EP1800062B1 - Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur - Google Patents

Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur Download PDF

Info

Publication number
EP1800062B1
EP1800062B1 EP05801280A EP05801280A EP1800062B1 EP 1800062 B1 EP1800062 B1 EP 1800062B1 EP 05801280 A EP05801280 A EP 05801280A EP 05801280 A EP05801280 A EP 05801280A EP 1800062 B1 EP1800062 B1 EP 1800062B1
Authority
EP
European Patent Office
Prior art keywords
burner
combustion
air
gas
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05801280A
Other languages
German (de)
English (en)
Other versions
EP1800062A1 (fr
Inventor
Andreas Heilos
Berthold Köstlin
Bernd Prade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05801280A priority Critical patent/EP1800062B1/fr
Publication of EP1800062A1 publication Critical patent/EP1800062A1/fr
Application granted granted Critical
Publication of EP1800062B1 publication Critical patent/EP1800062B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14021Premixing burners with swirling or vortices creating means for fuel or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14241Post-mixing with swirling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]

Definitions

  • the invention relates to a burner for the combustion of a low-calorie combustible gas, with an air duct extending along a burner axis for the supply of combustion air and with a fuel gas channel, which is designed for a high volume flow on low calorific fuel gas, wherein the fuel gas channel and the air duct open in a mixing area ,
  • the invention further relates to a method for operating a burner in which a fossil fuel gasified and gasified fossil fuel fed as a low calorific synthesis gas to the burner, mixed with combustion air to a synthesis gas-air mixture and is burned in a combustion chamber.
  • the EP 0956475 B1 shows a burner for high calorific fuels, such as natural gas or oil which has a largely homogeneous mixture of high calorific fuels and combustion air.
  • a swirling element is introduced within the air supply annular channel in such a way that the inlet of the high-calorie fuel is arranged downstream of the swirling element within the air channel.
  • the fuel is introduced to achieve a homogeneous mixing by means of a plurality of inlet channels which are arranged in the swirl vanes within the air supply channel. This mixture is then introduced into the combustion chamber for combustion.
  • burners and operating methods for burners have been developed in recent years, which have particularly low emissions of nitrogen oxides (NO x ). It will It is often emphasized that such burners can be operated not only with one fuel, but possibly with different fuels, for example oil, natural gas and / or coal gas, either selectively or even in combination, in order to increase supply reliability and flexibility in operation. Such burners are for example in the EP 0 276 696 B1 described.
  • the combustible constituents of synthesis gases are essentially carbon monoxide and hydrogen.
  • the calorific value of the synthesis gas is about 5 to 10 times smaller compared to the calorific value of natural gas.
  • Main constituents in addition to carbon monoxide and hydrogen are inert components such as nitrogen and / or water vapor and possibly also carbon dioxide. Due to the low calorific value consequently high volume flows of fuel gas must be supplied through the burner of the combustion chamber.
  • a separate fuel gas channel which is designed for a high volume flow of low calorific fuel gas, must be provided.
  • the burner For the selective operation of a gas and steam turbine plant with a synthesis gas from a gasification or a secondary or substitute fuel, the burner must be designed in the combustion chamber associated with the gas turbine as a two- or multi-fuel burner, both with the synthesis gas and with the second fuel, eg natural gas or heating oil can be applied as needed.
  • the respective fuel is supplied via a specially constructed fuel passage in the burner of the combustion zone.
  • a method for operating a burner of a gas turbine and a power plant with integrated coal gasification is shown.
  • a fossil fuel is gasified and gaseous fossil fuel is fed as synthesis gas to the burner associated with the gas turbine for combustion.
  • the synthesis gas is divided into a first partial flow and a second partial flow and the partial flows are fed to the burner for combustion separately.
  • the quality of mixing between synthesis gas and combustion air at the flame front is an important influencing variable for avoiding temperature peaks and thus for minimizing the formation of thermal nitrogen oxides.
  • a spatially good mixture of combustion air and synthesis gas is particularly difficult due to the high volume flows of required synthesis gas and the correspondingly large spatial extent of the mixing area.
  • the lowest possible production of nitrogen oxides is an essential requirement for combustion, in particular for combustion in the gas turbine plant of a power plant.
  • the formation of nitrogen oxides increases exponentially rapidly with the combustion flame temperature.
  • An inhomogeneous mixture of fuel and air results in a certain distribution of the flame temperatures in the combustion region. The maximum temperature of such a distribution determined by the said exponential relationship of nitrogen oxide formation and flame temperature significantly the amount of undesirable nitrogen oxides formed.
  • the object of the invention is a burner for the combustion of low calorific fuel gases, in particular synthesis gases, indicate that leads to a lower nitrogen oxide formation.
  • Another object of the invention is to provide a method of operating a burner in which a low calorie fuel gas is burned.
  • a burner for combustion of a low calorific fuel gas with an extending along a burner axis air duct for the supply of combustion air and a fuel gas channel, which is designed for a high volume flow of low calorific fuel gas wherein the fuel gas channel and the air channel open into a mixing region, wherein the air channel has an orifice region directly fluidically adjacent to the mixing region, wherein in the mouth region, a swirling element is provided for generating turbulent combustion air and wherein upstream of the swirling element swirl blades are arranged in the air channel ,
  • the invention is based on the consideration that in the known burners for combustion of low-calorie combustion gases, the nitrogen oxide formation is too high due to insufficient mixing of the low calorific fuel gas with the combustion air in the mixing area in view of future pollutant limits.
  • a swirling element into the air duct, the degree of turbulence of the air mass flow is increased even before the combustion air is mixed with the low-calorie combustion gas.
  • the invention has recognized that it is particularly important in this context to carry out a turbulence gradient increase only in the microscopic range, ie large eddy bales with pronounced trailing regions and in particular with upstream flow components must be avoided, otherwise there is a risk of a flashback in the burner itself.
  • the air duct in this case has an orifice region which is arranged directly adjacent to the mixing region in terms of flow, wherein the swirling element is arranged in the mouth area. It has been found that the arrangement of the swirling element in the immediate vicinity of the mixing region in the mouth region leads to a particularly effective formation of air vortex, so that the generated turbulences propagate to the adjoining mixing region largely trouble-free in the microscopic range. As a result, both a spatial and a temporally largely homogeneous mixture of low calorific fuel gas and combustion air and thus a reduced nitrogen production is achieved. Surprisingly, it has been found that the exact positioning of the swirling element in the air duct is particularly critical for the mixing result in the mixing area.
  • a significant advantage of the invention is that a particularly good mixture of combustion air and fuel gas is achieved by the microturbulent flow of combustion air, at the same time caused by the swirling pressure loss is low. It is achieved by the mixture of low-calorie fuel gas and turbulence-prone combustion air in the mixing region, a significantly improved spatial homogeneity of the fuel gas-air mixture in the mixing region.
  • the microturbulences ensure a particularly intimate mixing while avoiding a flashback.
  • Another advantage of the invention is the arrangement of the swirling element in the immediate vicinity of the mixing area in the mouth region. This leads to a particularly effective turbulence. In order to achieve a good mixing result as far as possible further installations in the wake region of the swirling element should be avoided.
  • the swirling element is designed so that the producible turbulent flow of the Combustion air at Verwirbelungselement has substantially no areas of back-flowing combustion air. In this way, a safe operation of the burner is ensured in the combustion of low-calorie fuel gas and in particular the risk of a flashback in the burner itself prevented.
  • the air channel is formed as an annular channel which surrounds the fuel gas channel concentrically.
  • the swirling element is particularly suitable for use in an annular air duct. There are at least two, preferably three circles provided.
  • the connecting surface is less than half of the area enclosed by the larger boundary ring circular area in the swirling element. Further preferably, the diameter of the larger boundary ring is less than about 1 m, in particular 50 to 80 cm.
  • the swirl element is for use in small flow channels, such as e.g. in the air duct of the burner, suitable.
  • the deflection elements associated with a circle are equally spaced from one another. This achieves a uniform turbulence over the entire connecting surface and thus brings about a particularly homogeneous mixing of the low-calorie combustible gas, in particular of the synthesis gas, with the combustion air in the mixing region.
  • each deflection element tapers from the connection surface to a tear-off edge for generating vertebrae.
  • it has approximately trapezoidal or triangular shape.
  • Preferred dimensions of the associated at a respective circle deflecting elements are inclined in the same direction. Preferably arranged on adjacent circles deflecting elements are inclined in opposite directions. This arrangement of the deflection causes a homogenization over larger areas of the air flow takes place in addition to the local good mixing by the turbulence. This is particularly important to turbulence at the microscopic area at the confluence of the low calorific fuel gas and the combustion air in the mixing area with a view to obtaining a homogeneous synthesis gas combustion air mixture in burner operation.
  • the burner is designed such that swirl vanes are arranged in the air duct upstream of the swirling element. This ensures that the combustion air in the air duct is already pre-impounded by means of a swirl blade, before the swirling combustion air flow through the swirling element experiences a turbulence increase in the microscopic range downstream of the swirling element. Furthermore, it is thereby achieved that a swirling element with the above-described advantageous effects on the homogeneity of the mixture of low-calorie combustion gas and combustion air in the mixing region can also be used in conjunction with swirl vanes, which ultimately have a favorable effect on the stability of the combustion of the low-calorie combustible gas.
  • At least one of the swirl blades can be formed as a hollow blade, from which, if required, a high-calorie fuel, in particular natural gas, can be introduced into the air duct.
  • a high-calorie fuel in particular natural gas
  • the burner can be designed as a premix or hybrid burner for use in gas turbine systems, with an air supply channel, in particular an annular channel, which encloses at least three further, in particular concentric to the air supply channel arranged annular channels for supplying fluidic media, two of these channels for supplying a Serving pilot burner and wherein the pilot burner, a pilot flame to maintain combustion is generated.
  • the object directed to a method according to the invention is achieved by a method for operating a burner in which a fossil fuel gasified and gasified fossil fuel fed as a low calorific synthesis gas to the burner, and the combustion air mixed into a synthesis gas-air mixture and in a combustion chamber is burned, and immediately before the mixture of the synthesis gas with the combustion air, the degree of turbulence of the air mass flow is increased.
  • a fossil fuel gasified and gasified fossil fuel fed as a low calorific synthesis gas to the burner, and the combustion air mixed into a synthesis gas-air mixture and in a combustion chamber is burned, and immediately before the mixture of the synthesis gas with the combustion air, the degree of turbulence of the air mass flow is increased.
  • microturbulences are generated.
  • this is used in the operation of a burner of a gas turbine.
  • the power plant 24 comprises a gas turbine plant 25 with a gas turbine installation 25 upstream of a gasification device 23 for a fossil fuel B.
  • the gas turbine plant 25 comprises a compressor 14, a combustion chamber 16 and a combustion chamber 16 downstream turbine 18.
  • the compressor 14 and the turbine 18 are connected via a common rotor shaft 15 coupled together.
  • Downstream of the turbine 18, an electric generator 19 is coupled via a generator shaft 22 to the turbine.
  • the combustion chamber 16 comprises a combustion chamber 17 and a burner 1 projecting into the combustion chamber 17 for combustion of a low-calorie combustible gas SG, which is obtained from the gasification device 23 by gasification of the fossil fuel B.
  • air 10 is sucked into the compressor 14 and is highly compressed there.
  • the compressed air 10 is then supplied as combustion air 10 to the burner 1 and mixed with the low-calorie fuel gas SG.
  • the resulting fuel gas-air mixture is burned in the combustion chamber 17, with very hot combustion gases.
  • the hot combustion gases are fed to the turbine 18 where they relax to perform work and put both the compressor-side rotor shaft 15 and the generator shaft 22 in rotation. In this way, electric power is generated, which the generator 19 emits for distribution in an electrical network.
  • the partially cooled and expanded combustion gases are discharged as exhaust 20. These exhaust gases 20 are polluting, in particular nitrogen oxides are present in the exhaust gas, which form at the high combustion temperatures in the combustion chamber 17.
  • Increased nitrogen oxide emission also occurs when the fuel gas / air mixture is not mixed sufficiently homogeneously or experiences a temporal or spatial change in the mixture field. This generally leads to an unfavorable mixture of the low-calorie combustible gas SG with the combustion air 10 and to a considerable increase in the nitrogen oxide formation rate in the combustion process.
  • the invention provides a remedy in which it proposes a solution that significantly improves the quality of mixing between the synthesis gas SG and the combustion air 10 at the flame front, thus ensuring a low-emission synthesis gas operation of the burner 1, wherein temperature peaks are avoided and thus a Lowering of the thermal nitrogen oxide formation compared to conventional synthesis gas burners is achieved.
  • FIG. 2 a burner 1 for combustion of the low calorie combustible gas SG according to the invention.
  • the burner 1 is approximately rotationally symmetrical with respect to an axis 12.
  • a pilot burner 9 directed along the axis 12 with a fuel supply channel 8 is concentrically surrounded by an air supply annular channel 7.
  • the fuel supply channel 8 is designed for fuels with high calorific value, such as for exposure to natural gas or fuel oil.
  • the fuel gas channel 26 is designed for a high volume flow of low-calorie fuel gas SG.
  • the fuel gas channel 26 is viewed downstream in the flow direction of the fuel gas SG partially concentrically enclosed by an air supply annular channel 2.
  • an air supply annular channel 2 In the air supply annular channel 2 is a - schematically illustrated - ring of swirl vanes 5 installed, one of these swirl blades 5 may be formed as a hollow blade 5a , The swirl blade 5 may, if necessary, an inlet formed by openings for a fuel supply of a have high calorific fuel.
  • Downstream of the swirl vane ring 5 is a - shown schematically - swirling element 4 is installed in the air duct 2.
  • the fuel gas channel 26 and the air channel 2 each open into a common mixing region 27, where the low-calorie fuel gas SG is mixed intensively with the combustion air 10.
  • the turbulence element 4 in the air duct 2 provides for the generation of turbulent combustion air 10, so that a good mixing result in the mixing region 27 and thus a low-emission synthesis gas operation of the burner 1 is achieved. It is particularly advantageous for the result of the mixture if - as in FIG. 2 shown - the air duct 2 has an orifice region 28 directly fluidically adjacent to the mixing region 27, wherein the swirling element 4 is arranged in the mouth region.
  • the swirling element 4 is designed such that the producible turbulent flow of the combustion air 10 at the swirling element 4 has substantially no regions of combustion air 10 flowing back.
  • the burner 1 can be operated via the pilot burner 9 as a diffusion burner, wherein a high-calorie fuel is used. Alternatively, it can also be used as a premix burner; ie a high calorific fuel and combustion air 10 are first mixed and then fed to the combustion. In that case, the pilot burner 9 serves to maintain a pilot flame which stabilizes combustion during premix burner operation with a possibly varying fuel-air ratio.
  • the low-calorie synthesis gas SG with the combustion air 10 is first transferred downstream into the mixing region 27 where it is intimately mixed and burned in a combustion zone, not shown.
  • Verwirbelungselement 4 a spatially and temporally particularly homogeneous mixture of combustion air 10 and synthesis gas SG is achieved. At the same time caused by the swirling element 4 pressure loss is very low, whereby the efficiency of the synthesis gas burner 1 is hardly affected.
  • FIG. 3 shows a plan view of a turbulence element 4 and the FIG. 4 that one with the same reference numerals provided turbulator 4 in a side view, are discussed in more detail:
  • each web 54 From an inner boundary ring 52 lead distributed over the ring circumference a plurality of webs 54 to an outer boundary ring 53.
  • the center of the outer boundary ring 53 lies on the axis of symmetry 59 of the inner boundary ring 52 and the webs 54 are directed normal to the inner boundary ring 52.
  • the connecting surface 56 represents the lateral surface of a truncated cone between the inner delimiting ring 52 and the outer delimiting ring 53.
  • Arranged on each web 54 are trapezoidal plane deflection elements 51 pointing in the interior of the truncated cone.
  • the wide side 51 a of each deflecting element 51 is connected to a web 54.
  • the deflection elements are arranged at equal distances from each other along three concentric circles 55a, 55b, 55c, which are concentric with the axis of symmetry 59.
  • the deflection elements 51 are inclined relative to a normal one of the connection axis 56, the deflection elements 51 being inclined in the same direction along a circle 55a, 55b, 55c from one circle 55a, 55b, 55c to an adjacent circle 55a, 55b, 55c.
  • the combustion air 10 is impressed on a microturbulence, which continues into the mixing region 27 inside.
  • the volumetric flows of low calorific fuel gas SG and turbulent combustion air 10 out of the air duct 2 which are introduced into the mixing region 27 are mixed particularly intensively and homogeneously by these microturbulences in the combustion air 10.
  • the inclination of the deflection elements 51 characterizes the main flow of the combustion air 10 in addition to secondary flows 58, which in addition to the local good mixing due to the turbulence, a homogenization of the fuel gas-air mixture over the entire cross-sectional area of the mixing region 27 (see FIG. 2 ), favor.
  • This embodiment of the swirling element 4 which only influences the air flow in the air duct 2 during the synthesis gas operation, has the consequence that the pressure loss caused by the turbulence is particularly low.
  • the burner 1 of the invention is therefore particularly suitable for operation in a power plant 24 with integrated gasification of a fossil fuel to a synthesis gas SG, for example coal gas.
  • the burner 1 is arranged in a combustion chamber 16 of a gas turbine plant 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

L'invention concerne un brûleur (1) destiné à la combustion d'un gaz combustible à faible pouvoir calorifique (SG). Ce brûleur (1) comprend un canal d'air (2) qui s'étend le long d'un axe (12) du brûleur et qui sert à acheminer de l'air de combustion (10), ainsi qu'un canal de gaz combustible (26) dimensionné pour un haut débit volumétrique de gaz à faible pouvoir calorifique (SG), ce canal de gaz combustible (26) et ce canal d'air (2) débouchant dans une zone de mélange (27). Selon l'invention, pour que la combustion de gaz de synthèse dans ce brûleur (1) génère de faibles émissions d'oxydes d'azote, un élément de turbulence (4) est placé dans le canal d'air (2) pour produire un air de combustion (10) turbulent. Cet élément de turbulence est disposé dans une zone d'ouverture (28) directement en communication fluidique avec la zone de mélange (27). L'invention concerne en outre un procédé pour faire fonctionner un brûleur à gaz de synthèse (1). Ce procédé consiste à augmenter de façon significative le degré de turbulence du flux massique d'air sur une échelle microscopique juste avant le mélange du gaz de synthèse (SG) avec l'air de combustion (10) pour permettre l'obtention d'un mélange gaz de synthèse-air homogène dans le temps et dans l'espace.

Claims (8)

  1. Brûleur ( 1 ) pour la combustion d'un gaz ( SG ) combustible à faible pouvoir calorifique, comprenant un canal ( 2 ) pour de l'air, s'étendant le long d'un axe ( 12 ) du brûleur et pour l'apport d'air ( 10 ) de combustion, et un canal ( 26 ) pour du gaz combustible, qui est conçu pour un grand courant en volume de gaz combustible à faible pouvoir calorifique, le canal ( 26 ) pour du gaz combustible et le canal ( 2 ) pour de l'air débouchant dans une zone ( 27 ) de mélange,
    caractérisé en ce que le canal ( 2 ) pour de l'air a une zone ( 28 ) d'embouchure voisine immédiatement en technique d'écoulement de la zone ( 27 ) de mélange, un élément ( 4 ) de tourbillonnement, pour la production d'air ( 10 ) de combustion turbulent, étant prévu dans la zone d'embouchure et des ailettes ( 5 ) de tourbillonnement étant disposées dans le canal ( 2 ) pour de l'air en amont de l'élément ( 4 ) de tourbillonnement.
  2. Brûleur ( 1 ) suivant la revendication 1, caractérisé en ce que le canal (2) pour de l'air est réalisé sous la forme d'un canal annulaire, qui entoure concentriquement le canal (26) pour du gaz combustible.
  3. Brûleur ( 1 ) suivant l'une des revendications précédentes, caractérisé en ce que l'élément ( 4 ) de tourbillonnement comporté :
    a) un premier anneau ( 52 ) de limitation ayant un axe ( 59 ) de symétrie,
    b) un deuxième anneau ( 53 ) de limitation plus grand, dont le centre se trouve sur l'axe ( 59 ) de symétrie,
    c) une surface ( 56 ) de liaison, qui passe par les deux anneaux ( 52, 53 ) de limitation, et
    d) le long d'un cercle ( 55a, 55b, 55c ), qui se trouve sur la surface ( 56 ) de liaison et dont le centre est sur l'axe ( 59 ) de symétrie, une pluralité d'éléments ( 51 ) plats de déviation, qui sont inclinés par rapport à la normale à la surface ( 56 ) de liaison.
  4. Brûleur ( 1 ) suivant la revendication 3, caractérisé en ce que la surface ( 56 ) de liaison de l'élément ( 4 ) de tourbillonnement représente moins de la moitié de la surface du cercle circonscrit par l'anneau ( 53 ) de limitation le plus grand.
  5. Brûleur ( 1 ) suivant la revendication 3 ou 4, caractérisé en ce que les éléments ( 51 ) de déviation de l'élément ( 4 ) de tourbillonnement, qui sont associés à un cercle ( 55a, 55b, 55c ), sont équidistants entre eux.
  6. Brûleur ( 1 ) suivant la revendication 3, 4 ou 5, caractérisé en ce que chaque élément ( 51 ) de déviation de l'élément ( 4 ) de tourbillonnement se rétrécit de la surface ( 56 ) de liaison à un bord ( 51b ) de décollement pour la production de tourbillons, en ayant notamment une forme en trapèze ou en triangle.
  7. Brûleur ( 1 ) suivant l'une des revendications 4 à 7, caractérisé en ce que les éléments ( 51 ) de déviation de l'élément ( 4 ) de tourbillonnement, qui sont associés à un cercle ( 55a, 55b, 55c ), sont inclinés dans le même sens.
  8. Brûleur ( 1 ) suivant la revendication 8, caractérisé en ce que des éléments ( 51 ) de déviation disposés sur des cercles ( 55a, 55b, 55c ) voisins de l'élément ( 51 ) de tourbillonnement sont inclinés en sens opposés.
EP05801280A 2004-10-11 2005-09-30 Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur Expired - Fee Related EP1800062B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05801280A EP1800062B1 (fr) 2004-10-11 2005-09-30 Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04024186A EP1645807A1 (fr) 2004-10-11 2004-10-11 Brûleur pour gas à faible capacité calorifique et méthode d'utilisation d'un tel brûleur
EP05801280A EP1800062B1 (fr) 2004-10-11 2005-09-30 Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur
PCT/EP2005/054948 WO2006040269A1 (fr) 2004-10-11 2005-09-30 Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur

Publications (2)

Publication Number Publication Date
EP1800062A1 EP1800062A1 (fr) 2007-06-27
EP1800062B1 true EP1800062B1 (fr) 2010-11-03

Family

ID=34926939

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04024186A Withdrawn EP1645807A1 (fr) 2004-10-11 2004-10-11 Brûleur pour gas à faible capacité calorifique et méthode d'utilisation d'un tel brûleur
EP05801280A Expired - Fee Related EP1800062B1 (fr) 2004-10-11 2005-09-30 Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04024186A Withdrawn EP1645807A1 (fr) 2004-10-11 2004-10-11 Brûleur pour gas à faible capacité calorifique et méthode d'utilisation d'un tel brûleur

Country Status (4)

Country Link
EP (2) EP1645807A1 (fr)
CN (1) CN101040149B (fr)
ES (1) ES2354703T3 (fr)
WO (1) WO2006040269A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2161502A1 (fr) 2008-09-05 2010-03-10 Siemens Aktiengesellschaft Brûleur à prémélange pour un combustible pauvre et riche
EP2329189B1 (fr) 2008-09-29 2016-01-13 Siemens Aktiengesellschaft Buse à combustible
EP2169307A1 (fr) 2008-09-29 2010-03-31 Siemens Aktiengesellschaft Buse à combustible
EP2169308A1 (fr) * 2008-09-29 2010-03-31 Siemens Aktiengesellschaft Alimentation en carburant et procédé d'injection du carburant
EP2312215A1 (fr) * 2008-10-01 2011-04-20 Siemens Aktiengesellschaft Brûleur et procédé de fonctionnement d'un brûleur
CN101581449B (zh) * 2009-06-25 2010-12-29 上海应用技术学院 一种生物质气天然气混烧低NOx烧嘴及其应用
DE102009038845A1 (de) * 2009-08-26 2011-03-03 Siemens Aktiengesellschaft Drallschaufel, Brenner und Gasturbine
CN103134078B (zh) 2011-11-25 2015-03-25 中国科学院工程热物理研究所 一种阵列驻涡燃料-空气预混器
JP5889754B2 (ja) * 2012-09-05 2016-03-22 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
EP2948715B1 (fr) * 2013-01-24 2019-04-17 Siemens Aktiengesellschaft Système de brûleur possédant des éléments de turbulence
FR3011911B1 (fr) 2013-10-14 2015-11-20 Cogebio Bruleur de gaz pauvre
DE102014207428A1 (de) * 2014-04-17 2015-10-22 Siemens Aktiengesellschaft Brenner mit Drallschaufel
DE102018114870B3 (de) 2018-06-20 2019-11-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennersystem und Verfahren zur Erzeugung von Heißgas in einer Gasturbinenanlage
CN109237514B (zh) * 2018-08-08 2024-02-23 中国华能集团有限公司 一种用于燃气轮机的双管路气体燃料燃烧器
CN109489069A (zh) * 2018-11-28 2019-03-19 中国华能集团有限公司 一种燃气轮机多种气体燃料混烧燃烧器结构及使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH609438A5 (fr) * 1976-02-27 1979-02-28 Fascione Pietro
JPS5913822A (ja) * 1982-07-14 1984-01-24 Mitsui Eng & Shipbuild Co Ltd 低発熱量ガスの燃焼方法および低発熱量ガス用バ−ナ
DE3860569D1 (de) 1987-01-26 1990-10-18 Siemens Ag Hybridbrenner fuer vormischbetrieb mit gas und/oder oel, insbesondere fuer gasturbinenanlagen.
US4833878A (en) * 1987-04-09 1989-05-30 Solar Turbines Incorporated Wide range gaseous fuel combustion system for gas turbine engines
US4930430A (en) * 1988-03-04 1990-06-05 Northern Engineering Industries Plc Burners
EP0580683B1 (fr) * 1991-04-25 1995-11-08 Siemens Aktiengesellschaft Bruleur, en particulier pour turbines a gaz, pour la combustion peu polluante du gaz de houille et d'autres combustibles
CN2107591U (zh) * 1991-11-07 1992-06-17 鞍山钢铁公司 自动火焰可调烧嘴
DE4409918A1 (de) * 1994-03-23 1995-09-28 Abb Management Ag Brenner zum Betrieb einer Brennkammer
DE19549140A1 (de) * 1995-12-29 1997-07-03 Asea Brown Boveri Verfahren zum Betrieb einer Gasturbogruppe mit niederkalorischem Brennstoff
JP4127858B2 (ja) * 1996-12-20 2008-07-30 シーメンス アクチエンゲゼルシヤフト 液体燃料用バーナ
EP1277920A1 (fr) 2001-07-19 2003-01-22 Siemens Aktiengesellschaft Méthode pour opérer une chambre de combustion d'une turbine a gaz et centrale

Also Published As

Publication number Publication date
CN101040149A (zh) 2007-09-19
EP1645807A1 (fr) 2006-04-12
EP1800062A1 (fr) 2007-06-27
CN101040149B (zh) 2010-06-16
ES2354703T3 (es) 2011-03-17
WO2006040269A1 (fr) 2006-04-20

Similar Documents

Publication Publication Date Title
EP1800062B1 (fr) Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur
EP1723369B1 (fr) Bruleur a premelange et procede pour bruler un gaz pauvre
EP0781967B1 (fr) Chambre de combustion annulaire pour turbine à gaz
EP0675322B1 (fr) Brûleur à prémélange
DE102005024062B4 (de) Brennerrohr und Verfahren zum Mischen von Luft und Gas in einem Gasturbinentriebwerk
EP1534997B1 (fr) Brûleur d'une turbine à gaz
DE102010017779B4 (de) Radiale Einlassleitschaufeln für einen Brenner
EP2329196B1 (fr) Brûleur et procédé d'utilisation d'un brûleur
DE102010037412B4 (de) Zweibrennstoffdüse für eine Turbomaschine
DE102008037480A1 (de) Mager vorgemischte Dual-Fuel-Ringrohrbrennkammer mit Radial-Mehrring-Stufendüse
EP1504222B1 (fr) Bruleur a premelange
EP0580683A1 (fr) Bruleur, en particulier pour turbines a gaz, pour la combustion peu polluante du gaz de houille et d'autres combustibles.
EP0956475A2 (fr) Bruleur pour solides fluides, procede pour actionner un bruleur et element de tourbillonnement
DE4411623A1 (de) Vormischbrenner
EP0687860A2 (fr) Chambre de combustion à allumage automatique
EP3087323A1 (fr) Brûleur, turbine à gaz munie dudit brûleur et injecteur de combustible
EP2171353A1 (fr) Brûleur à prémélange et procédé de fonctionnement d'un brûleur à prémélange
CH699911B1 (de) Brennkammer und Verfahren zum Mischen eines Druckluftstroms.
DE4446611A1 (de) Brennkammer
WO2012016748A2 (fr) Chambre de combustion de turbine à gaz
DE112016003028T5 (de) Brennstoffdüsenanordnung
EP1754937B1 (fr) Tête de brûleur et procédé pour brûler du combustible
DE102004027702A1 (de) Injektor für Flüssigbrennstoff sowie gestufter Vormischbrenner mit diesem Injektor
DE4415916A1 (de) Verfahren und Vorrichtung zur Verbrennung eines fließfähigen Brennstoffs
DE102010027808A1 (de) Drallerzeuger für einen Brenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): ES GB IT NL

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150909

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150924

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20151028

Year of fee payment: 11

Ref country code: NL

Payment date: 20150903

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001