Auch nach der Regeneration kann nicht sofort Ruß wieder angesammelt werden, der Sensor benötigt aufgrund seiner thermischen Trägheit für die Thermalisierung des Sensorelementes mit dem Abgas eine bestimmte Zeit. Da während der Regenerations- und der darauffolgenden Abkühlphase des Sensors kein Ruß angesammelt werden kann, ist der Sensor während dieser Phasen unempfindlich gegenüber einer möglicherweise vorhandenen Rußkonzentration. Eine möglichst lange Messphase ist daher anzustreben. Gleichzeitig muss der Messwert so groß sein, dass eine frühe und deutliche Aussage zu der Partikelkonzentration ermöglicht wird.
Vorteile der Erfindung
Der erfindungsgemäße Sensor zur Bestimmung der Konzentration von Partikeln in Gasen, insbesondere von Rußpartikeln, hat den Vorteil, dass die Empfindlichkeit der Messung verbessert wird. Insbesondere kann auch die Anlagerungsrate von Partikeln bei gleicher Partikelkonzentration verstärkt und damit die Messwerte erhöht werden.
Gleichzeitig wird die Messphase gegenüber der Regenerationsphase erhöht. Auf eine einfache Weise wird erreicht, dass der Sensor länger in der Messphase gehalten werden kann, bevor das Sensorsignal Sättigungserscheinungen zeigt.
Vorteilhafte Weiterbildungen des Sensors sind in den Unteransprüchen angegeben und in der Beschreibung beschrieben.
Zeichnung
Ausführungsbeispiele der Erfindung werden anhand der Zeich- nung und der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Figuren Ia und Ib jeweils ein Ausführungsbeispiel eines Partikelsensors mit auf einem Trägerelement angeordneten Messelektroden in Draufsicht, und
Figuren 2a, 2b und 2c jeweils ein weiteres Ausführungsbeispiel eines Partikelsensors mit auf einem Trägerelement angeordneten Messelektroden in Draufsicht.
Beschreibung der Ausführungsbeispiele
In einem ersten Ausführungsbeispiel nach Figur Ia weist der Sensor 1 zur Bestimmung der Konzentration von Partikeln in
Gasen, insbesondere von Rußpartikeln, ein Trägerelement 5 auf, auf welchem als Messvorrichtung eine erste 10 und eine zweite Messelektrode 15 angeordnet sind. Der Raum zwischen den Messelektroden 10, 15 dient als Messbereich 12, auf dem sich die zu detektierenden Partikeln anlagern. Die beiden Messelektroden 10, 15 sind über Kontaktierungen 20, 25 mit einer in den Figuren nicht dargestellten Mess- und Steuereinheit verbindbar und mit einer Spannung beaufschlagbar. Je nach Anlagerungszustand der Partikeln auf dem Messbereich 20 ändert sich der Messwert. Abhängig vom Messmodus ist der Messwert der Widerstand
(Impedanz) oder die Stromstärke, die über die Messelektroden 10, 15 gemessen werden. Wie zuvor erläutert, kann aus den Messwerten schließlich die Rußkonzentration in einem Gas bestimmt werden. Die beiden Messelektroden 10, 15 sind dabei erfindungsgemäß so
gestaltet, dass unter Beaufschlagung einer Spannung zwischen den Messelektroden 10, 15 ein asymmetrisches elektrisches Feld auf dem Messbereich 12 gebildet wird. Ein symmetrisches elektrisches Feld ist dadurch gekennzeichnet, dass das Feld überall im Feld eine konstante Richtung und Stärke aufweist. Solch ein Feld wird beispielsweise von aus dem Stand der Technik bekannten interdigitalen Kammelektroden gebildet. Die einzelnen Fingerelektroden werden typischerweise durch unstrukturierte, lineare Leiterbahnen realisiert, die alle zueinander parallel angeordnet sind. Daraus resultiert ein konstantes elektrisches Feld zwischen den Fingerelektroden.
Wie aber aus Figur 1 erkennbar, sind beim Sensor 1 die zueinander zugewandten Seiten 30, 35 der ersten 10 und der zweiten Messelektrode 15 nicht parallel zueinander angeordnet. Vielmehr nimmt der Abstand zwischen der ersten 10 und der zweiten Messelektrode 15 entlang des Elektrodenverlaufs kontinuierlich zu bzw. ab. Dadurch entsteht ein Bereich mit eng beieinander liegenden Seiten 30, 35 der Messelektroden 10, 15, und ein Bereich mit weit voneinander liegenden Seiten 30, 35 der Messelektroden 10, 15. Der Übergang von einem zum anderen Bereich ist dabei kontinuierlich fließend. Bei Anlegen einer Spannung entsteht ein nicht konstantes Feld. Partikel, die sich auf dem Messbereich 12 des Sensors 1 niederschlagen, verursachen über die Bildung leitfähiger Pfade eine Widerstandsreduktion zwischen den Messelektroden 10, 15 und führen dadurch zu einem Sensorstrom. Zunächst wird im Bereich der eng aneinanderliegenden Seiten 30, 35 ein leitfähiger Pfad erzeugt. Weil der Abstand zwischen den Messelektroden 10, 15 an dieser Stelle sehr eng ist, reicht eine vergleichsweise geringe
Anlagerung der Partikel aus, um schnell einen leitfähigen Pfad auszubilden und ein Messsignal auszulösen. Damit steigt die Empfindlichkeit des Sensors 1. Im Verlauf der sukzessiven Anlagerung weiterer Partikel werden auch leitfähige Pfade
zwischen Seiten 30, 35 der Messelektroden 10, 15 gebildet, die weiter voneinander entfernt liegen. Aufgrund der Perkolationseigenschaften des angelagerten Rußes wird bei jeder Vollendung eines zusätzlichen leitfähigen Pfades ein starker Anstieg der Leitfähigkeit des gesamten Messbereichs 12 stattfinden, der über die Messelektroden 10, 15 bestimmt werden kann. Dadurch wird eine stärkere Signalerhöhung über einen längeren Zeitraum erreicht, als dies bei parallel zueinander angeordneten Messelektroden möglich wäre. Nach dem Kurzschließen der Messelektroden 10, 15 entlang der gesamten Seiten 30, 35 erhöhen weitere Anlagerungen die Leitfähigkeit zusätzlich kontinuierlich weiter, d. h. eine Messung ist auch während dieser Phase möglich. Da durch die besondere Gestaltung und Anordnung der Messelektroden 10, 15 ein größerer Messbereich 12 zur Anlagerung der Partikel gebildet werden kann, können zudem höhere Ströme erreicht werden bis sie in den Sättigungsbereich gelangen als im Vergleich zu bisher bekannten interdigitalen Messelektroden. Das Sensorsignal wird also verstärkt.
Auch bei herkömmlicher interdigitaler Kammstruktur kann ein variierender Abstand zwischen den Fingerelektroden durch eine Modifizierung der Form erzielt werden. Wie in Figur Ib dargestellt, kann mindestens eine Messelektrode 10, 15 Fingerelektroden 40 mit variierender Breite aufweisen. Während in Figur Ia die erste und die zweite Messelektrode 10, 15 die Form eines Dreiecks aufweist, haben in Figur 2b die einzelnen Fingerelektroden 40 einer Messelektrode 10, 15 die Form eines Dreiecks. Dadurch ändern sich der Abstand zwischen zwei benachbarten Fingerelektroden 40 entlang der Länge der Fingerelektroden 40 kontinuierlich. Daraus resultieren die gleichen vorteilhaften Effekte wie bei der ersten Ausführungsform beschrieben. Auch werden durch die spitzenförmige Ausführung Bereiche mit einer gezielten Vorzugswachstumsrichtung der angelagerten Rußpartikel erzeugt.
Bisher beschriebene Ausführungsbeispiele weisen stets glatte, unstrukturierte Seiten der Messelektroden 10, 15 oder der einzelnen Fingerelektroden 40 auf. Alternativ (Fig. 2a) oder zusätzlich (Fig. 2b, 2c), d. h. miteinander kombiniert zum variierenden Abstand der Messelektroden 10, 15 bzw. Fingerelektroden 40 wird vorgeschlagen, dass mindestens eine Messelektrode 10, 15 entlang an der der anderen Messelektrode 15, 10 zugewandten Seite 30, 35 oder entlang an den Fingerelektroden 40 eine Struktur 45 aufweist. Die
Struktur 45 wird dabei durch regelmäßig angeordnete Spitzen, Quadrate, Punkte oder andere geometrische Formen gebildet. Solche Strukturen 45 an den Elektrodenseiten führen bei einer angelegten Spannung zu einer Feldüberhöhung. Schon allein die strukturierten Fingerelektroden 40 wie in Figur 2a führen zu einem nicht konstanten elektrischen Feld auf dem Messbereich 12. Durch diese Feldüberhöhung werden die polarisierbaren oder bereits geladenen Partikel im Vergleich zu Elektroden ohne strukturierte Seiten bei gleich stark angelegter Spannung bevorzugt angelagert. Aufgrund der verstärkten Feldgradienten erhöht sich damit die Partikelanlagerungsrate. Folglich werden höhere Sensorströme bei gegebener Partikelkonzentration erzielt. Dies kann dann die Verwendung vereinfachter Messelektronik im Steuergerät zur Signalauswertung ermöglichen, da Leckströme bzw. die EMV-Ströme (elektromagnetische Verträglichkeit) nur noch kleine Störeinflüsse ausüben.
Zusammenfassend wird festgestellt, dass bei allen Ausführungsbeispielen die Messelektroden 10, 15 so gestaltet sind, dass unter Beaufschlagung einer Spannung zwischen den Messelektroden 10, 15 ein asymmetrisches elektrisches Feld auf dem Messbereich 12 gebildet wird. Das asymmetrische elektrische Feld ist ein räumlich inhomogenes elektrisches
Feld. Durch die spezielle Ausbildung der Feldverteilung wird eine gezielte räumliche Steuerung der Partikelanlagerung ermöglicht. Insbesondere kann die Ausbildung leitfähiger Pfade in bevorzugten Bereichen gesteuert werden. Das zeitliche Pfadwachstum kann also in eine gewünschte Richtung gelenkt werden. Falls notwendig, können hierfür mehr als zwei Messelektroden 10, 15 vorgesehen werden, z. B. kann zusätzlich mindestens eine in den Figuren nicht dargestellte Mittelelektrode zwischen der ersten und der zweiten Messelektrode 10, 15 angeordnet werden. Dabei ist die geometrische Form und das angelegte Potential an allen Elektroden der gewünschten Feldverteilung anzupassen.