EP1777286A2 - Compositions lubrifiantes comprenant des huiles de base dérivées du gaz de synthèse - Google Patents

Compositions lubrifiantes comprenant des huiles de base dérivées du gaz de synthèse Download PDF

Info

Publication number
EP1777286A2
EP1777286A2 EP06120690A EP06120690A EP1777286A2 EP 1777286 A2 EP1777286 A2 EP 1777286A2 EP 06120690 A EP06120690 A EP 06120690A EP 06120690 A EP06120690 A EP 06120690A EP 1777286 A2 EP1777286 A2 EP 1777286A2
Authority
EP
European Patent Office
Prior art keywords
lubricant composition
base oil
additive component
component includes
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06120690A
Other languages
German (de)
English (en)
Other versions
EP1777286A3 (fr
Inventor
Ian Macpherson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Afton Chemical Corp
Original Assignee
Afton Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Afton Chemical Corp filed Critical Afton Chemical Corp
Publication of EP1777286A2 publication Critical patent/EP1777286A2/fr
Publication of EP1777286A3 publication Critical patent/EP1777286A3/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/30Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms
    • C10M129/34Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • C10M2203/065Well-defined aromatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • C10M2203/1045Aromatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/22Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/22Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts
    • C10M2205/223Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • C10M2207/2825Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/0406Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbased sulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/12Chemical after-treatment of the constituents of the lubricating composition by phosphorus or a compound containing phosphorus, e.g. PxSy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron

Definitions

  • the present disclosure relates to lubricant compositions and in particular to lubricants containing gas to liquid base oils as a basestock component.
  • Liquid petroleum reserves continue to decline as the demand for gasoline and liquid petroleum products continues to increase. Because of ever increasing energy demands, more of such reserves may be used for the production of gasoline and fuel oil products with less of such reserves being directed to the production of lubricant basestocks. For example, methods for converting C 1 -C 3 alkanes into liquid petroleum basestocks have been devised.
  • exemplary embodiments of the disclosure provide a lubricant composition, uses for the lubricant composition, and methods of lubricating devices using the lubricant composition.
  • the lubricant composition includes a first base oil component comprising a first base oil derived from a gaseous source.
  • the first base oil has a viscosity index of greater than about 115, contains less than about 0.3 weight percent sulfur, and is characterized as having from about 95 to about 100 percent by weight branched alkanes.
  • a second base oil derived from a liquid petroleum source may optionally be included with the first base oil, wherein the base oil component of the lubricant composition includes from about 5 to about 100 percent by weight of the first base oil.
  • the lubricant composition also includes from about 1 to about 30 percent or more by weight of a solubilizing agent selected from the group consisting of an adipate ester, a polyol ester, an alkylated naphthalene, an alkylated sulfone, a naphthenic base oil, an aromatic base oil, an akylated benzene, and a combination of two or more of the foregoing agents.
  • An additive component is also provided in the first base oil.
  • the compositions described herein include a primary base oil component that is derived from a gaseous source.
  • a base oil enables reallocation of liquid hydrocarbon sources to the production of fuels such as gasoline, fuel oil, jet fuel and the like. Conversion of gaseous sources to liquid lubricant products may also reduce the flaring of by-product and off-gases that cannot be used for fuel applications.
  • Such base oils typically exhibit an extremely high viscosity index, excellent oxidation resistance and good pour points.
  • Other benefits of the lubricant compositions described herein may be evident from the detailed description of exemplary embodiments of the disclosure.
  • hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of a molecule and having a predominantly hydrocarbon character. Examples of hydrocarbyl groups include:
  • the base oil component of the lubricant compositions described herein includes a first base oil derived from a gaseous source.
  • Gaseous sources include a wide variety of materials such as natural gas, methane, C 1 -C 3 alkanes, landfill gases, and the like. Such gases may be converted to liquid hydrocarbon products suitable for use as lubricant base oils by a gas to liquid (GTL) process, such as the process described in U.S. Patent No. 6,497,812 , the disclosure of which is incorporated herein by reference.
  • GTL gas to liquid
  • a “gas” or “gaseous source” means a material that is in the gaseous state at room temperature and atmospheric pressure.
  • a “liquid” means a material that is predominantly in a liquid or fluid state at room temperature and atmospheric pressure.
  • the GTL process includes two primary steps, (1) conversion of a material existing in the gaseous state into a synthesis gas consisting primarily of carbon monoxide and hydrogen, and the conversion of the synthesis gas into a synthetic crude in a reaction based on a Fischer-Tropsch reaction.
  • Direct conversion of gaseous hydrocarbon sources using various catalysts and/or catalytic systems may also be used as the GTL process.
  • Base oils derived from a gaseous source typically have a viscosity index of greater than about 130, a sulfur content of less than about 0.3 percent by weight, contain greater than about 90 percent by weight saturated hydrocarbons (isoparaffins), typically from about 95 to about 100 wt.% branched aliphatic hydrocarbons, have a pour point of below -15 to -20°C., and have a NOACK volatility of less than about 15 weight percent, and in another embodiment a NOACK volatility of less than about 10 weight percent.
  • Other characteristics of the GTL base oil may be within the range of conventional lubricant base oils.
  • the base oil component of the lubricant composition may include from about 5 to about 100 percent by weight of the GTL base oil with the balance of the base oil component being a conventional base oil. Because of the characteristically high content of branched alkanes in the GTL base oils, finished lubricant formulations made with such GTL base oils include a solubilizing agent that aids in solublizing additives and degradation products in the finished lubricant formulation. Suitable solublizing agents are described below.
  • base oil groups are as follows: Base Oil Group 1 Sulfur (wt.%) Saturates (wt.%) Viscosity Index Group I > 0.03 and/or ⁇ 90 80 to 120 Group II Group II ⁇ 0.03 And ⁇ 90 80 to 120 ⁇ 0.03 And ⁇ 90 ⁇ 120 Group IV all polyalphaolefins (PAOs) Group V all others not included in Groups I-IV 1 Groups I-III are mineral oil base stocks.
  • PAOs polyalphaolefins
  • the detergent/inhibitor (DI) package useful in the exemplary embodiments disclosed herein may contain one or more conventional additives selected from the group consisting of viscosity index improvers, dispersants, friction modifiers, corrosion inhibitors, rust inhibitors, antioxidants, detergents, seal swell agents, extreme pressure additives, anti-wear additives, pour point depressants, deodorizers, defoamers, demulsifiers, dyes, thickening agents, and fluorescent coloring agents.
  • the DI package is typically present in an amount of from 0.5 to 25 weight percent, based on the total weight of the lubricating oil composition.
  • Solubilizing agents may be used in the disclosed lubricant compositions. Suitable solubilizing agents include, but are not limited to, oil-soluble esters and diesters, alkylated naphthalenes, alkylated sulfones, naphthenic type base oils, aromatic type base oils, and alkylated benzenes. Other solubilizing agents known in the art are also contemplated herein.
  • the esters and diesters that may be used as solublizing agents include, for example, adipate esters and polyol esters.
  • Exemplary diesters include the adipates, azelates, and sebacates of C 8 -C 13 alkanols (or mixtures thereof), the phthalates of C 4 -C 13 alkanols (or mixtures thereof). Mixtures of two or more different types of diesters (e.g., dialkyl adipates and dialkyl azelates, etc.) may also be used.
  • Examples of such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid.
  • the amount of solublizing agent in a finished lubricant formulation may range, in one embodiment, from about 1 to about 30 percent by weight of the finished lubricant formulation, typically from about 5 to about 15 percent by weight of the finished lubricant formulation.
  • Viscosity index improvers for use in finished lubricant compositions as described herein may be selected from olefin (co)polymer(s), polyalkyl(meth)acrylates, and mixtures thereof.
  • a suitable viscosity index improver may include a mixture of polymers comprising at least one olefin (co)polymer and at least one polyalkyl(meth)acrylate in a ratio of from 20:1 to 1:2 olefin (co)polymer to polyalkyl(meth)acrylate.
  • a fully formulated lubricant composition as described herein may contain 0.1 to 40 wt. % olefin (co)polymer and 0.1 to 20 wt % polyalkyl(meth)acrylate.
  • the olefin (co)polymer which may be used is a homopolymer, copolymer, or terpolymer resulting from the polymerization of C 2 -C 10 olefins having a number average molecular weight of from 1,000 to 10,000, for example, 1,000 to 3,000, as determined by gel permeation chromatography (GPC).
  • the C 2 -C 10 olefins include ethylene, propylene, 1-butene, isobutylene, 2-butene, isoprene, 1-octene, and 1-decene.
  • Exemplary (co)polymers include polypropylene, polyisobutylene, ethylene/propylene copolymers, styrene/isoprene copolymers, and 1-butene/isobutylene copolymers, and mixtures of the polymers thereof.
  • the polyalkyl(meth)acrylates which may be used are prepared by the polymerization of C 1 -C 30 (meth)acrylates. Preparation of these polymers may further include the use of acrylic monomers having nitrogen-containing functional groups, hydroxy groups and/or alkoxy groups which provide additional properties to the polyalkyl(meth)acrylates such as improved dispersancy.
  • the polyalkyl(meth)-acrylates may have a number average molecular weight of from 10,000 to 250,000, for example, 20,000 to 200,000.
  • the polyalkyl(meth)acrylates may be prepared by conventional methods of free-radical or anionic polymerization.
  • the dispersants useful in the lubricant compositions described herein include at least one oil-soluble ashless dispersant having a basic nitrogen and/or at least one hydroxyl group in the molecule.
  • Suitable dispersants include alkenyl succinimides, alkenyl succinic acid esters, alkenyl succinic ester-amides, Mannich bases, hydrocarbyl polyamines, or polymeric polyamines.
  • alkenyl succinimides in which the succinic group contains a hydrocarbyl substituent containing at least 30 carbon atoms are described for example in U.S. Pat. Nos. 3,172,892 ; 3,202,678 ; 3,216,936 ; 3,219,666 ; 3,254,02.5 ; 3,272,746 ; and 4,234,435 .
  • Such alkenyl succinimides may be derived from polyisobutenyl succinic anhydride (PIBSA) having a number average molecular weight ranging from about 200 to about 2100 as determined by gel permeation chromatography.
  • PIBSA polyisobutenyl succinic anhydride
  • Alkenyl succinic acid esters and diesters of polyhydric alcohols containing 2-20 carbon atoms and 2-6 hydroxyl groups can be used in forming the phosphorus-containing ashless dispersants. Representative examples are described in U.S. Pat. Nos. 3,331,776 ; 3,381,022 ; and 3,522,179 .
  • the alkenyl succinic portion of these esters corresponds to the alkenyl succinic portion of the succinimides described above.
  • Suitable alkenyl succinic ester-amides for forming phosphorylated ashless dispersant are described for example in U.S. Pat. Nos. 3,184,474 ; 3,576,743 ; 3,632,511 ; 3,804,763 ; 3,836,471 ; 3,862,981 ; 3,936,480 ; 3,948,800 ; 3,950,341 ; 3,957,854 ; 3,957,855 ; 3,991,098 ; 4,071,548 ; and 4,173,540 .
  • Hydrocarbyl polyamine dispersants that may be phosphorylated are generally produced by reacting an aliphatic or alicyclic halide (or mixture thereof) containing an average of at least about 40 carbon atoms with one or more amines, typically polyalkylene polyamines. Examples of such hydrocarbyl polyamine dispersants are described in U.S. Pat. Nos. 3,275,554 ; 3,394,576 ; 3,438,757 ; 3,454,555 ; 3,565,804 ; 3,671,511 ; and 3,821,302 .
  • the hydrocarbyl-substituted polyamines are high molecular weight hydrocarbyl-N-substituted polyamines containing basic nitrogen in the molecule.
  • the hydrocarbyl group typically has a number average molecular weight in the range of about 750-10,000 as determined by GPC, more usually in the range of about 1,000-5,000, and is derived from a suitable polyolefin.
  • Exemplary hydrocarbyl-substituted amines or polyamines are prepared from polyisobutenyl chlorides and polyamines having from 2 to about 12 amine nitrogen atoms and from 2 to about 40 carbon atoms.
  • the Mannich base dispersants are usually a reaction product of an alkyl phenol, typically having a long chain alkyl substituent on the ring, with one or more aliphatic aldehydes containing from 1 to about 7 carbon atoms (especially formaldehyde and derivatives thereof), and polyamines (especially polyalkylene polyamines). Examples of Mannich condensation products, and methods for their production are described in U.S. Pat. Nos.
  • Polymeric polyamine dispersants suitable for use as ashless dispersants are polymers containing basic amine groups and oil solubilizing groups (for example, pendant alkyl groups having at least about 8 carbon atoms). Such materials are illustrated by interpolymers formed from various monomers such as decyl methacrylate, vinyl decyl ether or relatively high molecular weight olefins, with aminoalkyl acrylates and aminoalkyl acrylamides. Examples of polymeric polyamine dispersants are set forth in U.S. Pat. Nos. 3,329,658 ; 3,449,250 ; 3,493,520 ; 3,519,565 ; 3,666,730 ; 3,687,849 ; and 3,702,300 .
  • the dispersants of the present disclosure may be boronated. Methods for boronating (borating) the various types of ashless dispersants described above are described in U.S. Pat. Nos. 3,087,936 ; 3,254,025 ; 3,281,428 ; 3,282,955 ; 2,284,409 ; 2,284,410 ; 3,338,832 ; 3,344,069 ; 3,533,945 ; 3,658,836 ; 3,703,536 ; 3,718,663 ; 4,455,243 ; and 4,652,387 .
  • the amount of ashless dispersant on an "active ingredient basis" (i.e., excluding the weight of impurities, diluents and solvents typically associated therewith) is generally within the range of about 0.5 to about 7.5 weight percent (wt %), typically within the range of about 0.5 to 5.0 wt %, notably within the range of about 0.5 to about 3.0 wt %, and usually within the range of about 2.0 to about 3.0 wt %, based on the finished oil.
  • Suitable friction modifiers include such compounds as aliphatic amines or ethoxylated aliphatic amines, aliphatic fatty acid amides, aliphatic carboxylic acids, aliphatic carboxylic esters, aliphatic carboxylic ester-amides, aliphatic phosphonates, aliphatic phosphates, aliphatic thiophosphonates, aliphatic thiophosphates, organic molybdenum compounds, or mixtures thereof.
  • the aliphatic group typically contains at least about eight carbon atoms so as to render the compound suitably oil soluble.
  • aliphatic substituted succinimides formed by reacting one or more aliphatic succinic acids or anhydrides with ammonia.
  • One exemplary group of friction modifiers is comprised of the N-aliphatic hydrocarbyl-substituted diethanol amines in which the N-aliphatic hydrocarbyl-substituent is at least one straight chain aliphatic hydrocarbyl group free of acetylenic unsaturation and having in the range of about 14 to about 20 carbon atoms.
  • Exemplary friction modifier mixtures include a combination of at least one N-aliphatic hydrocarbyl-substituted diethanol amine and at least one N-aliphatic hydrocarbyl-substituted trimethylene diamine in which the N-aliphatic hydrocarbyl-substituent is at least one straight chain aliphatic hydrocarbyl group free of acetylenic unsaturation and having in the range of about 14 to about 20 carbon atoms. Further details concerning this friction modifier system are set forth in U.S. Pat. Nos. 5,372,735 and 5,441,656 .
  • Another suitable mixture of friction modifiers is based on the combination of (i) at least one di(hydroxyalkyl) aliphatic tertiary amine in which the hydroxyalkyl groups, being the same or different, each contain from 2 to about 4 carbon atoms, and in which the aliphatic group is an acyclic hydrocarbyl group containing from about 10 to about 25 carbon atoms, and (ii) at least one hydroxyalkyl aliphatic imidazoline in which the hydroxyalkyl group contains from 2 to about 4 carbon atoms, and in which the aliphatic group is an acyclic hydrocarbyl group containing from about 10 to about 25 carbon atoms.
  • this friction modifier system reference should be had to U.S. Pat. No. 5,344,579 .
  • finished lubricant formulations may contain up to about 1.25 wt %, and usually from about 0.05 to about 1 wt % of one or more friction modifiers.
  • Finished lubricant compositions as described herein typically will contain some inhibitors.
  • the inhibitor components serve different functions including rust inhibition, corrosion inhibition and foam inhibition.
  • the inhibitors may be introduced in a pre-formed additive package that may contain in addition one or more other components used in the finished lubricant compositions. Alternatively these inhibitor components may be introduced individually or in various sub-combinations. While amounts of inhibitors used may be varied within reasonable limits, the finished lubricant compositions of this disclosure will typically have a total inhibitor content in the range of about 0 to about 15 wt %, on an "active ingredient basis", i.e., excluding the weight of inert materials such as solvents or diluents normally associated therewith.
  • Foam inhibitors form one type of inhibitor suitable for use as an inhibitor component in the finished lubricant compositions.
  • Useful foam inhibitors include silicones, polyacrylates, surfactants, and the like.
  • Copper corrosion inhibitors constitute another class of additives suitable for inclusion in the finished lubricant compositions.
  • Such compounds include thiazoles, triazoles and thiadiazoles.
  • examples of such compounds include benzotriazole, tolyltriazole, octyltriazole, decyltriazole, dodecyltriazole, 2-mercapto benzothiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio-1,3,4-thiadiazoles, 2-mercapto-5-hydrocarbyldithio-1,3,4-thiadiazoles, 2,5-bis(hydrocarbylthio)-1,3,4-thiadiazoles, and 2,5-bis(hydrocarbyldithio)-1,3,4-thiadiazoles.
  • the compounds are the 1,3,4-thiadiazoles, a number of which are available as articles of commerce, and also combinations of triazoles such as tolyltriazole with a 1,3,5-thiadiazole such as a 2,5-bis(alkyldithio)-1,3,4-thiadiazole.
  • the 1,3,4-thiadiazoles are generally synthesized from hydrazine and carbon disulfide by known procedures. See, for example, U.S. Pat. Nos. 2,765,289 ; 2,749,311 ; 2,760,933 ; 2,850,453 ; 2,910,439 ; 3,663,561 ; 3,862,798 ; and 3,840,549 .
  • Rust or corrosion inhibitors comprise another type of inhibitor additive for use in finished lubricant compositions.
  • Such materials include monocarboxylic acids and polycarboxylic acids. Examples of suitable monocarboxylic acids are octanoic acid, decanoic acid and dodecanoic acid.
  • Suitable polycarboxylic acids include dimer and trimer acids such as are produced from such acids as tall oil fatty acids, oleic acid, linoleic acid, or the like.
  • alkenyl succinic acid and alkenyl succinic anhydride corrosion inhibitors such as, for example, tetrapropenylsuccinic acid, tetrapropenylsuccinic anhydride, tetradecenylsuccinic acid, tetradecenylsuccinic anhydride, hexadecenylsuccinic acid, hexadecenylsuccinic anhydride, and the like.
  • half esters of alkenyl succinic acids having 8 to 24 carbon atoms in the alkenyl group with alcohols such as the polyglycols.
  • Suitable rust or corrosion inhibitors include ether amines; acid phosphates; amines; polyethoxylated compounds such as ethoxylated amines, ethoxylated phenols, and ethoxylated alcohols; imidazolines; aminosuccinic acids or derivatives thereof, and the like. Materials of these types are available as articles of commerce. Mixtures of such rust or corrosion inhibitors can be used.
  • Antioxidants may also be present in the finished lubricant formulations of the disclosure.
  • Suitable antioxidants include phenolic antioxidants, aromatic amine antioxidants, sulfurized phenolic antioxidants, and organic phosphites, among others.
  • phenolic antioxidants include 2,6-di-tert-butylphenol, liquid mixtures of tertiary butylated phenols, 2,6-di-tert-butyl-4-methylphenol, 4,4'-methylenebis(2,6-di-tert-butylphenol), 2,2'-methylenebis(4-methyl-6-tert-butylphenol), mixed methylene-bridged polyalkyl phenols, and 4,4'-thiobis(2-methyl-6-tert-butylphenol).
  • N,N'-di-sec-butyl-p-phenylenediamine, 4-isopropylaminodiphenyl amine, phenyl-naphthyl amine, phenyl-naphthyl amine, and ring-alkylated diphenylamines serve as examples of aromatic amine antioxidants.
  • the antioxidants are the sterically hindered tertiary butylated phenols, the ring alkylated diphenylamines, and combinations thereof.
  • the amounts of the inhibitor components and antioxidants used to provide the finished lubricant compositions will depend to some extent upon the composition of the component and its effectiveness when used in the finished lubricant. However, generally speaking, the finished lubricant composition will typically contain the following concentrations in weight percent of the inhibitor components and antioxidants on an active ingredient basis: Inhibitor Typical Range Usual Range Foam inhibitor 0 to 0.1 0.01 to 0.08 Copper corrosion inhibitor 0 to 1.5 0.01 to 1.0 Rust inhibitor 0 to 0.5 0.01 to 0.3 Antioxidant 0 to 1.0 0.1 to 0.6
  • Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life for lubricant formulations used in crankcase applications.
  • Detergents generally comprise a polar head with a long hydrophobic tail where the polar head comprises a metal salt of an acidic organic compound.
  • the salts may contain a substantially stoichiometric amount of the metal, in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as measured by ASTM D2896) of from 0 to less than 150.
  • a metal base may be included by reacting an excess of a metal compound such as an oxide or hydroxide with an acidic gas such as carbon dioxide.
  • the resulting overbased detergent comprises micelles of neutralized detergent surrounding a core of inorganic metal base (e.g., hydrated carbonates).
  • Such overbased detergents may have a TBN of 150 or greater, and typically ranging from 250 to 450 or more.
  • Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, and salicylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
  • the most commonly used metals are calcium and magnesium, which may both be present. Mixtures of calcium and/or magnesium with sodium are also useful.
  • Particularly convenient metal detergents are neutral and overbased calcium or magnesium sulfonates having a TBN of from 20 to 450 TBN, neutral and overbased calcium or magnesium phenates and sulfurized phenates having a TBN of from 50 to 450, and neutral or overbased calcium or magnesium salicylates having a TBN of from 130 to 350. Mixtures of such salts may also be used. When used, the presence of at least one overbased detergent is desirable.
  • Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
  • the alkylation may be carried out in the presence of a catalyst with alkylating agents having from 3 to more than 70 carbon atoms.
  • the alkaryl sulfonates usually contain from 9 to 80 or more carbon atoms, typically from 16 to 60 carbon atoms per alkyl substituted aromatic moiety.
  • the oil-soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulphides, hydrosulfides, nitrates, borates and ethers of the alkali metal.
  • the amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from 100 to 220 wt % (desirably at least 125 wt %) of that stoichiometrically required.
  • Metal salts of alkyl phenols and sulfurized alkyl phenols are prepared by reaction with an appropriate metal compound such as an oxide, hydroxide or alkoxide, and overbased products may be obtained by methods well known in the art.
  • Sulfurized alkyl phenols may be prepared by reacting an alkyl phenol with sulphur or a sulphur-containing compound such as hydrogen sulphide, sulphur monohalide or sulphur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulphur-containing bridges.
  • the starting alkyl phenol may contain one or more alkyl substituents.
  • alkyl phenols may be branched or unbranched, and depending on the number of substituents may have from 1 to 30 carbon atoms (provided the resulting alkyl phenol is oil-soluble), with from 9 to 18 carbon atoms being particularly suitable. Mixtures of alkyl phenols with different alkyl substituents may be used.
  • Metal salts of carboxylic acids may be prepared in a number of ways: for example, by adding a basic metal compound to a reaction mixture comprising the carboxylic acid (which may be part of a mixture with another organic acid such as a sulfonic acid) or its metal salt and promoter, and removing free water from the reaction mixture to form an metal salt, then adding more basic metal compound to the reaction mixture and removing free water from the reaction mixture.
  • the carboxylate is then overbased by introducing the acidic material such as carbon dioxide to the reaction mixture while removing water. This can be repeated until a product of the desired TBN is obtained.
  • the overbasing process is well known in the art and typically comprises reacting acidic material with a reaction mixture comprising the organic acid or its metal salt, a metal compound.
  • That acidic material may be a gas such as carbon dioxide or sulphur dioxide, or it may be boric acid.
  • Processes for the preparation of overbased alkali metal sulfonates and phenates are described in U.S. Pat. No. 4,839,094 .
  • a process suitable for overbased sodium sulfonates is described in EP-A-235929 .
  • a process for making overbased salicylates is described in U.S. Pat. No. 5,451,331 .
  • the overbased metal detergents may also be borated.
  • the boron may be introduced by using boric acid as the acidic material used in the overbasing step.
  • a desirable alternative is to borate the overbased product after formation by reacting a boron compound with the overbased metal salt.
  • Boron compounds include boron oxide, boron oxide hydrate, boron trioxide, boron trifluoride, boron tribromide, boron trichloride, boron acid such as boronic acid, boric acid, tetraboric acid and metaboric acid, boron hydrides, boron amides and various esters of boron acids.
  • the overbased metal salt may be reacted with a boron compound at from 50° C. to 250° C., in the presence of a solvent such as mineral oil or xylene.
  • the borated, overbased alkali metal salt comprises at least 0.5%, and typically from 1% to 5%, by weight boron.
  • the amount of detergent in a finished lubricant composition according to the disclosed embodiments may range from about 0.1 to about 1.5 percent by weight based on the total weight of the finished lubricant composition.
  • sulfur-containing antiwear and/or extreme pressure agents may be used in the finished lubricant formulations described herein.
  • examples include dihydrocarbyl polysulfides; sulfurized olefins; sulfurized fatty acid esters of both natural and synthetic origins; trithiones; sulfurized thienyl derivatives; sulfurized terpenes; sulfurized oligomers of C 2 -C 8 monoolefins; and sulfurized Diels-Alder adducts such as those disclosed in U.S. Pat. No. Re 27,331 .
  • Specific examples include sulfurized polyisobutene, sulfurized isobutylene, sulfurized diisobutylene, sulfurized triisobutylene, dicyclohexyl polysulfide, diphenyl polysulfide, dibenzyl polysulfide, dinonyl polysulfide, and mixtures of di-tert-butyl polysulfide such as mixtures of di-tert-butyl trisulfide, di-tert-butyl tetrasulfide and di-tert-butyl pentasulfide, among others.
  • Combinations of such categories of sulfur-containing antiwear and/or extreme pressure agents may also be used, such as a combination of sulfurized isobutylene and di-ten-butyl trisulfide, a combination of sulfurized isobutylene and dinonyl trisulfide, a combination of sulfurized tall oil and dibenzyl polysulfide.
  • Use may also be made of a wide variety of phosphorus-containing oil-soluble antiwear and/or extreme pressure additives such as the oil-soluble organic phosphates, organic phosphites, organic phosphonates, organic phosphonites, etc., and their sulfur analogs.
  • phosphorus-containing antiwear and/or extreme pressure additives in the disclosed lubricant compositions include those compounds that contain both phosphorus and nitrogen.
  • Phosphorus-containing oil-soluble antiwear and/or extreme pressure additives useful in the disclosed embodiments include those compounds taught in U.S. Pat. Nos. 5,464,549 ; 5,500,140 ; and 5,573,696 , the disclosures of which are hereby incorporated by reference.
  • the phosphorus-containing antiwear agents may include an organic ester of phosphoric acid, phosphorous acid, or an amine salt thereof
  • phosphorus-containing antiwear agent may include one or more of a dihydrocarbyl phosphite, a trihydrocarbyl phosphite, a dihydrocarbyl phosphate, a trihydrocarbyl phosphate, any sulfur analogs thereof, and any amine salts thereof.
  • the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 10 to about 500 parts per million by weight of phosphorus in the finished lubricant composition.
  • the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 150 to about 300 parts per million by weight of phosphorus in the finished lubricant composition.
  • phosphorus- and nitrogen-containing antiwear and/or extreme pressure additives which may be used are the phosphorus- and nitrogen-containing compositions of the type described in G.B. 1,009,913 ; U.S. Pat. No. 3,197,405 and/or U.S. Pat. No. 3,197,496 .
  • these compositions are formed by forming an acidic intermediate by the reaction of a hydroxy-substituted triester of a phosphorothioic acid with an inorganic phosphorus acid, phosphorus oxide or phosphorus halide, and neutralizing a substantial portion of said acidic intermediate with an amine or hydroxy-substituted amine.
  • phosphorus- and nitrogen-containing antiwear and/or extreme pressure additive that may be used in the lubricant compositions described herein include the amine salts of hydroxy-substituted phosphetanes or the amine salts of hydroxy-substituted thiophosphetanes and the amine salts of partial esters of phosphoric and thiophosphoric acids.
  • the detergent/inhibitor package may also contain one or more pour point depressants.
  • Pour point depressants may be used in compositions described herein to improve low temperature properties of the compositions. Examples of useful pour point depressants are polymethacrylates; polyacrylates; polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; and terpolymers of dialkylfumarates, vinyl esters of fatty acids and alkyl vinyl ethers. Pour point depressants useful for the purposes of this disclosure and techniques for their preparation are described in U.S. Pat. Nos.
  • the pour point depressant is represented by the general structural formula: Ar(R)--(Ar 1 R 1 ))-Ar 2 , wherein the Ar, Ar 1 and Ar 2 are aromatic groups of up to about 12 carbon atoms, (R) and (R 1 ) are independently an alkylene group containing 1 to 100 carbon atoms with the proviso that at least one of (R) or (R 1 ) is CH 2 , and n is 0 to about 1000 with the proviso that if n is 0, then (R) is CH 2 and at least one aromatic moiety has at least one substituent, the substituents being selected from the group consisting of a substituent derived from an olefin containing about 8 to about 30 carbon atoms, and a substituent derived from a chlorinated hydrocarbon usually containing about 8 to about 50 carbon atoms and about 2.5 chlorine atoms for each 24 carbon atoms.
  • Seal swell agents may be included in the finished lubricant compositions of the disclosed embodiments particularly when the lubricant compositions are used as power transmission fluids.
  • Suitable seal swell agents may be selected from oil-soluble diesters, oil-soluble sulfones, silicon containing organic compounds, and mixtures thereof.
  • the most suitable diesters include the adipates, azelates, and sebacates of C 8 -C 13 alkanols (or mixtures thereof), and the phthalates of C 4 -C 13 alkanols (or mixtures thereof). Mixtures of two or more different types of diesters (e.g., dialkyl adipates and dialkyl azelates, etc.) may also be used.
  • Examples of such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid.
  • Other esters which may give generally equivalent performance are polyol esters.
  • Suitable sulfone seal swell agents are described in U.S. Pat. Nos. 3,974,081 and 4,029,587 . Typically these products are employed at levels in the range of about 0.25 to about 1 wt % in the finished transmission fluid.
  • the seal swell agents are the oil-soluble dialkyl esters of (i) adipic acid, (ii) sebacic acid, or (iii) phthalic acid.
  • the adipates and sebacates should be used in amounts in the range of from about 4 to about 15 wt % in the finished fluid. In the case of the phthalates, the levels in the transmission fluid should fall in the range of from about 1.5 to about 10 wt %. Generally speaking, the higher the molecular weight of the adipate, sebacate or phthalate, the higher should be the treat rate within the foregoing ranges.
  • thickening agents may be used for providing lubricants and greases containing the base oil component. Included among the thickening agents are alkali and alkaline earth metal soaps of fatty acids and fatty materials having from about 12 to about 30 carbon atoms per molecule.
  • the metal cations of the metal soaps are typified by sodium, lithium, calcium, magnesium, and barium. Fatty materials are illustrated by stearic acid, hydroxystearic acid, stearin, cottonseed oil acids, oleic acid, palmitic acid, myristic acid and hydrogenated fish oils.
  • thickening agents include salt and salt-soap complexes such as calcium stearate-acetate ( U.S. Pat. No. 2,197,263 ), barium stearate acetate ( U.S. Pat. No. 2,564,561 ), calcium stearate-caprylate-acetate complexes ( U.S. Pat. No. 2,999,065 ), calcium-caprylate-acetate ( U.S. Pat. No. 2,999,066 ), and calcium salts and soaps of low-, intermediate- and high-molecular weight acids and of nut oil acids.
  • salt and salt-soap complexes such as calcium stearate-acetate ( U.S. Pat. No. 2,197,263 ), barium stearate acetate ( U.S. Pat. No. 2,564,561 ), calcium stearate-caprylate-acetate complexes ( U.S. Pat. No. 2,999,065 ), calcium-caprylate-acetate ( U.
  • Another group of thickening agents comprises substituted ureas, phthalocyanines, indanthrene, pigments, such as perylimides, pyromellitdiimides, ammeline, and hydrophobic clays.
  • Some of the additive components described above may be supplied in the form of solutions of active ingredient(s) in an inert diluent or solvent, such as a diluent oil. Unless expressly stated to the contrary, the amounts and concentrations of each additive component are expressed in terms of active additive, i.e., the amount of solvent or diluent that may be associated with such component as received is excluded.
  • Additives used in formulating the compositions described herein may be blended into the base oil component individually or in various sub-combinations. However, it is preferable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent).
  • an additive concentrate i.e., additives plus a diluent, such as a hydrocarbon solvent.
  • the use of an additive concentrate takes advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate. Also, the use of a concentrate reduces blending time and lessens the possibility of blending errors.
  • Exemplary embodiments of the disclosure include use of finished lubricant compositions as described herein in a wide variety of applications, including but not limited to, metal-working fluids, quench fluids, greases, crankcase lubricants, power transmission fluids, vehicle axle applications, hydraulic systems, heavy duty gear oils, and rotating machinery such as stationary engines, pumps, gas turbines, compressors, wind turbines, and the like, and for a wide variety of applications associated with the automotive, tractor, airline, and railroad industries including engines, transmissions, and the like.
  • Stationary engines include fuel and gas powered engines that are not associated with the automotive, tractor, airline, and railroad industries.
  • the finished lubricating oil composition is an automatic transmission fluid (ATF).
  • ATF composition uses components proportioned such that the kinematic viscosity of the composition at 100° C. is in the range of from about 4 to about 10 cSt, usually at least 15.9 cSt.
  • An exemplary ATF composition contains the base oil component, a solubilizing agent, from about 0.5 to about 1.5 wt.
  • % viscosity index improver from about 1.5 to about 2.5 wt.% ashless dispersant, from about 0.05 to about 1 wt.% friction modifier, from about 0.01 to about 0.5 wt.% corrosion inhibitor, from about 0.1 to about 0.4 wt.% antiwear additive, from about 0.005 to about 5 wt.% metal deactivator, from about 0.1 to about 15 wt.% metallic detergent, from about 0.25 to about 1 wt. % seal swell agent, and from about 0.01 to about 0.5 wt.% pour point depressant.
  • the finished lubricating oil composition is a manual transmission oil.
  • An exemplary manual transmission lubricating oil formulation contains the base oil component (which includes at least one GTL base oil), a solubilizing agent, a viscosity index improver, and a DI package comprising an ashless dispersant, at least one antioxidant and at least one inhibitor.
  • the DI package provides 0.2-5 wt % ashless dispersant(s) to the finished lubricant composition, 0-1.0 wt %, typically from about 0.2-1.0 wt %, antioxidant(s) to the finished lubricant composition, and 0.01-2 wt % inhibitor(s) selected from the group consisting of copper corrosion inhibitors, rust inhibitors and mixtures thereof, to the lubricant composition.
  • the manual transmission lubricating oil formulation usually contains from 0-5 wt. % sulfur and from 30 to 5000 ppm phosphorus, based on the total finished lubricant composition.
  • the finished lubricating oil composition is an axle lubricating oil.
  • An exemplary axle lubricating oil formulation contains the GTL base oil component, a solubilzing agent, a viscosity index improver, a DI package comprising an sulfur containing extreme pressure agent, at least one phosphorus containing anti-wear agent, at least one ashless dispersant and at least one inhibitor.
  • the DI package provides 3-15 wt % sulfur containing extreme pressure agent(s), 2-10 wt % phosphorus containing anti-wear agent(s), 0.2-5 wt % ashless dispersant(s) and 0.01-2 wt % inhibitor(s) selected from the group consisting of copper corrosion inhibitors, rust inhibitors and mixtures thereof, to the finished lubricant composition.
  • the axle lubricating oil formulation may contain from 0.5-5 wt % sulfur and from 200 to 5000 ppm phosphorus, based on the finished lubricant composition.
  • the power transmission fluids disclosed herein may include fluids suitable for any power transmitting application, such as a step automatic transmission or a manual transmission used for automotive, truck, or tractor applications. Further, the power transmission fluids of the disclosed embodiments may be used in transmissions with a slipping torque converter, a lock-up torque converter, a starting clutch, and/or one or more shifting clutches. Such transmissions include four-, five-, six-, and seven-speed transmissions, and continuously variable transmissions (chain, belt, or disk type). They may also be used in manual transmissions, including automated manual and dual-clutch transmissions.
  • a crankcase lubricant composition in accordance with another embodiment of the disclosure may include the GTL base oil component, a solubilizing agent, a viscosity index improver, and a DI package including a detergent, a dispersant, an anti-wear agent, a friction modifier, an antioxidant, a corrosion inhibitor, a pour point depressant, and an anti-foam agent.
  • Such DI package includes from about 1.3 to about 3.0 wt.% dispersant, from about 0.1 to about 15 wt.% detergent, from about 0 to about 5 wt.% corrosion inhibitor, from about 0 to about 5 wt.% antioxidant, from about 0 to about 5 wt.% anti-foam agent, from about 0 to about 5 wt.% friction modifier, from about 0.01 to about 6 wt.% viscosity index improver, from about 0.1 to about 6 wt.% antiwear agent, and from about 0.01 to about 5 wt.% pour point depressant.
  • Oil compositions described herein may also be used in quench fluid applications to provide a slower rate of cooling for hardening metals such as steel.
  • Quench fluid performance may be modified by introducing one or more of the foregoing additives and/or compositions to improve wettability, cooling rates, oil stability life, and to reduce deposit forming tendencies of the quench fluids.
  • each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the exemplary embodiments are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. It is intended that the specification and examples be considered as exemplary only, with a true scope of the invention being indicated by the following claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)
EP06120690A 2005-09-21 2006-09-14 Compositions lubrifiantes comprenant des huiles de base dérivées du gaz de synthèse Withdrawn EP1777286A3 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/232,294 US20070066495A1 (en) 2005-09-21 2005-09-21 Lubricant compositions including gas to liquid base oils

Publications (2)

Publication Number Publication Date
EP1777286A2 true EP1777286A2 (fr) 2007-04-25
EP1777286A3 EP1777286A3 (fr) 2008-01-23

Family

ID=37529413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06120690A Withdrawn EP1777286A3 (fr) 2005-09-21 2006-09-14 Compositions lubrifiantes comprenant des huiles de base dérivées du gaz de synthèse

Country Status (6)

Country Link
US (1) US20070066495A1 (fr)
EP (1) EP1777286A3 (fr)
JP (1) JP2007084826A (fr)
KR (1) KR20070033274A (fr)
CN (1) CN1940042A (fr)
SG (1) SG131061A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134695A1 (fr) * 2010-04-26 2011-11-03 Evonik Rohmax Additives Gmbh Lubrifiant pour transmission

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070232506A1 (en) * 2006-03-28 2007-10-04 Gao Jason Z Blends of lubricant basestocks with polyol esters
US20080016768A1 (en) * 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
US20090088352A1 (en) * 2007-09-27 2009-04-02 Chevron U.S.A. Inc. Tractor hydraulic fluid compositions and preparation thereof
JP2010540719A (ja) * 2007-09-27 2010-12-24 シェブロン ユー.エス.エー. インコーポレイテッド 潤滑グリース組成物及び調製
CN101429466B (zh) * 2007-11-08 2012-05-09 中国石油化工股份有限公司 一种飞机仪表、齿轮和传动螺杆润滑脂
EP2075314A1 (fr) * 2007-12-11 2009-07-01 Shell Internationale Research Maatschappij B.V. Formules de graisse
US20090181871A1 (en) * 2007-12-19 2009-07-16 Chevron U.S.A. Inc. Compressor Lubricant Compositions and Preparation Thereof
US20090163391A1 (en) * 2007-12-20 2009-06-25 Chevron U.S.A. Inc. Power Transmission Fluid Compositions and Preparation Thereof
KR100920740B1 (ko) 2008-02-25 2009-10-07 (주)경인케이오일 베이스오일을 이용한 육상유와 엔진오일 및 모터오일 등의제조방법
US20090286705A1 (en) * 2008-04-10 2009-11-19 Marc-Andre Poirier Flame retardant lubricating oil compositions
US9771540B2 (en) 2009-01-20 2017-09-26 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydraulic motor efficiency
DE102009001447A1 (de) * 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Verwendung von Kammpolymeren zur Verbesserung des Lasttragevermögens
US8999904B2 (en) 2009-06-04 2015-04-07 Jx Nippon Oil & Energy Corporation Lubricant oil composition and method for making the same
EP2439259A4 (fr) 2009-06-04 2014-03-12 Jx Nippon Oil & Energy Corp Composition d'huile lubrifiante
US8841243B2 (en) * 2010-03-31 2014-09-23 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
CN102268034B (zh) * 2010-06-01 2013-12-11 中国石油化工股份有限公司 磷酸酯胺盐及其制备方法
US8796192B2 (en) * 2010-10-29 2014-08-05 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
EP2710102A1 (fr) * 2011-05-16 2014-03-26 The Lubrizol Corporation Compositions lubrifiantes pour turbines et systèmes hydrauliques à pouvoir antioxydant amélioré
JP2014532777A (ja) * 2011-10-27 2014-12-08 ザ ルブリゾル コーポレイションThe Lubrizol Corporation 改良されたシール部適合性を有する潤滑剤
CN102618364B (zh) * 2012-03-09 2013-10-30 广西大学 高功率密度柴油机润滑油组合物
CN105829510B (zh) * 2013-09-30 2021-09-28 路博润公司 摩擦控制方法
CN104651017A (zh) * 2015-01-30 2015-05-27 霍山鑫汇科技有限公司 一种润滑油
JP6562246B2 (ja) * 2015-04-07 2019-08-21 株式会社ジェイテクト 遊星ローラ式動力伝達装置
KR20170018718A (ko) 2015-08-10 2017-02-20 삼성전자주식회사 비정질 합금을 이용한 투명 전극 및 그 제조 방법
CN105086957B (zh) * 2015-09-11 2017-11-24 中石化石油工程技术服务有限公司 一种两性离子型润滑剂及含有该润滑剂的水基钻井液
EP3423552B1 (fr) * 2016-02-29 2019-12-04 Shell International Research Maatschappij B.V. Composition de lubrification
CN107434996A (zh) * 2016-05-25 2017-12-05 国际壳牌研究有限公司 润滑流体
CN106190434B (zh) * 2016-07-04 2018-11-02 王严绪 氮钼络合物润滑油添加剂及其制备方法
CN107164041A (zh) * 2017-05-12 2017-09-15 广西大学 一种环境友好重型车辆液压式电子控制动力转向液的组合物
MX2020002346A (es) * 2017-08-29 2020-07-13 Basf Se Composicion de lubricante de transmision.
GB201801489D0 (en) * 2018-01-30 2018-03-14 Castrol Ltd Lubricant composition
CN111944587A (zh) * 2020-08-25 2020-11-17 新乡市瑞丰新材料股份有限公司 一种齿轮油复合剂及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400858A (en) 2001-10-19 2004-10-27 Chevron Usa Inc Process for preparing blended lubricant base stock
GB2409462A (en) 2003-12-23 2005-06-29 Chevron Usa Inc Lubricating oil high in monocycloparaffins and low in multicycloparaffins

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505829A (en) * 1980-05-08 1985-03-19 Exxon Research & Engineering Co. Lubricating oil composition containing sediment-reducing additive
DE4120036A1 (de) * 1991-06-18 1992-12-24 Addinol Mineraloel Abschreckoele fuer vakuum-haerteanlagen und verfahren zu deren herstellung
GB2327944B (en) * 1997-08-06 2001-10-10 Ciba Sc Holding Ag Hetercyclic thioethers as additives for lubricants
US6165949A (en) * 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US6475960B1 (en) * 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6332974B1 (en) * 1998-09-11 2001-12-25 Exxon Research And Engineering Co. Wide-cut synthetic isoparaffinic lubricating oils
US6150574A (en) * 1999-05-06 2000-11-21 Mobil Oil Corporation Trialkymethane mixtures as synthetic lubricants
US6497812B1 (en) * 1999-12-22 2002-12-24 Chevron U.S.A. Inc. Conversion of C1-C3 alkanes and fischer-tropsch products to normal alpha olefins and other liquid hydrocarbons
BR0207091A (pt) * 2001-02-13 2004-01-20 Shell Int Research Composição lubrificante, e, uso da mesma
US6627779B2 (en) * 2001-10-19 2003-09-30 Chevron U.S.A. Inc. Lube base oils with improved yield
US20030166475A1 (en) * 2002-01-31 2003-09-04 Winemiller Mark D. Lubricating oil compositions with improved friction properties
US20030191032A1 (en) * 2002-01-31 2003-10-09 Deckman Douglas E. Mixed TBN detergents and lubricating oil compositions containing such detergents
US6730638B2 (en) * 2002-01-31 2004-05-04 Exxonmobil Research And Engineering Company Low ash, low phosphorus and low sulfur engine oils for internal combustion engines
US6869917B2 (en) * 2002-08-16 2005-03-22 Exxonmobil Chemical Patents Inc. Functional fluid lubricant using low Noack volatility base stock fluids
US6846778B2 (en) * 2002-10-08 2005-01-25 Exxonmobil Research And Engineering Company Synthetic isoparaffinic premium heavy lubricant base stock
US20040111957A1 (en) * 2002-12-13 2004-06-17 Filippini Brian B. Water blended fuel composition
US6846782B2 (en) * 2003-04-04 2005-01-25 The Lubrizol Corporation Method of reducing intake valve deposits in a direct injection engine
US7083713B2 (en) * 2003-12-23 2006-08-01 Chevron U.S.A. Inc. Composition of lubricating base oil with high monocycloparaffins and low multicycloparaffins
US7195706B2 (en) * 2003-12-23 2007-03-27 Chevron U.S.A. Inc. Finished lubricating comprising lubricating base oil with high monocycloparaffins and low multicycloparaffins
US20050148478A1 (en) * 2004-01-07 2005-07-07 Nubar Ozbalik Power transmission fluids with enhanced anti-shudder characteristics
US7345211B2 (en) * 2004-07-08 2008-03-18 Conocophillips Company Synthetic hydrocarbon products
US7465696B2 (en) * 2005-01-31 2008-12-16 Chevron Oronite Company, Llc Lubricating base oil compositions and methods for improving fuel economy in an internal combustion engine using same
US20060196807A1 (en) * 2005-03-03 2006-09-07 Chevron U.S.A. Inc. Polyalphaolefin & Fischer-Tropsch derived lubricant base oil lubricant blends

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400858A (en) 2001-10-19 2004-10-27 Chevron Usa Inc Process for preparing blended lubricant base stock
GB2409462A (en) 2003-12-23 2005-06-29 Chevron Usa Inc Lubricating oil high in monocycloparaffins and low in multicycloparaffins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134695A1 (fr) * 2010-04-26 2011-11-03 Evonik Rohmax Additives Gmbh Lubrifiant pour transmission

Also Published As

Publication number Publication date
CN1940042A (zh) 2007-04-04
US20070066495A1 (en) 2007-03-22
EP1777286A3 (fr) 2008-01-23
JP2007084826A (ja) 2007-04-05
KR20070033274A (ko) 2007-03-26
SG131061A1 (en) 2007-04-26

Similar Documents

Publication Publication Date Title
EP1777286A2 (fr) Compositions lubrifiantes comprenant des huiles de base dérivées du gaz de synthèse
KR100404002B1 (ko) 수행력이 증강된 아연 및 인 함유 변속기 유체
KR100702883B1 (ko) 향상된 극압 특성을 가지는 동력 변속기 유체
EP1499701B1 (fr) Procédé de lubrification d'une transmission a double embrayage
EP2397536A1 (fr) Composition d'huile pour transmission à variation continue
JP2019157131A (ja) 酸性ホスフェートのアミン塩およびヒドロカルビルボレートを含有する潤滑剤
JP4430547B2 (ja) 潤滑油添加剤および潤滑油組成物
EP1624043B1 (fr) Fluides de transport de force motrice ayant des caractéristiques de pression extrême et d'anti-usure améliorées
EP1231256A2 (fr) Lubricating composition pour boíte automatique améliorant les propriétés anti-usure
WO2006118689A2 (fr) Composition de lubrification contenant des composes phosphores non acides
JP5473236B2 (ja) 潤滑油組成物
EP2684943B1 (fr) Fluides de transmission automatique
EP3377599A1 (fr) Détergents alkylphénols toxicologiquement acceptables utilisés en tant que modificateurs de frottement dans des huiles lubrifiantes automobiles
JP2017101151A (ja) 潤滑油組成物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: C10M 169/04 20060101AFI20070109BHEP

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1108912

Country of ref document: HK

17P Request for examination filed

Effective date: 20080625

17Q First examination report despatched

Effective date: 20080725

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090724

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1108912

Country of ref document: HK