EP1818451B1 - Packpapier und daraus hergestellter Papiersack sowie Verfahren zur Herstellung des Packpapiers - Google Patents

Packpapier und daraus hergestellter Papiersack sowie Verfahren zur Herstellung des Packpapiers Download PDF

Info

Publication number
EP1818451B1
EP1818451B1 EP06002540A EP06002540A EP1818451B1 EP 1818451 B1 EP1818451 B1 EP 1818451B1 EP 06002540 A EP06002540 A EP 06002540A EP 06002540 A EP06002540 A EP 06002540A EP 1818451 B1 EP1818451 B1 EP 1818451B1
Authority
EP
European Patent Office
Prior art keywords
packaging paper
paper
spots
network structure
packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06002540A
Other languages
English (en)
French (fr)
Other versions
EP1818451A1 (de
Inventor
Leo Arpa
Markus Wiesinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mondi Frantschach GmbH
Original Assignee
Mondi Frantschach GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mondi Frantschach GmbH filed Critical Mondi Frantschach GmbH
Priority to EP06002540A priority Critical patent/EP1818451B1/de
Priority to AT06002540T priority patent/ATE423868T1/de
Priority to ES06002540T priority patent/ES2320254T3/es
Priority to DE502006002938T priority patent/DE502006002938D1/de
Publication of EP1818451A1 publication Critical patent/EP1818451A1/de
Application granted granted Critical
Publication of EP1818451B1 publication Critical patent/EP1818451B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D33/00Details of, or accessories for, sacks or bags
    • B65D33/02Local reinforcements or stiffening inserts, e.g. wires, strings, strips or frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D33/00Details of, or accessories for, sacks or bags
    • B65D33/01Ventilation or drainage of bags
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/006Making patterned paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2205/00Venting means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/02Patterned paper

Definitions

  • the invention relates to a kraft paper, in particular kraft or sack paper. It further relates to a paper bag using the aforesaid wrapping paper and a method for producing wrapping paper.
  • Wrapping paper is understood to mean wrapping papers which are subdivided into different groups according to the requirements imposed on them, depending on the strength, density, describability and / or printability as well as the material composition.
  • Such packaging papers have a basis weight of at least 25 g / m 2 . If packing papers are used for pack sacks which are used in the industrial sector, for example for the transport of bulk goods (industrial sacks), the basis weight is at least 30 g / m 2 and reaches up to 200 g / m 2 .
  • Wrapping papers are made in papermaking machines by passing a fiber pulp containing paper fibers over a headbox onto which the Surface evenly permeable sheet forming screen is applied, which is formed as a wire and runs in the sheet forming section of the paper machine. On the sheet forming side of the sheet forming screen, this causes a paper web formation while dewatering the paper web through the sheet forming screen. In the subsequent press section of the paper machine, the paper web is further dehydrated mechanically by pressing. Thereafter, a thermal dewatering takes place in the dryer section of the paper machine.
  • the known packaging papers have a density and thickness substantially equal over the surface. They must have a tensile strength and tensile elongation at break and tensile breaking load capacity to ensure that they do not break or break during transport. If such packaging papers or paper bags made from them are used for the transport of bulk material, the packaging paper must be permeable to air so that the air in the paper bag can also escape through the packaging paper when filling the bulk material. This property determines the speed of the filling process.
  • high strength on the one hand and good air permeability on the other hand are contradictory requirements, because a packing paper with good air permeability has a low strength, while a packing paper with high strength has a low air permeability. It is therefore necessary to look for a suitable compromise, but in the first place the strength required for transport is decisive. If high strength is required, a low air permeability and thus a correspondingly low filling speed must be accepted.
  • WO 03/010055 A1 is a bag for the packaging of heavyweight material, such as cement, sugar, flour, feed, etc., disclosed whose walls are formed in three or four layers, the outer layer of a kraft paper or a modified center paper, the liner of one or two Paper webs consist of central paper, dual-center paper or modified center paper and the inner layer of only one paper web of dual-center paper, modified center paper or kraft paper.
  • the dual center paper is produced from two medium paper layers, between which a network of reinforcing fibers is inserted. The net is intended to increase the strength of the bag.
  • the invention has for its object to develop a packaging paper and a paper bag produced therefrom, or that for a given strength has a higher porosity or air permeability than the known Packing papers or paper sacks of the same strength. Another object is to provide a method for producing such packaging paper.
  • the first part of the object is achieved in that the wrapping paper has at least partially a network structure with enclosed by the network structure, discrete surface islands, which are depleted compared to the network structure of paper fibers and their density is accordingly lower than the density of the network structure.
  • the basic idea of the invention is therefore to distribute the paper fibers no longer uniformly over the surface of the packaging paper, but to concentrate them where a network structure is provided, in this network structure and thereby enclosed by the network structure surface islands, the paper fibers in favor of Net structure are depleted and thus have a lower density and thus a high porosity or air permeability.
  • the wrapping paper is thus characterized for a given strength by a much better air permeability.
  • a paper bag made from it, which is intended for the transport of bulk material, can thus be considerably faster fill, which reduces the process costs accordingly.
  • the density in the surface islands is at least 10% lower than the density in the network structure, so that the increased air permeability is clearly noticeable.
  • the density in the surface islands should be at most 700 kg / m 3 , but at least 350 kg / m 3 . In the network structure, however, the density should be at least 700 kg / m 3 , but not more than 1050 kg / m 3 .
  • the diameter of circular-shaped surface islands and / or of the surface islands each enclosing the smallest possible enveloping circles is at most 2.5 times the average length-weighted fiber length of the paper fibers from which the packaging paper is made.
  • the diameter to fiber length ratio as defined above should be less than 1.0, but at least 0.1.
  • the network structure extends over the entire surface of the packaging paper. However, this does not exclude that only a portion of the packaging paper has the network structure.
  • the network structure can also be distributed over a plurality of discrete subregions, the subregions preferably arranged in a regular, recurring pattern. By expanding and distributing these subregions, the air permeability can be adjusted as desired according to the respective requirements.
  • the individual webs, which make up the network structure have a certain minimum cross-section. Therefore, the smallest free space between two surface islands should not be less than 0.7 mm.
  • the network structure itself should form a regularly recurring pattern, preferably even be completely regular. Again, it is not excluded that an irregular network structure is useful in certain applications. It is part of the basic idea of the invention that the formation of the network structure and the surface islands is arbitrarily adaptable. Conveniently, however, the surface islands are the same size and have the same shape. They may be circular, oval, rectangular or polygonal, for example.
  • An expedient variant of the network structure results when the network structure forms two families of parallel network lines, with one group of parallel network lines running at an angle, expediently perpendicular to the other family of parallel network lines.
  • the network lines may have at least one share, better of both at an angle to each other flocks of network lines the same distance from each other to obtain a regular network structure.
  • the network structure such that the surface islands each form adjacent rows and columns of surface islands running side by side and perpendicular to the rows, the surface islands of adjacent rows or columns each being separated by half the center distance of two neighboring centers Plane are offset. It is advantageous if the surface islands are arranged so that they lie on mutually parallel diagonals.
  • the diagonals may include an angle of 15 ° to 75 °, conveniently 45 ° to 70 °, with the rows of surface islands, with an angle of 60 ° being particularly advantageous because it allows a dense packing of the surface islands.
  • the rows and / or columns have the same distance from one another.
  • the structuring according to the invention of at least a part of the packaging paper by local compaction (network structure) and local depletion (surface islands) of paper fibers should, if possible, have little, even better, no influence on the thickness of the packaging paper, ie the thickness should be as uniform as possible over the surface.
  • the thickness of the packing paper should be adapted to the respective requirements. This is a minimum thickness of 0.05 mm in question.
  • the upper limit is determined by the respective requirements and may, for example, be 0.2 mm.
  • the invention also provides a paper bag for the transport of bulk material, wherein the walls of the paper bag made of kraft paper of the type described above.
  • the second part of the object is achieved by a method in which in the wet end of a paper machine a fiber pulp having paper fibers is applied via a headbox to a circulating forming wire with a sheet forming side and a machine side and dewatered through the forming wire.
  • a forming wire with a permeable carrier is used, which at least in some areas has a pattern of discrete surface islands whose permeability is lower than that of the areas surrounding the surface islands forming a network structure.
  • the cover material should not protrude beyond the sheet forming side of the carrier.
  • the cover material should be completely embedded in the carrier.
  • it is expedient that the surface islands have no permeability.
  • the sheet forming screen used in this case with the network structure identical thereto is used for the areas of low permeability.
  • the description of the result of this method namely the packaging paper, can be referred to. It is expedient to take into account the shrinkage behavior of the paper web produced for the wrapping paper in the dimensioning of the distances of the surface islands on the forming wire, in such a way that this distance is increased by the degree of shrinkage in the longitudinal and / or transverse direction, the Wrapping paper suffers during its manufacture.
  • the fiber pulp used has a consistency of 0.1 to 5 g / l when running on the sheet forming screen. This relatively low fiber content favors the above-described fiber orientation in the region of the surface islands formed by the covering material.
  • the fiber pulp can be applied to the sheet forming screen in one layer or else by means of a multi-layer headbox, or at least from a single headbox nozzle.
  • the paper fibers should be flexibilized before application to the forming screen by high consistency painting, suitably at a dry content of 20 to 38%, a pH of 8 to 12, and an energy input from 20 to 500 kWh / t.
  • the paper fibers should, for example, be subjected to an intensive kneading or crimping process in a high-consistency refiner. This makes it possible to use as fibers predominantly, if not exclusively long-fiber pulps, which have a length of 1.5 mm to 7 mm.
  • the paper fibers should be ground fibrillating and / or collapsing at dry contents of 2.5 to 7%, preferably in a low consistency refiner.
  • the paper fibers should be ground fibrillating and / or collapsing, for example, in a medium consistency refiner at dry contents of 7 to 20%. This enhances the binding ability of the fibers.
  • Partial forming sheet 1 has a carrier 2 in the form of a fabric with longitudinal threads 3, 4 and an upper layer of transverse threads - by way of example denoted by 5 - and a lower layer of transverse threads - exemplified by 6.
  • the longitudinal threads 3, 4 bind in each case in the lower layer only a transverse thread 6, then float between the two layers over three transverse threads 6 and then tie in the upper layer five transverse threads 5 alternately top and bottom, before they again between the layers float over three transverse threads 5, 6.
  • the cover islands 7 are made of a plastic material, as described above, and are impermeable. Around the cover islands 7 are free surface areas - designated by way of example with 8 - over which takes place when using the sheet forming wire 1 in the paper machine dewatering of the paper web.
  • FIG. 2 shows a section of a packaging paper 31 produced with the sheet forming screen 1.
  • the wrapping paper 31 has a network structure 32 which substantially corresponds to the free surface areas 8 of the forming wire 1. Because of the cover islands 7 of the sheet forming screen 1, in the production of the wrapping paper 1 around the surface areas 8, dewatering flows result, which lead to a concentration of paper fibers in this area and thus to the formation of a fiber-rich network structure 32 in the wrapping paper 31.
  • the network structure 31 encloses surface islands-designated by way of example by 33-whose arrangement, shape and size of the arrangement, shape and size of the cover islands 7 of the sheet-forming screen 1 correspond.
  • the surface islands 33 form in one direction adjacent rows of islands - exemplified by 34 - and in the direction perpendicular island columns - exemplified with 35 -, with two adjacent island rows 34 - like the Abdeckinseln 7 in the forming wire 1 - each by half Center offset are offset. The same applies to the island columns 35.
  • the distance between two adjacent island rows 34 and two adjacent island columns 35 is identical.
  • the distances of the surface islands 33 with each other are the same, so that a regular pattern on the surface of the packaging paper 31 results.
  • the surface islands 33 are each adjacent or on diagonals - for example, designated 36 - which an angle ⁇ with a straight line - by way of example denoted by 37 - include, which runs parallel to the island lines 34.
  • the angle ⁇ is about 45 °.
  • the angle ⁇ has a value of 60 °, which can be effected by increasing the distances of the island lines 34.
  • the surface islands 33 are depleted of paper fibers, i. There, the density of the packaging paper 31 is reduced compared to the density in the region of the network structure 32. When filling a paper sack made of this wrapping paper 31, therefore, the displaced air can escape over the surface islands 33 in an efficient manner, so that the paper sack can be filled quickly.
  • the strength of the wrapping paper 31 is substantially ensured by the net structure 32 in which the paper fibers are concentrated.
  • the size ratios between surface islands 33 and network structure 32 can of course be adapted according to the respective requirements.
  • a bigger one Area fraction of the network structure 32 provides higher strength, but with loss of permeability. The same applies vice versa when increasing the proportion of the surface islands 33.
  • the surface islands 33 have round shape. Other shapes, such as polygonal, honeycomb or rectangular shapes are possible.
  • FIG. 3 shows a variant of the packing paper 31 according to FIG. 3
  • the wrapping paper 41 has a grid-like network structure 42 with parallel network lines - for example denoted by 43 - in one direction and also parallel network lines - for example denoted by 44 - perpendicular to the network lines 43.
  • the network lines 43, 44 have identical distances to each other, so that the network structure 42 square islands - exemplarily with 45 - include.
  • the surface islands 45 are also depleted of paper fibers in favor of the network structure 42, ie in the network structure 42, the paper fibers are concentrated at the expense of the surface islands 45.
  • the strength of the packaging paper 41 is therefore ensured essentially by the network structure 42, while the surface islands 45 provide good air permeability and thus favor the filling of a paper bag produced from the packaging paper 41.
  • the production of the packaging paper 41 is carried out with a correspondingly adapted sheet forming screen.
  • This sheet forming screen then deviates from the forming wire 1 according to FIG. 1 lattice-like free surface areas which are produced by the fact that each spaced square Abdeckinseln in the arrangement, as they have been deposited as surface islands 45 in the wrapping paper 41, applied and stored.
  • the network structure according to the wrapping paper 41 can also be designed differently.
  • the distances of the network lines extending in one direction can be selected to be greater than the distances between the network lines extending perpendicularly therefrom, so that rectangular islands of surface of high permeability arise.
  • the width of the network lines in relation to the extension of the surface islands can be changed in the same direction, so that smaller surface islands arise.
  • Such a wrapping paper would then have greater strength, with the permeability being controlled by the size and number of surface islands.
  • the surface islands may also have other shapes, such as a round shape. It would then be a wrapping paper, which differs from the wrapping paper 31 according to FIG. 2 differs in that the individual surface islands adjacent island rows or island columns would not be offset from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Paper (AREA)
  • Wrappers (AREA)
  • Buffer Packaging (AREA)
  • Packages (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
  • Basic Packing Technique (AREA)

Description

  • Die Erfindung betrifft ein Packpapier, insbesondere Kraft- oder Sackpapier. Sie bezieht sich des weiteren auf einen Papiersack unter Verwendung des vorgenannten Packpapiers sowie ein Verfahren zur Herstellung von Packpapier.
  • Unter Packpapier versteht man Hüllpapiere, die entsprechend den an sie gestellten Anforderungen in verschiedene Gruppen je nach Festigkeit, Dichte, Beschreib- und/oder Bedruckbarkeit sowie der stofflichen Zusammensetzung unterteilt werden. Solche Packpapiere haben ein Flächengewicht von mindestens 25 g/m2. Sofern Packpapiere für Packsäcke verwendet werden, die im industriellen Bereich beispielsweise zum Transport von Schüttgütern eingesetzt werden (Industriesäcke), beträgt das Flächengewicht mindestens 30 g/m2 und erreicht bis zu 200 g/m2.
  • Packpapiere werden - wie andere Papiersorten - in Papiermaschinen hergestellt, indem eine Papierfasern aufweisende Faserpulpe über einen Stoffauflauf auf ein, über die Fläche gleichmäßig permeables Blattbildungssieb aufgebracht wird, das als Langsieb ausgebildet und in der Blattbildungspartie der Papiermaschine umläuft. Auf der Blattbildungsseite des Blattbildungssiebes kommt es dabei zu einer Papierbahnbildung unter Entwässerung der Papierbahn durch das Blattbildungssieb. In der anschließenden Pressenpartie der Papiermaschine wird die Papierbahn mechanisch durch Auspressen weiter entwässert. Danach erfolgt eine thermische Entwässerung in der Trockenpartie der Papiermaschine.
  • Die bekannten Packpapiere haben eine über die Fläche im wesentlichen gleiche Dichte und Dicke. Sie müssen eine den jeweiligen Anforderungen entsprechende Zugfestigkeit und Zugbruchdehnung und ein Zugbrucharbeitsaufnahmevermögen haben, damit sie auf dem Transport nicht reißen oder brechen. Werden solche Packpapiere bzw. daraus hergestellte Papiersäcke für den Transport von Schüttgut verwendet, muss das Packpapier luftdurchlässig sein, damit die im Papiersack befindliche Luft beim Abfüllen des Schüttguts auch durch das Packpapier entweichen kann. Diese Eigenschaft bestimmt die Geschwindigkeit des Abfüllprozesses. Hohe Festigkeit einerseits und gute Luftdurchlässigkeit andererseits sind Anforderungen, die sich widersprechen, denn ein Packpapier mit guter Luftdurchlässigkeit hat eine geringe Festigkeit, während ein Packpapier mit hoher Festigkeit eine geringe Luftdurchlässigkeit hat. Es muss deshalb jeweils nach einem geeigneten Kompromiß gesucht werden, wobei jedoch in erster Linie die für den Transport erforderliche Festigkeit bestimmend ist. Ist hohe Festigkeit erforderlich, müssen eine geringe Luftdurchlässigkeit und damit eine entsprechend geringe Abfüllgeschwindigkeit in Kauf genommen werden.
  • In der WO 03/010055 A1 ist ein Sack für die Verpackung von schwergewichtigem Material, beispielsweise Zement, Zucker, Mehl, Futtermittel etc., offenbart, dessen Wandungen drei- oder vierlagig ausgebildet sind, wobei die äußere Lage aus einem Kraftpapier oder einem modifizierten Mittelpapier, die Zwischenlage aus einer oder zwei Papierbahnen aus Mittelpapier, Dualmittelpapier oder modifiziertem Mittelpapier und die Innenlage nur einer Papierbahn aus Dualmittelpapier, modifiziertem Mittelpapier oder Kraftpapier bestehen. Das Dualmittelpapier ist dabei hergestellt aus zwei Mediumpapierlagen, zwischen denen ein Netz aus Verstärkungsfasern eingesetzt ist. Das Netz soll die Festigkeit des Sacks erhöhen.
  • Ein solcher Sack hat zwar aufgrund der mehrschichtigen Ausbildung von dessen Wandungen eine sehr hohe Festigkeit. Diese Festigkeit geht jedoch auf Kosten der Luftdurchlässigkeit, d. h. Luft kann nur über die Einfüllöffnung des Sacks entweichen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Packpapier und einen daraus hergestellten Papiersack zu entwickeln, dass bzw. der bei gegebener Festigkeit eine höhere Porosität bzw. Luftdurchlässigkeit hat als die bekannten Packpapiere bzw. Papiersäcke der gleichen Festigkeit. Eine weitere Aufgabe besteht darin, ein Verfahren zur Herstellung solchen Packpapiers bereit zu stellen.
  • Der erste Teil der Aufgabe wird erfindungsgemäß dadurch gelöst, dass das Packpapier zumindest bereichsweise eine Netzstruktur mit von der Netzstruktur eingeschlossenen, diskreten Flächeninseln aufweist, die gegenüber der Netzstruktur an Papierfasern verarmt sind und deren Dichte demgemäß geringer ist als die Dichte der Netzstruktur. Grundgedanke der Erfindung ist es also, die Papierfasern nicht mehr gleichmäßig über die Fläche des Packpapiers zu verteilen, sondern sie dort, wo eine Netzstruktur vorgesehen ist, in dieser Netzstruktur zu konzentrieren und hierdurch von der Netzstruktur eingeschlossene Flächeninseln zu bilden, die an Papierfasern zugunsten der Netzstruktur verarmt sind und demgemäß eine geringere Dichte und folglich eine hohe Porosität bzw. Luftdurchlässigkeit haben. Das Packpapier zeichnet sich also bei gegebener Festigkeit durch eine wesentlich bessere Luftdurchlässigkeit aus. Ein daraus hergestellter Papiersack, der für den Transport von Schüttgut bestimmt ist, läßt sich somit erheblich schneller abfüllen, wodurch die Prozesskosten entsprechend verringert werden.
  • In Ausbildung der Erfindung ist vorgesehen, dass die Dichte in den Flächeninseln um wenigstens 10% geringer ist als die Dichte in der Netzstruktur, damit sich die erhöhte Luftdurchlässigkeit deutlich bemerkbar macht. Vorzugsweise sollte die Dichte in den Flächeninseln höchstens 700 kg/m3 betragen, mindestens jedoch 350 kg/m3. In der Netzstruktur sollte die Dichte dagegen mindestens 700 kg/m3, höchstens jedoch 1050 kg/m3 betragen.
  • Für die Ausbildung einer festen Netzstruktur ist es vorteilhaft, wenn der Durchmesser von kreisförmig ausgebildeten Flächeninseln und/oder der die Flächeninseln jeweils engstmöglich umschließenden Hüllkreise höchstens das 2,5-fache der durchschnittlichen längengewichteten Faserlänge der Papierfasern beträgt, aus denen das Packpapier hergestellt ist. Vorzugsweise sollte das Verhältnis Durchmesser zu Faserlänge entsprechend der vorstehenden Definition weniger als 1,0 betragen, mindestens jedoch 0,1.
  • Für die meisten Anwendungsfälle ist es zweckmäßig, wenn sich die Netzstruktur über die gesamte Fläche des Packpapiers erstreckt. Dies schließt jedoch nicht aus, dass nur ein Teilbereich des Packpapiers die Netzstruktur aufweist. Die Netzstruktur kann auch auf mehrere, diskrete Teilbereiche verteilt sein, wobei die Teilbereiche vorzugsweise in einem regelmäßigen, wiederkehrenden Muster angeordnet sind. Durch Ausdehnung und Verteilung dieser Teilbereiche läßt sich die Luftdurchlässigkeit entsprechend den jeweiligen Anforderungen beliebig anpassen.
  • Für die Festigkeit des Packpapiers ist es wesentlich, dass die einzelnen Stege, aus denen sich die Netzstruktur zusammensetzt, einen bestimmten Mindestquerschnitt haben. Deshalb sollte der kleinste freie Abstand zwischen zwei Flächeninseln nicht unter 0,7 mm liegen.
  • Die Netzstruktur selbst sollte ein regelmäßig wiederkehrendes Muster bilden, vorzugsweise sogar vollständig regelmäßig sein. Auch hier ist nicht ausgeschlossen, dass eine unregelmäßige Netzstruktur in bestimmten Anwendungsfällen nützlich ist. Es gehört zum Grundgedanken der Erfindung, dass die Ausbildung der Netzstruktur und der Flächeninseln beliebig anpassbar ist. Zweckmäßigerweise sind jedoch die Flächeninseln gleichgroß und haben gleiche Formgebung. Sie können beispielsweise kreisrund, oval, rechteckig oder vieleckig ausgebildet sein.
  • Eine zweckmäßige Variante der Netzstruktur ergibt sich, wenn die Netzstruktur zwei Scharen von jeweils parallelen Netzlinien ausbildet, wobei die eine Schar von parallelen Netzlinien im Winkel, zweckmäßigerweise senkrecht zu der anderen Schar von parallelen Netzlinien verläuft. Hierdurch ergibt sich eine gitterartige Netzstruktur mit beispielsweise rechteckigen, in Sonderheit quadratischen Flächeninseln, die von den Netzlinien eingeschlossen sind. Dabei können die Netzlinien mindestens einer Schar, besser beider im Winkel zueinander verlaufenden Scharen von Netzlinien gleichen Abstand zueinander haben, um eine regelmäßige Netzstruktur zu erhalten.
  • Alternativ zu der gitterartigen Netzstruktur besteht die Möglichkeit, die Netzstruktur so auszubilden, dass die Flächeninseln jeweils nebeneinander verlaufende Zeilen und jeweils nebeneinander verlaufende, zu den Zeilen senkrechte Spalten von Flächeninseln bilden, wobei die Flächeninseln benachbarter zeilen bzw. Spalten jeweils um eine halben Mittenabstand zweier benachbarter Flächen versetzt sind. Dabei ist es vorteilhaft, wenn die Flächeninseln so angeordnet sind, dass sie auf zueinander parallelen Diagonalen liegen. Die Diagonalen können mit den Reihen von Flächeninseln einen Winkel von 15° bis 75°, zweckmäßigerweise 45° bis 70°, einschließen, wobei ein winkel von 60° besonders vorteilhaft ist, weil er eine dichte Packung der Flächeninseln erlaubt. Vorzugsweise haben die Zeilen und/oder Spalten den gleichen Abstand zueinander.
  • Die erfindungsgemäße Strukturierung zumindest eines Teils des Packpapiers durch lokale Verdichtung (Netzstruktur) und lokale Verarmung (Flächeninseln) an Papierfasern sollte nach Möglichkeit nur geringen, noch besser keinen Einfluß auf die Dicke des Packpapiers haben, d. h. die Dicke sollte über die Fläche möglichst gleichmäßig sein.
  • Dies begünstigt vor allem die Bedruckbarkeit und fördert die Steifigkeit einerseits und Porosität andererseits. Die Dicke des Packpapiers sollte den jeweiligen Anforderungen angepaßt werden. Dabei kommt eine Mindestdicke von 0,05 mm in Frage. Die Obergrenze wird durch die jeweiligen Anforderungen bestimmt und kann beispielsweise bei 0,2 mm liegen.
  • Gegenstand der Erfindung ist auch ein Papiersack für den Transport von Schüttgut, bei dem die Wandungen des Papiersacks aus Packpapier der vorbeschriebenen Art bestehen.
  • Der zweite Teil der Aufgabe wird durch ein Verfahren gelöst, bei dem in der Naßpartie einer Papiermaschine eine Papierfasern aufweisende Faserpulpe über einen stoffauflauf auf ein umlaufendes Blattbildungssieb mit einer Blattbildungsseite und einer Maschinenseite aufgebracht und durch das Blattbildungssieb entwässert wird. Erfindungsgemäß wird ein Blattbildungssieb mit einem permeablen Träger verwendet, der zumindest bereichsweise ein Muster von diskreten Flächeninseln hat, deren Permeabilität geringer ist als die der die Flächeninseln umgebenden, eine Netzstruktur bildenden Flächenbereiche. Dabei sollte das Abdeckmaterial nicht über die Blattbildungsseite des Trägers vorstehen. Vorzugsweise sollte das Abdeckmaterial vollständig in dem Träger eingelagert sein. Zudem ist es zweckmäßig, dass die Flächeninseln keine Permeabilität haben.
  • Durch die Verwendung eines solchen Blattbildungssiebs in einer Papiermaschine entsteht ein Packpapier der vorbeschriebenen Art. Durch das in dem Träger vorhandene Abdeckmaterial entstehen bei der Entwässerung der Faserpulpe bzw. der sich dann bildenden Papierbahn im Bereich der Flächeninseln Strömungsverhältnisse, die zu einer Verdichtung der Papierfasern in den die Netzstruktur bildenden Flächenbereichen sowie zu einer Ausrichtung der Papierfasern tangential um die Flächeninseln führt, so dass die Netzstruktur dem Packpapier eine hohe Festigkeit gibt.
  • Um mit dem erfindungsgemäßen Verfahren eine gewünschte Netzstruktur in dem Papier zu erzeugen, wird das hierbei verwendete Blattbildungssieb mit der damit identischen Netzstruktur für die Flächenbereiche mit geringer Permeabilität verwendet. Hinsichtlich der Ausbildung der Netzstruktur im einzelnen kann deshalb auf die Beschreibung des Ergebnisses dieses Verfahrens, nämlich des Packpapiers, Bezug genommen werden. Dabei ist es zweckmäßig, das Schrumpfverhalten der für das Packpapier hergestellten Papierbahn bei der Dimensionierung der Abstände der Flächeninseln auf dem Blattbildungssieb zu berücksichtigen, und zwar in der weise, dass dieser Abstand um den Schrumpfungsgrad in Längs- und/oder Querrichtung vergrößert wird, den das Packpapier bei seiner Herstellung erleidet.
  • In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass die verwendete Faserpulpe beim Auflaufen auf das Blattbildungssieb eine Stoffdichte von 0,1 bis 5 g/l hat. Dieser relativ geringe Fasergehalt begünstigt die oben beschriebene Faserausrichtung im Bereich der von dem Abdeckmaterial gebildeten Flächeninseln. Die Faserpulpe kann einlagig oder auch mittels eines mehrlagigen Stoffauflaufs, jedenfalls aber aus einer einzigen Stoffauflaufdüse auf das Blattbildungssieb aufgetragen werden.
  • Um die gewünschte tangentiale Ausrichtung der Papierfasern um die Flächeninseln zu begünstigen, sollten die Papierfasern vor dem Auftrag auf das Blattbildungssieb mittels Hochkonsistenzmalung flexibilisiert werden, und zwar zweckmäßigerweise bei einem Trockengehalt von 20 bis 38%, einem pH-Wert von 8 bis 12 und einem Energieeintrag von 20 bis 500 kWh/t. Dabei sollten die Papierfasern beispielsweise in einem Hochkonsistenzrefiner einem intensiven Knet- oder Kräuselungsprozeß unterworfen werden. Dies ermöglicht es, als Faserstoffe überwiegend, wenn nicht ausschließlich Langfaserzellstoffe einzusetzen, die eine Länge von 1,5 mm bis 7 mm haben.
  • Um der Netzstruktur eine gute Festigkeit zu geben, ist die Ausbildung ausreichender Faserbindungen von Vorteil. Dazu sollten die Papierfasern bei Trockengehalten von 2,5 bis 7% fibrillierend und/oder kollabierend gemahlen werden, und zwar vorzugsweise in einem Niederkonsistenzrefiner. Statt dessen oder in Kombination damit sollten die Papierfasern beispielsweise in einem Mittelkonsistenzrefiner bei Trockengehalten von 7 bis 20% fibrillierend und/oder kollabierend gemahlen werden. Hierdurch wird die Bindungsfähigkeit der Fasern verstärkt.
  • Nach einem weiteren Merkmal der Erfindung ist es empfehlenswert, das Blattbildungssieb so zu schütteln, dass eine Ausrichtung der Papierfasern in einer bestimmten Richtung weitestgehend vermieden wird. Eine solche Ausrichtung ergibt durch den Stoffauflauf und den Umlauf des Blattbildungssiebes in dessen Laufrichtung. Durch entsprechende Schüttelung kann diese Ausrichtung ge- oder zerstört werden. Dies ermöglicht es den Papierfasern, sich sowohl in Längs- als auch in Querrichtung tangential um die Flächeninseln herumzulegen und damit der so hergestellten Papierbahn eine in beiden Richtungen weitgehend gleiche Festigkeit zu geben. Ein solches Packpapier eignet sich vor allem für die Herstellung von Papiersäcken, da solche Säcke ähnliche Festigkeitseigenschaften sowohl in Längs- als auch in Querrichtung haben sollten. Das Schütteln erfolgt vorzugsweise normal zur Laufrichtung des Blattbildungssiebes durch entsprechende Einwirkung auf die Brustwalze, um die das Blattbildungssieb herumläuft, vorzugsweise mit einer Frequenz von bis zu 1000 Hz und mit einem Schüttelhub von bis zu 100 mm.
  • In der Zeichnung ist die Erfindung anhand von Ausführungsbeispielen näher veranschaulicht. Es zeigen:
    • Figur 1 einen Längsschnitt durch ein Blattbildungssieb;
    • Figur 2 eine Draufsicht auf einen Ausschnitt eines Packpapiers, hergestellt mit dem Blattbildungssieb gemäß Figur 1; und
    • Figur 3 eine Draufsicht auf einen Ausschnitt eines anderen Packpapiers.
  • Das in Figur 1 teilweise dargestellte Blattbildungssieb 1 hat einen Träger 2 in Form eines Gewebes mit Längsfäden 3, 4 und einer oberen Lage von Querfäden - beispielhaft mit 5 bezeichnet - und einer unteren Lage Querfäden - beispielhaft mit 6 bezeichnet. Die Längsfäden 3, 4 binden jeweils in der unteren Lage nur einen Querfaden 6 ein, flottieren dann zwischen den beiden Lagen über drei Querfäden 6 und binden dann in der oberen Lage fünf Querfäden 5 abwechselnd oben- und untenseitig ein, bevor sie wieder zwischen den Lagen über drei Querfäden 5, 6 flottieren.
  • In den Träger 2 eingelagert sind - jeweils beabstandet - in der Draufsicht kreisförmige Abdeckinseln - beispielhaft mit 7 bezeichnet. Sie schließen obenseitig, d.h. mit der Blattbildungsseite bündig ab, stehen also dort nicht über die Blattbildungsseite vor. Untenseitig, d.h. maschinenseitig gehen sie bis etwa zur unteren Lage der Querfäden 6. Die Abdeckinseln 7 bestehen aus einem Kunststoffmaterial, wie es oben beschrieben ist, und sind impermeabel. Rund um die Abdeckinseln 7 befinden sich freie Flächenbereiche - beispielhaft mit 8 bezeichnet -, über die beim Einsatz des Blattbildungssiebes 1 in der Papiermaschine eine Entwässerung der Papierbahn stattfindet.
  • Figur 2 zeigt einen Ausschnitt eines mit dem Blattbildungssieb 1 hergestellten Packpapiers 31. Das Packpapier 31 hat eine Netzstruktur 32, die im wesentlichen den freien Flächenbereichen 8 des Blattbildungssiebes 1 entspricht. Aufgrund der Abdeckinseln 7 des Blattbildungssiebes 1 entstehen bei der Herstellung des Packpapiers 1 um die Flächenbereiche 8 Entwässerungsströmungen, die zu einer Konzentrierung von Papierfasern in diesem Bereich und damit zur Bildung einer faserstoffreichen Netzstruktur 32 im Packpapier 31 führen. Von der Netzstruktur 31 sind Flächeninseln - beispielhaft mit 33 bezeichnet - umschlossen, deren Anordnung, Form und Größe der Anordnung, Form und Größe der Abdeckinseln 7 des Blattbildungssiebes 1 entsprechen.
  • Die Flächeninseln 33 bilden in einer Richtung nebeneinander liegende Inselzeilen - beispielhaft mit 34 bezeichnet - und in der dazu senkrechten Richtung Inselspalten - beispielhaft mit 35 bezeichnet -, wobei zwei jeweils benachbarte Inselzeilen 34 - wie die Abdeckinseln 7 bei dem Blattbildungssieb 1 - jeweils um einen halben Mittenabstand versetzt sind. Entsprechendes gilt für die Inselspalten 35. Der Abstand zweier benachbarter Inselzeilen 34 und zweier benachbarter Inselspalten 35 ist identisch.
  • Auch die Abstände der Flächeninseln 33 untereinander sind jeweils gleich, so dass sich ein regelmäßiges Muster über die Fläche des Packpapiers 31 ergibt.
  • Aufgrund der vorbeschriebenen Verteilung liegen die Flächeninseln 33 jeweils neben oder auf Diagonalen - beispielhaft mit 36 bezeichnet -, die einen Winkel α mit einer Geraden - beispielhaft mit 37 bezeichnet - einschließen, welche parallel zu den Inselzeilen 34 verläuft. Im vorliegenden Fall ist der Winkel α ca. 45° groß. In besonders bevorzugter Ausbildung hat der Winkel α einen Wert von 60°, was durch Vergrößerung der Abstände der Inselzeilen 34 bewirkbar ist.
  • Aufgrund der oben beschriebenen Strömungsverhältnisse sind die Flächeninseln 33 an Papierfasern verarmt, d.h. dort ist die Dichte des Packpapiers 31 gegenüber der Dichte im Bereich der Netzstruktur 32 reduziert. Beim Befüllen eines aus diesem Packpapier 31 hergestellten Papiersacks kann deshalb die verdrängte Luft über die Flächeninseln 33 auf effiziente Weise entweichen, so dass der Papiersack zügig befüllt werden kann. Die Festigkeit des Packpapiers 31 wird im wesentlichen durch die Netzstruktur 32 gewährleistet, in der die Papierfasern konzentriert sind.
  • Die Größenverhältnisse zwischen Flächeninseln 33 und Netzstruktur 32 können selbstverständlich entsprechend den jeweiligen Anforderungen angepaßt werden. Ein größerer Flächenanteil der Netzstruktur 32 sorgt für höhere Festigkeit, jedoch unter Verlust an Permeabilität. Entsprechendes gilt umgekehrt bei Vergrößerung des Anteils der Flächeninseln 33. Darüber hinaus ist es auch nicht zwingend, dass die Flächeninseln 33 runde Formgebung haben. Auch andere Formgebungen, beispielsweise vieleckige, wabenartige oder rechteckige Formen, sind möglich.
  • Figur 3 zeigt eine Variante des Packpapiers 31 gemäß Figur 3. Das Packpapier 41 hat eine gitterartige Netzstruktur 42 mit parallelen Netzlinien - beispielhaft mit 43 bezeichnet - in einer Richtung und ebenfalls parallelen Netzlinien - beispielhaft mit 44 bezeichnet - senkrecht zu den Netzlinien 43. Die Netzlinien 43, 44 haben identische Abstände zueinander, so dass die Netzstruktur 42 quadratische Flächeninseln - beispielhaft mit 45 - einschließen. Die Flächeninseln 45 sind auch hier an Papierfasern zugunsten der Netzstruktur 42 verarmt, d.h. in der Netzstruktur 42 sind die Papierfasern zu Lasten der Flächeninseln 45 konzentriert. Die Festigkeit des Packpapiers 41 wird deshalb im wesentlichen durch die Netzstruktur 42 gewährleistet, während die Flächeninseln 45 für eine gute Luftdurchlässigkeit sorgen und damit das Befüllen eines aus dem Packpapier 41 hergestellten Papiersackes begünstigen.
  • Die Herstellung des Packpapiers 41 erfolgt mit einem entsprechend angepaßten Blattbildungssieb. Dieses Blattbildungssieb hat dann in Abweichung zu dem Blattbildungssieb 1 gemäß Figur 1 gitterartig ausgebildete freie Flächenbereiche, die dadurch hergestellt werden, dass jeweils beabstandet quadratische Abdeckinseln in der Anordnung, wie sie sich als Flächeninseln 45 in dem Packpapier 41 niedergeschlagen haben, aufgebracht und eingelagert werden.
  • Es versteht sich, dass die Netzstruktur gemäß dem Packpapier 41 auch anders gestaltet werden kann. Beispielsweise können die Abstände der sich in einer Richtung erstrekkenden Netzlinien größer gewählt werden als die Abstände der sich senkrecht dazu erstreckenden Netzlinien, so dass rechteckige Flächeninseln großer Permeabilität entstehen. Selbstverständlich kann auch die Breite der Netzlinien im Verhältnis zur Erstreckung der Flächeninseln in gleicher Richtung geändert werden, so dass kleinere Flächeninseln entstehen. Ein solches Packpapier hätte dann eine größere Festigkeit, wobei die Permeabilität über Größe und Anzahl der Flächeninseln gesteuert wird. Außerdem können die Flächeninseln auch andere Formgebungen haben, beispielsweise eine runde Formgebung. Es entstünde dann ein Packpapier, das sich von dem Packpapier 31 gemäß Figur 2 dadurch unterscheidet, dass die einzelnen Flächeninseln benachbarter Inselreihen bzw. Inselspalten nicht gegeneinander versetzt wären.

Claims (44)

  1. Packpapier (31, 41), insbesondere Kraft- oder Sackpapier, dadurch gekennzeichnet, dass das Packpapier (31, 41) zumindest bereichsweise eine Netzstruktur (32, 42) mit von der Netzstruktur (32, 42) eingeschlossenen, diskreten Flächeninseln (33, 45) aufweist, die gegenüber der Netzstruktur (32, 42) an Papierfasern verarmt sind und deren Dichte demgemäß geringer ist als die Dichte der Netzstruktur (32, 42).
  2. Packpapier nach Anspruch 1, dadurch gekennzeichnet, dass die Dichte in den Flächeninseln (33, 45) um wenigstens 10% geringer ist als die Dichte in der Netzstruktur (32, 42).
  3. Packpapier nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Dichte in den Flächeninseln (33, 45) höchstens 700 kg/m3 beträgt.
  4. Packpapier nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Dichte in den Flächeninseln (33, 45) mindestens 350 kg/m3 beträgt.
  5. Packpapier nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Dichte in der Netzstruktur (32, 42) mindestens 700 kg/m3 beträgt.
  6. Packpapier nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Dichte in der Netzstruktur (32, 42) höchstens 1050 kg/m3 beträgt.
  7. Packpapier nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Durchmesser von kreisförmigen Flächeninseln (33) und/oder des die Flächeninseln (45) jeweils engstmöglich umschließenden Hüllkreises höchstens das 2,5-fache der durchschnittlichen längengewichteten Faserlänge der Papierfasern beträgt, aus denen das Packpapier (31, 41) hergestellt ist.
  8. Packpapier nach Anspruch 7, dadurch gekennzeichnet, dass der Durchmesser von kreisförmigen Flächeninseln (33) und/oder des die Flächeninseln (45) jeweils engstmöglich umschließenden Hüllkreises mindestens das 0,1-fache der durchschnittlichen längengewichteten Faserlänge der Papierfasern beträgt, aus denen das Packpapier (31, 41) hergestellt ist.
  9. Packpapier nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich die Netzstruktur (32, 42) über die gesamte Fläche des Packpapiers (31, 41) erstreckt.
  10. Packpapiers nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass nur ein Teilbereich oder nur Teilbereiche des Packpapiers die Netzstruktur aufweisen.
  11. Packpapier nach Anspruch 10, dadurch gekennzeichnet, dass die Teilbereiche in einem regelmäßigen Muster angeordnet sind.
  12. Packpapier nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der kleinste freie Abstand zwischen zwei Flächeninseln (33, 45) nicht unter 0,7 mm liegt.
  13. Packpapier nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Netzstruktur (32, 42) ein regelmäßig wiederkehrendes Muster bildet.
  14. Packpapier nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Flächeninseln (33, 45) gleichgroß und gleiche Formgebung haben.
  15. Packpapier nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Flächeninseln (33, 45) kreisrund, oval, rechteckig oder vieleckig ausgebildet sind.
  16. Packpapier nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Netzstruktur (32, 42) regelmäßig ausgebildet ist.
  17. Packpapier nach einem der Ansprüchen 1 bis 16, dadurch gekennzeichnet, dass die Netzstruktur (42) zwei Scharen von jeweils parallelen Netzlinien (43, 44) ausbildet, wobei die eine Schar von parallelen Netzlinien (43) im Winkel zu der anderen Schar von parallelen Netzlinien (44) verläuft.
  18. Packpapier nach Anspruch 17, dadurch gekennzeichnet, dass der Winkel 90° beträgt.
  19. Packpapier nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die Netzlinien (43, 44) zumindest einer Schar gleichen Abstand zueinander haben.
  20. Packpapier nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Netzstruktur (32) derart ausgebildet ist, dass die Flächeninseln (33) jeweils nebeneinander verlaufende Zeilen (34) und jeweils nebeneinander verlaufende, zu den Zeilen (34) senkrechte Spalten (35) von Flächeninseln (33) bilden, wobei die Flächeninseln (33) benachbarter Zeilen (34) bzw. Spalten (35) jeweils um einen halben Mittenabstand zweier benachbarter Flächeninseln (33) versetzt sind.
  21. Packpapier nach Anspruch 20, dadurch gekennzeichnet, dass die Flächeninseln (33) auf zueinander parallelen Diagonalen (36) liegen.
  22. Packpapier nach Anspruch 21, dadurch gekennzeichnet, dass die Diagonalen (36) einen Winkel von 15° bis 75° mit den Reihen von Flächeninseln (34) einschließen.
  23. Packpapier nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass die Dicke des Packpapiers (21, 41) im Bereich der Netzstruktur (32, 42) wie auch im Bereich der Flächeninseln (33, 45) im wesentlichen gleich groß ist.
  24. Packpapier nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Dicke des Packpapiers (31, 41) mindestens 0,05 mm beträgt.
  25. Packpapier nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass die Dicke des Packpapier (31, 41) höchstens 0,2 mm beträgt.
  26. Papiersack für den Transport von Schüttgut, bei dem die Wandungen des Papiersacks aus Packpapier bestehen, dadurch gekennzeichnet, dass das Packpapier (31, 41) nach einem der Ansprüche 1 bis 25 ausgebildet ist.
  27. Verfahren zur Herstellung von Packpapier (31, 41), bei dem in der Naßpartie einer Papiermaschine eine Papierfasern aufweisende Faserpulpe über einen Stoffauflauf auf ein umlaufendes Blattbildungssieb (1) mit einer Blattbildungsseite und einer Maschinenseite aufgebracht und durch das Blattbildungssieb (1) entwässert wird, dadurch gekennzeichnet, dass ein Blattbildungssieb (1) mit einem permeablen Träger (2) verwendet wird, der ein Muster von diskreten Flächeninseln (7) aus Abdeckmaterial hat, deren Permeabilität geringer ist als die der die Flächeninseln (7) umgebenden, eine Netzstruktur (8) bildenden Flächenbereiche.
  28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß ein Blattbildungssieb (1) verwendet wird, bei dem der Abstand der Flächeninseln (7) um den Schrumpfungsgrad in Längs- und/oder Querrichtung vergrößert ist, den das Packpapier (31, 41) bei seiner Herstellung erleidet.
  29. verfahren nach Anspruch 27 oder 28, dadurch gekennzeichnet, dass der Durchmesser von kreisförmigen Flächeninseln (33) und/oder des die Flächeninseln (45) jeweils engstmöglich umschließenden Hüllkreises höchstens das 2,5-fache der durchschnittlichen längengewichteten Faserlänge der Papierfasern beträgt, aus denen das Packpapier (31, 41) hergestellt ist.
  30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, dass der Durchmesser von kreisförmigen Flächeninseln (33) und/oder des die Flächeninseln (45) jeweils engstmöglich umschließenden Hüllkreises mindestens das 0,1-fache der durchschnittlichen längengewichteten Faserlänge der Papierfasern beträgt, aus denen das Packpapier (31, 41) hergestellt ist.
  31. Verfahren nach einem der Ansprüche 27 bis 30, dadurch gekennzeichnet, dass die im Packpapier (31, 41) entstehenden Flächeninseln (33, 45) kreisrund, oval und/oder vieleckig ausgebildet sind.
  32. Verfahren nach einem der Ansprüche 27 bis 31, dadurch gekennzeichnet, dass die verwendete Faserpulpe beim Auflaufen auf das Blattbildungssieb (1) eine Stoffdichte von 0,1 bis 5 g/l hat.
  33. Verfahren nach einem der Ansprüche 27 oder 32, dadurch gekennzeichnet, dass die Faserpulpe mehrlagig, jedoch aus einer einzigen Stoffauflaufdüse auf das Blattbildungssieb (1) aufgetragen wird.
  34. Verfahren nach einem der Ansprüche 27 bis 33, dadurch gekennzeichnet, dass die Papierfasern vor dem Auftrag auf das Blattbildungssieb (1) mittels Hochkonsistenzmahlung flexibilisiert werden.
  35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, dass die Papierfasern bei der Hochkonsistenzmahlung bei einem Trockengehalt von 20% bis 38% flexibilisiert werden.
  36. Verfahren nach Anspruch 34 oder 35, dadurch gekennzeichnet, dass die Papierfasern bei der Hochkonsistenzmahlung bei einem ph-Wert von 8 bis 12 flexibilisiert werden.
  37. Verfahren nach einem der Ansprüche 34 bis 36, dadurch gekennzeichnet, dass die Papierfasern bei der Hochkonsistenzmahlung mit einem Energieintrag von 20 bis 500 kwh/t flexibilisiert werden.
  38. Verfahren nach einem der Ansprüche 34 bis 37, dadurch gekennzeichnet, dass die Papierfasern bei der Hochkonsistensmahlung in einem Hochkonsistenzrefiner einem Knet- und Kräuselungsprozeß unterworfen werden.
  39. Verfahren nach einem der Ansprüche 27 bis 38, dadurch gekennzeichnet, dass die Papierfasern bei Trockengehalten von 2,5 bis 7% fibrillierend und/oder kollabierend gemahlen werden.
  40. Verfahren nach einem der Ansprüche 27 bis 39, dadurch gekennzeichnet, dass die Papierfasern bei Trockengehalten von 7 bis 20% fibrillierend und/oder kollabierend gemahlen werden.
  41. Verfahren nach einem der Ansprüche 27 bis 40, dadurch gekennzeichnet, dass das Blattbildungssieb (1) geschüttelt wird.
  42. verfahren nach Anspruch 41, dadurch gekennzeichnet, dass das Schütteln normal zur Laufrichtung des Blattbildungssiebes (1) erfolgt.
  43. Verfahren nach Anspruch 41 oder 42, dadurch gekennzeichnet, dass das Schütteln mit einer Frequenz von bis zu 1000 Hz durchgeführt wird.
  44. Verfahren nach einem der Ansprüche 41 bis 43, dadurch gekennzeichnet, dass das Schütteln mit einem Schüttelhub von bis zu 100 mm erfolgt.
EP06002540A 2006-02-08 2006-02-08 Packpapier und daraus hergestellter Papiersack sowie Verfahren zur Herstellung des Packpapiers Expired - Fee Related EP1818451B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06002540A EP1818451B1 (de) 2006-02-08 2006-02-08 Packpapier und daraus hergestellter Papiersack sowie Verfahren zur Herstellung des Packpapiers
AT06002540T ATE423868T1 (de) 2006-02-08 2006-02-08 Packpapier und daraus hergestellter papiersack sowie verfahren zur herstellung des packpapiers
ES06002540T ES2320254T3 (es) 2006-02-08 2006-02-08 Papel de embalaje y saco de papel fabricado con este, asi como procedimiento para fabricar el papel de embalaje.
DE502006002938T DE502006002938D1 (de) 2006-02-08 2006-02-08 Packpapier und daraus hergestellter Papiersack sowie Verfahren zur Herstellung des Packpapiers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06002540A EP1818451B1 (de) 2006-02-08 2006-02-08 Packpapier und daraus hergestellter Papiersack sowie Verfahren zur Herstellung des Packpapiers

Publications (2)

Publication Number Publication Date
EP1818451A1 EP1818451A1 (de) 2007-08-15
EP1818451B1 true EP1818451B1 (de) 2009-02-25

Family

ID=36803474

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06002540A Expired - Fee Related EP1818451B1 (de) 2006-02-08 2006-02-08 Packpapier und daraus hergestellter Papiersack sowie Verfahren zur Herstellung des Packpapiers

Country Status (4)

Country Link
EP (1) EP1818451B1 (de)
AT (1) ATE423868T1 (de)
DE (1) DE502006002938D1 (de)
ES (1) ES2320254T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3795745A1 (de) * 2019-09-20 2021-03-24 Mondi AG Kraftpapier sowie daraus gefertigter papiersack

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2527453A1 (de) * 1975-06-20 1976-12-30 Papiersackfabrik Tenax Zweigni Verfahren und vorrichtung zum einnadeln von luftaustrittsoeffnungen in durch zwischenlagen aus kunststoff- folien geschuetztes packpapier
GB9712819D0 (en) * 1997-06-18 1997-08-20 Bpb Plc Paper sack
WO2002042060A1 (de) * 2000-11-21 2002-05-30 Frantschach Industrial Packaging Austria Gmbh Verfahren zur herstellung eines papiersacks sowie papiersack
CN1258467C (zh) * 2001-07-23 2006-06-07 信德产业株式会社 纸袋
JP2003278093A (ja) * 2002-03-18 2003-10-02 Nippon Kankyo Eizai Kenkyusho:Kk 紙管の通湿性を保ち、且つ強化する処理方法

Also Published As

Publication number Publication date
ATE423868T1 (de) 2009-03-15
ES2320254T3 (es) 2009-05-20
DE502006002938D1 (de) 2009-04-09
EP1818451A1 (de) 2007-08-15

Similar Documents

Publication Publication Date Title
EP0114656B1 (de) Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine
DE69034120T2 (de) Voluminöse Papierbahn
EP1294981B2 (de) Papiermaschinensieb
EP2106477B1 (de) Gewebeband für eine maschine zur herstellung von bahnmaterial, insbesondere papier oder karton
DE2435376A1 (de) Papiermaschinenfilz bzw. -tuch und verfahren zu seiner herstellung
DE69217467T2 (de) Pressfilze für Papiermaschine
EP1991735B1 (de) Gewebeband für eine maschine zur herstellung von bahnmaterial, insbesondere papier oder karton
EP0590288B1 (de) Mehrlagiges Pressensieb für Nasspressen einer Papiermaschine
EP0656967B1 (de) Formiersieb
EP1054097B1 (de) Papiermaschinenbespannung, insbesondere als Trockensieb
DE2263476B2 (de) Gewebe für Papiermaschinensiebe
EP1565613B1 (de) Papiermaschinensieb
DE2455185A1 (de) Gewebe zur herstellung von papier
EP1738020B1 (de) Sieb, insbesondere papiermaschinensieb
EP1818451B1 (de) Packpapier und daraus hergestellter Papiersack sowie Verfahren zur Herstellung des Packpapiers
DE2620033A1 (de) Stoffauflauf
EP2764157B1 (de) Papiermaschinensieb
DE60110611T2 (de) Papiermaschinenbespannung mit muster
DE4304758C2 (de) Trockensieb einer Papiermaschine
EP1818448B1 (de) Verwendung eines Blattbildungssiebes
EP1664410B1 (de) Gewebegurt für eine wellpappenbeklebemaschine
EP2004903B1 (de) Oberseite, insbesondere papierseite, für ein papiermaschinensieb sowie papiermaschinensieb
DE102007058369A1 (de) Gewebeband für eine Maschine zur Herstellung von Bahnmaterial, insbesondere Papier oder Karton
WO2003014447A1 (de) Gewebegurt für eine wellpappenbeklebemaschine
DE2642168B2 (de) Verfahren zum Herstellen eines verstärkten Verpackungsmaterials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): AT DE ES FR SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MONDI FRANTSCHACH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR SE

REF Corresponds to:

Ref document number: 502006002938

Country of ref document: DE

Date of ref document: 20090409

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2320254

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140220

Year of fee payment: 9

Ref country code: DE

Payment date: 20140103

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140211

Year of fee payment: 9

Ref country code: ES

Payment date: 20140220

Year of fee payment: 9

Ref country code: FR

Payment date: 20140211

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006002938

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 423868

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150208

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150209

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150209