EP1797451A1 - Verfahren und vorrichtung zur erkennung einer bevorstehenden kollision - Google Patents
Verfahren und vorrichtung zur erkennung einer bevorstehenden kollisionInfo
- Publication number
- EP1797451A1 EP1797451A1 EP05776058A EP05776058A EP1797451A1 EP 1797451 A1 EP1797451 A1 EP 1797451A1 EP 05776058 A EP05776058 A EP 05776058A EP 05776058 A EP05776058 A EP 05776058A EP 1797451 A1 EP1797451 A1 EP 1797451A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- frequency
- time
- triggered
- collision
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/20—Conjoint control of vehicle sub-units of different type or different function including control of steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
- B60R21/0134—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S13/34—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
- G01S13/343—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/356—Receivers involving particularities of FFT processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9323—Alternative operation using light waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9325—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/358—Receivers using I/Q processing
Definitions
- the present invention relates to a method and apparatus for emitting and receiving electromagnetic radiation for detecting an imminent collision with a forward object within a future period of time, wherein the emitted radiation is FMCW modulated and wherein the ramp slope of the frequency ramp is dependent on the transmit frequency and in Depending on the future time duration is determined and detected in the detection of a negative reception frequency an imminent collision within the future period.
- Adaptive cruise control ACC published by Robert Bosch GmbH, April 2002 (ISBN-3-7782-2034-9)
- a radar sensor system which emits FMCW-modulated radiation and at objects ahead of it If a preceding object is detected, the motor vehicle equipped with this device is regulated in its speed, whereby this control is carried out in the sense of a constant distance control If no preceding object detected as a preceding vehicle is detected a speed control in the sense of a constant speed control performed on a predetermined speed by the driver.
- the radar radiation emitted here is FMCW-modulated (Frequency Modulated Continuous Wave) and the distance and the relative speed of the preceding object are determined as a function of the Doppler shift of the emitted radiation and the transit time of the emitted radiation.
- FMCW-modulated Frequency Modulated Continuous Wave
- the Effects of the transit time measurement and the Doppler effect on the emitted radar signal is described in particular on pages 7 to 10, wherein the signal propagation time to ⁇
- the core of the present invention is to admit a method and a device in which the transmission frequency and the ramp slope of the frequency ramps are matched to one another such that the detection of a negative reception frequency results in a collision with a preceding object within one predetermined time t TC is detected. According to the invention, this is achieved by the features of the independent claims. Advantageous developments and refinements emerge from the subclaims.
- the future period of time within which a collision can be detected is the time duration which a safety means to be triggered and / or a safety function to be triggered must be triggered before the detected collision time.
- a quadrature receiver is provided for detecting negative frequencies.
- the quadrature receiver has a phase comparator which determines from the phase relationship between the in-phase signal and the quadrature signal whether the received frequency is a positive or a negative frequency.
- a safety device and / or a safety function is triggered when a negative frequency is detected.
- This safety means may for example be an occupant restraining means in the form of a belt tensioner or an airbag.
- the safety function may, for example, be an automatically initiated and performed emergency braking of the vehicle and / or an automatic steering intervention for avoiding collisions or reducing collision severity.
- the safety means and / or the safety function is at least an automatic vehicle deceleration, an automatic steering intervention, the triggering of at least one occupant restraint system or a combination thereof.
- the emitted and received electromagnetic radiation ei ⁇ ne microwave radiation in the form of a radar signal or a laser beam, which detects existing objects in the front of the vehicle area.
- a plurality of safety means and / or safety functions to be triggered for each time duration that the respective safety means and / or the safety function must be triggered before the detected collision time, a frequency ramp with a corresponding ramp gradient. If more than one safety device and / or safety function are triggered, then the time duration that the safety device must be triggered before a possible collision depends on the type of safety device. In the case of a belt tensioner, which tightens the safety belt of the vehicle occupants prior to a collision, this is, for example, the time it takes for the belt tensioner to perform belt tightening.
- this can be, for example, the time that the airbag has to be ignited before the collision time in order to obtain an optimum protective function.
- this time period can be predetermined, for example, by vehicle dynamics variables. Since depending on the controlled security different future periods of time that the safety means oratty ⁇ function must be triggered before the detected collision time, different and the transmission frequency of the transmitted transmission signal and the ramp slope of the modulated transmission signal must be tuned to this time, it is advantageous that if several safety means or safety functions are to be controlled, a separate frequency ramp is provided for each different time duration. For this purpose, FMCW modulation forms may be used, in which frequency ramps with different slopes are emitted and received one after the other.
- the future time duration within which a collision can be detected is the time duration which a security means to be triggered and / or a security period to be triggered - A -
- the received signals Ie are fed to a quadrature receiver.
- phase comparator determines whether the received frequency is a positive or a negative frequency.
- a safety device and / or a safety function is triggered.
- a safety means and / or as a safety function at least one automatic vehicle deceleration, an automatic steering intervention, the
- Tripping at least one occupant restraint system or a combination thereof is triggered.
- a plurality of safety devices and / or safety functions for each period of time that the respective safety device and / or safety function must be triggered before the detected collision time point a Frequenz ⁇ ramp within the FMCW-modulated transmission signal with appropriate Rampenstei ⁇ supply intended.
- control element which is provided for a control unit of an adaptive distance or speed control of a motor vehicle.
- a program is stored on the control element, which program is executable on a computing device, in particular on a microprocessor or signal processor, and is suitable for carrying out the method according to the invention. In this case, so the invention by a on the
- Control realized program so that this provided with the program control in the same way represents the invention as the method to whose execution the program is suitable.
- a control can in particular a electrical storage medium are used, for example, a read-only memory.
- FIG. 1 shows a block diagram of a first embodiment of the device according to the invention
- Figure 2 is a block diagram of a second embodiment of the invention.
- Figure 3 is a frequency-time diagram of the corresponding transmit and receive signals
- FIG. 1 shows a schematic block diagram which shows a radio-frequency transmitting and receiving device 1.
- This radio-frequency transmitting and receiving device 1 has a high-frequency oscillator 2 which generates high-frequency microwave radiation as a function of a control voltage signal fed to it.
- This microwave radiation is transmitted from the oscillator 2 to a transmitting antenna 3, which radiates the microwave signal as a transmission signal 4.
- This transmission signal 4 is reflected on objects that are located in front of the vehicle equipped with the system according to the invention, and returned as a received signal 5.
- the recommendation The starting signal 5 is shifted in time relative to the transmission signal 4 as a result of the transit time of the signal and is additionally Doppler-shifted in frequency by the relative speed of the reflecting object.
- Receiving signal 5 is received by means of a receiving antenna 6 and fed to mixers 7, 8.
- this transmitting and receiving device not to be embodied, as shown, as a bistatic transmitting and receiving system which has separate antennas for transmitting and receiving, but which can be designed as a monostatic system which is suitable for Sending and receiving the signals 4,
- the exemplary embodiment shown in FIG. 1 has a quadrature receiver, for which reason two separate receive channels are provided for the in-phase signal I and the quadrature signal Q.
- the received signal 5 received by means of the receiving antenna 6 is forwarded to the in-phase mixer 7, to which the output signal of the oscillator 2 is additionally supplied.
- the in-phase mixer 7 demodulates the received signal 5 by means of the instantaneous transmit signal 2 and generates therefrom the in-phase signal I, which is sent to the analog-digital
- the received signal 5 is forwarded by the receiving antenna 6 to the quadrature mixer 8, to which the output signal of the oscillator 2 is additionally supplied, but which has additionally been rotated through the phase shifter 9 by 90 ° or -phase.
- the quadrature mixer 8 generates from the
- Converter unit 10 is supplied. Since the received signal 5 as a result of a zeitver sectioni ⁇ chen frequency ramp, the transmission frequency during the term ⁇ of the signal changed with respect to the transmission signal 4 by the frequency _ 2 - slope d
- 'slope' is the frequency change per unit time of the ramp slope of the FMCW modulated signal
- d is the distance of the object to the own vehicle
- f t is the radiated frequency
- v is the relative velocity of the reflective object to the own vehicle
- c is the speed of light
- the received signals I and Q digitized by means of the analog-to-digital converter device 10 are forwarded to a Fourier transformation device 1, in which the digitized received data are converted into a frequency spectrum and then supplied to a phase evaluation device 12.
- the in-phase signals with respect to the respective quadrature signals have a phase relationship of 90 °, which is caused by the phase shifter 9, by means of which the demodulation signal of the quadrature channel was rotated. If a collision-critical object is detected, then theoretically a negative frequency f r ⁇ 0, which is practically not measurable, is received. Since a negative frequency is practically not directly measurable, a quadrature receiver is used in which the negative spectrum portion of the received signal f r can be determined by the phase relationship between the in-phase signal I and the quadrature signal Q.
- phase evaluation device 12 When detecting a negative reception frequency f r ⁇ 0, therefore, the phase between the in-phase signal I and the quadrature signal Q changes its sign. This sign change is detected by the phase evaluation device 12, whereupon a safety means 13 or a safety function 13 can be triggered by the output signal of the phase evaluation device 12.
- FIG. 2 shows an advantageous embodiment which is essentially identical to FIG. 1 but additionally has a controller 14.
- a controller 14 Especially when using a plurality of security means or several security functions, wherein for each security means or security function 13 a separate time t TEC is necessary, in which the security means must be triggered before the calculated collision, it makes sense, the ramp slope alternately so vary that the corresponding time periods are set t ⁇ c .
- the control device 14 is provided which outputs a control signal to the oscillator 2, by means of which the oscillator 2 in the Ram ⁇ pitch is changeable.
- FIG. 3 shows a frequency-time diagram in which, by way of example, a frequency ramp of the FMCW-modulated transmission signal 4 is shown. Furthermore, the reception signal 5 is shown, which is shifted due to the Doppler effect and transit time with respect to the transmission signal 4.
- the transmission signal 4 has one or more ramps, each of which may have different ramp slopes.
- These ramps can be, for example, alternately rising and falling ramps or, for example, consist only of successively increasing frequency ramps of different ramp rates, between which the frequency in each case returns to the output frequency.
- a microwave signal with the carrier frequency f t is emitted.
- the transmission frequency starting from the carrier frequency f t , increases up to the value f t + f H , wherein this by the frequency deviation f H against the Sufre ⁇ frequency f t is increased.
- Frequency value f t + f H and can thereafter, for example, by means of a falling Frequenz ⁇ ramp to the value f t fall again or vorse ⁇ hen a frequency hopping to the value f t , whereupon a new frequency ramp increases.
- the received signal 5, which was reflected back on a preceding object as a result of reflection of the transmission signal 4 is shifted in time by the transit time of the signal relative to the transmission signal 4, the time shift in the example shown having the value t B -t A.
- the transmission signal 4 has a higher frequency than the reception signal 5 at a time t since the transmission signal already has a higher instantaneous frequency as a result of the rising frequency ramp.
- FIG. 4 shows a diagram in which the distance d of the vehicle to the preceding vehicle is plotted on the abscissa 15 and the relative velocity v is plotted on the ordinate 16, which can assume both positive and negative values, as the case may be whether the vehicle ahead is faster than its own vehicle or slower.
- the associated triggering ranges for these tripping thresholds 19, 20 result analogously to the tripping range 18 which is associated with the tripping threshold 17, in that the tripping range is in each case defined by the coordinate axis v ⁇ 0 and the half-line of the tripping threshold 17, 19, 20 is limited.
- a detective Accordingly, when geeig ⁇ net selected transmission frequency f t and suitably selected frequency slope, slope 'as the reception frequency f r generates a negative frequency, due to their Phase relationship between the in-phase signal and the quadrature signal is detectable. Depending on the detection of such a phase relationship, a safety means or a safety function 13 can be triggered.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Verfahren und Vorrichtung zum Aussenden und zum Empfangen elektromagnetischer Strahlung zur Erkennung einer bevorstehenden Kollision mit einem vorausbefindlichen Objekt innerhalb einer zukünftigen Zeitdauer, wobei die ausgesandte Strahlung FMCW- moduliert wird, wobei die Rampensteigung der Frequenzrampe in Abhängigkeit der Sen¬ defrequenz und in Abhängigkeit der zukünftigen Zeitdauer bestimmt wird und bei der Detektion einer negativen Empfangsfrequenz eine bevorstehende Kollision innerhalb der zukünftigen Zeitdauer erkannt wird.
Description
Verfahren und Vorrichtung zur Erkennung einer bevorstehenden Kollision
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Aussenden und zum Empfangen elektromagnetischer Strahlung zur Erkennung einer bevorstehenden Kollision mit einem vorausbefindlichen Objekt innerhalb einer zukünftigen Zeitdauer, wobei die ausgesandte Strahlung FMCW-moduliert wird und wobei die Rampensteigung der Frequenzrampe in Abhängigkeit der Sendefrequenz und in Abhängigkeit der zukünf¬ tigen Zeitdauer bestimmt wird und bei der Detektion einer negativen Empfangsfrequenz eine bevorstehende Kollision innerhalb der zukünftigen Zeitdauer erkannt wird.
Stand der Technik
Aus der Veröffentlichung „Adaptive Fahrgeschwindigkeitsregelung ACC", herausgege¬ ben von der Robert Bosch GmbH, April 2002 (ISBN-3-7782-2034-9) ist eine Radarsen- sorik bekannt, die FMCW-modulierte Strahlung aussendet und an vorausbefindlichen Ob- jekten reflektierte Teilstrahlung empfängt. Wird ein vorausbefindliches Objekt detektiert, so wird das mit dieser Einrichtung ausgerüstete Kraftfahrzeug in der Geschwindigkeit ge¬ regelt, wobei diese Regelung im Sinne einer Abstandskonstantregelung durchgeführt wird. Wird kein vorausbefindliches Objekt detektiert, das als vorherfahrendes Fahrzeug erkannt wurde, so wird eine Geschwindigkeitsregelung im Sinne einer Geschwindigkeits- konstantregelung auf eine vom Fahrer vorgegebene Sollgeschwindigkeit durchgeführt.
Die ausgesandte Radarstrahlung wird hierbei mittels Frequenzrampen FMCW-moduliert (Frequency Modulated Continous Wave) ausgestrahlt und der Abstand und die Relativge¬ schwindigkeit des vorausbefindlichen Objekts in Abhängigkeit der Dopplerverschiebung der ausgesandten Strahlung sowie der Laufzeit der ausgesandten Strahlung ermittelt. Die
Einflüsse der Laufzeitmessung sowie des Dopplereffekts auf das ausgesandte Radarsignal wird insbesondere auf den Seiten 7 bis 10 beschrieben, wobei sich die Signallaufzeit zu τ
2d
= — berechnet und der Dopplereffekt nach der Gleichung c fD= 2f £ — *v ™ι_ vorgegeben wird. c
Der Kern der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung an¬ zugeben, bei denen die Sendefrequenz und die Rampensteigung der Frequenzrampen der¬ art aufeinander abgestimmt sind, dass durch die Detektion einer negativen Empfangsfre¬ quenz eine Kollision mit einem vorausbefindlichen Objekt innerhalb einer vorgegebenen Zeitdauer tTC erkannt wird. Erfϊndungsgemäß wird dieses durch die Merkmale der unab¬ hängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen ergeben sich aus den Unteransprüchen.
Vorteilhafterweise ist die zukünftige Zeitdauer, innerhalb der eine Kollision detektierbar ist, die Zeitdauer, die ein auszulösendes Sicherheitsmittel und/oder eine auszulösende Si¬ cherheitsfunktion vor dem erkannten Kollisionszeitpunkt ausgelöst werden muss.
Weiterhin ist es vorteilhaft, dass zur Detektion negativer Frequenzen ein Quadraturemp¬ fänger vorgesehen ist.
Besonders vorteilhaft ist es, dass der Quadraturempfänger einen Phasenkomparator auf¬ weist, der aus der Phasenbeziehung zwischen dem Inphasensignals und dem Quadratur¬ signal bestimmt, ob die empfangene Frequenz eine positive oder negative Frequenz ist.
Vorteilhafterweise wird ein Sicherheitsmittel und/oder eine Sicherheitsfunktion ausgelöst, wenn eine negative Frequenz erkannt wird. Dieses Sicherheitsmittel kann beispielsweise ein Insassenrückhaltemittel in Form eines Gurtstraffers oder eines Airbags sein. Die Si¬ cherheitsfunktion kann beispielsweise eine automatisch eingeleitete und durchgeführte Notbremsung des Fahrzeugs und/oder ein automatischer Lenkeingriff zur Kollisionsver- meidung bzw. Kollisionsstärkenminderung sein.
Weiterhin ist es vorteilhaft, dass die Sicherheitsmittel und/oder die Sicherheitsfunktion mindestens eine automatische Fahrzeugverzögerung, einen automatischen Lenkeingriff, die Auslösung mindestens eines Insassenrückhaltesystems oder eine Kombination hieraus ist.
Vorteilhafterweise ist die ausgesandte und empfangene elektromagnetische Strahlung ei¬ ne Mikrowellenstrahlung in Form eines Radarsignals oder eines Laserstrahls, die in dem vor dem Fahrzeug vorausbefindlichen Bereich vorhandene Objekte detektiert.
Weiterhin ist es vorteilhaft, dass zur Auslösung mehrere Sicherheitsmittel und/oder Si¬ cherheitsfunktionen für jede Zeitdauer, die das jeweilige Sicherheitsmittel und/oder die Sicherheitsfunktion vor dem erkannten Kollisionszeitpunkt ausgelöst werden muss, eine Frequenzrampe mit entsprechender Rampensteigung vorgesehen ist. Werden mehr als ein Sicherheitsmittel und/oder Sicherheitsfunktion ausgelöst, so ist die Zeitdauer, die das Si- cherheitsmittel vor einer möglichen Kollision ausgelöst werden muss, von der Art des Si¬ cherheitsmittels abhängig. Bei einem Gurtstraffer, der vor einer Kollision den Sicher¬ heitsgurt der Fahrzeuginsassen straffzieht ist dies beispielsweise die Zeit, die der Gurt- straffer benötigt, um die Gurtsstraffung durchzuführen. Bei Airbags kann dies beispiels¬ weise die Zeit sein, die der Airbag vor dem Kollisionszeitpunkt gezündet werden muss, um eine optimale Schutzfunktion zu erwirken. Bei automatischen Fahrzeugverzögerun¬ gen und/oder automatischen Lenkeingriffen kann diese Zeitdauer beispielsweise durch fahrdynamische Größen vorgegeben werden. Da je nach angesteuertem Sicherheitsmittel unterschiedliche zukünftige Zeitdauern, die das Sicherheitsmittel bzw. die Sicherheits¬ funktion vor dem erkannten Kollisionszeitpunkt ausgelöst werden muss, unterschiedlich sind und die Sendefrequenz des ausgesandten Sendesignal sowie die Rampensteigung des modulierten Sendesignals auf diese Zeit abgestimmt sein müssen ist es vorteilhaft, dass wenn mehrere Sicherheitsmittel bzw. Sicherheitsfunktionen angesteuert werden sollen für jede unterschiedliche Zeitdauer eine eigene Frequenzrampe vorgesehen ist. Hierzu kön¬ nen sich FMCW-Modulationsformen eigenen, bei denen Frequenzrampen mit unter- schiedlichen Steigungen nacheinander abgestrahlt und empfangen werden.
Weiterhin ist es möglich, dass die zukünftige Zeitdauer, innerhalb der eine Kollision de- tektierbar ist, die Zeitdauer ist, die ein auszulösenden Sicherheitsmittel und/oder eine
- A -
auszulösende Sicherheitsfunktion vor dem erkannten Kollisionszeitpunkt ausgelöst wer¬ den muss.
Weiterhin ist es vorteilhaft, dass zur Detektion negativer Frequenzen die Empfangssigna- Ie einem Quadraturempfänger zugeführt werden.
Besonders vorteilhaft ist es, dass aus der Phasenbeziehung zwischen dem Inphasensignal und dem Quadratursignal mittels eines Phasenkomparators bestimmt wird, ob die emp¬ fangene Frequenz eine positive oder negative Frequenz ist.
Vorteilhafterweise wird bei Detektion einer negativen Frequenz ein Sicherheitsmittel und/oder eine Sicherheitsfunktion ausgelöst.
Weiterhin ist es vorteilhaft, dass als Sicherheitsmittel und/oder als Sicherheitsfunktion mindestens eine automatische Fahrzeugverzögerung, ein automatischer Lenkeingriff, die
Auslösung mindestens eines Insassenrückhaltesystems oder eine Kombination hieraus ausgelöst wird.
Vorteilhafterweise ist zur Auslösung mehrere Sicherheitsmittel und/oder Sicherheitsfunk- tionen für jede Zeitdauer, die das jeweilige Sicherheitsmittel und/oder die Sicherheits¬ funktion vor dem erkannten Kollisionszeitpunkt ausgelöst werden muss, eine Frequenz¬ rampe innerhalb des FMCW-modulierten Sendesignals mit entsprechender Rampenstei¬ gung vorgesehen.
Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in der
Form eines Steuerelements, das für ein Steuergerät einer adaptiven Abstands- bzw. Ge¬ schwindigkeitsregelung eines Kraftfahrzeugs vorgesehen ist. Dabei ist auf dem Steuer¬ element ein Programm gespeichert, das auf einem Rechengerät, insbesondere auf einem Mikroprozessor oder Signalprozessor ablauffähig und zur Ausführung des erfϊndungsge- mäßen Verfahrens geeignet ist. In diesem Fall wird also die Erfindung durch ein auf dem
Steuerelement abgespeichertes Programm realisiert, sodass dieses mit dem Programm versehene Steuerelement in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Programm geeignet ist. Als Steuerelement kann insbesondere ein
elektrisches Speichermedium zur Anwendung kommen, beispielsweise ein Read-Only- Memory.
Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder darge¬ stellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfin¬ dung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Be- Schreibung bzw. in den Zeichnungen.
Zeichnungen
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen er- läutert. Es zeigen
Figur 1 ein Blockschaltbild einer ersten Ausführungsform der erfindungsgemäßen Vor¬ richtung,
Figur 2 ein Blockschaltbild einer zweiten Ausführungsform der erfindungsgemäßen
Vorrichtung, Figur 3 ein Frequenz-Zeit-Diagramm der entsprechenden Sende- und Empfangssignale und
Figur 4 ein Relativgeschwindigkeits-Abstands-Diagramm zur Erläuterung der Erfin¬ dung.
Beschreibung von Ausführungsbeispielen
In Figur 1 ist ein schematisches Blockschaltbild dargestellt, das eine Hochfrequenzsende- und -empfangseinrichtung 1 aufzeigt. Diese Hochfrequenzsende- und - empfangseinrichtung 1 weist einen Hochfrequenzoszillator 2 auf, der in Abhängigkeit ei- nes ihm zugeführten Steuerspannungssignals eine hochfrequente Mikrowellenstrahlung erzeugt. Diese Mikrowellenstrahlung wird vom Oszillator 2 an eine Sendeantenne 3 wei¬ tergeleitet, die das Mikrowellensignal als Sendesignal 4 abstrahlt. Dieses Sendesignal 4 wird an Objekten, die sich vor dem mit dem erfindungsgemäßen System ausgerüsteten Kraftfahrzeug befinden, reflektiert und als Empfangssignal 5 zurückgesendet. Das Emp-
fangssignal 5 ist gegenüber dem Sendesignal 4 infolge der Laufzeit des Signals zeitver¬ schoben sowie durch die Relativgeschwindigkeit des reflektierenden Objekts zusätzlich in der Frequenz dopplerverschoben. Wird als Sendesignal 4 ein FMCW-moduliertes Sig¬ nal ausgestrahlt, das zeitlich lineare Frequenzveränderungen in Form von Frequenzram- pen aufweist, so entsteht ein Empfangssignal 5, das eine unterschiedliche Frequenz be¬ züglich des Sendesignals 4 aufweist. Diese Frequenzveränderung rührt zum einem vom Dopplereffekt infolge der Relativgeschwindigkeit des reflektierenden Objekts her, zum anderen ist im Falle einer steigenden Frequenzrampe des Sendesignals 4 die Momentan¬ frequenz des Sendesignals 4 bereits dadurch verändert, dass das momentane Empfangs- signal infolge der Signallaufzeit mit einer anderen Frequenz ausgestrahlt wurde. Das
Empfangssignal 5 wird mittels einer Empfangsantenne 6 empfangen und Mischern 7, 8 zugeführt. Erfindungsgemäß kann es auch vorgesehen sein, diese Sende- und Empfang¬ seinrichtung nicht, wie aufgezeigt, als bistatisches Sende- und Empfangssystem auszu¬ führen, das getrennten Antennen zum Senden und Empfangen aufweist, sondern als mo- nostatisches System ausgeführt sein kann, das zum Senden und Empfangen der Signale 4,
5 die gleiche Sende- und Empfangsantenne verwendet. In diesem Fall wäre eine zusätzli¬ che Sende- und Empfangsweiche einzufügen, die das Oszillatorausgangssignal des Oszil¬ lators 2 auf die monostatische Antenne leitet und die Empfangssignale der monostati¬ schen Antenne an die Mischer 7, 8 weiterleitet. Das in Figur 1 dargestellte Ausführungs- beispiel weist einen Quadraturempfänger auf, weshalb zwei getrennte Empfangskanäle für das Inphasesignal I sowie das Quadratursignal Q vorgesehen sind. Das mittels der Empfangsantenne 6 empfangene Empfangssignal 5 wird zum einen an den Inphasemi- scher 7 weitergegeben, dem zusätzlich das Ausgangssignal des Oszillators 2 zugeführt wird. Der Inphasemischer 7 demoduliert das Empfangssignal 5 mittels des momentanen Sendesignals 2 und erzeugt hieraus der Inphasesignal I, das an die Analog-Digital-
Wandlereinheit 10 ausgegeben wird. Zusätzlich wird das Empfangssignal 5 von der Emp¬ fangsantenne 6 and den Quadraturmischer 8 weitergeleitet, dem zusätzlich das Ausgangs¬ signal des Oszillators 2 zugeführt wird, das jedoch zusätzlich durch den Phasenschieber 9 π um 90° bzw. — phasengedreht wurde. Der Quadraturmischer 8 erzeugt aus den ihm zu-
geführten Signalen ein Quadraturausgangssignal Q, das ebenfalls der Analog-Digital-
Wandlereinheit 10 zugeführt wird. Da das Empfangssignal 5 infolge einer zeitveränderli¬ chen Frequenzrampe, die die Sendefrequenz während der Laufzeit τ des Signals verändert gegenüber dem Sendesignal 4 um die Frequenz
_ 2 - Steigung d
ILZ (W-I)
C verändert wird sowie infolge des Dopplereffekts um den Wert fD = M^_ (G1.2) c verändert wurde ergibt sich für das Empfangssignal eine momentane Frequenz von
_ 2 Steigung d 2 ft v Ir - ILZ + ID + , (G1.3)
C C wobei , Steigung' die Frequenzveränderung pro Zeiteinheit der Rampensteigung des FMCW-modulierten Signals ist, d der Abstand des Objektes zum eigenen Fahrzeug ist, ft die abgestrahlte Frequenz ist, v die Relativgeschwindigkeit des reflektierenden Objektes zum eigenen Fahrzeug ist sowie c die Lichtgeschwindigkeit ist. Möchte man, ausgehend von dieser Gleichung, negative Frequenzen detektieren, so muss man fr < 0 setzen, woraufhin sich die Gleichung umformen lässt in
— = —^ = tτc , (G1.4)
- v Steigung was also genau der Zeit tτc bis zu einer zukünftigen Kollision entspricht, sofern sich die Objekte weiterhin mit der Relativgeschwindigkeit v, ausgehend vom Momentanabstand d, bewegen. Wählt man die Zeitdauer bis zu einer zukünftigen Kollision tτc so, dass diese Zeitdauer der Dauer entspricht, die ein Sicherheitsmittel zum Auslösen benötigt, was bei¬ spielsweise tτc=0,3 Sekunden sein können, so lässt sich die Kollision durch Detektion ei-
/ ner negativen Empfangsfrequenz fr erkennen, sofern der Quotient , also die
Steigung Sendeffrequenz dividiert durch die Rampensteigung gleich der Zeitdauer tτc gesetzt wird.
Setzt man beispielsweise die Sendefrequenz ft = 77GHz und möchte man für die notwen¬ dige Zeitdauer zur Auslösung eines Sicherheitsmittels bzw. zur Auslösung einer Sicher¬ heitsfunktion t-rc = 0,3 sek notwendig, so ergibt sich hierfür eine notwendige Rampen¬ steigung von , Steigung' = 257 GHz/sek. Wird also im beschriebenen Beispiel eine Sen- defrequenz ft = 77 Ghz sowie eine Rampensteigung von ,Steigung'=257 GHz/sek, so kann man eine zukünftige Kollision innerhalb der zukünftigen Zeitdauer tτc = 0,3 sek er¬ kennen, falls eine negative Empfangsfrequenz fr detektiert wird. Dieses Zahlenbeispiel lässt sich auch auf andere Zeitdauern, die zum Auslösen eines Sicherheitsmittels notwen¬ dig sind, umformen, wobei hierzu entweder die Rampensteigung , Steigung' oder aber die
Sendefrequenz ft bezüglich der Zeitdauer tτc anzupassen sind. Wählt man die Zeitdauer t-rc = O sek, so kann man mittels dieser Vorrichtung erkennen, ob eine Kollision in diesem Augenblick beginnt. Die mittels der Analog-Digital- Wandlereinrichtung 10 digitalisierten Empfangssignale I und Q werden an eine Fouriertransformationseinrichtung 1 weiterge- leitet, in der die digitalisierten Empfangsdaten in ein Frequenzspektrum umgewandelt werden und danach einer Phasenauswertungseinrichtung 12 zugeführt. Bei der Detektion von positiven Empfangsfrequenzen fr > 0 weisen die Inphasensignale bezüglich der je¬ weiligen Quadratursignale eine Phasenbeziehung von 90° auf, die durch den Phasen¬ schieber 9 , mittels dem das Demodulationssignal des Quadraturkanals gedreht wurde, bedingt sind. Wird ein kollisionskritisches Objekt detektiert, so wird theoretische eine negative Frequenz fr < 0, die praktisch nicht messbar ist, empfangen. Da eine negative Frequenz praktisch nicht direkt messbar ist wird ein Quadraturempfänger verwendet in dem der negative Spektrumsanteil des Empfangssignals fr durch die Phasenbeziehung zwischen dem Inphasensignal I sowie dem Quadratursignal Q bestimmbar ist, eingesetzt. Bei der Detektion einer negativen Empfangsfrequenz fr < 0 wechselt demnach die Phase zwischen dem Inphasensignal I und dem Quadratursignal Q ihr Vorzeichen. Dieser Vor¬ zeichenwechsel wird durch die Phasenauswerteeinrichtung 12 erkannt, woraufhin durch das Ausgangssignal der Phasenauswerteeinrichtung 12 ein Sicherheitsmittel 13 bzw. eine Sicherheitsfunktion 13 auslösbar ist.
In Figur 2 ist eine vorteilhafte Ausführungsvariante dargestellt, die im Wesentlichen mit der Figur 1 identisch ist, jedoch zusätzlich eine Steuerung 14 aufweist. Insbesondere bei der Verwendung mehrerer Sicherheitsmittel bzw. mehrerer Sicherheitsfunktionen, wobei für jedes Sicherheitsmittel bzw. Sicherheitsfunktion 13 eine eigene Zeitdauer tτc notwen- dig ist, in der das Sicherheitsmittel vor der berechneten Kollision ausgelöst werden muss, ist es sinnvoll, die Rampensteigung abwechselnd so zu variieren, dass die entsprechenden Zeitdauern tτc eingestellt werden. Hierzu ist die Steuerungseinrichtung 14 vorgesehen, die ein Steuersignal an den Oszillator 2 ausgibt, mittels dem der Oszillator 2 in der Ram¬ pensteigung veränderbar ist. Zusätzlich wird von der Steuerung 14 ein Ausgangssignal an das Sicherheitsmittel bzw. die Sicherheitsfunktion 13 ausgegeben, wobei dieses Signal dem Sicherheitsmittel bzw. der Sicherheitsfunktion 13 mitteilt, welche Auslösezeitdauer bis zur Kollision tτc momentan im Oszillator 2 eingestellt ist und bezüglich der die Phase im Block 12 ausgewertet wird.
In Figur 3 ist ein Frequenz-Zeit-Diagramm dargestellt, in dem beispielhaft eine Frequenz¬ rampe des FMCW-modulierten Sendesignals 4 dargestellt ist. Weiterhin ist das Emp¬ fangssignal 5 dargestellt, das infolge Dopplereffekt und Laufzeit bezüglich des Sendesig¬ nals 4 verschoben ist. Das Sendesignal 4 weist eine oder mehrere Rampen auf, wobei die- se jeweils unterschiedliche Rampensteigungen haben können. Diese Rampen können bei¬ spielsweise abwechselnd ansteigende und abfallende Rampen sein oder beispielsweise nur aus hintereinander ansteigenden Frequenzrampen unterschiedlicher Rampensteigun¬ gen bestehen, zwischen denen die Frequenz jeweils wieder auf die Ausganmgfrequenz zurückspringt. Während der Zeitdauer von t = 0 bis t = tA wird ein Mikrowellensignal mit der Trägerfrequenz ft ausgestrahlt. In der Zeitdauer zwischen dem Zeitpunkt t = tA und dem Zeitpunkt t = tc steigt die Sendefrequenz, von der Trägerfrequenz ft ausgehend, an bis auf dem Wert ft + fH, wobei dieser um den Frequenzhub fH gegenüber der Trägerfre¬ quenz ft erhöht ist. Die Frequenzsteigung dieser Rampe lässt sich zu f , Steigung' = — — — berechnen, die in der Gleichung 4 ebenfalls als Variable ,Stei-
gung' benannt wurde. Nach dem Zeitpunkt t = tc verläuft die Frequenz konstant auf dem
Frequenzwert ft + fH und kann danach beispielsweise mittels einer abfallenden Frequenz¬ rampe auf den Wert ft wieder abfallen oder einen Frequenzsprung auf den Wert ft vorse¬ hen, woraufhin eine neue Frequenzrampe ansteigt. Das Empfangssignal 5, das infolge ei¬ ner Reflexion des Sendesignals 4 an einem vorausbefindlichen Objekt zurückreflektiert wurde, ist einerseits durch die Laufzeit des Signals bezüglich des Sendesignals 4 zeitver¬ schoben, wobei die Zeitverschiebung im dargestellten Beispiel den Wert tB-tA hat. Be¬ dingt durch diese Laufzeit weist das Sendesignal 4 zu einem Zeitpunkt t eine höhere Fre¬ quenz auf als das Empfangssignal 5, da das Sendesignal infolge der ansteigenden Fre¬ quenzrampe bereits eine höhere Momentanfrequenz aufweist. Durch die Bewegung des vorausbefindlichen Objektes, an dem das Sendesignal 4 reflektiert wird, ergibt sich eine
Dopplerverschiebung um den Wert fD, wodurch das Empfangssignal 5 gegenüber dem Sendesignal 4 um den Wert fD in Richtung positiver Frequenzen verschoben ist. Während der Zeitdauer einer ansteigenden Frequenzrampe, wie sie beispielsweise während der Zeitdauer zwischen t = tA und t = tc gegeben ist, ergibt sich hieraus eine Frequenzver- Schiebung Δf des Empfangssignals 5 gegenüber dem Sendesignal 4 infolge der Doppler¬ verschiebung fD sowie der Frequenzveränderung fLZ bedingt durch die Signallaufzeit und die kontinuierlich ansteigende Frequenzrampe. Wählt man entsprechend der Gleichung 4
f eine Trägerfrequenz ft sowie eine Rampensteigung , so dass man eine Kollision
innerhalb der Zeitdauer tτc erkannt werden kann, ergibt sich hierfür in Figur 4 in einem Relativgeschwindigkeits-Abstands-Diagramms der Auslösebereich des Sicherheitsmittels bzw. der Sicherheitsfunktion 13.
In Figur 4 ist ein Diagramm dargestellt, in dem auf der Abszisse 15 der Abstand d des ei¬ genen Fahrzeugs zum vorherfahrenden Fahrzeug aufgetragen ist sowie auf der Ordinate 16 die Relativgeschwindigkeit v aufgetragen ist, die sowohl positive als auch negative Werte annehmen kann, je nachdem, ob das vorausfahrende Fahrzeug schneller als das ei- gene Fahrzeug oder langsamer ist. Setzt man in der Gleichung 4 für die Zeitdauer tτc, in¬ nerhalb der eine Kollision durch eine negative Frequenz erkennbar ist, zu beispielsweise t-rc = 0,3 Sekunden, so erhält man Kombinationen von Relativgeschwindigkeit v und Ab¬ stand d, zu denen eine Kollision während der zukünftigen Zeitdauer t = tτc bevorsteht, so¬ fern sich das Fahrzeug mit der momentanen Relativgeschwindigkeit v, ausgehend vom derzeitigen Abstand d, fortbewegt. Diese Kombinationen von Relativgeschwindigkeit v und Abstand d ist beispielhaft durch die Gerade 17 dargestellt, die einen Bereich 18 be¬ grenzt, innerhalb dem die Relativgeschwindigkeits-Abstands-Kombinationen liegen, zu denen eine Kollision während der vorausbefindlichen Zeitdauer tτc bevorsteht, bei gleichbleibender Relativgeschwindigkeit, ausgehend vom Momentanabstand d. Sieht man zur Auslösung eines Sicherheitsmittels 13 oder einer Sicherheitsfunktion eine kürzere Zeitdauer vor, um die das Sicherheitsmittel bzw. die Sicherheitsfunktion vor der Kollision ausgelöst werden muss, wobei diese Zeitdauer beispielsweise tτc = 0,2 s oder 0,1 s gewählt werden kann, so ergibt sich im Relativgeschwindigkeits-Abstands- Diagramm der Figur 4 eine Auslöseschwelle 19 bzw. 20, wobei Auslöseschwellen für be- liebige tτc>0 s im Relativgeschwindigkeits-Abstands-Diagramm der Figur 4 als Halbge¬ raden 17, 19, 20 dargestellt werden, die im Koordinatenursprung entspringen und im Quadrant mit v<0 und d>0 verlaufen. Die Auslöseschwelle 17 repräsentiert hierbei bei¬ spielhaft eine Zeitdauer tτc = 0,3 s bis zur Kollision, die Auslöseschwelle 20 repräsentiert beispielhaft die Zeitdauer tτc = 0,2 s und die Halbgerade 19 repräsentiert beispielhaft die Auslöseschwelle für tτc = 0,1 s. Die zugehörigen Auslösebereiche zu diesen Auslöse¬ schwellen 19, 20 ergeben sich in Analogie zum Auslöebereich 18, der zur Auslöse¬ schwelle 17 zugehörig ist, indem der Auslösebereich jeweils von der Koordinatenhalb¬ achse v<0 und der Halbgeraden der Auslöseschwelle 17, 19, 20 begrenzt wird. Ein detek-
tiertes, vorausbefindliches Objekt, das im Relativgeschwindigkeits-Abstands-Diagramm der Figur 4 innerhalb des Auslösebereichs 18 darstellbar ist, erzeugt demnach bei geeig¬ net gewählter Sendefrequenz ft und geeignet gewählter Frequenzsteigung , Steigung' als Empfangsfrequenz fr eine negative Frequenz, die aufgrund ihrer Phasenbeziehung zwi¬ schen dem Inphasensignal und dem Quadratursignal detektierbar ist. In Abhängigkeit der Detektion einer derartigen Phasenbeziehung ist ein Sicherheitsmittel bzw. eine Sicher¬ heitsfunktion 13 auslösbar.
Claims
1. Vorrichtung zum Aussenden und zum Empfangen elektromagnetischer Strahlung zur Erkennung einer bevorstehenden Kollision mit einem vorausbefϊndlichen Ob¬ jekt innerhalb einer zukünftigen Zeitdauer (tτc), wobei die ausgesandte Strahlung (4) FMCW-moduliert wird, dadurch gekennzeichnet, dass die Rampensteigung
(fΗ/(tc-tA)) der Frequenzrampe (4) in Abhängigkeit der Sendefrequenz (f(t)) und in Abhängigkeit der zukünftigen Zeitdauer (tτc) bestimmt wird und bei der Detektion einer negativen Empfangsfrequenz eine bevorstehende Kollision innerhalb der zu¬ künftigen Zeitdauer (tτc) erkannt wird.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die zukünftige Zeit¬ dauer (t-rc), innerhalb der eine Kollision detektierbar ist, die Zeitdauer ist, die ein auszulösendes Sicherheitsmittel (13) und/oder eine auszulösende Sicherheitsfunk¬ tion (13) vor dem erkannten Kollisionszeitpunkt ausgelöst werden muss.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Detektion negativer Frequenzen ein Quadraturempfänger (I, Q) vorgesehen ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Quadraturemp- fänger einen Phasenkomparator (12) aufweist, der aus der Phasenbeziehung des
Inphasensignals (I) zum Quadratursignal (Q) bestimmt, ob die empfangene Fre¬ quenz (fr) eine positive oder negative Frequenz ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Sicherheitsmittel (13) und/oder eine Sicherheitsfunktion (13) ausgelöst wird, wenn eine negative Frequenz erkannt wird.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Sicherheitsmittel (13) und/oder die Sicherheitsfunktion (13) mindestens - eine automatische Fahrzeugverzögerung,
- ein automatischer Lenkeingriff,
- die Auslösung mindestens eines Insassenrückhaltesystems oder
- eine Kombination hieraus ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Auslösung mehrerer Sicherheitsmittel (13) und/oder Sicherheitsfunktionen (13) für jede Zeitdauer (tτc), die das jeweilige Sicherheitsmittel und/oder die Si¬ cherheitsfunktion vor dem erkannten Kollisionszeitpunkt ausgelöst werden muss, eine Frequenzrampe (4) mit entsprechender Rampensteigung (fii/(tc-tA)) vorgese¬ hen ist.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ausgesandte (4) und empfangene (5) elektromagnetische Strahlung Mik- rowellenstrahlung oder Laserstrahlung ist.
9. Verfahren zur Erkennung einer bevorstehenden Kollision mit einem vorausbefind¬ lichen Objekt innerhalb einer zukünftigen Zeitdauer (tτc), indem elektromagneti¬ scher Strahlung aussendet (4) und empfangen (5) wird, wobei die ausgesandte Strahlung (4) FMCW-moduliert wird, dadurch gekennzeichnet, dass die Rampen¬ steigung (fii/(tc-tA)) der Frequenzrampe (4) in Abhängigkeit der Sendefrequenz (f(t)) und in Abhängigkeit der zukünftigen Zeitdauer (tτc) bestimmt wird und eine bevorstehende Kollision innerhalb der zukünftigen Zeitdauer (tτc) erkannt wird, wenn eine negative Empfangsfrequenz detektiert wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die zukünftige Zeitdau¬ er 0τc), innerhalb der eine Kollision detektierbar ist, die Zeitdauer ist, die ein aus¬ zulösendes Sicherheitsmittel (13) und/oder eine auszulösende Sicherheitsfunktion (13) vor dem erkannten Kollisionszeitpunkt ausgelöst werden muss.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass zur Detektion negativer Frequenzen die Empfangssignale einem Quadraturempfänger (I, Q) zuge¬ führt werden.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass aus der Phasenbezie¬ hung des Inphasensignals (I) zum Quadratursignal (Q) mittels eines Phasenkompa- rators (12) bestimmt wird, ob die empfangene Frequenz (fr) eine positive oder ne¬ gative Frequenz ist.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass bei
Detektion einer negativen Frequenz ein Sicherheitsmittel (13) und/oder eine Si¬ cherheitsfunktion (13) ausgelöst wird.
14. Verfahren nach Ansprüche 13, dadurch gekennzeichnet dass als Sicherheitsmittel (13) und/oder als Sicherheitsfunktion (13) mindestens
- eine automatische Fahrzeugverzögerung,
- ein automatischer Lenkeingriff,
- die Auslösung mindestens eines Insassenrückhaltesystems oder
- eine Kombination hieraus ausgelöst wird.
15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass zur Auslösung mehrerer Sicherheitsmittel (13) und/oder Sicherheitsfunktionen (13) für jede Zeitdauer (tτc), die das jeweilige Sicherheitsmittel (13) und/oder die Sicher- heitsfunktion (13) vor dem erkannten Kollisionszeitpunkt ausgelöst werden muss, eine Frequenzrampe innerhalb des FMCW-modulierten Sendesignals (4)mit ent¬ sprechender Rampensteigung (fH/(fc-fA)) vorgesehen ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004048191A DE102004048191A1 (de) | 2004-09-30 | 2004-09-30 | Verfahren und Vorrichtung zur Erkennung einer bevorstehenden Kollision |
PCT/EP2005/053525 WO2006034896A1 (de) | 2004-09-30 | 2005-07-20 | Verfahren und vorrichtung zur erkennung einer bevorstehenden kollision |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1797451A1 true EP1797451A1 (de) | 2007-06-20 |
Family
ID=35124291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05776058A Withdrawn EP1797451A1 (de) | 2004-09-30 | 2005-07-20 | Verfahren und vorrichtung zur erkennung einer bevorstehenden kollision |
Country Status (6)
Country | Link |
---|---|
US (1) | US20080114510A1 (de) |
EP (1) | EP1797451A1 (de) |
JP (1) | JP4833985B2 (de) |
CN (1) | CN101048673B (de) |
DE (1) | DE102004048191A1 (de) |
WO (1) | WO2006034896A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4977443B2 (ja) * | 2006-10-31 | 2012-07-18 | 日立オートモティブシステムズ株式会社 | レーダ装置及びレーダ検出方法 |
KR101651440B1 (ko) * | 2008-05-16 | 2016-08-26 | 코닌클리케 필립스 엔.브이. | 셀프-믹싱 레이저 센서를 포함하는 방어 시스템 및 그러한 방어 시스템을 구동하는 방법 |
CN102479308B (zh) * | 2010-11-23 | 2014-10-08 | 上海华虹宏力半导体制造有限公司 | 射频识别防碰撞电路及其实现方法 |
DE102010063133A1 (de) | 2010-12-15 | 2012-06-21 | Robert Bosch Gmbh | Verfahren und System zur Bestimmung einer Eigenbewegung eines Fahrzeugs |
DE102013211846A1 (de) * | 2013-06-21 | 2014-12-24 | Robert Bosch Gmbh | Verfahren zum Betrieb eines Umfelderfassungssystems eines Fahrzeugs |
JP6146295B2 (ja) | 2013-12-26 | 2017-06-14 | 株式会社豊田中央研究所 | レーダ装置および速度の方向測定方法 |
DE102014212390A1 (de) * | 2014-06-27 | 2015-12-31 | Robert Bosch Gmbh | Verfahren zur Objektortung mit einem FMCW-Radar |
CN105946583B (zh) * | 2016-05-05 | 2018-07-10 | 观致汽车有限公司 | 一种车辆碰撞的响应方法和系统 |
US11885874B2 (en) * | 2018-12-19 | 2024-01-30 | Semiconductor Components Industries, Llc | Acoustic distance measuring circuit and method for low frequency modulated (LFM) chirp signals |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3198949B2 (ja) * | 1996-10-25 | 2001-08-13 | 三菱電機株式会社 | レーダ信号処理方法およびその方法を用いたレーダ装置 |
DE19833519A1 (de) * | 1997-08-05 | 1999-02-11 | Daimler Benz Aerospace Ag | Verfahren zur Entfernungs- und/oder Geschwindigkeitsmessung von Objekten mittels eines FMCW-Radargeräts und FMCW-Radargerät zur Durchführung des Verfahrens |
US6567479B1 (en) * | 1998-04-21 | 2003-05-20 | Uniden Financial, Inc. | System and method for extracting and compensating for reference frequency error in a communications system |
US6295495B1 (en) * | 2001-04-24 | 2001-09-25 | Ford Global Technologies, Inc. | Method for multi-directional anticipatory arming of vehicle restraints |
US6819991B2 (en) * | 2001-11-29 | 2004-11-16 | Ford Global Technologies, Llc | Vehicle sensing based pre-crash threat assessment system |
US6606052B1 (en) * | 2002-03-07 | 2003-08-12 | Visteon Global Technologies, Inc. | Method and apparatus for detecting multiple objects with frequency modulated continuous wave radar |
US6801843B2 (en) * | 2002-05-24 | 2004-10-05 | Ford Global Technologies, Llc | Vehicle pre-crash sensing based conic target threat assessment system |
DE10238948A1 (de) * | 2002-08-24 | 2004-03-04 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur ereignisgetriggerten Messung des Abstandes und der Relativgeschwindigkeit eines Objekts zu einem Bezugspunkt |
US7130730B2 (en) * | 2002-10-25 | 2006-10-31 | Ford Global Technologies Llc | Sensing strategy for damage mitigation in compatability situations |
JP3975883B2 (ja) * | 2002-10-25 | 2007-09-12 | 株式会社デンソー | 距離予測方法、及びレーダ装置 |
US7243013B2 (en) * | 2002-11-13 | 2007-07-10 | Ford Global Technologies, Llc | Vehicle radar-based side impact assessment method |
JP2004205279A (ja) * | 2002-12-24 | 2004-07-22 | Denso Corp | レーダ装置,プログラム |
-
2004
- 2004-09-30 DE DE102004048191A patent/DE102004048191A1/de not_active Withdrawn
-
2005
- 2005-07-20 CN CN2005800331408A patent/CN101048673B/zh not_active Expired - Fee Related
- 2005-07-20 EP EP05776058A patent/EP1797451A1/de not_active Withdrawn
- 2005-07-20 JP JP2007533972A patent/JP4833985B2/ja not_active Expired - Fee Related
- 2005-07-20 US US11/662,981 patent/US20080114510A1/en not_active Abandoned
- 2005-07-20 WO PCT/EP2005/053525 patent/WO2006034896A1/de active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2006034896A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2008514938A (ja) | 2008-05-08 |
CN101048673B (zh) | 2010-06-02 |
DE102004048191A1 (de) | 2006-04-06 |
US20080114510A1 (en) | 2008-05-15 |
CN101048673A (zh) | 2007-10-03 |
JP4833985B2 (ja) | 2011-12-07 |
WO2006034896A1 (de) | 2006-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1797451A1 (de) | Verfahren und vorrichtung zur erkennung einer bevorstehenden kollision | |
DE102009028232B4 (de) | Signalverarbeitungsvorrichtung, Radarvorrichtung, Fahrzeug und Signalverarbeitungsverfahren | |
EP1864155B1 (de) | Verfahren und vorrichtung zur abstands- und relativgeschwindigkeitsmessung mehrerer objekte | |
DE102013201865B4 (de) | Fahrzeug-radarvorrichtung | |
EP1761800B1 (de) | Radarsensor und verfahren zur auswertung von objekten | |
DE102013202227B4 (de) | Fahrzeug-Radarvorrichtung | |
DE102004024125B4 (de) | Radarvorrichtung | |
DE102012200975B4 (de) | Objektdetektionsvorrichtung | |
EP0758093B1 (de) | Radargerät mit reduzierter abgestrahlter Leistung | |
EP1856555B1 (de) | Radarsystem für kraftfahrzeuge mit automatischer precrash-cw-funktion | |
DE2514868C3 (de) | FM-Schwebungs-Rückstrahlortungsgerät zur gleichzeitigen Entfernungs- und Geschwindigkeitsmessung | |
DE102012021973A1 (de) | Verfahren zum Betreiben eines Radarsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug | |
DE102013202225A1 (de) | Fahrzeug-Radarvorrichtung | |
EP1340097A1 (de) | Radareinrichtung und verfahren zum betreiben einer radareinrichtung | |
DE102009024401A1 (de) | Azimuterfassungsvorrichtung und Radarvorrichtung | |
WO2014161687A1 (de) | Radarvorrichtung und verfahren mit antennenarray mit zwei schaltzuständen unterschiedlicher modulation | |
WO2005096011A1 (de) | Vorrichtung und verfahren zum ansteuern zumindest einer fahrzeugschutzeinrichtung | |
DE102014218796A1 (de) | Vorrichtung zum Erfassen eines Kriechens von Radarwellen | |
EP1600793A2 (de) | Radarsensor für Kraftfahrzeuge | |
WO2010112261A1 (de) | Mehrstrahlradarsensorvorrichtung und verfahren zum bestimmen eines abstandes | |
EP1635188A1 (de) | Verfahren und Vorrichtung zur Entfernungs- und Geschwindigkeitsmessung | |
WO2004023157A1 (de) | Vorrichtung und verfahren zum einseitenbanb-modulation eines radarsignals | |
DE10260434A1 (de) | Längenmessung mit Radar | |
DE102004047176A1 (de) | Radarsystem für Kraftfahrzeuge | |
DE102020105648A1 (de) | Adaptive reichweitenselektive verstärkungssteuerung im radarsystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070502 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT SE |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20090210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130201 |