EP0656967B1 - Formiersieb - Google Patents

Formiersieb Download PDF

Info

Publication number
EP0656967B1
EP0656967B1 EP93919118A EP93919118A EP0656967B1 EP 0656967 B1 EP0656967 B1 EP 0656967B1 EP 93919118 A EP93919118 A EP 93919118A EP 93919118 A EP93919118 A EP 93919118A EP 0656967 B1 EP0656967 B1 EP 0656967B1
Authority
EP
European Patent Office
Prior art keywords
threads
group
transverse
transverse threads
screen according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93919118A
Other languages
English (en)
French (fr)
Other versions
EP0656967A1 (de
Inventor
Daniel Zimmermann
Liam Maher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siebtuchfabrik AG
Original Assignee
Siebtuchfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siebtuchfabrik AG filed Critical Siebtuchfabrik AG
Publication of EP0656967A1 publication Critical patent/EP0656967A1/de
Application granted granted Critical
Publication of EP0656967B1 publication Critical patent/EP0656967B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/0027Screen-cloths
    • D21F1/0036Multi-layer screen-cloths

Definitions

  • the invention relates to a forming fabric for the sheet formation section of a paper machine, consisting of a more than single-layer, in particular flat-woven, fabric made of plastic threads with longitudinal threads extending in the machine direction and transverse threads extending transversely thereto, a first group of transverse threads lying in the plane of the paper side and there floated over longitudinal threads, the number of which is at least as large as the number of transverse threads over which the longitudinal threads float on the paper side, and the plane of the machine side being formed exclusively by a second group of transverse threads.
  • a conventional paper machine essentially consists of three consecutive lots.
  • the paper web is dewatered or dried in different ways in the individual lots.
  • the paper web is supported and guided by so-called paper machine clothing.
  • the so-called sheet formation section a forming wire is used for this.
  • the liquid to pulpy fibrous material is applied to this.
  • This is then removed from the forming fabric and guided to the second section, the so-called press section.
  • press felts which generally consist of a base fabric and a non-woven fabric needled on it at least on the paper side.
  • the drying section the paper web is essentially thermally dewatered by being passed over heated drying cylinders almost without pressure. It is supported by so-called dryer fabrics, which dryer fabrics can be designed as a fabric or as wire link belts.
  • forming fabrics serve primarily to form a paper web from a liquid mass, so that there is not already a coherent paper web - as in the press and dryer sections.
  • forming fabrics serve primarily to form a paper web from a liquid mass, so that there is not already a coherent paper web - as in the press and dryer sections.
  • the behavior of the individual fibers in relation to the forming fabric must therefore be taken into account, a requirement that naturally does not arise in the press and dryer section because of the paper web already formed there.
  • the demands are often conflicting, meaning that they can only be met by compromise.
  • a forming fabric must have a good separating effect, that is to say hold the paper fibers on the paper-side surface of the forming fabric on the one hand and effect good drainage on the other.
  • the property called fiber retention the fibers on the Holding the forming fabric must also be combined with the ability to prevent parts of the fibers from being drawn into the forming fabric and thereby creating a sheat-sealing. The latter not only results in a reduction in dewatering performance, but also makes sheet removal at the end of the forming wire more difficult due to the interlocking with it.
  • a generic paper machine screen is disclosed for example in EP-A-0-390 ⁇ 0 ⁇ 0 ⁇ 5. It has long floating cross threads on the machine side that only form the plane of the machine side and thus protect the longitudinal threads from abrasion. On the paper side, longitudinal and transverse threads are bound in such a way that a monoplane surface is created if possible. Both the longitudinal and the transverse threads have a circular cross section in a conventional manner. This has one Series of disadvantages.
  • the support of the individual fibers is not satisfactory on the paper side.
  • the conical gaps in the opening due to the round cross-section result in some of the fibers being drawn into the inside of the sieve, thereby producing at least one toothing between the fabric and the fibers which is harmful to the paper removal. This also results in a high surface roughness of the paper and poor printability.
  • Another disadvantage is that dynamic pressure fluctuations, which occur in the water being carried when driving over machine parts of the wet end, easily penetrate to the paper web and lead to markings there.
  • the invention has for its object to develop a forming fabric of the generic type so that significantly improved conditions with regard to the formation of paper web and in terms of abrasion properties are created.
  • transverse threads of the first group lying in the plane of the paper side are flattened. Since the flattened transverse threads on the paper side extend transversely to the main direction of the fibers of the paper stock, this results in optimal fiber support with a significantly reduced risk that part of the fibers will slide into the inside of the wire.
  • the flattened cross threads act like small, transversal plateaus, which effectively take the pulp fibers with them and, because they are oriented in the running direction, provide them with optimal support without the risk of slipping.
  • the toothing effect occurring with round threads is largely avoided and in this way the sheet removal at the end of the sheet formation section is made considerably easier.
  • the basic idea of the invention can also be realized in forming fabrics, in which the first group of transverse threads consists of at least two subgroups of transverse threads, of which a first subgroup forms normal transverse threads and a second subgroup forms filling transverse threads.
  • the filling transverse threads can have floats that go over more longitudinal threads than the longest floats of the normal transverse threads, as a result of which the above-described transverse plateau effect is particularly pronounced.
  • the floats of the flattened cross threads can be designed according to the respective requirements. In the case of a one-and-a-half-ply fabric, the longest floats should go over at least four longitudinal threads, in a double-ply fabric over at least three longitudinal threads and in a three-ply fabric over at least one longitudinal thread.
  • the flattened transverse threads of the first group have a fiber support width which is at least 9% larger than that of a circular thread with the same cross-sectional area.
  • the fiber support width should preferably be at least 15% and particularly advantageously at least 30%.
  • the fiber support width is to be understood as the width of a flat thread surface that arises when 10 ⁇ % of its height, ie the extent transverse to the plane of the fabric, is removed from the paper side of the respective transverse thread.
  • the degree of coverage of the transverse threads of the first group in one and a half and double-layer fabrics without filling transverse threads is at least 32%, better still 37% and preferably at least 42 or even 47%, better still 52%.
  • the degree of coverage is defined as the product of the previously defined fiber support width (in cm), the number of threads (thread density) per cm screen length and the number 10 ⁇ 0 ⁇ . If different types of threads are used for the first group of transverse threads, separate degrees of coverage are determined for each thread type. The total degree of coverage then corresponds to the sum of the degrees of coverage of the individual types of cross threads. In the case of two-layer fabrics with filling cross threads or at least three-layer fabrics, the degree of coverage should be at least 40%, better still 50% or even 55% and preferably 60%.
  • Such a design has the advantage that the essential properties of the forming wire no longer change so strongly and then in a much more uniform manner than in the case of forming fabrics in which these transverse threads are designed as round threads.
  • This is due, on the one hand, to the fact that the contact surface of the forming fabric does not change as much during abrasion or - in the case of rectangular transverse threads - practically does not change, and that the transverse threads nestle better against the underside of the forming fabric because of their greater flexibility, so they do not protrude as much .
  • the latter has the consequence that the length of the abrasion surface changes only insignificantly over time. Optimization options are also opened up here. While maintaining the thickness of the forming fabric, considerably more abrasion volume can be made available.
  • the thickness of the forming fabric can be reduced with the same abrasion volume. Precisely because the transverse threads of the second group protrude on the machine side, these transverse threads can be used to exert a strong influence on the one hand with regard to the abrasion volume and on the other with regard to the thickness of the sieve.
  • the transverse threads of the second group should float over at least four longitudinal threads in the case of a one-and-a-half layer fabric and over at least five longitudinal threads in the case of a double-layer fabric. In the case of a double-layer fabric, a differentiation can be made according to the number of shafts in the transverse threads. With a number of fourteen shafts, the transverse threads of the second group should float over at least ten longitudinal threads and with a number of sixteen shafts over at least twelve longitudinal threads.
  • Ratio of the maximum to the standard abrasion surface is a maximum of 2.9, better still 2.2 and preferably 1.7 or even better 1.4.
  • the machine surface contact surface with the elements of the paper machine is referred to as the abrasion surface of a thread floating on the machine side.
  • the maximum abrasion area means the largest contact area which arises in the course of wear of the transverse threads.
  • the contact surface is defined as the standard abrasion surface, which occurs after removal of 10% of the height of the respective transverse thread, that is to say the extension of the relevant thread transverse to the tissue plane.
  • the degree of coverage should be over 52% for transverse threads in the second group, better still over 62% if the fabric is one and a half layers.
  • the degree of coverage of the cross threads in the second group should be over 40%, better still over 45%, and in the case of a double-layer fabric with fill cross threads in the first group over 32%, preferably over 37%.
  • the degree of coverage should be over 45%, better still over 50 ⁇ %.
  • transverse threads flattened according to the invention with such longitudinal threads.
  • the flattened longitudinal threads should be arranged so that their cross-sectional extent in the tissue plane is greater than transverse to the tissue plane and that The ratio between the cross-sectional extent in the tissue plane to the cross-sectional extent transverse to the tissue plane is between 1.2 and 2.2.
  • the flattened longitudinal threads should have an area of 0 ⁇ , 15 to 0 ⁇ , 226 mm 2 .
  • the flattened transverse threads of the first group expediently have an area of 0 ⁇ , 0 ⁇ 13 to 0 ⁇ , 195 mm 2 , that of the second group an area of 0 ⁇ , 0 ⁇ 22 to 0 ⁇ , 4 mm 2 .
  • the flattened threads can have any cross-sectional shape, provided that the conditions of the basic idea of the invention are observed. Particularly suitable are oval, in particular elliptical and, above all, rectangular cross sections, the latter preferably with chamfered edges. However, other thread shapes can also be used, for example trapezoidal or rhomboidal ones.
  • the surface unit which is designated “cm 2 ", extends in the tissue plane.
  • the fabric is at least three layers and the layers are connected to one another by binding threads
  • the cross-sectional area should go from 0 ⁇ , 0 ⁇ 12 to 0 ⁇ , 0 ⁇ 62 mm 2 .
  • the one and a half-layer forming screen (1) shown in the figures (1) and (2) has longitudinal threads (2) which are circular in cross section and which extend in the machine direction (MD).
  • the forming fabric (1) also has a first group of transverse threads (3) with a circular cross section.
  • a second group of transverse threads (4) which have a rectangular cross section, the extent transverse to the plane of the forming fabric (1) being less than in its plane.
  • the integration of the longitudinal threads (2) and the first group of transverse threads (3) is such that a monoplane top, i.e. H. Paper side is created.
  • a longitudinal thread (2) binds every fifth transverse thread (3) of the first group.
  • the transverse threads (3) of the first group float over four longitudinal threads before they bind with one longitudinal thread (2) (see FIG. 2). This creates a distinctive transverse structure on the paper side of the forming fabric (1), d. H. the transverse floats of the transverse threads (3) of the first group dominate the paper side.
  • the second group of transverse threads (4) floats to the machine side over a total of nine longitudinal threads (2) before these cross threads (4) tie in with a longitudinal thread (2). Since the cross threads (4) are the same compared to a round cross thread Cross-sectional area are significantly more flexible, they have no arc shape. Rather, because of their conformability, they run straight between the ties with the longitudinal threads. This fact and the rectangular cross-section have the consequence that the abrasion surface, ie the surface with which the forming screen (1) rubs over the stationary parts of the paper machine, hardly changes with increasing wear. The change in sieve thickness per unit of time is less than when using cross threads of round cross-section and remains essentially constant. This means that the sieving properties change only slightly and then only very uniformly while the forming sieve (1) is running.
  • the embodiment shown in Figure (3) of a two-layer forming fabric (5) has round longitudinal threads (6) and a first group of transverse threads (7) on the paper side and a second group of transverse threads (8) on the machine side.
  • one cross thread (7) of the first group lies above a cross thread (8) of the second group.
  • the transverse threads 7, 8 of both groups have a rectangular, flattened cross section.
  • the longitudinal threads (6) float first over two transverse threads (7) of the first group on the paper side, then between three transverse threads (7, 8) of the first and the second group and then tie in with a transverse thread (8) of the second group.
  • the transverse threads (7) of the first group Due to their flattened cross-section, the transverse threads (7) of the first group form transverse plateaus for the support of the paper fibers, which are mainly oriented in the running direction of the forming fabric (5). Compared to circular transverse threads of the same cross-sectional area, the transverse threads (7) of the first group have a lower height, which results in flatter crankings for the longitudinal threads (6). This reduces the risk of wire markings and ensures better length constancy of the forming wire (5) on the paper machine.
  • transverse threads (8) of the second group Their abrasion properties correspond to the transverse threads (4) in the embodiment according to Figures (1) and (2).
  • a forming wire (9) is shown, which is formed in three layers. It has paper-side longitudinal threads (10 ⁇ ) that bind in plain weave with a first group of transverse threads (11). Both the longitudinal threads (10 ⁇ ) and the transverse threads (11) have a circular cross-section. Below the paper-side longitudinal threads (10 ⁇ ) machine-side longitudinal threads (12) also have a round cross-section. You bind with a second group of transverse threads (13), which run on the machine side and thereby protect the longitudinal threads (10 ⁇ , 12) against wear. The transverse threads of the second group (13) have a rectangular cross section. Their cross-sectional area is larger than that of the transverse threads (11) of the first group.
  • the ratio of the number of transverse threads (11) in the first group to that of the transverse threads (13) in the second group is 2: 1.
  • the use of flattened cross-sectional shapes reduces the thickness of the forming screen (9) compared to embodiments with round cross-sections of the same cross-sectional area.
  • FIG. 5 shows a two-layer forming fabric (14), which has a first group of transverse threads in the upper layer, normal transverse threads (15) alternating with filling transverse threads (16) in this group. They each have a circular cross-section.
  • the lower, machine-side layer is formed by a second group of long floating cross threads (17) with a rectangular cross-section.
  • Both groups of transverse threads (15, 16, 17) are bound in by longitudinal threads (18), each of which floats on the paper side via two normal transverse threads (15) and a filling transverse thread (16) and each incorporates a transverse thread (17) from the second group on the machine side.
  • Each Adjacent longitudinal threads (18) are offset by three transverse threads (15, 16) of the first group in the machine direction.
  • the forming screen (19) shown in Figure (6) is similar in structure to the forming screen (14) according to Figure (5). It is accordingly constructed in two layers and has alternating normal transverse threads (20 ⁇ ) and filling transverse threads (21), which form the first group of transverse threads running on the paper side. Both have a flattened rectangular cross section.
  • the lower layer is formed by a second group of transverse threads (22), which in this case have a circular cross-section and are integrated on the machine side with a long float.
  • the longitudinal threads (23) float in the same way as in the exemplary embodiment according to FIG. (5).
  • the rectangular cross sections of the normal and filling transverse threads 20, 21, 21 ensure in the exemplary embodiment according to FIG (6) an improved fiber support, in particular when these transverse threads (20 ⁇ , 21) dominate on the paper side and produce a transverse rib structure there.
  • the possibilities of design optimization depending on the requirements in the paper machine in question are shown here in particular.
  • the flattened cross-sections have a freely selectable parameter more than round cross-sections, which increases the design options taking into account the diverse requirements that are currently placed on a forming fabric.
  • the exemplary embodiment shown in FIG. (7) is also a two-layer forming fabric (24), but without filler cross threads.
  • a first group of cross threads (25) with round cross-section forms the upper layer.
  • the lower layer is formed by a second group of transverse threads (26) which have a rectangular cross section and are integrated in a long float.
  • Longitudinal threads (27) extend in the machine direction, float on the paper side each over two transverse threads (25) of the first group and incorporate one transverse thread (26) of the second group on the machine side.
  • Adjacent longitudinal threads (27) are each offset by three transverse threads (25) of the first group in the machine direction.
  • Figure (8) shows in cross section two adjacent transverse threads (28, 29) with a round cross section and each below two adjacent transverse threads (30 ⁇ , 31) with a rectangular cross section.
  • the round cross threads (28, 29) and the rectangular cross threads (30 ⁇ , 31) have the same horizontal dimensions and matching cross-sectional areas.
  • the minimum distances between the round cross threads (28, 29) correspond to the distances of the rectangular cross sections (30 ⁇ , 31).
  • Paper fibers (32, 33) are supported on the round transverse threads (28, 29). They are oriented in the machine direction due to the difference in speed between the fiber headbox and the paper machine wire.
  • the support is unsatisfactory because there is a tendency that the pulp fibers (32, 33) are drawn in by the dewatering stream and also the negative pressure into the upwardly conically opening gap between the round transverse threads (28, 29). This creates problems with dewatering and due to the interlocking effect in the later sheet removal.
  • Paper fibers (34, 35) are also deposited on the rectangular transverse threads (30 ⁇ , 31). Although the gap between the rectangular cross threads (30 ⁇ , 31) is the same size as between the round cross threads (28, 29), it is clear that the support of the pulp fibers (34, 35) is significantly improved. The paper fibers (34, 35) are no longer drawn into the gap between the transverse threads (30 ⁇ , 31), so they do not interfere with the drainage. There is also no interlocking with the transverse threads (30 ⁇ , 31), which could impair the sheet removal.
  • the definition of the fiber support width (FIBER SUPPORT WIDTH) can be explained with reference to FIG. It results when 10 ⁇ % of the height of the threads is removed from the top of the threads.
  • the fiber support width corresponds to the width of these cross threads (30 ⁇ , 31).
  • the fiber support width - each indicated by the length of the arrows - is considerably smaller than the diameter of the cross threads (28, 29) and thus also the fiber support width of the rectangular cross threads (30 ⁇ , 31).

Landscapes

  • Paper (AREA)
  • Materials For Medical Uses (AREA)
  • Optical Communication System (AREA)
  • Undergarments, Swaddling Clothes, Handkerchiefs Or Underwear Materials (AREA)
  • Liquid Crystal (AREA)
  • User Interface Of Digital Computer (AREA)
  • Sheet Holders (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Woven Fabrics (AREA)
  • Magnetic Heads (AREA)
  • Resistance Heating (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Prostheses (AREA)
  • Saccharide Compounds (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

  • Die Erfindung betrifft ein Formiersieb für die Blattbildungspartie einer Papiermaschine, bestehend aus einem mehr als einlagigen, insbesondere flachgewebten Gewebe aus Kunststoffäden mit sich in Maschinenlaufrichtung erstreckenden Längsfäden und sich quer dazu erstreckenden Querfäden, wobei eine erste Gruppe von Querfäden in der Ebene der Papierseite liegt und dort über Längsfäden flottiert, deren Anzahl wenigstens so groß ist wie die Anzahl der Querfäden, über die die Längsfäden papierseitig flottieren, und wobei die Ebene der Haschinenseite ausschließlich von einer zweiten Gruppe von Querfäden gebildet ist.
  • Eine übliche Papiermaschine besteht im wesentlichen aus drei hintereinander liegenden Partien. In den einzelnen Partien wird die Papierbahn auf unterschiedliche Weise entwässert bzw. getrocknet. Dabei wird die Papierbahn von sogenannten Papiermaschinenbespannungen abgestützt und geführt.
  • In der ersten Partie, der sogenannten Blattbildungspartie, wird hierfür ein Formiersieb verwendet. Auf dieses wird der flüssige bis breiige Faserstoff aufgetragen. Durch Schwerkrafteinwirkung, unterstützt durch Unterdruck erzeugende Saugkästen, wird der Faserstoff soweit entwässert, daß am Ende des Formiersiebes eine zusammenhängende, wenn auch noch sehr empfindliche Papierbahn mit hohem Flüssigkeitsgehalt entsteht. Diese wird dann von dem Formiersieb abgenommen und zu der zweiten Partie, der sogenannten Pressenpartie, geführt. Dort wird die Papierbahn zum Zwecke der Entwässerung zwischen Walzen hohem Druck ausgesetzt. Dabei wird sie von Preßfilzen unterstützt, die im allgemeinen aus einem Grundgewebe und einem darauf zumindest papierseitig aufgenadelten Faservlies bestehen. In der dritten Partie, der Trockenpartie, wird die Papierbahn im wesentlichen thermisch entwässert, indem sie nahezu drucklos über beheizte Trockenzylinder geführt wird. Dabei wird sie durch sogenannte Trockensiebe abgestützt, wobei die Trockensiebe als Gewebe oder als Drahtgliederbänder ausgebildet sein können.
  • Auf Grund der unterschiedlichen Art der Entwässerung in den einzelnen Partien der Papiermaschine werden an die jeweils eingesetzten Papiermaschinenbespannungen - Formiersieb, Preßfilz und Trockensieb - verschiedene Anforderungen gestellt. Sie weichen deshalb in ihrem Aufbau grundsätzlich sehr stark voneinander ab. Dies gilt insbesondere für ihre Wasserdurchlässigkeit, Gewebedicke, Beständigkeit etc. In einer Partie verwendete Papiermaschinenbespannungen können grundsätzlich niemals in einer anderen Partie verwendet werden.
  • Insoweit besondere Anforderungen werden an Formiersiebe gestellt. Dies beruht darauf, daß Formiersiebe in erster Linie dazu dienen, aus einer flüssigen Masse erst eine Papierbahn zu bilden, daß also nicht - wie in der Pressen- und Trockenpartie - schon eine zusammenhängende Papierbahn vorliegt. Bei der Auslegung eines Formiersiebes muß deshalb insbesondere das Verhalten der einzelnen Fasern in Bezug auf das Formiersieb berücksichtigt werden, eine Forderung, die sich naturgemäß in der Pressen- und Trockenpartie wegen der dort schon ausgebildeten Papierbahn nicht stellt. Dabei sind die Forderungen oft widerstreitend, d. h. ihre Erfüllung ist nur kompromißweise möglich. So muß ein Formiersieb eine gute Trennwirkung haben, also einerseits die Papierfasern an der papierseitigen Oberfläche des Formiersiebes festhalten und andererseits eine gute Entwässerung bewirken. Die als Faserretention bezeichnete Eigenschaft, die Fasern auf dem Formiersieb festzuhalten, muß zudem verbunden werden mit der Fähigkeit zu verhindern, daß Teile der Fasern in das Formiersieb hineingezogen werden und hierdurch eine Abdichtung (sheat-sealing) herbeiführen. Letzteres hat nämlich nicht nur eine Verringerung der Entwässerungsleistung zur Folge, sondern erschwert die Blattabnahme am Ende des Formiersiebes wegen der Verzahnung mit diesem.
  • Eine weitere, gerade bei Formiersieben sehr wesentliche Forderung ist die Erzielung einer möglichst hohen Lebensdauer. Im Unterschied zu den in der Pressen- und Trockenpartie verwendeten Papiermaschinenbespannungen wird ein Formiersieb nicht nur über Umlenkrollen, sondern auch über feststehende Haschinenteile geführt mit der Folge, daß dort große Reibkräfte wirken. Insbesondere wenn es sich um Saugkästen handelt, bei denen zur Unterstützung der Schwerkraftentwässerung ein Unterdruck erzeugt wird, liegt das Formiersieb mit beträchtlichem Auflagedruck an Maschinenteilen an und reibt über diese hinweg. Dem wird durch Verwendung besonders widerstandsfähiger Kunststoffmaterialien an der Maschinenseite und durch Entkoppelung von papierseitiger und maschinenseitiger Struktur Rechnung getragen. Es werden dann auf der Maschinenseite besondere Querfäden als Abriebmaterial vorgesehen, die dann allein die Ebene der Maschinenseite bilden. Diese Querfäden schützen die durch die Längsspannung im Formiersieb hochbelasteten Längsfäden vor Abrieb und damit einer Beeinträchtigung ihrer Festigkeit.
  • Ein gattungsgemäßes Papiermaschinensieb ist beispielsweise in der EP-A-0̸ 390̸ 0̸0̸5 offenbart. Es hat an der Haschinenseite langflottierende Querfäden, die allein die Ebene der Maschinenseite bilden und damit die Längs fäden vor Abrieb schützen. Auf der Papierseite sind Längs- und Querfäden so eingebunden, daß nach Möglichkeit eine monoplane Oberfläche entsteht. Sowohl die Längs- als auch die Querfäden haben in konventioneller Weise kreisrunden Querschnitt. Dies hat eine Reihe von Nachteilen.
  • Auf der Papierseite ist die Abstützung der einzelnen Fasern nicht befriedigend. Die sich auf Grund des runden Querschnittes konisch öffnenden Gewebelücken haben zur Folge, daß ein Teil der Fasern ins Siebinnere hineingezogen werden, wodurch zumindest eine für die Papierabnahme schädliche Verzahnung zwischen Gewebe und Fasern erzeugt wird. Außerdem ergibt sich hierdurch eine hohe Oberflächenrauhheit des Papiers und eine schlechte Bedruckbarkeit. Ein weiterer Nachteil besteht darin, daß sich dynamische Druckschwankungen, die sich im mitgeschleppten Wasser beim Überfahren von Maschinenteilen der Naßpartie einstellen, leicht bis zur Papierbahn vordringen und dort zu Markierungen führen.
  • Auf der Haschinenseite kann ein ausreichendes Abriebvolumen nur durch die Verwendung relativ dicker Querfäden zur Verfügung gestellt werden. Deren Biegsamkeit ist jedoch eingeschränkt, weshalb die Längsfäden bei der Einbindung mit diesen Querfäden bis nahe an die Ebene der Maschinenseite herabgedrückt werden und auf diese Weise relativ schnell einem Verschleiß unterworfen sind. Gravierender ist noch, daß sich die Siebeigenschaften beim Verschleiß der die Maschinenseite bildenden Querfäden erheblich und mit unterschiedlicher Geschwindigkeit ändern. Auf Grund der langen Flottierung und der Steifigkeit dieser Querfäden ergibt sich zwischen den Einbindungen ein bogenförmiger Verlauf mit der Folge, daß sich beim Abrieb die Kontaktfläche sowohl in Längs- als auch Querrichtung des Fadens ständig und ungleichmäßig verändert.
  • Schon seit langer Zeit sind Vorschläge bekannt, bei Formiersieben abgeflachte Längsfäden einzusetzen. Diese Vorschläge bezogen sich zunächst nur auf einlagige Formiersiebe und hier in erster Linie auf Metallsiebe (vgl. US-A-2 0̸0̸3 123; US-A-3 139 119; US-A-3 143 150̸; US-A-3 545 70̸5; US-A-3 632 0̸68). Nach dem Aufkommen von aus Kunststoffäden bestehenden Formiersieben ist die Verwendung von abgeflachten Längsfäden auch bei diesen Sieben bekannt geworden (US-A-4 143 557). In jüngster Zeit sind auch Vorschläge gemacht worden, abgeflachte Längsfäden bei mehr als einlagigen, insbesondere zwei- und dreilagigen Formiersieben vorzusehen (GB-A-2 157 328; US-A-4 815 499). Entsprechend den Angaben in diesen Schriften versprach man sich hiervon eine Reihe von Vorteilen.
  • Soweit sie sich auf Metallsiebe beziehen, können sie jedoch nicht ohne weiteres auf Kunststoffsiebe übertragen werden, da das Verhalten von Metalldrähten in einem Gewebeverbund stark von dem der Kunststoffäden abweicht. Entsprechendes gilt für den Unterschied zwischen ein- und mehrlagigen Geweben. Generell ist zu sagen, daß der Einsatz von abgeflachten Längsfäden nur einen geringen oder keinen Einfluß auf die wesentlichen Eigenschaften eines Formiersiebes hat. Da die Längsfäden auch bei mehrlagigen Formiersieben auf Grund der bei Kunststoffsieben grundsätzlich durchgeführten Thermofixierung gestreckt werden und dann nur noch wenig ausgeprägte Kröpfungen aufweisen sowie hauptsächlich im Siebinneren verlaufen, wirkt sich die größere Biegsamkeit der abgeflachten Längsfäden aufgrund ihrer geringen Höhe - sie wird ohnehin nur dann erreicht, wenn die Querschnittsfläche gegenüber Rundfäden gleichbleibt oder geringer ist - kaum vorteilhaft aus.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Formiersieb der gattungsgemäßen Art so weiterzubilden, daß wesentlich verbesserte Voraussetzungen hinsichtlich der Papierbahnbildung und bezüglich der Abriebeigenschaften geschaffen werden.
  • Diese Aufgabe wird erfindungsgemäß durch ein Formiersieb mit folgenden Merkmalen gelöst:
    • (a) wenigstens ein Teil der Querfäden haben einen abgeflachten Querschnitt;
    • (b) die abgeflachten Querfäden sind so angeordnet, daß ihre Querschnittserstreckung in der Gewebeebene größer ist als quer zur Gewebeebene;
    • (c) das Verhältnis zwischen Querschnittserstreckung in Gewebeebene zu Querschnittserstreckung quer zur Gewebeebene liegt zwischen 1,2 und 2,5, vorzugsweise 1,2 und 1,8;
  • Dieser Merkmalskombination liegt die Erkenntnis zugrunde, daß man durch die Verwendung von abgeflachten Querfäden wesentlich mehr und erheblich vielseitiger Einfluß auf die Eigenschaften eines Formiersiebes nehmen kann. Dies beruht auf der schon zur Erfindung gehörenden Überlegung, daß die Querfäden insbesondere nach der Thermofixierung wesentlich ausgeprägtere Kröpfungen haben als die Längsfäden. Unter der Voraussetzung gleicher Querschnittsflächen sind die abgeflachten Querfäden erheblich schmiegsamer und passen sich deshalb dem Verlauf der Längsfäden in den Kröpfungen besser an. Hierdurch läßt sich in weiten Bereichen die Dicke eines Formiersiebes mit Blick auf die sich teilweise widersprechenden Forderungen nach guten Entwässerungsleistungen, der Zurverfügungstellung von großen Abriebvolumina und der Größe des freien inneren Volumens optimieren und den jeweiligen Erfordernissen in der betreffenden Papiermaschine anpassen. Damit werden Möglichkeiten der Maßschneiderung und Anpassung eines Formiersiebes an eine bestimmte Papiermaschine eröffnet, die mit aus Rundfäden bestehenden Formiersieben gar nicht und mit abgeflachten Längsfäden enthaltenen Formiersieben nur in unbedeutendem Umfang erreichbar waren. Diese Möglichkeiten sind offenbar jahrzehntelang nicht erkannt worden, denn die Fachwelt blieb, was die Verwendung von abgeflachten Fäden in Formiersieben angeht, der Vorstellung verhaftet, daß solche Fäden nur bei ihrer Anordnung in Längsrichtung Sinn geben.
  • Von besonderem Vorzug ist, wenn ein Teil oder alle Querfäden der ersten Gruppe, die in der Ebene der Papierseite liegen, abgeflacht sind. Da sich die solchermaßen abgeflachten Querfäden an der Papierseite quer zur Hauptrichtung der Fasern des Papierstoffes erstrecken, ergibt sich hierdurch eine optimale Faserunterstützung mit wesentlich herabgesetzter Gefahr, daß ein Teil der Fasern in das Siebinnere abgleitet. Die abgeflachten Querfäden wirken wie kleine, quergestellte Plateaus, die die auflaufenden Papierstoffasern wirkungsvoll mitnehmen und ihnen, da sie in Laufrichtung orientiert sind, eine optimale Unterstützung ohne die Gefahr des Abgleitens geben. Der bei runden Fäden auftretende Verzahnungseffekt wird weitestgehend vermieden und auf diese Weise die Blattabnahme am Ende der Blattbildungspartie erheblich erleichtert.
  • Der Grundgedanke der Erfindung läßt sich auch bei Formiersieben verwirklichen, bei denen die erste Gruppe von Querfäden aus wenigstens zwei Untergruppen von Querfäden besteht, von denen eine erste Untergruppe Normalquerfäden und eine zweite Untergruppe Füllquerfäden bilden. Dabei können die Füllquerfäden Flottierungen haben, die über mehr Längsfäden gehen als die längsten Flottierungen der Normalquerfäden, wodurch der vorbeschriebene quergerichtete Plateaueffekt besonders ausgeprägt ist. Selbstverständlich besteht die Höglichkeit, den Normalquerfäden und den Füllquerfäden jeweils voneinander abweichende Querschnittsflächen und/oder Querschnittsformen zu geben.
  • Der vorbeschriebene Effekt kommt besonders deutlich zum Tragen, wenn die Querfäden über eine Anzahl von Längsfäden flottieren, die größer ist als die Anzahl von Querfäden, über die die Längsfäden flottieren. Hierdurch wird eine ausgeprägte Querstruktur aus einer Vielzahl von Querplateaus erzeugt, die den aufgelaufenen Fasern eine optimale Abstützung gerade wegen deren Orientierung vornehmlich in Laufrichtung geben.
  • Die Flottierungen der abgeflachten Querfäden kann entsprechend den jeweiligen Anforderungen gestaltet sein. Bei einem eineinhalblagigen Gewebe sollten die längsten Flottierungen wenigstens über vier Längsfäden gehen, bei einem doppellagigen Gewebe über wenigstens drei Längsfäden und bei einem dreilagigen Gewebe über wenigstens einen Längsfaden.
  • Gemäß einem weiteren Merkmal der Erfindung ist vorgesehen, daß die abgeflachten Querfäden der ersten Gruppe eine Faserunterstüzungsbreite haben, die wenigstens 9% größer ist als die eines kreisrunden Fadens gleicher Querschnittsfläche. Vorzugsweise sollte die Faserunterstützungsbreite sogar mindestens 15% und besonders vorteilhafterweise mindestens 30̸% betragen. Dabei ist unter der Faserunterstützungsbreite diejenige Breite einer ebenen Fadenoberfläche zu verstehen, die dann entsteht, wenn von dem jeweiligen Querfaden 10̸% seiner Höhe, also der Erstreckung quer zur Ebene des Gewebes, von der Papierseite her entfernt wird.
  • Gemäß einem weiteren Herkmal der Erfindung ist vorgesehen, daß der Überdeckungsgrad der Querfäden der ersten Gruppe bei eineinhalb- und doppellagigen Geweben ohne Füllquerfäden wenigstens 32%, besser noch 37% und vorzugsweise mindestens 42 oder sogar 47%, besser noch 52% beträgt. Dabei wird der Überdeckungsgrad definiert als Produkt aus der zuvor definierten Faserunterstützungsbreite (in cm), der Anzahl der Fäden (Fadendichte) pro cm Sieblänge und der Zahl 10̸0̸ definiert. Sofern für die erste Gruppe von Querfäden unterschiedliche Arten von Fäden verwendet wird, werden für jede Fadenart eigene Überdeckungsgrade ermittelt. Der totale Überdeckungsgrad entspricht dann der Summe der Überdeckungsgrade der einzelnen Arten von Querfäden. Bei zweilagigen Geweben mit Füllquerfäden oder wenigstens dreilagigen Geweben sollte der Überdeckungsgrad mindestens 40̸%, besser noch 50̸ oder sogar 55% und vorzugsweise 60̸% betragen.
  • Unter Verwendung des Grundgedankens der vorliegenden Erfindung lassen sich weitere Vorteile dann erzielen, wenn ein Teil oder alle Querfäden der zweiten Gruppe, die die Ebene der Maschinenseite bilden, abgeflacht sind.
  • Eine solche Gestaltung hat den Vorzug, daß sich die wesentlichen Eigenschaften des Formiersiebes nicht mehr so stark und dann in wesentlich gleichmäßigerer Weise ändern als bei Formiersieben, bei denen diese Querfäden als Rundfäden ausgebildet sind. Dies beruht zum einen darauf, daß sich die Auflagefläche des Formiersiebes beim Abrieb nicht mehr so viel oder - bei rechteckigen Querfäden - praktisch nicht ändert und daß sich die Querfäden wegen ihrer größeren Flexibilität besser an die Unterseite des Formiersiebes anschmiegen, also nicht mehr so stark vorstehen. Letzteres hat zur Folge, daß sich auch die Länge der Abriebfläche im Laufe der Zeit nur unwesentlich ändert. Dabei werden auch hier Optimierungsmöglichkeiten eröffnet. Unter Beibehaltung der Dicke des Formiersiebes kann wesentlich mehr Abriebvolumen zur Verfügung gestellt werden. Andererseits kann bei gleichem Abriebvolumen die Dicke des Formiersiebes herabgesetzt werden. Gerade weil die Querfäden der zweiten Gruppe maschinenseitig vorstehen, kann mit Hilfe dieser Querfäden ein starker Einfluß einerseits bezüglich des Abriebvolumens und andererseits bezüglich der Dicke des Siebes genommen werden.
  • Die Querfäden der zweiten Gruppe sollten bei einem eineinhalblagigen Gewebe über wenigstens vier Längsfäden und bei einem doppellagigen Gewebe über wenigstens fünf Längsfäden flottieren. Dabei kann bei einem doppellagigen Gewebe nach der Schaftzahl der Querfäden differenziert werden. Bei einer Schaftzahl von vierzehn sollten die Querfäden der zweiten Gruppe über mindestens zehn Längsfäden und bei einer Schaftzahl von sechzehn über mindestens zwölf Längsfäden flottieren.
  • Bei den -abgeflachten Querfäden der zweiten Gruppe sollte das Verhältnis der Maximal- zu der Normabrasionsfläche maximal 2,9, besser noch 2,2 und vorzugsweise 1,7 oder noch besser 1,4 betragen. Als Abrasionsfläche eines maschinenseitig flottierenden Fadens wird dessen maschinenseitige Kontaktfläche mit den Elementen der Papiermaschine bezeichnet. Als maximale Abrasionsfläche ist die größte Kontaktfläche gemeint, welche sich im Verlauf der Abnutzung der Querfäden einstellt. Als Normabrasionsfläche ist diejenige Kontaktfläche definiert, welche nach Abtragung von 10̸% der Höhe des jeweiligen Querfadens, also der Erstreckung des betreffenden Fadens quer zur Gewebeebene, entsteht.
  • Was den Überdeckungsgrad angeht, sollte er bei Querfäden der zweiten Gruppe über 52% liegen, besser noch über 62%, wenn es sich um eineinhalblagiges Gewebe handelt. Bei einem doppellagigen Gewebe ohne Füllquerfäden in der ersten Gruppe sollte der Überdeckungsgrad der Querfäden der zweiten Gruppe über 40̸%, besser noch über 45% liegen, bei einem doppellagigen Gewebe mit Füllquerfäden in der ersten Gruppe über 32%, vorzugsweise über 37% liegen. Bei einem dreilagigen Gewebe, bei dem das Verhältnis der Anzahl der Querfäden der ersten Gruppe zu der der Querfäden der zweiten Gruppe 1:1 beträgt, sollte der Überdeckungsgrad über 45%, besser noch über 50̸% liegen. Bei einem dreilagigen Gewebe, bei dem das Verhältnis der Anzahl der Querfäden der ersten Gruppe zu der der Querfäden der zweiten Gruppe 3:2 beträgt, sollte der Überdeckungsgrad über 42%, besser noch über 46% liegen. Bei einem dreilagigen Gewebe, bei dem das Verhältnis der Anzahl der Querfäden der ersten Gruppe zu der der Querfäden der zweiten Gruppe 2:1 beträgt, sollte der Überdeckungsgrad mindestens 39%, besser noch 42% betragen.
  • Es besteht darüber hinaus auch die Möglichkeit, die erfindungsgemäß abgeflachten Querfäden mit solchen Längsfäden zu kombinieren. Dabei sollten die abgeflachten Längsfäden so angeordnet sein, daß ihre Querschnittserstreckung in der Gewebeebene größer ist als quer zur Gewebeebene und das Verhältnis zwischen Querschnittserstreckung in Gewebeebene zur Querschnittserstreckung quer zur Gewebeebene zwischen 1,2 und 2,2 liegt. Die abgeflachten Längsfäden sollten eine Fläche von 0̸,15 bis 0̸,226 mm2 haben.
  • Die abgeflachten Querfäden der ersten Gruppe haben zweckmäßigerweise eine Fläche von 0̸,0̸13 bis 0̸,195 mm2, die der zweiten Gruppe eine Fläche von 0̸,0̸22 bis 0̸,4 mm2.
  • Die abgeflachten Fäden können eine beliebige Querschnittsform haben, sofern die Bedingungen des Grundgedankens der Erfindung eingehalten werden. Als besonders geeignet bieten sich an ovale, insbesondere elliptische, und vor allem rechteckige Querschnitte, letztere vorzugsweise mit abgefasten Kanten. Es können aber auch andere Fadenformen in Frage kommen, beispielsweise trapez- oder rhomboidförmige.
  • Das erfindungsgemäße Formiersieb kann auch hinsichtlich seines offenen inneren Volumens in sehr weiten Grenzen eingestellt werden. Dabei kann ein optimaler Kompromiß zwischen einerseits der Entwässerungsleistung und andererseits dem sogenannten Wasserschleppen erreicht werden. Dabei sollte der Wert weniger als 54 mm3/cm2, vorzugsweise weniger als 46 mm3/cm2, nicht überschritten werden. Es kann jedoch bezüglich des Aufbaues des Gewebes wie folgt differenziert werden:
    • bei einem eineinhalblagigen Gewebe weniger als 54 mm3/cm2, vorzugsweise weniger als 46 mm3/cm2;
    • bei einem doppellagigen Gewebe weniger als 38 mm3/cm2, vorzugsweise weniger als 33 mm3/cm2;
    • bei einem doppellagigen Gewebe mit einer ersten Gruppe von Querfäden aus Normalquerfäden und Füllquerfäden weniger als 53 mm3/cm2, vorzugsweise weniger als 44 mm3/cm2;
    • bei einem dreilagigen Gewebe mit einem Verhältnis der Fadenzahlen der ersten zur zweiten Gruppe von Querfäden von 2:1 weniger als 60̸mm3/cm2, vorzugsweise weniger als 55 mm3/cm2;
    • bei einem dreilagigen Gewebe mit einem Verhältnis der Fadenzahlen der ersten zur zweiten Gruppe von Querfäden von 1:1 weniger als 40̸ mm3/cm2, vorzugsweise weniger als 38 mm3/cm2.
  • Dabei erstreckt sich die Flächeneinheit, die mit "cm2" bezeichnet wird, in der Gewebeebene.
  • Soweit das Gewebe mindestens dreilagig ist und die Lagen über Bindefäden miteinander verbunden sind, empfiehlt sich, auch die Bindefäden mit einem abgeflachten Querschnitt mit einer Querschnittserstreckung der Gewebeebene, die größer ist als quer dazu. Die Querschnittsfläche sollte von 0̸,0̸12 bis 0̸,0̸62 mm2 gehen.
  • In der Zeichnung ist die Erfindung an Hand von Ausführungsbeispielen näher veranschaulicht. Es zeigen:
  • Figur (1)
    ein eineinhalblagiges Formiersieb im Längsschnitt;
    Figur (2)
    das Formiersieb gemäß Figur (1) im Querschnitt;
    Figur (3)
    ein zweilagiges Formiersieb im Längsschnitt;
    Figur (4)
    ein dreilagiges Formiersieb im Längsschnitt;
    Figur (5)
    ein zweilagiges Formiersieb mit Füllquerfäden im Längsschnitt;
    Figur (6)
    ein anderes zweilagiges Formiersieb mit Füllquerfäden im Längsschnitt;
    Figur (7)
    ein weiteres zweilagiges Formiersieb im Längsschnitt;
    Figur (8)
    eine Darstellung der Abstützung von Papierfasern bei kreisrunden und bei rechteckigen, abgeflachten Querfäden.
  • Das in den Figuren (1) und (2) dargestellte, eineinhalblagige Formiersieb (1) hat im Querschnitt kreisrunde Längsfäden (2), die sich in Maschinenrichtung (MD) erstrecken. Das Formiersieb (1) weist ferner eine erste Gruppe von Querfäden (3) mit ebenfalls kreisrundem Querschnitt auf. Darunter befindet sich eine zweite Gruppe von Querfäden (4), die einen rechteckigen Querschnitt haben, wobei die Erstreckung quer zur Ebene des Formiersiebes (1) geringer ist als in dessen Ebene.
  • Die Einbindung der Längsfäden (2) und der ersten Gruppe von Querfäden (3) ist so getroffen, daß eine monoplane Oberseite, d. h. Papierseite entsteht. Dabei bindet ein Längsfaden (2) jeden fünften Querfaden (3) der ersten Gruppe ein. Die Querfäden (3) der ersten Gruppe flottieren dabei jeweils über vier Längsfäden, bevor sie mit einem Längsfaden (2) einbinden (vgl. Figur (2)). Hierdurch entsteht eine ausgeprägte Querstruktur auf der Papierseite des Formiersiebes (1), d. h. die Querflottierungen der Querfäden (3) der ersten Gruppe dominieren die Papierseite.
  • Die zweite Gruppe von Querfäden (4) flottiert zur Maschinenseite hin über insgesamt neun Längsfäden (2), bevor diese Querfäden (4) mit einem Längsfaden (2) einbinden. Da die Querfäden (4) im Vergleich zu einem runden Querfaden gleicher Querschnittsfläche wesentlich biegsamer sind, haben sie keine Bogenform. Sie verlaufen vielmehr auf Grund ihrer Anschmiegsamkeit zwischen den Einbindungen mit den Längsfäden gerade. Dieser Umstand sowie der rechteckige Querschnitt haben zur Folge, daß sich die Abrasionsfläche, also dienjenige Fläche, mit der das Formiersieb (1) über die feststehenden Teile der Papiermaschine reibt, bei zunehmendem Verschleiß kaum ändert. Die Siebdickenänderung pro Zeiteinheit ist gegenüber der Verwendung von Querfäden runden Querschnitts geringer und bleibt im wesentlichen konstant. Dies bedeutet, daß sich die Siebeigenschaften während des Laufs des Formiersiebes (1) nur geringfügig und dann nur sehr gleichmäßig ändern.
  • Das in Figur (3) dargestellte Ausführungsbeispiel eines zweilagigen Formiersiebes (5) hat runde Längsfäden (6) sowie eine erste Gruppe von Querfäden (7) auf der Papierseite und eine zweite Gruppe von Querfäden (8) auf der Haschinenseite. Jeweils ein Querfaden (7) der ersten Gruppe liegt oberhalb eines Querfadens (8) der zweiten Gruppe. Im Unterschied zu dem Ausführungsbeispiel gemäß den Figuren (1) und (2) haben die Querfäden (7, 8) beider Gruppen einen rechteckigen, abgeflachten Querschnitt. Die Längsfäden (6) flottieren zunächst über zwei Querfäden (7) der ersten Gruppe papierseitig, dann zwischen drei Querfäden (7, 8) der ersten und der zweiten Gruppe und binden dann mit einem Querfaden (8) der zweiten Gruppe ein.
  • Die Querfäden (7) der ersten Gruppe bilden auf Grund ihres abgeflachten Querschnittes quergerichtete Plateaus für die Abstützung der hauptsächlich in Laufrichtung des Formiersiebes (5) ausgerichteten Papierstoffasern. Gegenüber kreisrunden Querfäden gleicher Querschnittsfläche haben die Querfäden (7) der ersten Gruppe eine geringere Höhe, wodurch sich für die Längsfäden (6) flachere Kröpfungen ergeben. Dies verringert die Gefahr von Siebmarkierungen und gewährleistet eine bessere Längenkonstanz des Formiersiebes (5) auf der Papiermaschine.
  • Entsprechendes gilt auch für die Querfäden (8) der zweiten Gruppe. Ihre Abriebeigenschaften entsprechen den Querfäden (4) bei dem Ausführungsbeispiel gemäß den Figuren (1) und (2).
  • In Figur (4) ist ein Formiersieb (9) dargestellt, das dreilagig ausgebildet ist. Es hat papierseitige Längsfäden (10̸), die in Leinwandbindung mit einer ersten Gruppe von Querfäden (11) einbinden. Sowohl die Längsfäden (10̸) als auch die Querfäden (11) haben kreisrunden Querschnitt. Unterhalb der papierseitigen Längsfäden (10̸) verlaufen maschinenseitige Längsfäden (12) von ebenfalls rundem Querschnitt. Sie binden mit einer zweiten Gruppe von Querfäden (13) ein, welche an der Maschinenseite verlaufen und dabei die Längsfäden (10̸, 12) vor Verschleiß schützen. Die Querfäden der zweiten Gruppe (13) haben rechteckigen Querschnitt. Ihre Querschnittsfläche ist größer als die der Querfäden (11) der ersten Gruppe. Das Verhältnis der Anzahl der Querfäden (11) der ersten Gruppe zu der der Querfäden (13) der zweiten Gruppe beträgt 2:1. Im Rahmen der Erfindung besteht die Möglichkeit, auch für die Querfäden (11) der ersten Gruppe abgeflachte, insbesondere rechteckige Querschnitte vorzusehen. Die Verwendung von abgeflachten Querschnittsformen reduziert die Dicke des Formiersiebes (9) gegenüber Ausführungsformen mit runden Querschnitten gleicher Querschnittsfläche.
  • In Figur (5) ist ein zweilagiges Formiersieb (14) dargestellt, welches in der oberen Lage eine erste Gruppe von Querfäden hat, wobei sich in dieser Gruppe Normalquerfäden (15) mit Füllquerfäden (16) abwechseln. Sie haben jeweils kreisrunden Querschnitt. Die untere, maschinenseitige Lage wird von einer zweiten Gruppe von langflottierenden Querfäden (17) mit rechteckigem Querschnitt gebildet. Beide Gruppen von Querfäden (15, 16, 17) werden durch Längsfäden (18) eingebunden, die jeweils papierseitig über zwei Normalquerfäden (15) und einen Füllquerfaden (16) flottieren und maschinenseitig jeweils einen Querfaden (17) der zweiten Gruppe einbinden. Jeweils benachbarte Längsfäden (18) sind um drei Querfäden (15, 16) der ersten Gruppe in Haschinenlaufrichtung versetzt.
  • Das in Figur (6) dargestellte Formiersieb (19) ähnelt in seinem Aufbau dem Formiersieb (14) gemäß Figur (5). Es ist demgemäß zweilagig ausgebildet und hat abwechselnd Normalquerfäden (20̸) und Füllquerfäden (21), die die erste Gruppe von papierseitig verlaufenden Querfäden bilden. Beide haben abgeflachten rechteckigen Querschnitt.
  • Die untere Lage wird von einer zweiten Gruppe von Querfäden (22) gebildet, die in diesem Fall kreisrunden Querschnitt haben und maschinenseitig langflottierend eingebunden sind. Die Längsfäden (23) flottieren in der gleichen Weise wie bei dem Ausführungsbeispiel gemäß Figur (5).
  • Während bei dem Ausführungsbeispiel gemäß Figur (4) auf konstante und sich gleichmäßig ändernde Abriebeigenschaften durch Verwendung von rechteckigen Querfäden (17) der zweiten Gruppe Wert gelegt worden ist, gewährleisten die Rechteckquerschnitte der Normal- und Füllquerfäden (20̸, 21) bei dem Ausführungsbeispiel gemäß Figur (6) eine verbesserte Faserauflage, und zwar insbsondere dann, wenn diese Querfäden (20̸, 21) auf der Papierseite dominieren und dort eine Querrippenstruktur erzeugen. Dabei zeigen sich hier insbesondere die Möglichkeiten der Designoptimierung je nach den Erfordernissen in der betreffenden Papiermaschine. Die abgeflachten Querschnitte haben einen frei wählbaren Parameter mehr als runde Querschnitte, wodurch die gestalterischen Möglichkeiten unter Berücksichtigung der vielfältigen Anforderungen, die gerade an ein Formiersieb gestellt werden, vergrößert werden.
  • Bei dem in Figur (7) dargestellten Ausführungsbeispiel handelt es sich ebenfalls um ein zweilagiges Formiersieb (24), jedoch ohne Füllquerfäden. Eine erste Gruppe von Querfäden (25) mit rundem Querschnitt bildet die obere Lage. Die untere Lage wird von einer zweiten Gruppe von Querfäden (26) gebildet, die rechteckigen Querschnitt haben und langflottierend eingebunden sind. In Haschinenlaufrichtung erstrecken sich Längsfäden (27), die papierseitig über jeweils zwei Querfäden (25) der ersten Gruppe flottieren und maschinenseitig jeweils einen Querfaden (26) der zweiten Gruppe einbinden. Benachbarte Längsfäden (27) sind jeweils um drei Querfäden (25) der ersten Gruppe in Maschinenlaufrichtung versetzt. Durch die Verwendung von Querfäden (26) der zweiten Gruppe mit rechteckigem Querschnitt ist die Siebdicke gegenüber einem Formiersieb, bei dem die Querfäden der zweiten Gruppe bei gleicher Querschnittsfläche runden Querschnitt haben, erheblich reduziert.
  • Figur (8) zeigt im Querschnitt zwei nebeneinanderliegende Querfäden (28, 29) mit rundem Querschnitt und jeweils darunter zwei nebeneinanderliegende Querfäden (30̸, 31) mit rechteckigem Querschnitt. Die runden Querfäden (28, 29) und die rechteckigen Querfäden (30̸, 31) haben gleiche horizontale Abmessungen und übereinstimmende Querschnittsflächen. Die Minimalabstände zwischen den runden Querfäden (28, 29) stimmen mit den Abständen der rechteckigen Querschnitte (30̸, 31) überein.
  • Auf den runden Querfäden (28, 29) stützen sich Papierstoffasern (32, 33) ab. Sie sind auf Grund der Differenzgeschwindigkeit zwischen Faserstoffauflauf und Papiermaschinensieb in Maschinenlaufrichtung orientiert. Die Abstützung ist unbefriedigend, weil die Neigung besteht, daß die Papierstoffasern (32, 33) durch den Entwässerungsstrom und auch den Unterdruck in die sich nach oben konisch öffnende Spalte zwischen den runden Querfäden (28, 29) hineingezogen werden. Hierdurch entstehen Probleme bei der Entwässerung und auf Grund des Verzahnungseffektes bei der späteren Blattabnahme.
  • Auch auf den rechteckigen Querfäden (30̸, 31) sind Papierstoffasern (34, 35) abgelegt. Obwohl der Spalt zwischen den rechteckigen Querfäden (30̸, 31) genauso groß ist wie zwischen den runden Querfäden (28, 29), wird deutlich, daß die Abstützung der Papierstoffasern (34, 35) erheblich verbessert ist. Die Papierstoffasern (34, 35) werden nicht mehr in den Spalt zwischen den Querfäden (30̸, 31) hineingezogen, stören also nicht die Entwässerung. Es tritt auch keine Verzahnung mit den Querfäden (30̸, 31) ein, die die Blattabnahme beeinträchtigen könnte.
  • Im übrigen kann an Hand der Figur (8) die Definition der Faserunterstützungsbreite (FIBER SUPPORT WIDTH) erläutert werden. Sie ergibt sich dann, wenn von der Oberseite der Fäden 10̸% von deren Höhe abgenommen wird. Bei den rechteckigen Querfäden (30̸, 31) entspricht dann die Faserunterstützungsbreite der Breite dieser Querfäden (30̸, 31). Bei den runden Querfäden (28, 29) ist die Faserunterstützungsbreite - jeweils angezeigt durch die Länge der Pfeile - erheblich geringer als der Durchmesser der Querfäden (28, 29) und damit auch als die Faserunterstützungsbreite der rechteckigen Querfäden (30̸, 31).

Claims (33)

  1. Formiersieb (1) für die Blattbildungspartie einer Papiermaschine, bestehend aus einem mehr als einlagigen insbesondere flachgewebten Gewebe aus Kunststoffäden mit sich in Maschinenlaufrichtung erstreckenden Längsfäden (2) und sich quer dazu erstreckenden Querfäden, (3,4) wobei eine erste Gruppe von Querfäden (3) in der Ebene der Papierseite liegt und dort über Längsfäden (2) flottiert, deren Anzahl wenigstens so groß ist wie die Anzahl der Querfäden (3), über die die Langsfäden (2) papierseitig flottieren, und wobei die Ebene der Maschinenseite ausschließlich von einer zweiten Gruppe von Querfäden (4) gebildet ist,
    gekennzeichnet durch folgende Merkmale:
    (a) wenigstens ein Teil der Querfäden (4, 7, 8, 13, 17, 20̸, 21, 26, 30̸, 31) haben einen abgeflachten Querschnitt;
    (b) die abgeflachten Querfäden (4, 7, 8, 13, 17, 20̸, 21, 26, 30̸, 31) sind so angeordnet, daß ihre Querschnittserstreckungen in der Gewebeebene größer sind als quer zur Gewebeebene;
    (c) das Verhältnis zwischen Querschnittserstreckung in Gewebeebene zu Querschnittserstreckung quer zur Gewebeebene liegt zwischen 1,2 und 2,2, vorzugsweise 1,2 und 1,8;
  2. Formiersieb nach Anspruch (1),
    dadurch gekennzeichnet, daß abgeflachte Querfäden (7, 20̸, 21) zu der ersten Gruppe von Querfäden (7, 20̸, 21) gehören.
  3. Formiersieb nach Anspruch (2),
    dadurch gekennzeichnet, daß alle Querfäden (7, 20̸, 21) der ersten Gruppe abgeflacht sind.
  4. Formiersieb nach Anspruch (2) oder (3),
    dadurch gekennzeichnet, daß die erste Gruppe von Querfäden aus wenigstens zwei Untergruppen von Querfäden besteht, von denen eine erste Untergruppe Normalquerfäden (15, 20̸) und eine zweite Untergruppe Füllquerfäden (16, 21) bilden.
  5. Formiersieb nach Anspruch (4),
    dadurch gekennzeichnet, daß die Füllquerfäden (16, 21) Flottierungen haben, die über mehr Längsfäden (23) gehen als die längsten Flottierungen der Normalquerfäden (15, 20̸).
  6. Formiersieb nach Anspruch (4) oder (5),
    dadurch gekennzeichnet, daß die Normalquerfäden (15, 20̸) und die Füllquerfäden (16, 21) jeweils voneinander abweichende Querschnittsflächen und/oder Querschnittsformen haben.
  7. Formiersieb nach einem der Ansprüche (2) bis (6),
    dadurch gekennzeichnet, daß die Querfäden (3, 7, 11, 15, 16, 20̸, 21, 25) der ersten Gruppe über eine Anzahl von Längsfäden (2, 6, 12, 18, 23, 27) flottieren, die größer ist als die Anzahl von Querfäden (3, 7, 11, 15, 16, 20̸, 21, 25), über die die Längsfäden (2, 6, 12, 18, 23, 27) flottieren.
  8. Formiersieb nach einem der Ansprüche (2) bis (7),
    dadurch gekennzeichnet, daß bei einem eineinhalblagigen Gewebe die Querfäden (3) der ersten Gruppe mit ihren längsten Flottierungen über wenigstens vier Längsfäden (2) flottieren.
  9. Formiersieb nach einem der Ansprüche (2) bis (7),
    dadurch gekennzeichnet, daß bei einem doppellagigen Gewebe die Querfäden (6,15, 16, 20̸, 21, 25) der ersten Gruppe mit ihren längsten Flottierungen über zumindest drei Längsfäden (6, 18, 23, 27) flottieren.
  10. Formiersieb nach einem der Ansprüche (2) bis (7),
    dadurch gekennzeichnet, daß bei einem dreilagigen Gewebe die Querfäden (11) der ersten Gruppe über wenigstens einen Längsfaden (12) gehen.
  11. Formiersieb nach einem der Ansprüche (2) bis (8),
    dadurch gekennzeichnet, daß die abgeflachten Querfäden (7, 20̸, 21) der ersten Gruppe eine Faserunterstützungsbreite haben, die wenigstens 9% größer ist als die eines kreisrunden Fadens gleicher Querschnittsfläche.
  12. Formiersieb nach einem der Ansprüche (2) bis (11),
    dadurch gekennzeichnet, daß der Überdeckungsgrad der Querfäden (3, 7, 25) der ersten Gruppe bei eineinhalb- und doppellagigen Geweben ohne Füllquerfäden wenigstens 32% beträgt.
  13. Formiersieb nach einem der Ansprüche (2) bis (11),
    dadurch gekennzeichnet, daß der Überdeckungsgrad der Querfäden (11, 15, 16, 20̸, 21) der ersten Gruppe bei Geweben, die zweilagig mit Füllquerfäden (16, 21) oder wenigstens dreilagig sind, zumindest 40̸% beträgt.
  14. Formiersieb nach einem der Ansprüche (1) bis (13),
    dadurch gekennzeichnet, daß Querfäden (4, 8, 13, 17, 26) der zweiten Gruppe abgeflacht sind.
  15. Formiersieb nach Anspruch (14),
    dadurch gekennzeichnet, daß alle Querfäden (4, 8, 13, 17, 26) der zweiten Gruppe abgeflacht sind.
  16. Formiersieb nach Anspruch (14) oder (15),
    dadurch gekennzeichnet, daß die Querfäden (4) der zweiten Gruppe bei einem eineinhalblagigen Gewebe über wenigstens vier Längsfäden (2) flottieren.
  17. Formiersieb nach Anspruch (14) oder (15),
    dadurch gekennzeichnet, daß die Querfäden (8, 17, 22, 26) der zweiten Gruppe bei einem doppellagigen Gewebe über wenigstens fünf Längsfäden (6, 18, 23, 27) flottieren.
  18. Formiersieb nach Anspruch (17),
    dadurch gekennzeichnet, daß bei einem doppellagigen Gewebe die Querfäden (17, 22, 26) der zweiten Gruppe mit einer Schaftzahl von vierzehn über mindestens zehn Längsfäden (18, 23) und mit einer Schaftzahl von sechzehn über mindestens zwölf Längsfäden (27) flottieren.
  19. Formiersieb nach einem der Ansprüche (14) bis (17),
    dadurch gekennzeichnet, daß bei einem dreilagigen Gewebe die Querfäden der zweiten Gruppe über Längsfäden flottieren, deren Anzahl pro Flottierung um 1 geringer ist als die Schaftzahl dieser Querfäden.
  20. Formiersieb nach einem der Ansprüche (14) bis (19),
    dadurch gekennzeichnet, daß bei den abgeflachten Querfäden (4, 8, 13, 17, 26) der zweiten Gruppe das Verhältnis der Maximal- zu der Normabrasionsfläche maximal 2,9 beträgt.
  21. Formiersieb nach einem der Ansprüche (14) bis (20̸),
    dadurch gekennzeichnet, daß der Überdeckungsgrad der Querfäden (4) der zweiten Gruppe bei einem eineinhalblagigen Gewebe über 52% liegt.
  22. Formiersieb nach einem der Ansprüche (14) bis (20̸),
    dadurch gekennzeichnet, daß der Überdeckungsgrad der Querfäden (8, 17, 22, 26) der zweiten Gruppe bei einem doppellagigen Gewebe ohne Füllquerfäden in der ersten Gruppe über 40% und mit Füllquerfäden (16, 21) in der ersten Gruppe über 32% liegt.
  23. Formiersieb nach einem der Ansprüche (14) bis (20̸),
    dadurch gekennzeichnet, daß der Überdeckungsgrad der Querfäden (13) der zweiten Gruppe bei einem dreilagigen Gewebe, bei dem das Verhältnis der Anzahl der Querfäden der ersten Gruppe zu der der Querfäden der zweiten Gruppe 1:1 beträgt, über 45% liegt, und bei einem dreilagigen Gewebe, bei dem das Verhältnis der Anzahl der Querfäden der ersten Gruppe zu der der Querfäden der zweiten Gruppe 3:2 beträgt, über 42% liegt, und bei einem dreilagigen Gewebe, bei dem das Verhältnis der Anzahl der Querfäden (11) der ersten Gruppe zu der der Querfäden (13) der zweiten Gruppe 2:1 beträgt, über 39% liegt.
  24. Formiersieb nach einem der Ansprüche (1) bis (23),
    dadurch gekennzeichnet, daß wenigstens ein Teil der Längsfäden einen abgeflachten Querschnitt haben, wobei die abgeflachten Längsfäden so angeordnet sind, daß ihre Querschnittserstreckung in der Gewebeebene größer ist als quer zur Gewebeebene und das Verhältnis zwischen Querschnittserstreckung in Gewebeebene zur Querschnittserstreckung quer zur Gewebeebene zwischen 1,2 und 2,2 liegt.
  25. Formiersieb nach Anspruch (24),
    dadurch gekennzeichnet, daß alle Längsfäden abgeflacht sind.
  26. Formiersieb nach Anspruch (25),
    dadurch gekennzeichnet, daß die abgeflachten Längsfäden eine Fläche von 0̸,15 bis 0̸,226 mm2 haben.
  27. Formiersieb nach einem der Ansprüche (1) bis (25),
    dadurch gekennzeichnet, daß die abgeflachten Querfäden (7, 20̸, 21) der ersten Gruppe eine Fläche von 0̸,0̸13 bis 0̸,195 mm2 haben.
  28. Formiersieb nach einem der Ansprüche (1) bis (27),
    dadurch gekennzeichnet, daß die abgeflachten Querfäden (4, 8, 13, 17, 22, 26) der zweiten Gruppe eine Fläche von 0̸,0̸22 bis 0̸,4 mm2 haben.
  29. Formiersieb nach einem der Ansprüche (1) bis (28),
    dadurch gekennzeichnet, daß die abgeflachten Fäden (4, 7, 8, 13, 17, 20̸, 21, 26) ovalen oder rechteckigen Querschnitt haben.
  30. Formiersieb nach einem der Ansprüche (1) bis (29),
    dadurch gekennzeichnet, daß das offene innere Volumen des Gewebes weniger als 54 mm3/cm2, vorzugsweise weniger als 46 mm3/cm2 beträgt.
  31. Formiersieb nach Anspruch (30̸),
    dadurch gekennzeichnet, daß das offene innere Volumen des Gewebes
    (a) bei einem eineinhalblagigen Gewebe weniger als 55 mm3/cm2, vorzugsweise weniger als 46 mm3/cm2,
    (b) bei einem doppellagigen Gewebe weniger als 38 mm3/cm2, vorzugsweise weniger als 33 mm3/cm2,
    (c) bei einem doppellagigen Gewebe mit einer ersten Gruppe von Querfäden aus Normalquerfäden und Füllquerfäden weniger als 53 mm3/cm2, vorzugsweise weniger als 44 mm3/cm2,
    (d) bei einem dreilagigen Gewebe
    (aa) mit einem Verhältnis der Fadenzahlen der ersten zur zweiten Gruppe von Querfäden von 2:1 weniger als 60̸ mm3/cm2, vorzugsweise weniger als 55 mm3/cm2,
    (bb) mit einem Verhältnis der Fadenzahlen der ersten zur zweiten Gruppe von Querfäden von 1:1 weniger als 40̸ mm3/cm2, vorzugsweise weniger als 38 mm3/cm2,
    beträgt.
  32. Formiersieb nach einem der Ansprüche (1) bis (31),
    dadurch gekennzeichnet, daß das Gewebe zumindest dreilagig ist und die Lagen über Bindefäden miteinander verbunden sind, wobei auch die Bindefäden einen abgeflachten Querschnitt mit einer Querschnittserstreckung in der Gewebeebene, die größer ist als quer dazu.
  33. Formiersieb nach Anspruch (32),
    dadurch gekennzeichnet, daß die Querschnittsfläche der Bindefäden zwischen 0̸,0̸12 und 0̸,0̸62 mm2 liegt.
EP93919118A 1992-08-25 1993-08-20 Formiersieb Expired - Lifetime EP0656967B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE9211391U DE9211391U1 (de) 1992-08-25 1992-08-25 Formiersieb
DE9211391U 1992-08-25
PCT/EP1993/002234 WO1994004748A1 (de) 1992-08-25 1993-08-20 Formiersieb

Publications (2)

Publication Number Publication Date
EP0656967A1 EP0656967A1 (de) 1995-06-14
EP0656967B1 true EP0656967B1 (de) 1996-10-30

Family

ID=6883020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93919118A Expired - Lifetime EP0656967B1 (de) 1992-08-25 1993-08-20 Formiersieb

Country Status (11)

Country Link
US (1) US5613527A (de)
EP (1) EP0656967B1 (de)
AT (1) ATE144804T1 (de)
BR (1) BR9306955A (de)
CA (1) CA2142283C (de)
DE (2) DE9211391U1 (de)
DK (1) DK0656967T3 (de)
ES (1) ES2094563T3 (de)
FI (1) FI97156C (de)
NO (1) NO305091B1 (de)
WO (1) WO1994004748A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI85605C (fi) * 1990-06-15 1994-06-28 Tamfelt Oy Ab Tvaoskiktad pappersmaskinsduk
DE9211776U1 (de) * 1992-09-02 1992-11-12 Württembergische Filztuchfabrik D. Geschmay GmbH, 7320 Göppingen Trockensieb
GB9609761D0 (en) * 1996-05-10 1996-07-17 Jwi Ltd Low air permeability papermaking fabric including flattened secondary weft yarns and pin seam
US5799708A (en) * 1996-10-11 1998-09-01 Albany International Corp. Papermaker's fabric having paired identical machine-direction yarns weaving as one
US6179013B1 (en) * 1999-10-21 2001-01-30 Weavexx Corporation Low caliper multi-layer forming fabrics with machine side cross machine direction yarns having a flattened cross section
US7331944B2 (en) * 2000-10-23 2008-02-19 Medical Instill Technologies, Inc. Ophthalmic dispenser and associated method
US7121306B2 (en) * 2001-07-05 2006-10-17 Astenjohnson, Inc. Industrial fabric including yarn assemblies
US20030208886A1 (en) * 2002-05-09 2003-11-13 Jean-Louis Monnerie Fabric comprising shaped conductive monofilament used in the production of non-woven fabrics
NZ539975A (en) * 2002-12-16 2006-02-24 Albany Int Corp Hydroentangling using a fabric having flat filaments
US6835284B2 (en) * 2002-12-30 2004-12-28 Albany International Corp. Monofilament low caliper one-and-a-half layer seamed press fabric
US6902652B2 (en) * 2003-05-09 2005-06-07 Albany International Corp. Multi-layer papermaker's fabrics with packing yarns
DE102004035523A1 (de) * 2004-07-22 2006-02-09 Voith Fabrics Patent Gmbh Papiermaschinenbespannung
DE102004035519A1 (de) * 2004-07-22 2006-02-09 Voith Fabrics Patent Gmbh Papiermaschinenbespannung
DE102004035522A1 (de) * 2004-07-22 2006-03-16 Voith Fabrics Patent Gmbh Papiermaschinenbespannung
US7721769B2 (en) * 2007-01-19 2010-05-25 Voith Patent Gmbh Paper machine fabric with trapezoidal shaped filaments
US7581569B2 (en) * 2007-03-27 2009-09-01 Lumsden Corporation Screen for a vibratory separator having wear reduction feature
DE202014001502U1 (de) * 2013-03-01 2014-03-21 Voith Patent Gmbh Gewobenes Sieb mit flachen Kettfäden

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003123A (en) * 1934-06-22 1935-05-28 Eastwood Nealley Corp Woven wire belt for paper making machines
US3139119A (en) * 1960-05-18 1964-06-30 William E Buchanan Fourdrinier fabric
US3143150A (en) * 1961-10-18 1964-08-04 William E Buchanan Fabric for fourdrinier machines
US3545705A (en) * 1967-04-14 1970-12-08 Jwi Ltd Stainless steel fourdrinier cloth
US3632068A (en) * 1968-12-09 1972-01-04 Jwi Ltd Woven wire fabric
CA1071913A (en) * 1977-03-28 1980-02-19 Robert H. Kositzke Synthetic papermaking fabric with rectangular threads
US4829681A (en) * 1983-02-10 1989-05-16 Albany International Corp. Paper machine clothing
FR2560242B1 (fr) * 1984-02-29 1986-07-04 Asten Fabriques Feutres Papete Toile destinee en particulier aux machines a papier, et son procede de preparation
GB2157328A (en) * 1984-04-12 1985-10-23 Jwi Ltd Improved multilayer forming fabric
US5066532A (en) * 1985-08-05 1991-11-19 Hermann Wangner Gmbh & Co. Woven multilayer papermaking fabric having increased stability and permeability and method
CA1277209C (en) * 1986-11-28 1990-12-04 Dale B. Johnson Composite forming fabric
SE455380B (sv) * 1986-12-12 1988-07-11 Scandiafelt Ab Vevt filtermedia for slamavvattning
US4705601A (en) * 1987-02-05 1987-11-10 B.I. Industries, Inc. Multi-ply paper forming fabric with ovate warp yarns in lowermost ply
DE3910019A1 (de) * 1989-03-28 1990-10-04 Kufferath Andreas Gmbh Mehrlagiges papiermaschinensieb
US5151316A (en) * 1989-12-04 1992-09-29 Asten Group, Inc. Multi-layered papermaker's fabric for thru-dryer application
US5089324A (en) * 1990-09-18 1992-02-18 Jwi Ltd. Press section dewatering fabric
US5094719A (en) * 1990-10-03 1992-03-10 501 Asten Group, Inc. Belt filter press fabric
DE9115480U1 (de) * 1991-12-13 1992-02-13 J.M. Voith Gmbh, 7920 Heidenheim Siebgewebe für eine Papiermaschine
DE9211776U1 (de) * 1992-09-02 1992-11-12 Württembergische Filztuchfabrik D. Geschmay GmbH, 7320 Göppingen Trockensieb

Also Published As

Publication number Publication date
FI950813A (fi) 1995-02-22
NO950703D0 (no) 1995-02-24
EP0656967A1 (de) 1995-06-14
ES2094563T3 (es) 1997-01-16
DE9211391U1 (de) 1992-10-29
NO305091B1 (no) 1999-03-29
NO950703L (no) 1995-02-24
FI97156B (fi) 1996-07-15
DE59304370D1 (de) 1996-12-05
CA2142283C (en) 2004-08-17
WO1994004748A1 (de) 1994-03-03
BR9306955A (pt) 1999-01-12
FI97156C (fi) 1996-10-25
CA2142283A1 (en) 1994-03-03
US5613527A (en) 1997-03-25
FI950813A0 (fi) 1995-02-22
DK0656967T3 (da) 1997-01-13
ATE144804T1 (de) 1996-11-15

Similar Documents

Publication Publication Date Title
EP0656967B1 (de) Formiersieb
DE69226285T2 (de) Mehrschichtiger filz
DE69422693T2 (de) Zweilagiges Formiergewebe mit drei- oder mehrmals soviel Querfäden in der Oberschicht als in der Unterschicht
DE69519269T2 (de) Formiergewebe für die Papierherstellung
DE69713403T2 (de) Mehrschichtiges formiergebwebe mit im papierseite integrierten nähfadenpaaren
DE69712647T2 (de) Mehrschichtiges formiergewebe mit in papierseite integrierten nähfadenpaaren
EP0114656B1 (de) Verbund-Gewebe als Bespannung für den Blattbildungsteil einer Papiermaschine
DE60104770T2 (de) Formiergewebe für die Papierherstellung
DE60008999T2 (de) Dreilagiges Papiermaschinensieb
DE69702746T2 (de) Papiermachergewebe mit ovalförmigen fäden
DE69702397T2 (de) Papiermachergewebe mit gestapelten längs- und querfäden
CH616460A5 (de)
DE69909628T2 (de) Doppellagiges formiergewebe für papiermaschinen
DE69834301T2 (de) Papiermaschinenbespannung
DE3637179A1 (de) Verfahren zur herstellung eines pressfilzes und ein pressfilz
DE69207284T2 (de) Doppelsiebformer in einer Papiermaschine
DE3244142A1 (de) Verfahren und vorrichtung zur herstellung einer mehrschicht-papierbahn
EP2470716B1 (de) Blattbildungssieb
DE2263476B2 (de) Gewebe für Papiermaschinensiebe
DE3729723A1 (de) Geschlossene und kompakte pressenpartie einer papiermaschine
EP1013820B1 (de) Drei- oder mehrlagiges Papiermaschinensieb in Form eines Verbundgewebes
DE2749043A1 (de) Papiermaschinenfilz
EP1738020B1 (de) Sieb, insbesondere papiermaschinensieb
EP1205599A2 (de) Maschine zur Herstellung einer Faserstoffbahn
DE2455184A1 (de) Gewebtes fourdrinierband

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960412

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961030

REF Corresponds to:

Ref document number: 144804

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59304370

Country of ref document: DE

Date of ref document: 19961205

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 70506

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2094563

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970121

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19961113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19980811

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19980821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19980824

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980825

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980827

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980914

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991129

Year of fee payment: 7

BERE Be: lapsed

Owner name: SIEBTUCHFABRIK A.G.

Effective date: 19990831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000301

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20000229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110822

Year of fee payment: 19

Ref country code: SE

Payment date: 20110823

Year of fee payment: 19

Ref country code: DE

Payment date: 20110604

Year of fee payment: 19

Ref country code: FR

Payment date: 20110829

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120823

Year of fee payment: 20

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 144804

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120821

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59304370

Country of ref document: DE

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130819