EP1782439B1 - Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation - Google Patents
Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation Download PDFInfo
- Publication number
- EP1782439B1 EP1782439B1 EP05783110A EP05783110A EP1782439B1 EP 1782439 B1 EP1782439 B1 EP 1782439B1 EP 05783110 A EP05783110 A EP 05783110A EP 05783110 A EP05783110 A EP 05783110A EP 1782439 B1 EP1782439 B1 EP 1782439B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic
- materials according
- particles
- magnetorheological
- magnetorheological materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/44—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
- H01F1/447—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
Definitions
- the present invention relates to magnetorheological materials having magnetic and nonmagnetic inorganic additives, in particular magnetorheological fluids (MRF) with magnetic and non-magnetic inorganic additives, and their use.
- MRF magnetorheological fluids
- MRF are materials that change their flow behavior under the influence of an external magnetic field.
- electrorheological fluids they usually consist of non-colloidal suspensions of particles which can be polarized in a magnetic or electric field in a carrier liquid which optionally contains further additives.
- MRF brakes and different vibration and shock absorbers Mark R. Jolly, Jonathan W. Bender, and J. David Carlson, Properties and Applications of Commercial Magnetorheological Fluids, SPIE 5th Annual Int Symposium on Smart Structures and Materials, San Diego, CA, March 15, 1998 ). In the following some special properties of MRF and their influenceability are described.
- MRF are usually non-colloidal suspensions of magnetizable particles of about one micron to one millimeter in size in a carrier liquid.
- the MRF can also additives such.
- the particles are ideally homogeneous and isotropically distributed, so that the MRF has a low base viscosity in magnet-free space.
- the magnetizable particles arrange in a chain-like manner Structures parallel to the magnetic field lines. As a result, the fluidity of the suspension is limited, which manifests itself macroscopically as an increase in viscosity. As a rule, the viscosity increases monotonically with the applied magnetic field strength.
- the changes in the flow behavior of the MRF depend on the concentration and type of magnetizable particles, their shape, size and size distribution; but also the properties of the carrier liquid, the additional additives, the applied field, the temperature and other factors.
- the mutual interrelations of all these parameters are extremely complex, so that individual improvements of an MRF with respect to a specific target size have been the subject of investigations and optimization efforts again and again.
- a research focus is the development of MRF with a low tendency to sedimentation.
- MRFs tend to separate due to the different masses of their constituents in gravitational and centrifugal fields, ie, previously homogeneous mixed phases separate into a pure liquid phase and a sediment-rich sediment with time. This effect is undesirable because it primarily affects the magnetizable particles and thus affects the functioning of the MRF and the systems constructed therewith.
- a development goal is therefore the provision of MRF with the lowest possible sedimentation tendency.
- Another goal that is directly related to this is the simplest possible redispersibility. Since sedimentation can never be completely ruled out, it is intended that the segregated MRF at least be such that you can easily, ie with minimal effort, again converted into a homogeneous mixture. Furthermore, it is desirable that the materials without external magnetic field have the lowest possible base viscosity.
- MRFs usually contain additives for stabilizing the magnetisable particles against sedimentation.
- various organic additives are known.
- inorganic additives for stabilizing the MRF are also mentioned. These include oxidic particles such as silica, especially as nanoparticles in the form of fumed silica, and phyllosilicates, in some cases organically modified.
- US 5,985,168 describes the stabilization of magnetizable particles in the MRF by a combination of small particles, especially silica, and a bridging polymer. Both together form a gel that envelops the magnetizable particles as a layer.
- the carrier liquid consists of various components and in the stabilizing the magnetizable particles differently organically modified phyllosilicates, so-called “organoclays” are included, which are each tailored to the specific properties of the components of the carrier liquid.
- US 5,645,752 calls to stabilize the MRF colloidal metal oxides, such as. Fumed silica rendered hydrophobic by surface modification, as well as hydrophilic silicone oligomers and copolymeric organosilicone oligomers.
- US 6,132,633 describes a water-based MRF as a carrier fluid using bentonites and hectorites.
- EP 1 283 530 A2 and EP 1 283 531 A2 the use of fumed silica for stabilizing an MRF with bimodal particle size distribution based on a hydrocarbon-based carrier liquid is specified in the latter patent with the addition of a molybdenum-amine complex. Also in WO 03/021611 fumed silica is used.
- WO 93/21644 A1 describes the composition of an MRF, which in addition to the magnetizable soft magnetic particles and hard magnetic particles, preferably iron oxide or chromium dioxide with particle sizes between 0.1 and 1 micron, contains.
- the hard magnetic particles are adsorbed on the surface of the soft magnetic particles.
- magnetorheological materials in particular MRF, are proposed, which are a combination of magnetic and non-magnetic inorganic materials and / or composite particles thereof.
- all magnetic and non-magnetic inorganic materials are understood to be interrelated. It may be interactions such as e.g. van der Waals interactions or electromagnetic interactions, which can lead to a cladding of the nucleus.
- nonmagnetic inorganic materials in particular those of anisometric particles, such as platelets or rods, are preferred. Examples of these are platelet-shaped phyllosilicates, e.g. Mica.
- the magnetic materials all known from the prior art magnetic materials, in particular in the form of inorganic particles in question. An example of this is magnetite.
- the mean particle size of the non-magnetic materials may be between 0.005 and 1000 ⁇ m, preferably between 0.01 and 200 ⁇ m.
- the volume ratio of the magnetic and non-magnetic materials to each other is between 1:99 and 99: 1, preferably 10:90 and 90:10.
- Composite particles in the sense of the invention are discrete particles which consist of both magnetic and non-magnetic materials.
- the shell can cover the core completely or even partially.
- a further advantageous embodiment of the magnetorheological materials according to the invention provides that the inorganic particles are at least partially organically modified.
- a magnetorheological support material with such additives of magnetic and nonmagnetic inorganic materials has a very high stability against the sedimentation of the magnetizable particles and at the same time a particularly low base viscosity.
- an extremely easy redispersibility is observed. This manifests itself in that the sediment formed after a long time with a stirring tool with the application of only a small amount of force again in the carrier medium, e.g. can be distributed in the liquid phase of the MRF.
- the sediment usually has a firmer consistency and thus requires a higher force for redispersing the magnetizable particles.
- a slight redispersibility offers a great advantage for the technical application, since the magnetorheological materials can be more easily homogenized in the case of use after a long period without operation. Otherwise, their performance would be limited by property changes.
- a further advantage of the materials according to the invention containing the additives according to the invention is that a substantial insensitivity to temperature fluctuations is achieved by the use of inorganic additives.
- inorganic Additives have a higher temperature stability than the organic additives used in commercial materials.
- a lower temperature dependence of the stabilizing effect of inorganic additives compared to organic additives is to be expected, since organic stabilizers can form polymers with temperature-variable structures in the support medium.
- the surprisingly high stabilizing effect of the composite particles compared to the sedimentation of the magnetizable particles in the materials according to the invention is attributed to the formation of special structures in the carrier medium.
- One possible explanation is the formation of web-like connections between the magnetisable particles via the composite particles.
- the composite particles thus create bridges between the magnetizable particles and keep them in suspension.
- the attachment of the composite particles to the magnetizable particles is attributed to weak magnetic interactions of the magnetic shell of the composite particles due to low remanence. When shearing the materials according to the invention without a magnetic field, the weak bridges are broken with a relatively small force and can regress again after the shear has ended. This means that the base viscosity is relatively low.
- the magnetic inorganic particles at least partially envelop the non-magnetic particles, thereby forming "composite particles" of both species which in turn are stable Build structures between the magnetizable particles.
- the preparation of the discrete composite particles is preferably carried out by a prior coating of the non-magnetic inorganic particles with magnetic material.
- the coating can be made by attaching smaller magnetic particles to larger nonmagnetic inorganic substrate particles.
- the coating can also be formed by the separate addition of larger non-magnetic inorganic particles and smaller magnetic particles in the carrier medium, thereby resulting in composite particles.
- a preferred form of the core is an anisometric form such as. As platelets or rods.
- An example is formed by platy sheet silicates, e.g. Mica.
- the smaller magnetic particles, e.g. Magnetite cover the surface of non-magnetic inorganic particles.
- a further advantageous embodiment of the magnetorheological materials according to the invention in relation to the composite particles provides that the average particle size of the composite particles is between 0.005 and 1000 ⁇ m, preferably between 0.01 ⁇ m and 200 ⁇ m. It has further been found that it is favorable if the volume ratio of the magnetic and non-magnetic inorganic components of the composite particle is between 1:99 and 99: 1, preferably between 10:90 and 90:10.
- the magnetizable particles may be formed from soft magnetic particles of the prior art.
- the magnetizable particles both from the amount of soft magnetic metallic materials such as iron, cobalt, nickel (even in non-pure form) and alloys thereof such as iron-cobalt, iron-nickel; magnetic steel; Iron-silicon can be selected as well as from the amount of soft magnetic oxide ceramic materials such as the cubic ferrites, the perovskites and the garnets of the general formula MO ⁇ Fe 2 O 3
- mixed ferrites such as MnZn, NiZn, NiCo, NiCuCo, NiMg, CuMg -Ferrite be used.
- the magnetisable particles can also consist of iron carbide or iron nitride particles or of alloys of vanadium, tungsten, copper and manganese or of mixtures of the mentioned particle materials or of mixtures of different magnetizable types of solids.
- the soft magnetic materials may also be present all or partially in contaminated form.
- the carrier medium of the magnetorheological materials can be prepared from carrier liquids of the prior art such as water, mineral oils, synthetic oils such as polyalphaolefins, hydrocarbons, silicone oils, esters, polyethers, fluorinated polyethers, polyglycols, fluorinated hydrocarbons, halogenated hydrocarbons, fluorinated silicones, organically modified silicones and Copolymers thereof or consist of liquid mixtures.
- carrier liquids of the prior art such as water, mineral oils, synthetic oils such as polyalphaolefins, hydrocarbons, silicone oils, esters, polyethers, fluorinated polyethers, polyglycols, fluorinated hydrocarbons, halogenated hydrocarbons, fluorinated silicones, organically modified silicones and Copolymers thereof or consist of liquid mixtures.
- the carrier medium of the magnetorheological materials consists of fats or gels or of elastomers.
- the suspension further inorganic particles such as SiO 2 TiO 2 iron oxides, silicates such.
- silicates such as phyllosilicates or organic additives and combinations thereof.
- magnetorheological materials it is also possible to add to the magnetorheological materials to reduce abrasion particulate additives such as graphite, perfluoroethylene or molybdenum compounds such as molybdenum disulfide and combinations thereof.
- abrasion particulate additives such as graphite, perfluoroethylene or molybdenum compounds such as molybdenum disulfide and combinations thereof.
- Alternative embodiments of the magnetorheological materials further provide that the suspension for use for the surface treatment of workpieces special abrasive and / or chemical etching additives, such.
- alumina cerium oxide, silicon carbide or diamond contains.
- the proportion of magnetizable particles between 10 and 70 vol .-%, preferably between 20 and 60 vol .-%, is; the proportion of the carrier medium is between 20 and 90% by volume, preferably between 30 and 80% by volume, the total amount of the combination of the magnetic and nonmagnetic additives and / or composite particles between 0.1 and 20% by mass is preferred between 0.2 and 15% by mass, and the proportion of non-magnetizable additives is between 0.001 and 20% by mass, preferably between 0.01 and 15% by mass (in each case based on the magnetisable solids).
- the invention further relates to the use of the materials according to the invention.
- magnetorheological materials according to the invention provides for their use in adaptive shock and vibration dampers, controllable brakes, clutches and in sports or training equipment. Special materials can also be used for the surface treatment of workpieces.
- the magnetorheological materials can also be used to generate and / or display haptic information such as characters, computer-simulated objects, sensor signals or images, in haptic form, to simulate viscous, elastic and / or visco-elastic properties or the consistency distribution of an object, in particular Training and / or research purposes and / or used for medical applications.
- haptic information such as characters, computer-simulated objects, sensor signals or images, in haptic form, to simulate viscous, elastic and / or visco-elastic properties or the consistency distribution of an object, in particular Training and / or research purposes and / or used for medical applications.
- the sedimentation analysis was carried out in glass tubes (total height 160 mm, internal diameter 14.1 mm, wall thickness 0.8 mm) at 25 ° C.
- the phase boundary between the sediment and the supernatant was recorded visually at defined time intervals. This is hereafter the height of settled solid referred to the total height of the MRF sample is referred to as "sediment height" [%].
- the results are in illustration 1 shown.
- the two MPF 3 and MPF 4 according to the invention have an extremely low phase separation within the first observation days and then remain stable for 60 days without the sedimentation progressing. Even after 60 days, the sediment level is still> 97%.
- the two comparative suspensions MRF 1 and MRF 2 sediment much more strongly according to the prior art and already after only a few days only have sediment heights of about 73 and 90%, respectively.
- the two MRF 3 and MRF 4 according to the invention provide significantly better results than the two comparative suspensions MPF 1 and MRF 2 both in terms of the sedimentation level and in terms of the redispersing behavior .
- MRF 1 has the lowest and MRF 2 the highest base viscosity in magnetic field free space, while the two MRF 3 and MRF 4 according to the invention occupy a central position.
- the two suspensions MRF 3 and MRF 4 according to the invention thus have an outstanding property profile which predestines them for use as magneto-rheological fluids.
- the two MRF 3 and MRF 4 according to the invention have a significantly higher shear stress than the two magnetorheological fluids MRF 1 and MRF 2 according to the state of the art from a magnetic flux density of approximately 200 mT.
- high shear stresses in the applied magnetic field are desirable since they cause effective translation of a magnetic excitation into a rheological change in the MRF.
- the two inventive MRF 3 and MRF 4 have a further advantageous Property for use as magnetorheological fluids.
- inventive MRF 3 and MRF 4 with magnetic and non-magnetic inorganic additives compared to prior art magnetorheological fluids with respect to the property combination sedimentation stability, redispersibility, base viscosity, shear stress in the magnetic field and viscosity / temperature dependence provide decisive advantages .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Lubricants (AREA)
- Hard Magnetic Materials (AREA)
- Cosmetics (AREA)
Claims (25)
- Matériaux magnéto-rhéologiques constitués d'au moins un milieu support non magnétisable et de particules magnétisables contenues à l'intérieur, caractérisés en ce qu'en supplément une combinaison de matériaux magnétiques et de matériaux inorganiques non-magnétiques et/ou de particules composites à base de matériaux magnétiques et de matériaux inorganiques non-magnétiques est incluse.
- Matériaux magnéto-rhéologiques selon la revendication 1, caractérisés en ce que les matériaux inorganiques non-magnétiques à base de particules anisométriques, telles que plaquettes ou baguettes, sont sélectionnés.
- Matériaux magnéto-rhéologiques selon la revendication 2, caractérisés en ce que les particules sont à base de silicates en feuillets en forme de plaquettes, comme par exemple du mica.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que la grandeur de particule moyenne des matériaux inorganiques non-magnétiques se situe entre 0,005 et 1000 µm, de préférence entre 0,01 µm et 200 µm.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que le rapport de volume entre les matériaux magnétiques et les matériaux inorganiques non-magnétiques se situe entre 1:99 et 99:1, de préférence entre 10:90 et 90:10.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que les matériaux magnétiques sont à base de particules inorganiques, par exemple à base de magnétite.
- Matériaux magnéto-rhéologiques selon la revendication 1, caractérisés en ce que les particules composites sont formées d'un noyau non-magnétique et d'une enveloppe magnétique.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que les particules composites présentent une forme anisométrique, telle que plaquettes ou baguettes.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que les particules composites ont été formées dans le milieu support.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que les particules inorganiques sont modifiées organiquement au moins en partie.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que la grandeur de particule moyenne des particules composites se situe entre 0,005 et 1000 µm, de préférence entre 0,01 µm et 200 µm.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que le rapport de volume entre la composante magnétique et la composante inorganique non-magnétique des particules composites se situe entre 1:99 et 99:1, de préférence entre 10:90 et 90:10.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que les particules magnétisables à base de matériaux magnétiques doux sont sélectionnées.
- Matériaux magnéto-rhéologiques selon la revendication 13, caractérisés en ce que les particules magnétisables à base de matériaux métalliques magnétiques doux tels que fer, cobalt, nickel (même dans une forme non pure) et d'alliages de ces éléments tels que fer-cobalt, fer-nickel ; acier magnétique ; fer-silicium et/ou des mélanges de ces alliages sont sélectionnés.
- Matériaux magnéto-rhéologiques selon la revendication 13, caractérisés en ce que les particules magnétisables à base de matériaux magnétiques doux et de céramique oxydée tels que ferrites cubiques, pérovskites et grenats de formule générale
MO.Fe2O3
avec un ou plusieurs métaux provenant du groupe M = Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd ou Mg et/ou de leurs mélanges sont sélectionnés. - Matériaux magnéto-rhéologiques selon la revendication 13, caractérisés en ce que les particules magnétisables à base de ferrites mixtes tels que ferrites de MnZn, NiZn, NiCo, NiCuCo, NiMg, CuMg et/ou de leurs mélanges sont sélectionnés.
- Matériaux magnéto-rhéologiques selon la revendication 13, caractérisés en ce que les particules magnétisables à base de carbure de fer, de nitrure de fer, d'alliages de vanadium, tungstène, cuivre et manganèse et/ou de leurs mélanges sont sélectionnés.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que le milieu support est sélectionné à partir de- liquides supports tels que eau, huiles minérales, huiles synthétiques telles que polyalphaoléfines, hydrocarbures, huiles de silicone, esters, polyéthers, polyéthers fluorés, polyglycols, hydrocarbures fluorés, hydrocarbures halogénés, silicones fluorés, silicones modifiés organiquement, ainsi que copolymères de ces produits ou de mélanges de liquide de ces produits,- graisses ou gels ou- à partir d'élastomères.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce qu'ils contiennent comme additifs des dispersants, des antioxydants, des agents anti-mousse et/ou des agents anti-usure.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce qu'ils contiennent d'autres additifs pour la réduction de phénomènes d'abrasion, des additifs sous forme de particules tels que graphite, tétrafluoréthylène ou composés de molybdène tels que bisulfite de molybdène ou des combinaisons de ces produits.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce qu'ils contiennent comme autres additifs destinés à une utilisation pour le traitement de surface de pièces des produits additifs à effet abrasif et/ou à effet décapant au plan chimique tels que par exemple oxyde d'aluminium, oxyde cérique, carbure de silicium ou diamant.
- Matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes, caractérisés en ce que- le pourcentage des particules magnétisables se situe entre 10 et 70 % en volume, de préférence entre 20 et 60 % en volume,- le pourcentage du milieu support se situe entre 20 et 90 % en volume, de préférence entre 30 et 80 % en volume,- le pourcentage de la combinaison de matériaux magnétiques et non-magnétiques et/ou des particules composites se situe entre 0,1 et 20 % de masse, de préférence entre 0,2 et 15 % de masse (par rapport aux solides magnétisables),- le pourcentage des additifs se situe entre 0,001 et 20 % de masse, de préférence entre 0,01 et 15 % de masse (par rapport aux solides magnétisables).
- Utilisation des matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes 1 à 22 dans des amortisseurs de chocs et de vibrations adaptatifs, des freins contrôlables, des accouplements, ainsi que dans des appareils de sport ou d'entraînement.
- Utilisation des matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications 1 à 22 précédentes pour le traitement de surface de pièces.
- Utilisation des matériaux magnéto-rhéologiques selon l'une quelconque ou plusieurs des revendications précédentes 1 à 22 pour la génération et/ou la présentation d'informations haptiques telles que caractères graphiques, objets simulés par ordinateur, capteur de signaux ou images ; pour la simulation de propriétés visqueuses, élastiques et/ou viscoélastiques ou de la répartition de la consistance d'un objet.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004041651A DE102004041651B4 (de) | 2004-08-27 | 2004-08-27 | Magnetorheologische Materialien mit magnetischen und nichtmagnetischen anorganischen Zusätzen und deren Verwendung |
PCT/EP2005/009194 WO2006024456A2 (fr) | 2004-08-27 | 2005-08-25 | Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1782439A2 EP1782439A2 (fr) | 2007-05-09 |
EP1782439B1 true EP1782439B1 (fr) | 2010-10-13 |
Family
ID=35530843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05783110A Not-in-force EP1782439B1 (fr) | 2004-08-27 | 2005-08-25 | Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation |
Country Status (5)
Country | Link |
---|---|
US (1) | US7708901B2 (fr) |
EP (1) | EP1782439B1 (fr) |
AT (1) | ATE484837T1 (fr) |
DE (2) | DE102004041651B4 (fr) |
WO (1) | WO2006024456A2 (fr) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004041649B4 (de) * | 2004-08-27 | 2006-10-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheologische Elastomere und deren Verwendung |
DE102004041650B4 (de) | 2004-08-27 | 2006-10-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheologische Materialien mit hohem Schaltfaktor und deren Verwendung |
DE102005034925B4 (de) * | 2005-07-26 | 2008-02-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheologische Elastomerkomposite sowie deren Verwendung |
DE102006021260A1 (de) * | 2006-05-03 | 2007-11-15 | Siemens Ag | Bauteil mit in dessen Gefügematrix eingelagerten Nanopartikeln |
DE102007017589B3 (de) * | 2007-04-13 | 2008-10-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Dämpfungsvorrichtung mit feldsteuerbarer Flüssigkeit |
KR101070778B1 (ko) * | 2009-01-22 | 2011-10-06 | 한국과학기술연구원 | 자성 복합 분말, 이의 제조방법 및 이를 포함하는 전자파 노이즈 억제 필름 |
US8361341B2 (en) * | 2009-03-09 | 2013-01-29 | GM Global Technology Operations LLC | Magnetorheological compositions including nonmagnetic material |
US7878387B2 (en) * | 2009-05-07 | 2011-02-01 | GM Global Technology Operations LLC | Magnetic particle containing material for fastening together parts or substrates |
WO2010141336A1 (fr) | 2009-06-01 | 2010-12-09 | Lord Corporation | Fluides magnétorhéologiques à haute durabilité |
KR101097154B1 (ko) | 2009-09-18 | 2011-12-22 | 연세대학교 산학협력단 | 철-폴리머 복합체 제조방법, 이 제조방법에 의해 제조된 철-폴리머 복합체를 이용한 고경도 전도성 재료의 표면 연마방법 및 장치 |
DE102010026782A1 (de) | 2010-07-09 | 2012-01-12 | Eckart Gmbh | Plättchenförmige Eisenpigmente, magnetorheologisches Fluid und Vorrichtung |
KR101237001B1 (ko) * | 2010-08-20 | 2013-02-25 | 동현전자 주식회사 | 코어-쉘 타입의 필러 입자를 포함하는 복합 시트용 조성물, 이를 포함하는 복합 시트 및 복합 시트의 제조 방법 |
KR101735471B1 (ko) * | 2014-07-28 | 2017-05-16 | 주식회사 씨케이머티리얼즈랩 | 촉각 정보 제공 모듈 |
CN106796451B (zh) | 2014-07-28 | 2020-07-21 | Ck高新材料有限公司 | 触觉信息提供模块 |
DE102020215932A1 (de) | 2020-12-15 | 2022-06-15 | Contitech Vibration Control Gmbh | Schaltbares Hydrolager |
CN114203384A (zh) * | 2021-12-13 | 2022-03-18 | 盱眙县凹土应用技术研发与成果转化中心 | 一种双分散磁流变液及其制备方法 |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2575360A (en) * | 1947-10-31 | 1951-11-20 | Rabinow Jacob | Magnetic fluid torque and force transmitting device |
US2938183A (en) * | 1956-11-09 | 1960-05-24 | Bell Telephone Labor Inc | Single crystal inductor core of magnetizable garnet |
US3425666A (en) * | 1963-02-21 | 1969-02-04 | Chevron Res | Process for producing ferrimagnetic materials |
GB1428000A (en) * | 1972-03-07 | 1976-03-10 | Lignes Telegraph Telephon | Magnetic materials for magnetic circuits |
JPS6259564A (ja) * | 1985-09-10 | 1987-03-16 | 日本碍子株式会社 | セラミツクス用成形助剤及びそれを用いて得られた成形体並びにセラミツクス製品の製造法 |
DE3890400C2 (de) | 1987-05-19 | 1994-02-10 | Bridgestone Corp | Verwendung einer Kautschukmischung in der Laufschicht von Luftreifen |
US5771013A (en) * | 1989-05-01 | 1998-06-23 | Dow Corning Corporation | Method for stabilizing compositions containing carbonyl iron powder |
US5167850A (en) * | 1989-06-27 | 1992-12-01 | Trw Inc. | Fluid responsive to magnetic field |
US5002677A (en) | 1989-09-19 | 1991-03-26 | The B. F. Goodrich Company | Flexible high energy magnetic blend compositions based on ferrite particles in highly saturated nitrile rubber and methods of processing the same |
JPH03119041A (ja) | 1989-09-30 | 1991-05-21 | Yokohama Rubber Co Ltd:The | タイヤトレッド用ゴム組成物 |
DE4101869A1 (de) | 1991-01-23 | 1992-07-30 | Basf Ag | Kunststoffmischung mit ferromagnetischen oder ferroelektrischen fuellstoffen |
ATE157192T1 (de) * | 1992-04-14 | 1997-09-15 | Byelocorp Scient Inc | Magnetorheologische flüssigkeiten und herstellungsverfahrens |
US5578238A (en) * | 1992-10-30 | 1996-11-26 | Lord Corporation | Magnetorheological materials utilizing surface-modified particles |
CA2148000C (fr) * | 1992-10-30 | 2000-10-10 | Keith D. Weiss | Matieres magnetorheologiques thixotropes |
RU2115967C1 (ru) | 1992-10-30 | 1998-07-20 | Лорд Корпорейшн | Магнитореологический материал |
CA2158941A1 (fr) * | 1994-01-27 | 1995-08-03 | Ciaran Bernard Mcardle | Compositions et procedes de formation de liaisons et de chemins conducteurs anisotropes entre deux groupes de conducteurs |
US5549837A (en) * | 1994-08-31 | 1996-08-27 | Ford Motor Company | Magnetic fluid-based magnetorheological fluids |
US5900184A (en) * | 1995-10-18 | 1999-05-04 | Lord Corporation | Method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid device |
EP0784163B1 (fr) | 1996-01-11 | 2002-07-03 | Ford Motor Company Limited | Manchon à rigidité variable utilisant élastomères magnétorhéologiques |
DE19613194A1 (de) * | 1996-04-02 | 1997-10-09 | Huels Chemische Werke Ag | Reifenlaufflächen mit geringem Rollwiderstand und verbessertem ABS-Bremsen |
US5667715A (en) * | 1996-04-08 | 1997-09-16 | General Motors Corporation | Magnetorheological fluids |
DE19614140C1 (de) | 1996-04-10 | 1997-05-07 | B & F Formulier Und Abfuell Gm | Verfahren zur Herstellung einer Dichtungsmasse |
DE19725971A1 (de) | 1997-06-19 | 1998-12-24 | Huels Silicone Gmbh | RTV-Siliconkautschuk-Mischungen |
US5985168A (en) * | 1997-09-29 | 1999-11-16 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Magnetorheological fluid |
US5971835A (en) * | 1998-03-25 | 1999-10-26 | Qed Technologies, Inc. | System for abrasive jet shaping and polishing of a surface using magnetorheological fluid |
US6123633A (en) * | 1998-09-03 | 2000-09-26 | Wilson Sporting Goods Co. | Inflatable game ball with a lobular carcass and a relatively thin cover |
US6399193B1 (en) * | 1998-12-18 | 2002-06-04 | The University Of Massachusetts Lowell | Surfacing laminate with bonded with pigmented pressure sensitive adhesive |
US6203717B1 (en) * | 1999-07-01 | 2001-03-20 | Lord Corporation | Stable magnetorheological fluids |
US6132633A (en) * | 1999-07-01 | 2000-10-17 | Lord Corporation | Aqueous magnetorheological material |
US6599439B2 (en) * | 1999-12-14 | 2003-07-29 | Delphi Technologies, Inc. | Durable magnetorheological fluid compositions |
AU2001241642A1 (en) | 2000-02-18 | 2001-08-27 | The Board Of Regents Of The University And Community College System Of Nevada | Magnetorheological polymer gels |
US6395193B1 (en) | 2000-05-03 | 2002-05-28 | Lord Corporation | Magnetorheological compositions |
DE10024439A1 (de) | 2000-05-19 | 2001-12-06 | Koppe Franz | Verguss- oder Einbettmasse mit elektromagnetischen Abschirmeigenschaften zur Herstellung elektronischer Bauteile |
EP1247283B1 (fr) * | 2000-10-06 | 2006-08-16 | The Adviser - Defence Research & Development Organisation | Composition fluidique magneto-sensible et procede de preparation associe |
US6451219B1 (en) * | 2000-11-28 | 2002-09-17 | Delphi Technologies, Inc. | Use of high surface area untreated fumed silica in MR fluid formulation |
JP4104978B2 (ja) | 2000-11-29 | 2008-06-18 | ジ アドバイザー − ディフェンス リサーチ アンド ディベラップメント オーガナイゼイション | 磁気流動学的流体組成物およびその製造方法 |
US6610404B2 (en) * | 2001-02-13 | 2003-08-26 | Trw Inc. | High yield stress magnetorheological material for spacecraft applications |
JP3608612B2 (ja) | 2001-03-21 | 2005-01-12 | 信越化学工業株式会社 | 電磁波吸収性熱伝導組成物及び熱軟化性電磁波吸収性放熱シート並びに放熱施工方法 |
US20030030026A1 (en) * | 2001-08-06 | 2003-02-13 | Golden Mark A. | Magnetorheological fluids |
US20030034475A1 (en) | 2001-08-06 | 2003-02-20 | Ulicny John C. | Magnetorheological fluids with a molybdenum-amine complex |
US6855426B2 (en) * | 2001-08-08 | 2005-02-15 | Nanoproducts Corporation | Methods for producing composite nanoparticles |
US20030042461A1 (en) | 2001-09-04 | 2003-03-06 | Ulicny John C. | Magnetorheological fluids with an additive package |
US20040186234A1 (en) | 2001-09-14 | 2004-09-23 | Masashi Tsukamoto | Resin composition |
US6592772B2 (en) * | 2001-12-10 | 2003-07-15 | Delphi Technologies, Inc. | Stabilization of magnetorheological fluid suspensions using a mixture of organoclays |
US20040126565A1 (en) * | 2002-05-09 | 2004-07-01 | Ganapathy Naganathan | Actively controlled impact elements |
US7560160B2 (en) * | 2002-11-25 | 2009-07-14 | Materials Modification, Inc. | Multifunctional particulate material, fluid, and composition |
US7261834B2 (en) * | 2003-05-20 | 2007-08-28 | The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno | Tunable magneto-rheological elastomers and processes for their manufacture |
US7419616B2 (en) * | 2004-08-13 | 2008-09-02 | Gm Global Technology Operations, Inc. | Magnetorheological fluid compositions |
DE102004041649B4 (de) * | 2004-08-27 | 2006-10-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheologische Elastomere und deren Verwendung |
DE102004041650B4 (de) * | 2004-08-27 | 2006-10-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheologische Materialien mit hohem Schaltfaktor und deren Verwendung |
DE102005034925B4 (de) | 2005-07-26 | 2008-02-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheologische Elastomerkomposite sowie deren Verwendung |
US7393463B2 (en) * | 2005-09-16 | 2008-07-01 | Gm Global Technology Operations, Inc. | High temperature magnetorheological fluid compositions and devices |
US7354528B2 (en) * | 2005-09-22 | 2008-04-08 | Gm Global Technology Operations, Inc. | Magnetorheological fluid compositions |
DE102007008300B4 (de) * | 2006-08-12 | 2011-08-25 | Schott Ag, 55122 | Bleifreies optisches Glas der Schwerflint- und Lanthanschwerflintlage sowie dessen Herstellung und Verwendung |
-
2004
- 2004-08-27 DE DE102004041651A patent/DE102004041651B4/de not_active Expired - Fee Related
-
2005
- 2005-08-25 WO PCT/EP2005/009194 patent/WO2006024456A2/fr active Application Filing
- 2005-08-25 US US11/574,390 patent/US7708901B2/en not_active Expired - Fee Related
- 2005-08-25 AT AT05783110T patent/ATE484837T1/de active
- 2005-08-25 EP EP05783110A patent/EP1782439B1/fr not_active Not-in-force
- 2005-08-25 DE DE502005010394T patent/DE502005010394D1/de active Active
Also Published As
Publication number | Publication date |
---|---|
DE502005010394D1 (de) | 2010-11-25 |
US20070210274A1 (en) | 2007-09-13 |
WO2006024456A2 (fr) | 2006-03-09 |
ATE484837T1 (de) | 2010-10-15 |
US7708901B2 (en) | 2010-05-04 |
DE102004041651A1 (de) | 2006-03-02 |
WO2006024456A3 (fr) | 2006-05-26 |
EP1782439A2 (fr) | 2007-05-09 |
DE102004041651B4 (de) | 2006-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1782439B1 (fr) | Materiaux magnetorheologiques comportant des additifs inorganiques magnetiques et non magnetiques et leur utilisation | |
EP1782437B1 (fr) | Materiaux magnetorheologiques a facteur de commutation eleve et leur utilisation | |
EP1899995B1 (fr) | Liquide magnéto-rhéologique | |
DE69706742T2 (de) | Magnetorheologische Flüssigkeiten | |
DE69313273T2 (de) | Magnetorheologische flüssigkeiten und herstellungsverfahrens | |
DE69619538T2 (de) | Verfahren und zusammenstellung für eine magnetorheologische flüssigkeit zur kraftserhöhung in ein magnetorheologischen gerät | |
DE112010003467B4 (de) | Magnetorheologisches fluid und verfahren zur herstellung desselben | |
DE69617722T2 (de) | Wasserhaltige magnetorheologische materialen | |
EP2067147B1 (fr) | Formulation magnétorhéologique | |
DE60019627T2 (de) | Ferrofluid-zusammensetzung und verfahren | |
DE10191871B4 (de) | Ein magnetorheologisches Fluid und ein Verfahren zur Herstellung desselben | |
WO2012004236A1 (fr) | Pigments de fer en forme de feuillets, fluide magnéto-rhéologique, et dispositif correspondant | |
DE60017167T2 (de) | Zusammensetzung und verfahren zur herstellung einer magnetischen flüssigkeit mit chemischer stabilität | |
DE60220490T2 (de) | Stabilisierung von magnetorheologischen Suspensionen mit einem Gemisch aus organischem Ton | |
EP0953034A1 (fr) | Composition liquide et son utilisation comme liquide magneto-rheologique | |
DE69527304T2 (de) | Ferrofluid mit verbesserter oxidationsbeständigkheit | |
DE112016007083T5 (de) | Magnetorheologische flüssigkeit | |
DE69008254T2 (de) | Flüssigkeit, die auf ein Magnetfeld reagiert. | |
DE112010002358T5 (de) | Magnetorheologische Zusammensetzungen, die nicht-magnetisches Material umfassen | |
KR101602315B1 (ko) | 판 형상의 철 입자들을 포함하는 자기유변유체 | |
Gómez et al. | Aspects Concerning the Fabrication of Magnetorheological Fluids Containing High Magnetization FeCo Nanoparticles | |
Gutiérrez et al. | Aspects Concerning the Fabrication of Magnetorheological Fluids Containing High Magnetization FeCo Nanoparticles. Fluids 2021, 6, 132 | |
JPH04261496A (ja) | 電気粘性流体の分散粒子沈澱防止方法 | |
DE112023000290T5 (de) | Magnetische viskose flüssigkeit und mechanische vorrichtung | |
JP2005041896A (ja) | 磁気粘性流体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070119 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20100104 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502005010394 Country of ref document: DE Date of ref document: 20101125 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20101013 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20101013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110113 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110214 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110213 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110124 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
26N | No opposition filed |
Effective date: 20110714 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005010394 Country of ref document: DE Effective date: 20110714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
BERE | Be: lapsed |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN Effective date: 20110831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110831 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 484837 Country of ref document: AT Kind code of ref document: T Effective date: 20110825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110825 Ref country code: CY Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20101013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150824 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150824 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160825 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160825 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190822 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005010394 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210302 |