EP1782439B1 - Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation - Google Patents

Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation Download PDF

Info

Publication number
EP1782439B1
EP1782439B1 EP05783110A EP05783110A EP1782439B1 EP 1782439 B1 EP1782439 B1 EP 1782439B1 EP 05783110 A EP05783110 A EP 05783110A EP 05783110 A EP05783110 A EP 05783110A EP 1782439 B1 EP1782439 B1 EP 1782439B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
materials according
particles
magnetorheological
magnetorheological materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05783110A
Other languages
German (de)
English (en)
Other versions
EP1782439A2 (fr
Inventor
Holger Böse
Alexandra-Maria Trendler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1782439A2 publication Critical patent/EP1782439A2/fr
Application granted granted Critical
Publication of EP1782439B1 publication Critical patent/EP1782439B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids

Definitions

  • the present invention relates to magnetorheological materials having magnetic and nonmagnetic inorganic additives, in particular magnetorheological fluids (MRF) with magnetic and non-magnetic inorganic additives, and their use.
  • MRF magnetorheological fluids
  • MRF are materials that change their flow behavior under the influence of an external magnetic field.
  • electrorheological fluids they usually consist of non-colloidal suspensions of particles which can be polarized in a magnetic or electric field in a carrier liquid which optionally contains further additives.
  • MRF brakes and different vibration and shock absorbers Mark R. Jolly, Jonathan W. Bender, and J. David Carlson, Properties and Applications of Commercial Magnetorheological Fluids, SPIE 5th Annual Int Symposium on Smart Structures and Materials, San Diego, CA, March 15, 1998 ). In the following some special properties of MRF and their influenceability are described.
  • MRF are usually non-colloidal suspensions of magnetizable particles of about one micron to one millimeter in size in a carrier liquid.
  • the MRF can also additives such.
  • the particles are ideally homogeneous and isotropically distributed, so that the MRF has a low base viscosity in magnet-free space.
  • the magnetizable particles arrange in a chain-like manner Structures parallel to the magnetic field lines. As a result, the fluidity of the suspension is limited, which manifests itself macroscopically as an increase in viscosity. As a rule, the viscosity increases monotonically with the applied magnetic field strength.
  • the changes in the flow behavior of the MRF depend on the concentration and type of magnetizable particles, their shape, size and size distribution; but also the properties of the carrier liquid, the additional additives, the applied field, the temperature and other factors.
  • the mutual interrelations of all these parameters are extremely complex, so that individual improvements of an MRF with respect to a specific target size have been the subject of investigations and optimization efforts again and again.
  • a research focus is the development of MRF with a low tendency to sedimentation.
  • MRFs tend to separate due to the different masses of their constituents in gravitational and centrifugal fields, ie, previously homogeneous mixed phases separate into a pure liquid phase and a sediment-rich sediment with time. This effect is undesirable because it primarily affects the magnetizable particles and thus affects the functioning of the MRF and the systems constructed therewith.
  • a development goal is therefore the provision of MRF with the lowest possible sedimentation tendency.
  • Another goal that is directly related to this is the simplest possible redispersibility. Since sedimentation can never be completely ruled out, it is intended that the segregated MRF at least be such that you can easily, ie with minimal effort, again converted into a homogeneous mixture. Furthermore, it is desirable that the materials without external magnetic field have the lowest possible base viscosity.
  • MRFs usually contain additives for stabilizing the magnetisable particles against sedimentation.
  • various organic additives are known.
  • inorganic additives for stabilizing the MRF are also mentioned. These include oxidic particles such as silica, especially as nanoparticles in the form of fumed silica, and phyllosilicates, in some cases organically modified.
  • US 5,985,168 describes the stabilization of magnetizable particles in the MRF by a combination of small particles, especially silica, and a bridging polymer. Both together form a gel that envelops the magnetizable particles as a layer.
  • the carrier liquid consists of various components and in the stabilizing the magnetizable particles differently organically modified phyllosilicates, so-called “organoclays” are included, which are each tailored to the specific properties of the components of the carrier liquid.
  • US 5,645,752 calls to stabilize the MRF colloidal metal oxides, such as. Fumed silica rendered hydrophobic by surface modification, as well as hydrophilic silicone oligomers and copolymeric organosilicone oligomers.
  • US 6,132,633 describes a water-based MRF as a carrier fluid using bentonites and hectorites.
  • EP 1 283 530 A2 and EP 1 283 531 A2 the use of fumed silica for stabilizing an MRF with bimodal particle size distribution based on a hydrocarbon-based carrier liquid is specified in the latter patent with the addition of a molybdenum-amine complex. Also in WO 03/021611 fumed silica is used.
  • WO 93/21644 A1 describes the composition of an MRF, which in addition to the magnetizable soft magnetic particles and hard magnetic particles, preferably iron oxide or chromium dioxide with particle sizes between 0.1 and 1 micron, contains.
  • the hard magnetic particles are adsorbed on the surface of the soft magnetic particles.
  • magnetorheological materials in particular MRF, are proposed, which are a combination of magnetic and non-magnetic inorganic materials and / or composite particles thereof.
  • all magnetic and non-magnetic inorganic materials are understood to be interrelated. It may be interactions such as e.g. van der Waals interactions or electromagnetic interactions, which can lead to a cladding of the nucleus.
  • nonmagnetic inorganic materials in particular those of anisometric particles, such as platelets or rods, are preferred. Examples of these are platelet-shaped phyllosilicates, e.g. Mica.
  • the magnetic materials all known from the prior art magnetic materials, in particular in the form of inorganic particles in question. An example of this is magnetite.
  • the mean particle size of the non-magnetic materials may be between 0.005 and 1000 ⁇ m, preferably between 0.01 and 200 ⁇ m.
  • the volume ratio of the magnetic and non-magnetic materials to each other is between 1:99 and 99: 1, preferably 10:90 and 90:10.
  • Composite particles in the sense of the invention are discrete particles which consist of both magnetic and non-magnetic materials.
  • the shell can cover the core completely or even partially.
  • a further advantageous embodiment of the magnetorheological materials according to the invention provides that the inorganic particles are at least partially organically modified.
  • a magnetorheological support material with such additives of magnetic and nonmagnetic inorganic materials has a very high stability against the sedimentation of the magnetizable particles and at the same time a particularly low base viscosity.
  • an extremely easy redispersibility is observed. This manifests itself in that the sediment formed after a long time with a stirring tool with the application of only a small amount of force again in the carrier medium, e.g. can be distributed in the liquid phase of the MRF.
  • the sediment usually has a firmer consistency and thus requires a higher force for redispersing the magnetizable particles.
  • a slight redispersibility offers a great advantage for the technical application, since the magnetorheological materials can be more easily homogenized in the case of use after a long period without operation. Otherwise, their performance would be limited by property changes.
  • a further advantage of the materials according to the invention containing the additives according to the invention is that a substantial insensitivity to temperature fluctuations is achieved by the use of inorganic additives.
  • inorganic Additives have a higher temperature stability than the organic additives used in commercial materials.
  • a lower temperature dependence of the stabilizing effect of inorganic additives compared to organic additives is to be expected, since organic stabilizers can form polymers with temperature-variable structures in the support medium.
  • the surprisingly high stabilizing effect of the composite particles compared to the sedimentation of the magnetizable particles in the materials according to the invention is attributed to the formation of special structures in the carrier medium.
  • One possible explanation is the formation of web-like connections between the magnetisable particles via the composite particles.
  • the composite particles thus create bridges between the magnetizable particles and keep them in suspension.
  • the attachment of the composite particles to the magnetizable particles is attributed to weak magnetic interactions of the magnetic shell of the composite particles due to low remanence. When shearing the materials according to the invention without a magnetic field, the weak bridges are broken with a relatively small force and can regress again after the shear has ended. This means that the base viscosity is relatively low.
  • the magnetic inorganic particles at least partially envelop the non-magnetic particles, thereby forming "composite particles" of both species which in turn are stable Build structures between the magnetizable particles.
  • the preparation of the discrete composite particles is preferably carried out by a prior coating of the non-magnetic inorganic particles with magnetic material.
  • the coating can be made by attaching smaller magnetic particles to larger nonmagnetic inorganic substrate particles.
  • the coating can also be formed by the separate addition of larger non-magnetic inorganic particles and smaller magnetic particles in the carrier medium, thereby resulting in composite particles.
  • a preferred form of the core is an anisometric form such as. As platelets or rods.
  • An example is formed by platy sheet silicates, e.g. Mica.
  • the smaller magnetic particles, e.g. Magnetite cover the surface of non-magnetic inorganic particles.
  • a further advantageous embodiment of the magnetorheological materials according to the invention in relation to the composite particles provides that the average particle size of the composite particles is between 0.005 and 1000 ⁇ m, preferably between 0.01 ⁇ m and 200 ⁇ m. It has further been found that it is favorable if the volume ratio of the magnetic and non-magnetic inorganic components of the composite particle is between 1:99 and 99: 1, preferably between 10:90 and 90:10.
  • the magnetizable particles may be formed from soft magnetic particles of the prior art.
  • the magnetizable particles both from the amount of soft magnetic metallic materials such as iron, cobalt, nickel (even in non-pure form) and alloys thereof such as iron-cobalt, iron-nickel; magnetic steel; Iron-silicon can be selected as well as from the amount of soft magnetic oxide ceramic materials such as the cubic ferrites, the perovskites and the garnets of the general formula MO ⁇ Fe 2 O 3
  • mixed ferrites such as MnZn, NiZn, NiCo, NiCuCo, NiMg, CuMg -Ferrite be used.
  • the magnetisable particles can also consist of iron carbide or iron nitride particles or of alloys of vanadium, tungsten, copper and manganese or of mixtures of the mentioned particle materials or of mixtures of different magnetizable types of solids.
  • the soft magnetic materials may also be present all or partially in contaminated form.
  • the carrier medium of the magnetorheological materials can be prepared from carrier liquids of the prior art such as water, mineral oils, synthetic oils such as polyalphaolefins, hydrocarbons, silicone oils, esters, polyethers, fluorinated polyethers, polyglycols, fluorinated hydrocarbons, halogenated hydrocarbons, fluorinated silicones, organically modified silicones and Copolymers thereof or consist of liquid mixtures.
  • carrier liquids of the prior art such as water, mineral oils, synthetic oils such as polyalphaolefins, hydrocarbons, silicone oils, esters, polyethers, fluorinated polyethers, polyglycols, fluorinated hydrocarbons, halogenated hydrocarbons, fluorinated silicones, organically modified silicones and Copolymers thereof or consist of liquid mixtures.
  • the carrier medium of the magnetorheological materials consists of fats or gels or of elastomers.
  • the suspension further inorganic particles such as SiO 2 TiO 2 iron oxides, silicates such.
  • silicates such as phyllosilicates or organic additives and combinations thereof.
  • magnetorheological materials it is also possible to add to the magnetorheological materials to reduce abrasion particulate additives such as graphite, perfluoroethylene or molybdenum compounds such as molybdenum disulfide and combinations thereof.
  • abrasion particulate additives such as graphite, perfluoroethylene or molybdenum compounds such as molybdenum disulfide and combinations thereof.
  • Alternative embodiments of the magnetorheological materials further provide that the suspension for use for the surface treatment of workpieces special abrasive and / or chemical etching additives, such.
  • alumina cerium oxide, silicon carbide or diamond contains.
  • the proportion of magnetizable particles between 10 and 70 vol .-%, preferably between 20 and 60 vol .-%, is; the proportion of the carrier medium is between 20 and 90% by volume, preferably between 30 and 80% by volume, the total amount of the combination of the magnetic and nonmagnetic additives and / or composite particles between 0.1 and 20% by mass is preferred between 0.2 and 15% by mass, and the proportion of non-magnetizable additives is between 0.001 and 20% by mass, preferably between 0.01 and 15% by mass (in each case based on the magnetisable solids).
  • the invention further relates to the use of the materials according to the invention.
  • magnetorheological materials according to the invention provides for their use in adaptive shock and vibration dampers, controllable brakes, clutches and in sports or training equipment. Special materials can also be used for the surface treatment of workpieces.
  • the magnetorheological materials can also be used to generate and / or display haptic information such as characters, computer-simulated objects, sensor signals or images, in haptic form, to simulate viscous, elastic and / or visco-elastic properties or the consistency distribution of an object, in particular Training and / or research purposes and / or used for medical applications.
  • haptic information such as characters, computer-simulated objects, sensor signals or images, in haptic form, to simulate viscous, elastic and / or visco-elastic properties or the consistency distribution of an object, in particular Training and / or research purposes and / or used for medical applications.
  • the sedimentation analysis was carried out in glass tubes (total height 160 mm, internal diameter 14.1 mm, wall thickness 0.8 mm) at 25 ° C.
  • the phase boundary between the sediment and the supernatant was recorded visually at defined time intervals. This is hereafter the height of settled solid referred to the total height of the MRF sample is referred to as "sediment height" [%].
  • the results are in illustration 1 shown.
  • the two MPF 3 and MPF 4 according to the invention have an extremely low phase separation within the first observation days and then remain stable for 60 days without the sedimentation progressing. Even after 60 days, the sediment level is still> 97%.
  • the two comparative suspensions MRF 1 and MRF 2 sediment much more strongly according to the prior art and already after only a few days only have sediment heights of about 73 and 90%, respectively.
  • the two MRF 3 and MRF 4 according to the invention provide significantly better results than the two comparative suspensions MPF 1 and MRF 2 both in terms of the sedimentation level and in terms of the redispersing behavior .
  • MRF 1 has the lowest and MRF 2 the highest base viscosity in magnetic field free space, while the two MRF 3 and MRF 4 according to the invention occupy a central position.
  • the two suspensions MRF 3 and MRF 4 according to the invention thus have an outstanding property profile which predestines them for use as magneto-rheological fluids.
  • the two MRF 3 and MRF 4 according to the invention have a significantly higher shear stress than the two magnetorheological fluids MRF 1 and MRF 2 according to the state of the art from a magnetic flux density of approximately 200 mT.
  • high shear stresses in the applied magnetic field are desirable since they cause effective translation of a magnetic excitation into a rheological change in the MRF.
  • the two inventive MRF 3 and MRF 4 have a further advantageous Property for use as magnetorheological fluids.
  • inventive MRF 3 and MRF 4 with magnetic and non-magnetic inorganic additives compared to prior art magnetorheological fluids with respect to the property combination sedimentation stability, redispersibility, base viscosity, shear stress in the magnetic field and viscosity / temperature dependence provide decisive advantages .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Lubricants (AREA)
  • Hard Magnetic Materials (AREA)
  • Cosmetics (AREA)

Claims (25)

  1. Matériaux magnéto-rhéologiques constitués d'au moins un milieu support non magnétisable et de particules magnétisables contenues à l'intérieur, caractérisés en ce qu'en supplément une combinaison de matériaux magnétiques et de matériaux inorganiques non-magnétiques et/ou de particules composites à base de matériaux magnétiques et de matériaux inorganiques non-magnétiques est incluse.
  2. Matériaux magnéto-rhéologiques selon la revendication 1, caractérisés en ce que les matériaux inorganiques non-magnétiques à base de particules anisométriques, telles que plaquettes ou baguettes, sont sélectionnés.
  3. Matériaux magnéto-rhéologiques selon la revendication 2, caractérisés en ce que les particules sont à base de silicates en feuillets en forme de plaquettes, comme par exemple du mica.
  4. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que la grandeur de particule moyenne des matériaux inorganiques non-magnétiques se situe entre 0,005 et 1000 µm, de préférence entre 0,01 µm et 200 µm.
  5. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que le rapport de volume entre les matériaux magnétiques et les matériaux inorganiques non-magnétiques se situe entre 1:99 et 99:1, de préférence entre 10:90 et 90:10.
  6. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que les matériaux magnétiques sont à base de particules inorganiques, par exemple à base de magnétite.
  7. Matériaux magnéto-rhéologiques selon la revendication 1, caractérisés en ce que les particules composites sont formées d'un noyau non-magnétique et d'une enveloppe magnétique.
  8. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que les particules composites présentent une forme anisométrique, telle que plaquettes ou baguettes.
  9. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que les particules composites ont été formées dans le milieu support.
  10. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que les particules inorganiques sont modifiées organiquement au moins en partie.
  11. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que la grandeur de particule moyenne des particules composites se situe entre 0,005 et 1000 µm, de préférence entre 0,01 µm et 200 µm.
  12. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que le rapport de volume entre la composante magnétique et la composante inorganique non-magnétique des particules composites se situe entre 1:99 et 99:1, de préférence entre 10:90 et 90:10.
  13. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que les particules magnétisables à base de matériaux magnétiques doux sont sélectionnées.
  14. Matériaux magnéto-rhéologiques selon la revendication 13, caractérisés en ce que les particules magnétisables à base de matériaux métalliques magnétiques doux tels que fer, cobalt, nickel (même dans une forme non pure) et d'alliages de ces éléments tels que fer-cobalt, fer-nickel ; acier magnétique ; fer-silicium et/ou des mélanges de ces alliages sont sélectionnés.
  15. Matériaux magnéto-rhéologiques selon la revendication 13, caractérisés en ce que les particules magnétisables à base de matériaux magnétiques doux et de céramique oxydée tels que ferrites cubiques, pérovskites et grenats de formule générale

            MO.Fe2O3

    avec un ou plusieurs métaux provenant du groupe M = Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd ou Mg et/ou de leurs mélanges sont sélectionnés.
  16. Matériaux magnéto-rhéologiques selon la revendication 13, caractérisés en ce que les particules magnétisables à base de ferrites mixtes tels que ferrites de MnZn, NiZn, NiCo, NiCuCo, NiMg, CuMg et/ou de leurs mélanges sont sélectionnés.
  17. Matériaux magnéto-rhéologiques selon la revendication 13, caractérisés en ce que les particules magnétisables à base de carbure de fer, de nitrure de fer, d'alliages de vanadium, tungstène, cuivre et manganèse et/ou de leurs mélanges sont sélectionnés.
  18. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que le milieu support est sélectionné à partir de
    - liquides supports tels que eau, huiles minérales, huiles synthétiques telles que polyalphaoléfines, hydrocarbures, huiles de silicone, esters, polyéthers, polyéthers fluorés, polyglycols, hydrocarbures fluorés, hydrocarbures halogénés, silicones fluorés, silicones modifiés organiquement, ainsi que copolymères de ces produits ou de mélanges de liquide de ces produits,
    - graisses ou gels ou
    - à partir d'élastomères.
  19. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce qu'ils contiennent comme additifs des dispersants, des antioxydants, des agents anti-mousse et/ou des agents anti-usure.
  20. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce qu'ils contiennent d'autres additifs pour la réduction de phénomènes d'abrasion, des additifs sous forme de particules tels que graphite, tétrafluoréthylène ou composés de molybdène tels que bisulfite de molybdène ou des combinaisons de ces produits.
  21. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce qu'ils contiennent comme autres additifs destinés à une utilisation pour le traitement de surface de pièces des produits additifs à effet abrasif et/ou à effet décapant au plan chimique tels que par exemple oxyde d'aluminium, oxyde cérique, carbure de silicium ou diamant.
  22. Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que
    - le pourcentage des particules magnétisables se situe entre 10 et 70 % en volume, de préférence entre 20 et 60 % en volume,
    - le pourcentage du milieu support se situe entre 20 et 90 % en volume, de préférence entre 30 et 80 % en volume,
    - le pourcentage de la combinaison de matériaux magnétiques et non-magnétiques et/ou des particules composites se situe entre 0,1 et 20 % de masse, de préférence entre 0,2 et 15 % de masse (par rapport aux solides magnétisables),
    - le pourcentage des additifs se situe entre 0,001 et 20 % de masse, de préférence entre 0,01 et 15 % de masse (par rapport aux solides magnétisables).
  23. Utilisation des matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes 1 à 22 dans des amortisseurs de chocs et de vibrations adaptatifs, des freins contrôlables, des accouplements, ainsi que dans des appareils de sport ou d'entraînement.
  24. Utilisation des matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications 1 à 22 précédentes pour le traitement de surface de pièces.
  25. Utilisation des matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes 1 à 22 pour la génération et/ou la présentation d'informations haptiques telles que caractères graphiques, objets simulés par ordinateur, capteur de signaux ou images ; pour la simulation de propriétés visqueuses, élastiques et/ou viscoélastiques ou de la répartition de la consistance d'un objet.
EP05783110A 2004-08-27 2005-08-25 Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation Not-in-force EP1782439B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004041651A DE102004041651B4 (de) 2004-08-27 2004-08-27 Magnetorheologische Materialien mit magnetischen und nichtmagnetischen anorganischen Zusätzen und deren Verwendung
PCT/EP2005/009194 WO2006024456A2 (fr) 2004-08-27 2005-08-25 Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation

Publications (2)

Publication Number Publication Date
EP1782439A2 EP1782439A2 (fr) 2007-05-09
EP1782439B1 true EP1782439B1 (fr) 2010-10-13

Family

ID=35530843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05783110A Not-in-force EP1782439B1 (fr) 2004-08-27 2005-08-25 Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation

Country Status (5)

Country Link
US (1) US7708901B2 (fr)
EP (1) EP1782439B1 (fr)
AT (1) ATE484837T1 (fr)
DE (2) DE102004041651B4 (fr)
WO (1) WO2006024456A2 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004041649B4 (de) * 2004-08-27 2006-10-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Elastomere und deren Verwendung
DE102004041650B4 (de) 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Materialien mit hohem Schaltfaktor und deren Verwendung
DE102005034925B4 (de) * 2005-07-26 2008-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Elastomerkomposite sowie deren Verwendung
DE102006021260A1 (de) * 2006-05-03 2007-11-15 Siemens Ag Bauteil mit in dessen Gefügematrix eingelagerten Nanopartikeln
DE102007017589B3 (de) * 2007-04-13 2008-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dämpfungsvorrichtung mit feldsteuerbarer Flüssigkeit
KR101070778B1 (ko) * 2009-01-22 2011-10-06 한국과학기술연구원 자성 복합 분말, 이의 제조방법 및 이를 포함하는 전자파 노이즈 억제 필름
US8361341B2 (en) * 2009-03-09 2013-01-29 GM Global Technology Operations LLC Magnetorheological compositions including nonmagnetic material
US7878387B2 (en) * 2009-05-07 2011-02-01 GM Global Technology Operations LLC Magnetic particle containing material for fastening together parts or substrates
WO2010141336A1 (fr) 2009-06-01 2010-12-09 Lord Corporation Fluides magnétorhéologiques à haute durabilité
KR101097154B1 (ko) 2009-09-18 2011-12-22 연세대학교 산학협력단 철-폴리머 복합체 제조방법, 이 제조방법에 의해 제조된 철-폴리머 복합체를 이용한 고경도 전도성 재료의 표면 연마방법 및 장치
DE102010026782A1 (de) 2010-07-09 2012-01-12 Eckart Gmbh Plättchenförmige Eisenpigmente, magnetorheologisches Fluid und Vorrichtung
KR101237001B1 (ko) * 2010-08-20 2013-02-25 동현전자 주식회사 코어-쉘 타입의 필러 입자를 포함하는 복합 시트용 조성물, 이를 포함하는 복합 시트 및 복합 시트의 제조 방법
KR101735471B1 (ko) * 2014-07-28 2017-05-16 주식회사 씨케이머티리얼즈랩 촉각 정보 제공 모듈
CN106796451B (zh) 2014-07-28 2020-07-21 Ck高新材料有限公司 触觉信息提供模块
DE102020215932A1 (de) 2020-12-15 2022-06-15 Contitech Vibration Control Gmbh Schaltbares Hydrolager
CN114203384A (zh) * 2021-12-13 2022-03-18 盱眙县凹土应用技术研发与成果转化中心 一种双分散磁流变液及其制备方法

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575360A (en) * 1947-10-31 1951-11-20 Rabinow Jacob Magnetic fluid torque and force transmitting device
US2938183A (en) * 1956-11-09 1960-05-24 Bell Telephone Labor Inc Single crystal inductor core of magnetizable garnet
US3425666A (en) * 1963-02-21 1969-02-04 Chevron Res Process for producing ferrimagnetic materials
GB1428000A (en) * 1972-03-07 1976-03-10 Lignes Telegraph Telephon Magnetic materials for magnetic circuits
JPS6259564A (ja) * 1985-09-10 1987-03-16 日本碍子株式会社 セラミツクス用成形助剤及びそれを用いて得られた成形体並びにセラミツクス製品の製造法
DE3890400C2 (de) 1987-05-19 1994-02-10 Bridgestone Corp Verwendung einer Kautschukmischung in der Laufschicht von Luftreifen
US5771013A (en) * 1989-05-01 1998-06-23 Dow Corning Corporation Method for stabilizing compositions containing carbonyl iron powder
US5167850A (en) * 1989-06-27 1992-12-01 Trw Inc. Fluid responsive to magnetic field
US5002677A (en) 1989-09-19 1991-03-26 The B. F. Goodrich Company Flexible high energy magnetic blend compositions based on ferrite particles in highly saturated nitrile rubber and methods of processing the same
JPH03119041A (ja) 1989-09-30 1991-05-21 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
DE4101869A1 (de) 1991-01-23 1992-07-30 Basf Ag Kunststoffmischung mit ferromagnetischen oder ferroelektrischen fuellstoffen
ATE157192T1 (de) * 1992-04-14 1997-09-15 Byelocorp Scient Inc Magnetorheologische flüssigkeiten und herstellungsverfahrens
US5578238A (en) * 1992-10-30 1996-11-26 Lord Corporation Magnetorheological materials utilizing surface-modified particles
CA2148000C (fr) * 1992-10-30 2000-10-10 Keith D. Weiss Matieres magnetorheologiques thixotropes
RU2115967C1 (ru) 1992-10-30 1998-07-20 Лорд Корпорейшн Магнитореологический материал
CA2158941A1 (fr) * 1994-01-27 1995-08-03 Ciaran Bernard Mcardle Compositions et procedes de formation de liaisons et de chemins conducteurs anisotropes entre deux groupes de conducteurs
US5549837A (en) * 1994-08-31 1996-08-27 Ford Motor Company Magnetic fluid-based magnetorheological fluids
US5900184A (en) * 1995-10-18 1999-05-04 Lord Corporation Method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid device
EP0784163B1 (fr) 1996-01-11 2002-07-03 Ford Motor Company Limited Manchon à rigidité variable utilisant élastomères magnétorhéologiques
DE19613194A1 (de) * 1996-04-02 1997-10-09 Huels Chemische Werke Ag Reifenlaufflächen mit geringem Rollwiderstand und verbessertem ABS-Bremsen
US5667715A (en) * 1996-04-08 1997-09-16 General Motors Corporation Magnetorheological fluids
DE19614140C1 (de) 1996-04-10 1997-05-07 B & F Formulier Und Abfuell Gm Verfahren zur Herstellung einer Dichtungsmasse
DE19725971A1 (de) 1997-06-19 1998-12-24 Huels Silicone Gmbh RTV-Siliconkautschuk-Mischungen
US5985168A (en) * 1997-09-29 1999-11-16 University Of Pittsburgh Of The Commonwealth System Of Higher Education Magnetorheological fluid
US5971835A (en) * 1998-03-25 1999-10-26 Qed Technologies, Inc. System for abrasive jet shaping and polishing of a surface using magnetorheological fluid
US6123633A (en) * 1998-09-03 2000-09-26 Wilson Sporting Goods Co. Inflatable game ball with a lobular carcass and a relatively thin cover
US6399193B1 (en) * 1998-12-18 2002-06-04 The University Of Massachusetts Lowell Surfacing laminate with bonded with pigmented pressure sensitive adhesive
US6203717B1 (en) * 1999-07-01 2001-03-20 Lord Corporation Stable magnetorheological fluids
US6132633A (en) * 1999-07-01 2000-10-17 Lord Corporation Aqueous magnetorheological material
US6599439B2 (en) * 1999-12-14 2003-07-29 Delphi Technologies, Inc. Durable magnetorheological fluid compositions
AU2001241642A1 (en) 2000-02-18 2001-08-27 The Board Of Regents Of The University And Community College System Of Nevada Magnetorheological polymer gels
US6395193B1 (en) 2000-05-03 2002-05-28 Lord Corporation Magnetorheological compositions
DE10024439A1 (de) 2000-05-19 2001-12-06 Koppe Franz Verguss- oder Einbettmasse mit elektromagnetischen Abschirmeigenschaften zur Herstellung elektronischer Bauteile
EP1247283B1 (fr) * 2000-10-06 2006-08-16 The Adviser - Defence Research & Development Organisation Composition fluidique magneto-sensible et procede de preparation associe
US6451219B1 (en) * 2000-11-28 2002-09-17 Delphi Technologies, Inc. Use of high surface area untreated fumed silica in MR fluid formulation
JP4104978B2 (ja) 2000-11-29 2008-06-18 ジ アドバイザー − ディフェンス リサーチ アンド ディベラップメント オーガナイゼイション 磁気流動学的流体組成物およびその製造方法
US6610404B2 (en) * 2001-02-13 2003-08-26 Trw Inc. High yield stress magnetorheological material for spacecraft applications
JP3608612B2 (ja) 2001-03-21 2005-01-12 信越化学工業株式会社 電磁波吸収性熱伝導組成物及び熱軟化性電磁波吸収性放熱シート並びに放熱施工方法
US20030030026A1 (en) * 2001-08-06 2003-02-13 Golden Mark A. Magnetorheological fluids
US20030034475A1 (en) 2001-08-06 2003-02-20 Ulicny John C. Magnetorheological fluids with a molybdenum-amine complex
US6855426B2 (en) * 2001-08-08 2005-02-15 Nanoproducts Corporation Methods for producing composite nanoparticles
US20030042461A1 (en) 2001-09-04 2003-03-06 Ulicny John C. Magnetorheological fluids with an additive package
US20040186234A1 (en) 2001-09-14 2004-09-23 Masashi Tsukamoto Resin composition
US6592772B2 (en) * 2001-12-10 2003-07-15 Delphi Technologies, Inc. Stabilization of magnetorheological fluid suspensions using a mixture of organoclays
US20040126565A1 (en) * 2002-05-09 2004-07-01 Ganapathy Naganathan Actively controlled impact elements
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
US7261834B2 (en) * 2003-05-20 2007-08-28 The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno Tunable magneto-rheological elastomers and processes for their manufacture
US7419616B2 (en) * 2004-08-13 2008-09-02 Gm Global Technology Operations, Inc. Magnetorheological fluid compositions
DE102004041649B4 (de) * 2004-08-27 2006-10-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Elastomere und deren Verwendung
DE102004041650B4 (de) * 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Materialien mit hohem Schaltfaktor und deren Verwendung
DE102005034925B4 (de) 2005-07-26 2008-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Elastomerkomposite sowie deren Verwendung
US7393463B2 (en) * 2005-09-16 2008-07-01 Gm Global Technology Operations, Inc. High temperature magnetorheological fluid compositions and devices
US7354528B2 (en) * 2005-09-22 2008-04-08 Gm Global Technology Operations, Inc. Magnetorheological fluid compositions
DE102007008300B4 (de) * 2006-08-12 2011-08-25 Schott Ag, 55122 Bleifreies optisches Glas der Schwerflint- und Lanthanschwerflintlage sowie dessen Herstellung und Verwendung

Also Published As

Publication number Publication date
DE502005010394D1 (de) 2010-11-25
US20070210274A1 (en) 2007-09-13
WO2006024456A2 (fr) 2006-03-09
ATE484837T1 (de) 2010-10-15
US7708901B2 (en) 2010-05-04
DE102004041651A1 (de) 2006-03-02
WO2006024456A3 (fr) 2006-05-26
EP1782439A2 (fr) 2007-05-09
DE102004041651B4 (de) 2006-10-19

Similar Documents

Publication Publication Date Title
EP1782439B1 (fr) Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation
EP1782437B1 (fr) Materiaux magnetorheologiques a facteur de commutation eleve et leur utilisation
EP1899995B1 (fr) Liquide magnéto-rhéologique
DE69706742T2 (de) Magnetorheologische Flüssigkeiten
DE69313273T2 (de) Magnetorheologische flüssigkeiten und herstellungsverfahrens
DE69619538T2 (de) Verfahren und zusammenstellung für eine magnetorheologische flüssigkeit zur kraftserhöhung in ein magnetorheologischen gerät
DE112010003467B4 (de) Magnetorheologisches fluid und verfahren zur herstellung desselben
DE69617722T2 (de) Wasserhaltige magnetorheologische materialen
EP2067147B1 (fr) Formulation magnétorhéologique
DE60019627T2 (de) Ferrofluid-zusammensetzung und verfahren
DE10191871B4 (de) Ein magnetorheologisches Fluid und ein Verfahren zur Herstellung desselben
WO2012004236A1 (fr) Pigments de fer en forme de feuillets, fluide magnéto-rhéologique, et dispositif correspondant
DE60017167T2 (de) Zusammensetzung und verfahren zur herstellung einer magnetischen flüssigkeit mit chemischer stabilität
DE60220490T2 (de) Stabilisierung von magnetorheologischen Suspensionen mit einem Gemisch aus organischem Ton
EP0953034A1 (fr) Composition liquide et son utilisation comme liquide magneto-rheologique
DE69527304T2 (de) Ferrofluid mit verbesserter oxidationsbeständigkheit
DE112016007083T5 (de) Magnetorheologische flüssigkeit
DE69008254T2 (de) Flüssigkeit, die auf ein Magnetfeld reagiert.
DE112010002358T5 (de) Magnetorheologische Zusammensetzungen, die nicht-magnetisches Material umfassen
KR101602315B1 (ko) 판 형상의 철 입자들을 포함하는 자기유변유체
Gómez et al. Aspects Concerning the Fabrication of Magnetorheological Fluids Containing High Magnetization FeCo Nanoparticles
Gutiérrez et al. Aspects Concerning the Fabrication of Magnetorheological Fluids Containing High Magnetization FeCo Nanoparticles. Fluids 2021, 6, 132
JPH04261496A (ja) 電気粘性流体の分散粒子沈澱防止方法
DE112023000290T5 (de) Magnetische viskose flüssigkeit und mechanische vorrichtung
JP2005041896A (ja) 磁気粘性流体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070119

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005010394

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101013

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

26N No opposition filed

Effective date: 20110714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005010394

Country of ref document: DE

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 484837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110825

Ref country code: CY

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150824

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160825

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160825

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005010394

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302