EP1775455A2 - Selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke - Google Patents

Selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke Download PDF

Info

Publication number
EP1775455A2
EP1775455A2 EP20060019137 EP06019137A EP1775455A2 EP 1775455 A2 EP1775455 A2 EP 1775455A2 EP 20060019137 EP20060019137 EP 20060019137 EP 06019137 A EP06019137 A EP 06019137A EP 1775455 A2 EP1775455 A2 EP 1775455A2
Authority
EP
European Patent Office
Prior art keywords
cooled plate
internal combustion
combustion engine
engine according
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20060019137
Other languages
English (en)
French (fr)
Other versions
EP1775455A3 (de
EP1775455B1 (de
Inventor
Heribert Möller
Matthias Wacker
Peter Spaniol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Nutzfahrzeuge AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Nutzfahrzeuge AG filed Critical MAN Nutzfahrzeuge AG
Priority to PL06019137T priority Critical patent/PL1775455T3/pl
Publication of EP1775455A2 publication Critical patent/EP1775455A2/de
Publication of EP1775455A3 publication Critical patent/EP1775455A3/de
Application granted granted Critical
Publication of EP1775455B1 publication Critical patent/EP1775455B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/249Cylinder heads with flame plate, e.g. insert in the cylinder head used as a thermal insulation between cylinder head and combustion chamber

Definitions

  • the invention relates to a self-igniting internal combustion engine with combustion chambers for high ignition pressures according to the preamble of claim 1.
  • the invention is based on the assumption that the combustion chamber seal usual today must be taken over by the underside of the cylinder head in future engines with greatly increased ignition pressures of a separate component. It is a arranged between the combustion chamber and the cylinder head the top surface of the combustion chamber forming separate, with the crankcase and / or the cylinder liner positively and gastight connected cooled plate in which the valve seats at least one inlet valve and at least one outlet valve are arranged and the is penetrated by the at least one injection valve.
  • the advantage of such a component is, on the one hand, that the positive connection of the cooled plate with the crankcase and / or the cylinder liner can be made directly to the combustion chamber boundary, whereby the deflection at pressurization already considerably minimized compared to today's standard cylinder heads due to the much smaller spans
  • the use of this separate from the crankcase, cylinder head and possibly the cylinder liner component opens up completely new possibilities in terms of material selection.
  • the cooling of the cooled plate is carried out by the cooling medium provided for the cooling of the crankcase and the cylinder head, so that the cooled plate can be advantageously integrated into the existing cooling system.
  • a further advantage of the cooled plate according to the invention is that, due to the better accessibility for the mechanical processing, cooling channels can be introduced into the cooled plate which permit a significantly improved cooling of the combustion chamber roof and the valve seats compared to conventional cylinder heads.
  • the cooling channels can be advantageously formed as outgoing from the peripheral side of the cooled plate holes, which advantageously extend in the cooled plate that they cut other holes and form a connected system of holes. In this case, at least some of the bores are reclosed towards the peripheral side in order to simplify advantageously the inflow and outflow of the coolant.
  • the supply of the cooled plate with coolant can be done easily and thus advantageously so that in the peripheral side and / or in the protruding edge region of the top surface of the combustion chamber forming flat side of the cooled plate and / or the top surface opposite flat side of the cooled plate inflow and / / or outflow openings are provided and the supply of the cooled plate with coolant directly and / or via the crankcase and / or via the cylinder head. This opens up the possibility of optimally adapting the coolant flow to the respective structural conditions.
  • the cooled plate according to the invention can be used both in bushing-free combustion chambers and in combustion chambers which have a sleeve arranged in a cylinder bore.
  • a socket it is particularly advantageous to use one which has a collar which is supported on a balcony in the cylinder bore.
  • the inflow and outflow openings in the cooled plate are formed as bores corresponding to corresponding openings in the cylinder head or in the collar of the bush or in the crankcase or in a separate coolant manifold and the cooling channels in Connect the cooled plate to the coolant chambers in the cylinder head, crankcase or separate coolant manifold.
  • sealing means can be provided in each case in the crossing area, which reliably prevent leakage of the cooling medium.
  • the outer diameter of the inner diameter of the Combustion chamber substantially corresponds to the cylindrical projection is in the assembled state in the interior of the cylinder bore or the socket, so that the cooled plate engages the upper edge of the combustion chamber angle. It is particularly conducive to the seal to choose the diameter of the cylindrical projection so that there is an interference fit between it and the combustion chamber diameter. In addition, it may be advantageous for sealing the combustion chamber to provide a seal between the combustion chamber overlapping part of the cooled plate and the crankcase or the Buchsenbund.
  • connection of the cooled plate with the crankcase or, if present, the bushing collar is advantageously accomplished by screwing the cooled plate to the crankcase or the bushing collar by means of screws, the screws are advantageous as close to the combustion chamber edge to arrange the deflection of the cooled plate during the Minimize ignition events.
  • combustion chambers having a socket, by means of an internal thread on the upper edge of the sleeve and an external thread on the circumference of the cylindrical extension to screw the cooled plate to the socket, so that the connection between the socket and the cooled plate in particularly favorable manner takes place directly on the combustion chamber edge.
  • Another simple and therefore cheap way to connect the cooled plate with the socket consists of welding these two components together.
  • the cooled plate may be provided on its side facing the combustion chamber with a coating of low thermal conductivity and / or high wear resistance, wherein the coating with low thermal conductivity minimizes the heat loss of the combustion chamber gas and thus advantageously increases the efficiency and a wear-reducing coating on the valve seats positively influences the service life.
  • both the cooling channels and the coolant supply and coolant discharges can be particularly simple and therefore advantageous by z.
  • the cylinder head which adjoins the cooled plate on the side facing away from the combustion chamber, can be designed as a cylinder head assigned to a cylinder or as a continuous cylinder head assigned to several or all cylinders and contains, in addition to the gas exchange channels, at least one injection valve and the guides for the inlet cylinder head. and exhaust valves.
  • the cylinder head is advantageously configured to pressurize the cooled plate at least in the region of its center.
  • the coolant chambers are divided, extending at least perpendicular to the flat side of the cooled plate bulkheads, which derive particular occurring in the center of the cooled plate forces in the cylinder head fasteners in the crankcase.
  • the use of the cooled plate according to the invention opens up possibilities of material selection with respect to the cylinder head, which did not exist in conventional internal combustion engines for commercial vehicles for reasons of strength, then light metal alloys can be used for the cylinder head, which reduce the weight in an advantageous manner and have much better properties with respect to the Heat transport have.
  • a control and actuation module For controlling and actuating the gas exchange valves and the injection valves, a control and actuation module is provided which extends over a plurality of cylinders, preferably over all cylinders of a series engine or over all cylinders of a cylinder bank of a V-engine and which contains at least one camshaft and the actuators for the gas exchange valves and encloses the actuators for the injectors.
  • the control and actuation module is connected to the lubricant circuit and has a housing cover, via which the actuators for the gas exchange valves and the injectors are accessible.
  • control and actuation module fastened by means of detachable connections to the cylinder head or the cylinder heads, the construction detached from the cylinder head offers new possibilities in the choice of material.
  • a complete or at least partial execution in plastic allows an advantageous weight reduction and simplifies the production as a plastic injection molded part.
  • the control and actuation module can advantageously an all combustion chambers or integrated all the combustion chambers of a cylinder bank common charge air pipe.
  • Fig. 1 shows a combustion chamber 1 of a self-igniting internal combustion engine, which consists of a cylinder liner 2, a piston 3 and a cooled plate 4.
  • the cylinder liner 2 is arranged in a known manner in the crankcase 5 and surrounded in the region of the combustion chamber 1 by coolant leading rooms 6 for cooling the combustion chamber walls.
  • the piston 3 acts via a connecting rod 7 on a crankshaft 8, which is mounted in the crankcase 5 is (not shown).
  • the combustion chamber 1 is closed by the cooled plate 4, which essentially has the outer diameter of a bushing collar 9 arranged on the cylinder head end of the cylinder liner 2.
  • a cylindrical projection 10 is arranged to the combustion chamber 1, the diameter of which substantially corresponds to the inner diameter of the cylinder liner 2, so that the cooled plate 4, the cylinder head side edge of the cylinder liner 2 engages angularly.
  • cooling channels 11 Inside the cooled plate 4 cooling channels 11 are arranged, in which a cooling medium circulates.
  • the cooled plate 4 is positively and gas-tightly connected to the cylinder liner 2.
  • valve seats (not visible in Fig. 1) arranged, which cooperate with the valve plates 12 of the gas exchange valves 13.
  • the fuel supply via an opening 20 which passes through the cooled plate 4 in its center from the side facing away from the combustion chamber 1 in the direction of the combustion chamber 1 and in which an injection valve (not shown in Fig. 1) is arranged.
  • the arrangement of the injection valve in the opening 20 is made such that the injection valve, possibly with the interposition of a sealant, the combustion chamber gas-tight and with its injection nozzle opening (not shown) projects into it.
  • the cylinder head 14 is fastened in a conventional manner by means of screws (not shown) which project through the cylinder head 14 in the direction of the crankcase 5 and fix it on the crankcase 5.
  • the gas channels (not shown) for intake air or the combustion gases, the valve guides (not shown) for the valve stems 15 of the gas exchange valves 13 and a coolant space 16 for cooling the cylinder head 14 or its built-in parts are arranged in the cylinder head 14 in a known manner.
  • the space in the cylinder head 14 is divided into a cellular structure, on the one hand by connecting holes 21 allows targeted coolant management and on the other hand, has a high rigidity, the a deflection of the cooled plate 4 counteracts in the ignition phase.
  • FIG. 1 An external view of the cylinder liner 2 with attached cooled plate 4, Fig. 2 in side view and Fig. 3 in plan view.
  • the cooled plate 4 is screwed to the bushing collar 9 by means of screws 19, and corresponds in diameter to the outer diameter
  • the gas exchange valves 13 and the opening 20 are arranged for the injection valve.
  • FIG. 5 shows a section along the line CC in FIG. 2. Starting from opposite sides of the circumference of the cooled plate 4, boreholes 11.1, 11.2, 11.5, 11.6 forming two pairs of bores run toward each other, wherein each of the pairs of bores has a " X ", so cut the holes of a hole pair.
  • the arrangement of the bore pairs relative to the arrangement of the openings for the gas exchange valves 13, whose centers essentially form the vertices of a square, is made such that the intersection of a pair of holes between two adjacent openings for the gas exchange valves 13.
  • the holes 11.1, 11.2, 11.5, 11.6 of each pair of holes extend from the respective points of intersection viewed in the direction of the center of the cooled plate 4 again apart and intersect the holes of the respective opposing hole pair on a line through the center of the cooled plate 4th
  • the so-forming network of connected holes 11.1 - 11.6 forms the cooling channels 11 which, as will be explained in more detail below, can be connected in different ways with the cooling system of the internal combustion engine.
  • the screw connection of the cylinder liner 2 to the cooled plate 4 described above in connection with FIGS. 1 to 5 is shown in a detail view in FIG. 6.
  • the cooled plate 4 is located, the combustion chamber 1 in the direction of the cylinder head 14 (not shown in FIG. 6) finally, in the region of the bushing collar 9 on the cylinder liner 2 and surrounds the inner edge of the bushing collar 9 angle-shaped.
  • the screw 19 cooperates with a corresponding thread 23 in the bushing collar 9 and sets the cooled plate 4 on the bushing collar 9.
  • the diameter of the cylindrical projection 10 of the cooled plate 4 in conjunction with the inner diameter of the cylinder liner 2 can be designed so that there is an interference fit.
  • FIG. 8 shows another way to screw the cooled plate 4 with the bushing collar 9, to the cylindrical projection 10 of the cooled plate 4, an external thread 25 is provided which cooperates with an internal thread 26 on the cylinder head side edge of the bushing collar 9.
  • connection with Figures 6 to 8 between the cooled plate 4 and the cylinder liner are only examples, it can be with the skilled person available many different compounds between these two components, but in particular between the cooled plate and the Crankcase, in one embodiment of the combustion chamber without cylinder liner realize.
  • cooling channels 11 forming holes 11.1-11.6 are connected to the cooling system of the internal combustion engine. This connection can be done in different ways. Some ways to feed the cooling channels 11 in the cooled plate 4 with coolant or to remove coolant therefrom are shown by way of example in the detailed illustrations in FIGS. 9-11.
  • the sectional view in Fig. 9 shows this simplifies the already known arrangement of cooled plate 4 and cylinder liner 2.
  • the cylinder liner 2 is located in the cylinder bore in the crankcase 5, wherein for cooling the walls of the combustion chamber 1 coolant leading spaces 6 between the crankcase 5 and cylinder liner 2 are formed.
  • the cooled plate 4 has a bore 11 forming a cooling channel which extends from the peripheral side 27 of the cooled plate 4 radially inwardly. To the peripheral side 27 towards the cooling channel 11 is closed by means of a pressed ball 28.
  • connection of the cooling channel 11 to the cooling system of the internal combustion engine is through a supply bore 29 accomplished, which passes through the bushing collar 9 of the cylinder liner 2 and is aligned with a connection bore 30 in resting on the bushing collar 9 edge region of the cooled plate 4, wherein the connection bore 30 opens into the cooling channel 11.
  • a supply bore 29 accomplished, which passes through the bushing collar 9 of the cylinder liner 2 and is aligned with a connection bore 30 in resting on the bushing collar 9 edge region of the cooled plate 4, wherein the connection bore 30 opens into the cooling channel 11.
  • similar feed bores and thus aligned connection bores may be provided at several points of the cooled plate 4 and cooperate with corresponding cooling channels to ensure efficient cooling.
  • FIG. 10 A further possibility of supplying coolant from the crankcase 5 to the cooled plate 4 is shown schematically in a sectional drawing, FIG. 10.
  • the already described arrangement of cylinder liner 2 and cooled plate 4 is shown.
  • This arrangement is enclosed on the one hand by the crankcase 5 and the other hand arranged on the crankcase 5 cylinder head 14.
  • In the crankcase 5 runs a connecting channel 31 from a arranged in the crankcase 5 coolant passage 32 to the dividing line between the cylinder head 14 and crankcase 5 and goes there in a cylinder head 14 arranged connection channel 33 via, which in turn via a connection opening 34 in the analogous to the example of FIG. 9 in the cooled plate 4 arranged cooling channel 11 opens.
  • sealing means 35 are provided to seal the transition between the crankcase 5 and cylinder head 14 on the one hand and the cylinder head 14 and cooled plate 4 on the other hand.
  • similar coolant supply to the cooled plate 4 may be provided at several points.
  • FIG. 11 shows in simplified form a coolant supply to the cooled plate 4 from the cylinder head 14 of the internal combustion engine.
  • the arrangement shown also in this case comprises a cylinder liner 2 with which the cooled plate 4 is connected in one of the ways described above.
  • the combination of cylinder liner 2 and cooled plate 4 superimposed in a cylinder bore in the crankcase 5, such that the cylinder head side flat side of the cooled plate 4, with the cylinder head 14 adjacent side of the crankcase 5 is aligned.
  • a connection between the coolant chamber 16 and the cooling channel 11 in the cooled plate 4 is provided by the coolant chamber 16 arranged in the cylinder head 14 via a connection opening 36 to be cooled on the cooled plate 4, which is in alignment with a coolant connection 37 in the cooled plate 4 created.
  • the cooling channel 11 formed from the peripheral side of the cooled plate 4 and formed in the form of a bore is, as in the examples described above, by a pressed ball 28 near the peripheral side locked.
  • a sealing means 35 is arranged around the coolant connection 37.
  • several similar connections can be provided between the coolant chamber 16 in the cylinder head 14 and cooling channels 11 in the cooled plate 4.
  • the coolant discharge from the cooled plate 4 to the crankcase 5 or to the cylinder head 14 may be similar to the coolant feeds described in the examples, so that a separate illustration of the coolant discharges can be waived.
  • the above-described principles of the coolant supply of the cooled plate 4 are of course equally suitable for internal combustion engines with cylinder liners and bushingless internal combustion engines.
  • FIGS. 12 and 13 shows a section along the line D-D (FIG. 5) and FIG. 13 shows a section along the line E-E (FIG. 5).
  • Fig. 12 shows, starting from a first coolant chamber 16.1, which is part of the coolant chamber 16 in the cylinder head 14, an inlet bore 38 which connects the first coolant chamber 16.1 with the bore 11.1 in the cooled plate 4.
  • the bore 11.1 which is closed to the narrow side of the cooled plate 4 through a ball 28, cuts at the point X, the bore 11.2 whose further course to the point Y in the sectional view is.
  • the bore 11.2 intersects the bore 11.6 whose course is shown in the right half of FIG.
  • the bore 11.6 cuts at the point Z the bore 11.5 and is closed on the narrow side of the cooled plate 4 with a pressed-in bore 11.6 ball 28.
  • Via a drain hole 39 a connection between the bore 11.6 and a second coolant chamber 16.2 is made in the cylinder head 14, which is located downstream of the first coolant chamber 16.1 and also part of the coolant chamber 16.
  • FIG. 13 shows a sectional view deviating from the illustration in FIG. 12 in FIG. 5 with EE.
  • the bore 11.2 intersects both the bore 11.6 and the bore 11.3, whose course is shown in the right half of Fig. 13.
  • the bore 11.3 is also closed near the peripheral side with a ball 28.
  • a further drain hole 40 is provided which connects the bore 11.3 with a third coolant chamber 16.3 which is also part of the coolant chamber 16 and downstream of the coolant chamber 16.1.
  • connections 21 between the individual parts of the coolant chamber 16 (FIG. 1) and the connections between the coolant chamber 16 and the cooling channels 11 are designed in this way are that a staggered according to the heat load of the cooled plate 4 and cylinder head 14 results in heat dissipation, while the heat load and thus the heat dissipation at the combustion chamber boundary is greatest and decreases with increasing distance from the combustion chamber.
  • the cooled plate 4 may be made of a high strength metal alloy e.g. high-strength forged steel exist that could not be used for conventional cylinder heads for structural, manufacturing and financial reasons.
  • the cylinder head is made of simpler materials, such as, for example, because of the low stress experienced by conventional cylinder heads. Aluminum can be produced, which in addition to cost advantages also bring weight advantages.
  • valve seats for the gas exchange valves 13 can be incorporated directly into the cooled plate, so that can be dispensed with the pressing of valve seat rings.
  • the separation of the combustion chamber seal from the cylinder head also allows or simplifies wear-reducing and / or efficiency-increasing measures on the combustion chamber roof.
  • FIG. 14 shows in a partial view a section along the line F-F in FIG. 3.
  • a cooled plate 4 is screwed to the bushing collar 9 of a cylinder liner 2, the cylinder liner 2 being a cooled plate 4 and a piston 3 (FIG. 1) forming the combustion chamber 1.
  • the combustion chamber 1 covering the side of the cooled plate 4 with a ceramic coating 42 to provide.
  • Such ceramic coatings can be applied in many different ways; the methods used for this purpose are known to the person skilled in the art. Of course, other than ceramic coatings are conceivable.
  • the cooled plate 4 In order to obtain different material properties in different planes of the cooled plate, as shown in section in a partial view along the line GG (FIG. 16), it is possible to construct the cooled plate 4 from layers.
  • a first package of two layers 45 is provided, wherein the two layers 45 consist of metal plates which form a rigid composite and contain both inflow openings 43 and outflow openings 44, via which the cooling liquid from the cylinder head 14 analogously to the example of FIG flow or can flow to this.
  • the recesses 47 To the two layers 45 is followed in the direction of the combustion chamber 1, a third layer 46, the recesses 47, for example in the form of free distances.
  • the recesses 47 correspond to the feed openings 43 and the discharge openings 44 and form the cooling channels of the cooled plate 4.
  • the third layer 46 In the choice of material of the third layer 46 may be geared to a good workability, because this layer 46 anyway because of the recesses 47 to the flexural rigidity of the Can contribute together.
  • the fourth layer 48 in the direction of the combustion chamber 1, like the first two layers 45, consists of a material of high flexural stiffness, while the fifth layer 49 in the direction of the combustion chamber has high hardness and low thermal conductivity.
  • the valve seats of the gas exchange valves (not shown in Fig. 15) are incorporated.
  • the coolant channels 11 are arranged at valve holes 51 spaced slightly in the region of the valve webs 51.1 and optimize the cooling effect in this area. In addition to the above-described free-dancing of the coolant channels, they can also be recessed in relief in the parallel plates.
  • either a continuous all combustion chambers common or more each at least one combustion chamber associated cylinder heads are provided, wherein the cylinder head or the cylinder heads only the gas exchange channels, the cooling channels, the conventional engine valves and the Includes intake for the injectors.
  • the control and operating mechanisms for the gas exchange valves and for the injection valves conventionally contained in the cylinder head or in the cylinder heads in conventional engine designs are, as shown in a sectional drawing along the line AA (FIG. 2) in a control and actuation module, as shown in FIG arranged, which is common to all combustion chambers. Since the illustration in FIG. 17 differs from the representation in FIG.
  • the control and actuation module 52 has a common to all combustion chambers and thus also all cylinder heads 14 carrier 53 on which in a trough-shaped portion 54, a camshaft 55 is rotatably mounted.
  • the drive of the camshaft 55 is effected in a conventional manner by a driven via the crankshaft 8, not shown in the diagram gear assembly, it may be a gear drive, a chain or a toothed belt.
  • the camshaft 55 acts in a known manner via its cams 56 on roller rocker arm 57, which rotatably on a common carrier 53 mounted axis 58 are arranged, such that the cams 56 of the camshaft 55 act on the cam-side ends 57.1 of the rocker arm 57.
  • valve bridges 59 the gas exchange valves 13 and thereby open or close on the valve plate 12, the gas exchange channels (not shown).
  • the combustion chambers are supplied with fuel via injection valves 60 arranged in the cylinder head 14, which are connected via pipe connections (not shown) to an injection system (not shown).
  • the injection system may be e.g. to trade a common rail injection system.
  • the actuation of the injectors via an electronic control (not shown) by electrical means, as is common in common rail injection systems.
  • a central lubricant bore 61 is provided, which is supplied by the lubricant circuit of the internal combustion engine (not shown) with lubricant and in turn with the lubrication points in the control and actuation module 52 via lubricant channels (not shown) is directly or indirectly ally. Excess lubricant is collected in the common carrier 53 and returned via a return line (not shown) in the oil pan of the internal combustion engine (not shown).
  • a cover 62 is provided, which is screwed to the common carrier 53 and closes off the interior of the control and actuation module 52 from the surrounding atmosphere.
  • the above description of the mechanisms for actuating the gas exchange valves and the injectors is to be understood as exemplary only.
  • the actuation arrangement for the gas exchange valves may of course also be an electronically controlled arrangement which actuates the gas exchange valves individually via actuators actuated electrically or hydraulically.
  • the common rail injection system described is only one possible embodiment, it may of course also be a pump-nozzle system or a pump-line-nozzle system.
  • control and actuation module 52 described above in connection with FIG. 17 does not necessarily have to be separated from the cylinder head 14, the functionality of the control and actuation module can of course also be integrated into the cylinder head under certain conditions.
  • the actuator assembly for the gas exchange valves in the cylinder heads would be advantageous, as is customary in such constructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Gegenstand der Erfindung ist eine selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke. Es wird vorgeschlagen, die Brennraumabdichtung, die bei heute üblichen Brennkraftmaschinen des gattungsgemäßen Typs durch die Unterseite des Zylinderkopfes bewerkstelligt wird, bei zukünftigen Motoren mit stark erhöhten Zünddrücken durch ein separates Bauteil vorzunehmen. Es handelt sich dabei um eine zwischen dem Brennraum und dem Zylinderkopf angeordnete die Deckfläche des Brennraumes bildende separate, mit dem Kurbelgehäuse und/ oder der Zylinderlaufbuchse formschlüssig und gasdicht verbundene gekühlte Platte, in der die Ventilsitze wenigstens eines Einlassventils und wenigstens eines Auslassventils angeordnet sind und die von wenigstens einem Einspritzventil durchragt wird. Der Vorteil eines derartigen Bauteils liegt zum einen darin, dass die formschlüssige Verbindung der gekühlten Platte mit dem Kurbelgehäuse und/ oder der Zylinderlaufbuchse unmittelbar an der Brennraumgrenze erfolgen kann, wodurch die Durchbiegung bei Druckbeaufschlagungschon aufgrund der wesentlich geringeren Spannweiten gegenüber den heute üblichen Zylinderköpfen erheblich minimiert werden kann, andererseits eröffnet die Verwendung dieses von Kurbelgehäuse, Zylinderkopf und gegebenenfalls der Zylinderlaufbuchse separaten Bauteils völlig neue Möglichkeiten hinsichtlich der Materialauswahl. Die Kühlung der gekühlten Platte erfolgt dabei durch das für die Kühlung des Kurbelgehäuses und des Zylinderkopfes vorgesehene Kühlmedium.

Description

  • Gegenstand der Erfindung ist eine selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke gemäß dem Gattungsbegriff des Patentanspruches 1.
  • Bei heute üblichen Fahrzeugmotoren, insbesondere Motoren für Nutzfahrzeuge, sind Zünddrücke gebräuchlich die bereits sehr hohe Anforderungen an die Abdichtung der Brennräume stellen und die den Brennraum begrenzenden Komponenten, insbesondere den Zylinderkopf sehr hohen thermischen und mechanischen Belastungen aussetzen. In Folge dieser hohen Belastungen reicht oft die Kühlwirkung die über die Kühlkanäle im Zylinderkopf an der Brennraumdecke zur Verfügung gestellt werden kann für eine ausreichende Kühlung insbesondere in den Bereichen zwischen den Ventilen nicht aus. In Folge davon können sich sogenannte Stegrisse zwischen den Ventilöffnungen im Zylinderkopf einstellen und den Zylinderkopf und damit den Motor zerstören.
  • Parallel zu diesem bestehenden Problem ist es zur Erreichung der in Zukunft geforderten Abgaswerte einerseits und der ständig steigenden Anforderungen an die Literleistung der Brennkraftmaschinen bei gleichzeitiger Reduzierung des Gewichtes andererseits, unumgänglich die Zünddrücke in eine Größenordnung von bis zu 300 bar anzuheben, was nahezu einer Verdopplung gegenüber dem heute üblichen Standard gleichkommt. Derartige Anforderungen sind bei vertretbarem Aufwand hinsichtlich des Materialeinsatzes mit heute gebräuchlichen Motorkonstruktionen nicht zu erfüllen.
  • Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, eine Brennkraftmaschine anzugeben, die bei vertretbarem konstruktiven Aufwand sehr hohen Zünddrücken gewachsen ist.
  • Gelöst wird die Aufgabe durch die kennzeichnenden Merkmale des Anspruches 1, vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.
  • Die Erfindung geht davon aus, dass die heute übliche Brennraumabdichtung durch die Unterseite des Zylinderkopfes bei zukünftigen Motoren mit stark erhöhten Zünddrücken von einem separaten Bauteil übernommen werden muss. Es handelt sich dabei um eine zwischen dem Brennraum und dem Zylinderkopf angeordnete die Deckfläche des Brennraumes bildende separate, mit dem Kurbelgehäuse und/ oder der Zylinderlaufbuchse formschlüssig und gasdicht verbundene gekühlte Platte, in der die Ventilsitze wenigstens eines Einlassventils und wenigstens eines Auslassventils angeordnet sind und die von dem wenigstens einen Einspritzventil durchragt wird. Der Vorteil eines derartigen Bauteils liegt zum einen darin, dass die formschlüssige Verbindung der gekühlten Platte mit dem Kurbelgehäuse und/ oder der Zylinderlaufbuchse unmittelbar an der Brennraumgrenze erfolgen kann, wodurch die Durchbiegung bei Druckbeaufschlagung schon aufgrund der wesentlich geringeren Spannweiten gegenüber den heute üblichen Zylinderköpfen erheblich minimiert werden kann, andererseits eröffnet die Verwendung dieses von Kurbelgehäuse, Zylinderkopf und gegebenenfalls der Zylinderlaufbuchse separaten Bauteils völlig neue Möglichkeiten hinsichtlich der Materialauswahl. Die Kühlung der gekühlten Platte erfolgt dabei durch das für die Kühlung des Kurbelgehäuses und des Zylinderkopfes vorgesehene Kühlmedium, so dass die gekühlte Platte in das bestehende Kühlsystem vorteilhaft integrierbar ist.
  • Ein weiterer Vorteil der erfindungsgemäßen gekühlten Platte besteht darin, dass sich, durch die bessere Zugänglichkeit für die mechanische Bearbeitung, in die gekühlte Platte Kühlkanäle einbringen lassen die eine gegenüber herkömmlichen Zylinderköpfen deutlich verbesserte Kühlung des Brennraumdaches und der Ventilsitze zulassen. Die Kühlkanäle lassen sich dabei vorteilhaft als von der Umfangseite der gekühlten Platte ausgehende Bohrungen ausbilden, die vorteilhaft so in der gekühlten Platte verlaufen, dass sie andere Bohrungen schneiden und so ein verbundenes System von Bohrungen ausbilden. Dabei sind zumindest ein Teil der Bohrungen zur Umfangsseite hin wieder verschlossen um in vorteilhafter Weise das Zuströmen und Abströmen des Kühlmittels zu vereinfachen.
  • Die Versorgung der gekühlten Platte mit Kühlmittel kann dabei einfach und damit vorteilhaft so erfolgen, dass in der Umfangsseite und/ oder im überstehenden Randbereich der die Deckfläche des Brennraums bildenden Flachseite der gekühlten Platte und/ oder der der Deckfläche gegenüberliegenden Flachseite der gekühlten Platte Zuströmöffnungen und/ oder Abströmöffnungen vorgesehen sind und die Versorgung der gekühlten Platte mit Kühlmittel direkt und/ oder über das Kurbelgehäuse und/ oder über den Zylinderkopf erfolgt. Damit eröffnet sich die Möglichkeit den Kühlmittelstrom optimal an die jeweiligen konstruktiven Gegebenheiten anzupassen.
  • Die erfindungsgemäße gekühlte Platte lässt sich sowohl bei buchsenlosen Brennräumen als auch bei Brennräumen, die eine in einer Zylinderbohrung angeordneten Buchse aufweisen, einsetzen. Bei Verwendung einer Buchse ist es besonders vorteilhaft, eine solche einzusetzen die über einen Bund verfügt, der sich an einem Balkon in der Zylinderbohrung abstützt.
  • Zur Versorgung der gekühlten Platte mit dem Kühlmittel ist es weiter von Vorteil die Zuström- und Abströmöffnungen in der gekühlten Platte als Bohrungen auszubilden, die mit entsprechenden Öffnungen im Zylinderkopf oder im Bund der Buchse oder im Kurbelgehäuse oder in einem separaten Kühlmittelverteilerrohr korrespondieren und die Kühlkanäle in der gekühlten Platte mit den Kühlmittelräumen im Zylinderkopf, im Kurbelgehäuse oder dem separaten Kühlmittelverteilerrohr verbinden. Dazu können jeweils im Übertrittsbereich Dichtmittel vorgesehen sein die ein Austreten des Kühlmediums sicher verhindern.
  • Durch die von Kurbelgehäuse und Zylinderkopf unabhängige separate Ausführung der gekühlten Platte eröffnet sich in vorteilhafter Weise die Möglichkeit der freien Materialauswahl, so dass für die gekühlte Platte hochfeste Metalllegierungen eingesetzt werden können, deren Einsatz sich für den Zylinderkopf oder das Kurbelgehäuse aus Kostengründen oder auch aus konstruktiven Gründen verbieten würde. Die Freiheit in der Materialauswahl eröffnet auch die Möglichkeit neben einer Variante der gekühlten Platte mit eingesetzten Ventilsitzringen eine solche zu realisieren, bei der die Ventilsitze in vorteilhafter Weise in die einstückige gekühlte Platte eingearbeitet sind.
  • Zur Brennraumabdichtung ist es darüber hinaus von Vorteil, die gekühlte Platte mit einem zylinderförmigen Ansatz zu versehen, dessen Außendurchmesser dem Innendurchmesser des Brennraumes im wesentlichen entspricht wobei der zylinderförmige Ansatz im montierten Zustand im Innern der Zylinderbohrung bzw. der Buchse liegt, so dass die gekühlte Platte den oberen Rand des Brennraumes winkelförmig umgreift. Dabei ist es für die Abdichtung besonders förderlich den Durchmesser des zylinderförmigen Ansatzes so zu wählen, dass sich zwischen ihm und dem Brennraumdurchmesser ein Presssitz ergibt. Darüber hinaus kann es zur Abdichtung des Brennraums von Vorteil sein, eine Dichtung zwischen dem den Brennraum überlappenden Teil der gekühlten Platte und dem Kurbelgehäuse bzw. dem Buchsenbund vorzusehen.
  • Die Verbindung der gekühlten Platte mit dem Kurbelgehäuse bzw. falls vorhanden dem Buchsenbund wird vorteilhaft durch Verschrauben der gekühlten Platte mit dem Kurbelgehäuse bzw. dem Buchsenbund mittels Schrauben bewerkstelligt, dabei sind die Schrauben vorteilhaft möglichst dicht am Brennraumrand anzuordnen um die Durchbiegung der gekühlten Platte während der Zündvorgänge zu minimieren. Alternativ zu dieser Art der Befestigung ist es bei Brennräumen die eine Buchse aufweisen möglich, mittels eines Innengewindes am oberen Büchsenrand und eines Außengewindes am Umfang des zylinderförmigen Ansatzes, die gekühlte Platte mit der Buchse zu verschrauben, so dass die Verbindung zwischen Buchse und gekühlter Platte in besonders günstiger Weise unmittelbar am Brennraumrand erfolgt. Eine weitere einfache und damit günstige Möglichkeit die gekühlte Platte mit der Buchse zu verbinden besteht im Verschweißen dieser beiden Bauteile miteinander.
  • Zur Verbesserung des Wirkungsgrades der Brennkraftmaschine und/ oder des Verschleißes an den Ventilsitzen kann die gekühlte Platte auf ihrer dem Brennraum zugewandten Seite mit einer Beschichtung geringer Wärmeleitfähigkeit und/ oder hoher Verschleißfestigkeit versehen sein, wobei die Beschichtung mit geringer Wärmeleitfähigkeit den Wärmeverlust des Brennraumgases minimiert und damit den Wirkungsgrad vorteilhaft erhöht und eine verschleißmindemde Beschichtung an den Ventilsitzen die Lebensdauer positiv beeinflusst.
  • Um in der gekühlten Platte in unterschiedlichen Ebenen unterschiedliche Materialeigenschaften zu erzeugen kann es von Vorteil sein, die gekühlte Platte in Schichten aus parallelen Platten mit unterschiedlichen Materialeigenschaften aufzubauen, wobei wenigstens eine der innenliegenden parallelen Platte mit dem Kühlsystem der Brennkraftmaschine verbundene Ausnehmungen aufweist. Durch den Aufbau aus einem Paket paralleler Platten lassen sich sowohl die Kühlkanäle als auch die Kühlmittelzuführungen bzw. die Kühlmittelabführungen besonders einfach und damit vorteilhaft durch z. B. Ausstanzungen an einer oder an mehreren der parallelen Platten erzeugen. Zur Erhöhung der Biegesteifigkeit des Verbundes ist es vorgesehen, benachbarte Platten des Plattenpaketes miteinander zu verbinden.
  • Der Zylinderkopf, der sich auf der dem Brennraum abgewanden Seite an die gekühlte Platte anschließt, kann als jeweils einem Zylinder zugeordneter Einzelzylinderkopf oder als mehreren oder allen Zylindern zugeordneter durchgehender Zylinderkopf ausgebildet sein und beinhaltet neben den Gaswechselkanälen wenigstens ein Einspritzventil sowie die Führungen für die Einlass- und Auslassventile. Zur weiteren Minimierung der Durchbiegung der gekühlten Platte während der Zündvorgänge ist der Zylinderkopf vorteilhaft so ausgebildet, dass er die gekühlte Platte zumindest im Bereich ihres Zentrums druckbeaufschlagt. Um den Zylinderkopf in vorteilhafter Weise möglichst biegesteif zu gestalten sind die Kühlmittelräume unterteilende, zumindest senkrecht zur Flachseite der gekühlten Platte verlaufende Schottwände vorgesehen, die insbesondere im Zentrum der gekühlten Platte auftretende Kräfte in die Zylinderkopfbefestigungen im Kurbelgehäuse ableiten. Durch den Einsatz der erfindungsgemäßen gekühlten Platte eröffnen sich auch hinsichtlich des Zylinderkopfes Möglichkeiten der Materialwahl, die bei herkömmlichen Brennkraftmaschinen für Nutzfahrzeuge aus Festigkeitsgründen nicht bestanden, so sind für den Zylinderkopf Leichtmetalllegierungen einsetzbar, die das Gewicht in vorteilhafter Weise reduzieren und über wesentlich bessere Eigenschaften hinsichtlich des Wärmetransportes verfügen.
  • Zur Steuerung und Betätigung der Gaswechselventile und der Einspritzventile ist ein sich über mehrere Zylinder, bevorzugt über alle Zylinder eines Reihenmotors oder über alle Zylinder einer Zylinderbank eines V-Motors erstreckendes Steuer- und Betätigungsmodul vorgesehen, das wenigstens eine Nockenwelle und die Betätigungseinrichtungen für die Gaswechselventile enthält und die Betätigungseinrichtungen für die Einspritzventile umschließt. Das Steuer- und Betätigungsmodul ist an den Schmiermittelkreislauf angeschlossen und weist einen Gehäusedeckel auf, über den die Betätigungseinrichtungen für die Gaswechselventile und die Einspritzventile zugänglich sind. Auch hinsichtlich des mittels lösbarer Verbindungen am Zylinderkopf bzw. den Zylinderköpfen befestigten Steuer- und Betätigungsmoduls ergeben sich durch die vom Zylinderkopf losgelöste Konstruktion neue Möglichkeiten bei der Materialwahl. Eine vollständige oder zumindest teilweise Ausführung in Kunststoff erlaubt eine vorteilhafte Gewichtsreduzierung und vereinfacht die Fertigung als Kunststoffspritzgussteil. In das Steuer- und Betätigungsmodul kann in vorteilhafter Weise ein allen Brennräumen bzw. allen Brennräumen einer Zylinderbank gemeinsames Ladeluftrohr integriert sein.
  • Beispiel der erfindungsgemäßen Anordnung sind nachfolgend unter Zuhilfenahme der Zeichnungen näher erläutert, es zeigen:
  • Fig. 1
    Ein Brennraum einer Brennkraftmaschine in Teildarstellung, geschnitten und schematisch dargestellt
    Fig. 2
    der Brennraum aus Fig. 1 in Seitenansicht von außen
    Fig. 2
    der Brennraum aus Fig. 1 in Draufsicht von außen
    Fig. 4
    einen Schnitt durch den Brennraum entlang der Linie B - B
    Fig. 5
    einen Schnitt durch die den Brennraum nach oben abschließende gekühlte Platte entlang der Linie C - C
    Fig. 6
    eine erste Detaildarstellung der Verbindung zwischen gekühlter Platte und Buchse
    Fig. 7
    eine zweite Detaildarstellung der Verbindung zwischen gekühlter Platte und Buchse
    Fig. 8
    eine dritte Detaildarstellung der Verbindung zwischen gekühlter Platte und Buchse
    Fig. 9
    eine Detaildarstellung einer Kühlmittelverbindung zwischen Kurbelgehäuse und gekühlter Platte
    Fig. 10
    eine zweite Detaildarstellung einer Kühlmittelverbindung zwischen Kurbelgehäuse und gekühlter Platte
    Fig. 11
    eine Detaildarstellung der Kühlmittelverbindung zwischen Zylinderkopf und gekühlter Platte
    Fig. 12
    eine Schnittdarstellung durch den Brennraum entlang der Linie D - D
    Fig. 13
    eine Schnittdarstellung durch den Brennraum entlang der Linie E - E
    Fig. 14
    eine Schnittdarstellung durch den Brennraum mit einer beschichteten gekühlten Platte entlang der Linie F - F
    Fig. 15
    eine Schnittdarstellung durch eine gekühlte Platte mit Schichtaufbau entlang der Linie G - G
    Fig. 16
    eine Schnittdarstellung durch eine gekühlte Platte mit Schichtaufbau entlang der Linie H - H
    Fig. 17
    die Darstellung des Brennraums aus Fig. 1 mit aufgesetztem Steuerungs- und Betätigungsmodul
  • Die Konzeption einer Brennkraftmaschine für hohe Zünddrücke geht von der Grundüberlegung aus, dass die Abdichtung der Brennräume funktional vom Zylinderkopf getrennt werden muß, um günstigere geometrische Verhältnisse für die Abdichtung zu schaffen und hinsichtlich der einsetzbaren Materialien neue Möglichkeiten zu eröffnen. Es wird deshalb ein eigenständiges Bauteil vorgeschlagen, das zwischen Brennraum und Zylinderkopf liegt und dessen ausschließliche Funktion darin besteht, den Brennraum zum Zylinderkopf hin abzuschließen und abzudichten. Ein Brennraum der dem vorstehend aufgezeigten Konzept folgt, ist in Fig. 1 schematisch in einem Schnittbild dargestellt, der Verlauf der Schnittebene ist aus der Fig. 3 entnehmbar und dort mit A-A bezeichnet.
  • Fig. 1 zeigt einen Brennraum 1 einer selbstzündenden Brennkraftmaschine, der aus einer Zylinderlaufbuchse 2, einem Kolben 3 und einer gekühlten Platte 4 besteht. Die Zylinderlaufbuchse 2 ist in bekannter Weise im Kurbelgehäuse 5 angeordnet und im Bereich des Brennraumes 1 von Kühlmittel führende Räumen 6 zur Kühlung der Brennraumwände umgeben. Der Kolben 3 wirkt über ein Pleuel 7 auf eine Kurbelwelle 8, die im Kurbelgehäuse 5 gelagert ist (nicht dargestellt). Nach oben hin wird der Brennraum 1 durch die gekühlte Platte 4 abgeschlossen, die im wesentlichen den äußeren Durchmesser eines am Zylinderkopfseitigen Ende der Zylinderlaufbuchse 2 angeordneten Buchsenbundes 9 aufweist. An der gekühlten Platte 4 ist zum Brennraum 1 hin ein zylinderförmiger Ansatz 10 angeordnet, dessen Durchmesser im wesentlichen dem Innendurchmesser der Zylinderlaufbuchse 2 entspricht, so dass die gekühlte Platte 4 den zylinderkopfseitigen Rand der Zylinderlaufbuchse 2 winkelförmig umgreift.
  • Im Inneren der gekühlten Platte 4 sind Kühlkanäle 11 angeordnet, in denen ein Kühlmedium zirkuliert. Die gekühlte Platte 4 ist mit der Zylinderlaufbuchse 2 formschlüssig und gasdicht verbunden. Weiterhin sind in der gekühlten Platte 4 Ventilsitze (in Fig. 1 nicht sichtbar) angeordnet, die mit den Ventiltellern 12 der Gaswechselventile 13 zusammenwirken. Die Kraftstoffzuführung erfolgt über eine Öffnung 20, die die gekühlte Platte 4 in ihrem Zentrum von der dem Brennraum 1 abgewandten Seite in Richtung Brennraum 1 durchsetzt und in der ein Einspritzventil (in Fig. 1 nicht dargestellt) angeordnet ist. Die Anordnung des Einspritzventils in der Öffnung 20 ist so getroffen, dass das Einspritzventil, ggf. unter Zwischenlage eines Dichtmittels, den Brennraum gasdicht abschließt und mit seiner Einspritzdüsenöffnung (nicht dargestellt) in diesen hinein ragt. Gehalten ist die Einspritzdüse im Zylinderkopf 14, der sich auf der dem Brennraum 1 abgewandten Seite an die gekühlte Platte 4 anschließt und diese mit seiner der gekühlten Platte 4 zugewandten Seite vollständig überdeckt bzw. über diese hinausragt. Befestigt ist der Zylinderkopf 14 in konventioneller Weise mittels Schrauben (nicht dargestellt), die den Zylinderkopf 14 in Richtung Kurbelgehäuse 5 durchragen und am Kurbelgehäuse 5 festlegen. Im Zylinderkopf 14 sind in bekannter Weise die Gaskanäle (nicht dargestellt) für Ansaugluft bzw. die Verbrennungsgase, die Ventilführungen (nicht dargestellt) für die Ventilschäfte 15 der Gaswechselventile 13 und ein Kühlmittelraum 16 zur Kühlung des Zylinderkopfes 14 bzw. seiner Einbauteile angeordnet. Durch senkrecht zur gekühlten Platte 4 verlaufende erste Schottwände 17 und parallel zur gekühlten Platte 4 verlaufende zweite Schottwände 18 wird der Raum im Zylinderkopf 14 in eine zellulare Struktur unterteilt, die einerseits durch Verbindungsbohrungen 21 eine gezielte Kühlmittelführung ermöglicht und andererseits, eine hohe Steifigkeit aufweist, die einer Durchbiegung der gekühlten Platte 4 in der Zündphase entgegen wirkt.
  • Eine Außenansicht der Zylinderlaufbuchse 2 mit aufgesetzter gekühlter Platte 4 zeigen Fig. 2 in Seitenansicht und Fig. 3 in Draufsicht. Die gekühlte Platte 4 ist mit dem Buchsenbund 9 mittels Schrauben 19 verschraubt, und entspricht in ihrem Durchmesser dem Außendurchmesser des Buchsenbundes 9. Durch die Verbindung des Buchsenbundes 9 mit der gekühlten Platte 4 an der Brennraumgrenze wird die mögliche Durchbiegung der gekühlten Platte 4 auf ein Minimum reduziert. In der gekühlten Platte 4 sind, wie bereits zur Fig. 1 ausgeführt, die Gaswechselventile 13 und die Öffnung 20 für das Einspritzventil angeordnet.
  • Einen Schnitt durch den Brennraum entlang der Linie B-B (Fig. 3) zeigt Fig. 4. Auch in dieser Darstellung ist die gekühlte Platte 4 mit dem Buchsenbund 9 der Zylinderlaufbuchse 2 mittels der Schrauben 19 verschraubt. In der gekühlten Platte 4 verlaufen, von Umfang der gekühlten Platte 4 ausgehend, Kühlkanäle 11 auf das Zentrum der gekühlten Platte 4 zu. Der Verlauf der Kühlkanäle 11 in der gekühlten Platte 4 ist beispielhaft in Fig. 5 dargestellt. Die Fig. 5 zeigt dabei einen Schnitt entlang der Linie C-C in Fig. 2. Von gegenüber liegenden Seiten des Umfanges der gekühlten Platte 4 ausgehend verlaufen jeweils zwei Bohrungspaare bildende Bohrungen 11.1, 11.2, 11.5, 11.6 aufeinander zu, wobei jedes der Bohrungspaare ein "X" bildet, sich also die Bohrungen eines Bohrungspaares schneiden. Die Anordnung der Bohrungspaare relativ zur Anordnung der Öffnungen für die Gaswechselventile 13, deren Mittelpunkte im wesentlichen die Eckpunkte eines Quadrates bilden, ist dabei so getroffen, dass der Schnittpunkt jeweils eines Bohrungspaares zwischen zwei benachbarten Öffnungen für die Gaswechselventile 13 liegt. Die Bohrungen 11.1, 11.2, 11.5, 11.6 eines jeden Bohrungspaares verlaufen von den jeweiligen Schnittpunkten aus gesehen in Richtung auf das Zentrum der gekühlten Platte 4 zu wieder auseinander und schneiden die Bohrungen des jeweils gegenüber liegenden Bohrungspaares auf einer Linie durch den Mittelpunkt der gekühlten Platte 4. Auf diese beiden Schnittpunkte der Bohrungspaare trifft jeweils eine einzelne Bohrung 11.3, 11.4 die ebenfalls vom Umfang der gekühlten Platte ausgeht und um 90° versetzt zu den X-förmigen Bohrungspaaren zwischen zwei benachbarten Öffnungen der Gaswechselventile 13 verläuft. Das sich so ausbildende Netz verbundener Bohrungen 11.1 - 11.6 bildet die Kühlkanäle 11 die, wie weiter unten näher ausgeführt wird, auf unterschiedliche Weise mit dem Kühlsystem der Brennkraftmaschine verbunden sein können. Durch den gewählten Verlauf der Bohrungen 11.1 - 11.6 wird eine effiziente Kühlung der kritischen Bereiche zwischen den Öffnungen für die Gaswechselventile 13 und zwischen diesen und der Öffnung 20 für das Einspritzventil erreicht, so dass sogenannte Stegrisse sicher vermieden werden können.
  • Die vorstehend in Verbindung mit den Figuren 1 bis 5 beschriebene Verschraubung der Zylinderlaufbuchse 2 mit der gekühlten Platte 4 ist in einer Detaildarstellung in Fig. 6 geschnitten gezeigt. Die gekühlte Platte 4 befindet sich, den Brennraum 1 in Richtung auf den Zylinderkopf 14 (in Fig. 6 nicht dargestellt) abschließend, im Bereich des Buchsenbundes 9 auf der Zylinderlaufbuchse 2 und umgreift die Innenkante des Buchsenbundes 9 winkelförmig. Durch eine Durchgangsbohrung 22 wirkt die Schraube 19 mit einem entsprechenden Gewinde 23 im Buchsenbund 9 zusammen und legt die gekühlte Platte 4 am Buchsenbund 9 fest. Zur Abdichtung des Brennraumes 1 kann der Durchmesser des zylinderförmigen Ansatzes 10 der gekühlten Platte 4 in Verbindung mit dem Innendurchmesser der Zylinderlaufbuchse 2 so ausgeführt sein, dass sich eine Presspassung ergibt. Zusätzlich oder alternativ ist es selbstverständlich möglich, zwischen Buchsenbund 9 und gekühlter Platte 4 ein Dichtmittel vorzusehen. Hinsichtlich der verwendeten Schrauben 19 sind unterschiedliche Gestaltungen des Schraubenkopfes denkbar, bei den gezeigten Schrauben 19 mit überstehenden Schraubenkopf 19.1 sind entsprechende Ausnehmungen im Zylinderkopf 14 (Fig. 1) vorzusehen. Werden hingegen Senkkopfschrauben verwendet, kann die der gekühlten Platte 4 benachbarte Seite des Zylinderkopfes 14 im Bereich der Schrauben 19 glatt ausgeführt sein. Bevorzugt sind die Schrauben 19 zueinander gleich beabstandet entlang des Umfanges der gekühlten Platte 4 bzw. des Buchsenbundes 9 angeordnet.
  • Das vorstehend in Verbindung mit den Figuren 1 bis 6 beschriebene Beispiel eines Brennraumes für hohe Zünddrücke bedient sich einer Zylinderlaufbuchse 2 als Teil des Brennraumes, dies ist selbstverständlich nicht zwingend. Die in den Figuren gezeigten und vorstehend beschriebene Anordnung kann selbstverständlich auch ohne Zylinderlaufbuchse ausgeführt sein, der Brennraum ist dann durch die Zylinderbohrung, die gekühlte Platte 4 und den Kolben 3 gebildet. Bei den Figuren 1 bis 6 hat man sich im Falle einer buchsenlosen Ausführung die mit 2 bezeichnete Zylinderlaufbuchse und den mit 9 bezeichneten Buchsenbund als integralen Bestandteil des Kurbelgehäuses 5 vorzustellen, darüber hinaus ändert sich hinsichtlich Anordnung und Funktion nichts.
  • Weitere Möglichkeiten, die gekühlte Platte 4 mit dem Buchsenbund 9 der Zylinderlaufbuchse 2 zu verbinden zeigen die Detaildarstellungen in den Figuren 7 und 8. Gemäß der Schnittzeichnung in Fig. 7 erfolgt die Verbindung der gekühlten Platte 4 mit dem Buchsenbund 9 durch verschweißen. Dazu ist eine durchgehende oder über den Umfang mehrfach unterbrochene, z.B. punktförmige Schweißnaht 24 entlang des äußeren Umfanges des Stoßes zwischen gekühlter Platte 4 und Buchsenbund 9 vorgesehen. Eine punktförmige Schweißverbindung minimiert dabei den Wärmeeintrag und damit die Gefahr des Verzugs der Zylinderlaufbuchse 2. Der zylinderförmige Ansatz 10 der gekühlten Platte 4 kann auch in diesem Beispiel zusammen mit dem Innendurchmesser des Buchsenbundes 9 eine Presspassung ausbilden, die im Falle einer unterbrochenen Schweißnaht die Abdichtung übernimmt.
  • Die Schnittdarstellung gemäß Fig. 8 zeigt eine weitere Möglichkeit die gekühlte Platte 4 mit dem Buchsenbund 9 zu verschrauben, dazu ist am zylinderförmigen Ansatz 10 der gekühlten Platte 4 ein Außengewinde 25 vorgesehen, das mit einem Innengewinde 26 am zylinderkopfseitigen Rand des Buchsenbundes 9 zusammenwirkt. Durch das Verschrauben der gekühlten Platte 4 mit dem Buchsenbund 9 über die Schraubverbindung 25, 26 erfolgt die Verbindung zwischen diesen Bauteilen an dem hinsichtlich der Minimierung möglicher Durchbiegungen der gekühlten Platte 4 günstigsten geometrischen Ort, nämlich unmittelbar an der Brennraumgrenze. Hinsichtlich der Abdichtung des Brennraumes 1 wirkt die Schraubverbindung 25, 26 darüber hinaus wie eine Labyrinthdichtung.
  • Selbstverständlich sind die vorstehend in Verbindung mit den Figuren 6 bis 8 beschriebenen Verbindungen zwischen der gekühlten Platte 4 und der Zylinderlaufbuchse nur Beispiele, es lassen sich mit dem Fachmann verfügbaren Mitteln viele unterschiedliche Verbindungen zwischen diesen beiden Bauteilen, insbesondere aber auch zwischen der gekühlten Platte und dem Kurbelgehäuse, bei einer Ausführung des Brennraumes ohne Zylinderlaufbuchse, realisieren.
  • In Verbindung mit der Beschreibung der die Kühlkanäle 11 bildenden Bohrungen 11.1-11.6 wurde bereits angesprochen, dass diese mit dem Kühlsystem der Brennkraftmaschine verbunden sind. Diese Verbindung kann auf unterschiedliche Weise erfolgen. Einige Möglichkeiten, die Kühlkanäle 11 in der gekühlten Platte 4 mit Kühlmittel zu speisen bzw. Kühlmittel aus diesen abzuführen, zeigen beispielhaft die Detaildarstellungen in den Figuren 9 - 11.
  • Die Schnittzeichnung in Fig. 9 zeigt dabei vereinfacht die bereits bekannte Anordnung aus gekühlter Platte 4 und Zylinderlaufbuchse 2. Die Zylinderlaufbuchse 2 befindet sich in der Zylinderbohrung im Kurbelgehäuse 5, wobei zur Kühlung der Wände des Brennraumes 1 Kühlmittel führende Räume 6 zwischen Kurbelgehäuse 5 und Zylinderlaufbuchse 2 ausgebildet sind. Die gekühlte Platte 4 weist eine einen Kühlkanal 11 ausbildende Bohrung auf, die von der Umfangsseite 27 der gekühlten Platte 4 radial nach innen läuft. Zur Umfangsseite 27 hin ist der Kühlkanal 11 mittels einer eingepressten Kugel 28 verschlossen. Die Anbindung des Kühlkanales 11 an das Kühlsystem der Brennkraftmaschine ist durch eine Zuführungsbohrung 29 bewerkstelligt, die den Buchsenbund 9 der Zylinderlaufbuchse 2 durchsetzt und mit einer Anschlussbohrung 30 im auf dem Buchsenbund 9 aufliegenden Randbereich der gekühlten Platte 4 fluchtet, wobei die Anschlussbohrung 30 in den Kühlkanal 11 mündet. Selbstverständlich können gleichartige Zuführungsbohrungen und damit fluchtende Anschlussbohrungen an mehreren Stellen der gekühlten Platte 4 vorgesehen sein und mit entsprechenden Kühlkanälen zusammenwirken, um eine effiziente Kühlung zu gewährleisten.
  • Eine weitere Möglichkeit, aus dem Kurbelgehäuse 5 Kühlmittel der gekühlten Platte 4 zuzuführen zeigt, schematisch in einer Schnittzeichnung, Fig. 10. Auch hier ist die bereits beschriebene Anordnung aus Zylinderlaufbuchse 2 und gekühlter Platte 4 dargestellt. Umschlossen ist diese Anordnung einerseits vom Kurbelgehäuse 5 und andererseits dem auf dem Kurbelgehäuse 5 angeordneten Zylinderkopf 14. Im Kurbelgehäuse 5 läuft ein Verbindungskanal 31 von einem im Kurbelgehäuse 5 angeordneten Kühlmitteldurchgang 32 zu der Trennlinie zwischen Zylinderkopf 14 und Kurbelgehäuse 5 und geht dort in einen im Zylinderkopf 14 angeordneten Anschlusskanal 33 über, der seinerseits über eine Anschlussöffnung 34 in den analog zum Beispiel nach Fig. 9 in der gekühlten Platte 4 angeordneten Kühlkanal 11 mündet. Zur Abdichtung des Übergangs zwischen Kurbelgehäuse 5 und Zylinderkopf 14 einerseits und Zylinderkopf 14 und gekühlter Platte 4 andererseits sind Dichtmittel 35 vorgesehen. Auch bei diesem Beispiel können an mehreren Stellen gleichartige Kühlmittelzuführungen zur gekühlten Platte 4 vorgesehen sein.
  • Die Schnittzeichnung in Fig. 11 zeigt schließlich vereinfacht dargestellt eine Kühlmittelversorgung der gekühlten Platte 4 vom Zylinderkopf 14 der Brennkraftmaschine aus. Die gezeigte Anordnung umfasst auch in diesem Fall eine Zylinderlaufbuchse 2 mit der die gekühlte Platte 4 auf eine der vorstehend beschriebenen Arten verbunden ist. Die Kombination aus Zylinderlaufbuchse 2 und gekühlter Platte 4 lagert in einer Zylinderbohrung im Kurbelgehäuse 5, derart, dass die zylinderkopfseitige Flachseite der gekühlten Platte 4, mit der dem Zylinderkopf 14 benachbarten Seite des Kurbelgehäuses 5 fluchtet. Zur Kühlmittelversorgung ist von dem im Zylinderkopf 14 angeordneten Kühlmittelraum 16 über eine auf die gekühlte Platte 4 zu laufende Verbindungsöffnung 36, die mit einem Kühlmittelanschluss 37 in der gekühlten Platte 4 fluchtet, eine Verbindung zwischen dem Kühlmittelraum 16 und dem Kühlkanal 11 in der gekühlten Platte 4 geschaffen. Der von der Umfangseite der gekühlten Platte 4 ausgehende, in Form einer Bohrung ausgebildeten Kühlkanal 11 ist, ebenso wie bei dem vorstehend beschriebenen Beispielen, durch eine eingepresste Kugel 28 nahe der Umfangseite verschlossen. Zur Abdichtung der Verbindungsstelle zwischen Zylinderkopf 14 und gekühlter Platte 4 ist rund um den Kühlmittelanschluss 37 ein Dichtmittel 35 angeordnet. Wie bereits zu den Beispielen nach den Figuren 9 und 10 ausgeführt, können auch im Beispiel nach Fig. 11 mehrere gleichartige Verbindungen zwischen dem Kühlmittelraum 16 im Zylinderkopf 14 und Kühlkanälen 11 in der gekühlten Platte 4 vorgesehen sein.
  • Für die vorstehend beschriebenen Beispiele nach den Figuren 9 - 11 gilt gemeinsam, dass selbstverständlich die Kühlmittelabführung von der gekühlten Platte 4 zum Kurbelgehäuse 5 oder zum Zylinderkopf 14 gleichartig zu den in den Beispielen beschriebenen Kühlmittelzuführungen ausgebildet sein können, so dass auf eine gesonderte Darstellung der Kühlmittelabführungen verzichtet werden kann. Weiterhin ist es natürlich denkbar, verschiedene Arten der Kühlmittelzuführung bzw. der Kühlmittelabführung bei der Kühlmittelversorgung einer gekühlten Platte 4 in Kombination zur Anwendung zu bringen, auch hier erübrigt sich eine gesonderte Darstellung. Die vorstehend beschriebenen Prinzipien der Kühlmittelversorgung der gekühlten Platte 4 eignen sich natürlich gleichermaßen für Brennkraftmaschinen mit Zylinderlaufbuchsen und buchsenlosen Brennkraftmaschinen. Im Falle von buchsenlosen Brennkraftmaschinen hat man sich in den Beispielen nach den Figuren 9 - 11 die dargestellte Zylinderlaufbuchse 2 lediglich als integralen Bestandteil des Kurbelgehäuses 5 vorzustellen, so dass auch hinsichtlich dieses Aspektes auf eine gesonderte Darstellung und Beschreibung verzichtet werden kann.
  • Eine Anbindung der gekühlten Platte 4 gemäß der Ausbildung nach Fig. 5 an das Kühlsystem in einer Anordnung nach Fig. 1 ist nachfolgend anhand der Schnittzeichnungen in den Figuren 12 und 13 näher erläutert. Dabei zeigt Fig. 12 einen Schnitt entlang der Linie D-D (Fig. 5) und Fig. 13 einen Schnitt entlang der Linie E-E (Fig. 5). Nachdem die Anordnung vorstehend in Verbindung mit den Figuren 1 und 5 bereits eingehend beschrieben ist, wird nachfolgend nur auf die Verbindung zwischen dem Kühlmittelraum 16 im Zylinderkopf 14 und den die Kühlkanäle 11 bildenden Bohrungen 11.1 - 11.6 eingegangen.
  • Fig. 12 zeigt, ausgehend von einer ersten Kühlmittelkammer 16.1, die Teil des Kühlmittelraumes 16 im Zylinderkopf 14 ist, eine Zulaufbohrung 38, die die erste Kühlmittelkammer 16.1 mit der Bohrung 11.1 in der gekühlten Platte 4 verbindet. Die Bohrung 11.1 die zur Schmalseite der gekühlten Platte 4 hin durch eine Kugel 28 verschlossen ist, schneidet am Punkt X die Bohrung 11.2 deren weiterer Verlauf bis zum Punkt Y im Schnittbild dargestellt ist. Am Punkt Y schneidet die Bohrung 11.2 die Bohrung 11.6 deren Verlauf in der rechten Hälfte der Fig. 12 gezeigt ist. Die Bohrung 11.6 schneidet am Punkt Z die Bohrung 11.5 und ist an der Schmalseite der gekühlten Platte 4 mit einer in die Bohrung 11.6 eingepressten Kugel 28 verschlossen. Über eine Ablaufbohrung 39 ist eine Verbindung zwischen der Bohrung 11.6 und einer zweiten Kühlmittelkammer 16.2 im Zylinderkopf 14 hergestellt, die stromab zur ersten Kühlmittelkammer 16.1 liegt und ebenfalls Teil des Kühlmittelraumes 16 ist.
  • Einen von der Darstellung in Fig. 12 in Teilen abweichenden in Fig. 5 mit E-E bezeichneten Schnittverlauf zeigt Fig. 13. Nachdem der Schnittverlauf mit dem Schnittverlauf in der Fig. 12 bis zum Schnittpunkt Y identisch ist, wird hierzu auf die vorstehende Beschreibung zu Fig. 12 verwiesen. An Punkt Y schneidet die Bohrung 11.2 sowohl die Bohrung 11.6 als auch die Bohrung 11.3, deren Verlauf in der rechten Hälfte der Fig. 13 dargestellt ist. Die Bohrung 11.3 ist ebenfalls nahe der Umfangseite mit einer Kugel 28 verschlossen. Zur Abführung des Kühlmittels aus der gekühlten Platte 4 ist eine weitere Ablaufbohrung 40 vorgesehen, die die Bohrung 11.3 mit einer dritten Kühlmittelkammer 16.3 verbindet die ebenfalls Teil des Kühlmittelraumes 16 ist und stromab zur Kühlmittelkammer 16.1 liegt.
  • Analog zu der in Verbindung mit den Figuren 12 und 13 beschriebenen Anbindung des Kühlmittelraumes 16 an die Kühlkanäle 11 in der gekühlten Platte 4 hat man sich auch die Anbindung der übrigen in Fig. 5 dargestellten Bohrungen 11.2, 11.4, 11.5 vorzustellen, so dass hierzu auf eine explizite Darstellung verzichtet werden kann, es ist lediglich anzumerken, dass die Bohrungen 11.1 und 11.2 Kühlmittelzuführungen und die Bohrungen 11.3, 11.4, 11.5, 11.6 Kühlmittelabführungen sind und demgemäß die Speisung der Kühlmittelzuführungen von Teilen des Kühlmittelraumes 16 im Zylinderkopf 14 aus erfolgt, die stromauf zu den Teilen des Kühlmittelraumes 16 liegen in die die Kühlmittelabführungen zurückgeführt sind.
  • Hinsichtlich der Auslegung der in Verbindung mit den Figuren 1, 5, 12, 13 beschriebenen Anordnung ist anzumerken, dass die Verbindungen 21 zwischen den einzelnen Teilen des Kühlmittelraumes 16 (Fig. 1) und die Verbindungen zwischen dem Kühlmittelraum 16 und den Kühlkanälen 11 so ausgelegt sind, dass sich eine entsprechend der Wärmebelastung von gekühlter Platte 4 und Zylinderkopf 14 gestaffelte Wärmeabfuhr ergibt, dabei ist die Wärmebelastung und damit auch die Wärmeabfuhr an der Brennraumgrenze am größten und nimmt mit zunehmendem Abstand zum Brennraum ab.
  • Zu dem vorstehend in Verbindung mit den Figuren 1, 5, 12, 13 beschriebenen Beispiel ist weiter anzumerken, dass die Verbindung der gekühlten Platte 4 mit dem Buchsenbund bzw. mit dem Kurbelgehäuse bei buchsenlosen Brennkraftmaschinen bedingt, dass die Ventilsitze der Gaswechselventile 13 im montierten Zustand dem Kurbelgehäuse 5 zugeordnet sind, die Ventilführungen dagegen im Zylinderkopf 14 liegen. Aus dieser Konstellation ergeben sich erhöhte Anforderungen an die Montagegenauigkeit des Zylinderkopfes 14 zum Kurbelgehäuse 5. Insbesondere sich addierende Fertigungstoleranzen führen dazu, dass zumindest bei großvolumigen Motoren für Nutzfahrzeuge keine durchgehenden Zylinderköpfe eingesetzt werden sollten, sondern solche die einen oder zwei Zylinder umfassen.
  • Für die exakte Montage des Zylinderkopfes relativ zu der gekühlten Platte 4 oder den gekühlten Platten 4 wenn der Zylinderkopf mehrere Zylinder umfasst, sind Passmaßnahmen, wie z.B. Passstifte erforderlich.
  • Hinsichtlich der Materialwahl ergeben sich durch die Trennung der Brennraumabdichtung vom Zylinderkopf völlig neue Möglichkeiten. Die gekühlte Platte 4 kann aus einer hochfesten Metalllegierung z.B. hochfesten geschmiedeten Stahl bestehen der für konventionelle Zylinderköpfe aus konstruktiven, fertigungstechnischen und finanziellen Gründen nicht eingesetzt werden könnte. Der Zylinderkopf dagegen ist wegen der gegenüber herkömmlichen Zylinderköpfen geringen Beanspruchung aus einfacheren Materialien, wie z.B. Aluminium herstellbar, die neben Kostenvorteilen auch Gewichtsvorteile mit sich bringen.
  • Bei geeigneter Materialwahl lassen sich die Ventilsitze für die Gaswechselventile 13 direkt in die gekühlte Platte einarbeiten, so dass auf das Einpressen von Ventilsitzringen verzichtet werden kann. Dadurch entfallen bei einem heute gebräuchlichen Vierventilmotor nicht nur pro Zylinder vier Bauteile, bei einem 6-Zylinder-Motor also 24 Bauteile, sondern es werden insbesondere die durch das Einpressen der Ventilsitzringe in konventionellen Zylinderköpfen verursachten Spannungen vermieden. Diese Spannungen, die durch den Wärmeeintrag beim Verbrennungsvorgang noch verstärkt werden, tragen in erheblichen Maß zum Entstehen der bereits erwähnten Stegrisse bei.
  • Die Trennung der Brennraumabdichtung vom Zylinderkopf ermöglicht bzw. vereinfacht darüber hinaus verschleißmindernde und/oder wirkungsgraderhöhende Maßnahmen am Brennraumdach.
  • Eine solche Maßnahme ist in Fig. 14 dargestellt, die in einer Teildarstellung einen Schnitt entlang der Linie F-F in Fig. 3 zeigt. Auch in dieser Darstellung ist von einer mit dem Buchsenbund 9 einer Zylinderlaufbuchse 2 verschraubten gekühlten Platte 4 ausgegangen, wobei Zylinderlaufbuchse 2 gekühlte Platte 4 und Kolben 3 (Fig. 1) den Brennraum 1 bilden. Um einerseits den durch die Verbrennungsvorgänge bedingten Wärmeeintrag in die gekühlte Platte 4 zu vermindern und andererseits den durch die Schließvorgänge der Ventilteller 12 an den Ventilsitzen 41 verursachten Verschleiß zu minimieren, ist vorgesehen, die dem Brennraum 1 abdeckende Seite der gekühlten Platte 4 mit einer keramischen Beschichtung 42 zu versehen. Derartige keramische Beschichtungen sind auf unterschiedlichste Weise aufbringbar, die dazu angewandten Methoden sind dem Fachmann bekannt. Selbstverständlich sind auch andere als keramische Beschichtungen denkbar.
  • Um unterschiedliche Materialeigenschaften in unterschiedlichen Ebenen der gekühlten Platte zu erzielen besteht, wie in Fig. 15 in einer Teildarstellung entlang der Linie G-G (Fig. 16) geschnitten gezeigt, die Möglichkeit, die gekühlte Platte 4 aus Schichten aufzubauen. Es ist dabei ein erstes Paket aus zwei Schichten 45 vorgesehen, wobei die zwei Schichten 45 aus Metallplatten bestehen, die einen biegesteifen Verbund bilden und sowohl Zuströmöffnungen 43 als auch Abströmöffnungen 44 enthalten, über die die Kühlflüssigkeit vom Zylinderkopf 14 analog dem Beispiel nach Fig. 11 zuströmen bzw. zu diesem abströmen kann. An die zwei Schichten 45 schließt sich in Richtung Brennraum 1 eine dritte Schicht 46 an, die Ausnehmungen 47 z.B. in Form von Freistanzungen umfasst. Die Ausnehmungen 47 korrespondieren mit den Zuführungsöffnungen 43 und den Abführungsöffnungen 44 und bilden die Kühlkanäle der gekühlten Platte 4. In der Materialwahl der dritten Schicht 46 kann auf eine gute Bearbeitbarkeit abgestellt sein, weil diese Schicht 46 wegen der Ausnehmungen 47 ohnehin nicht viel zur Biegesteifigkeit des Verbundes beitragen kann. Die in Richtung auf den Brennraum 1 vierte Schicht 48 besteht ebenso wie die ersten beiden Schichten 45 aus einen Material hoher Biegesteifigkeit, während die in Richtung Brennraum fünfte Schicht 49 eine große Härte und eine geringe Wärmeleitfähigkeit aufweist. In diese fünfte Schicht 49 sind die Ventilsitze der Gaswechselventile (in Fig. 15 nicht dargestellt) eingearbeitet. Die Verbindung der parallelen Platten 45, 46, 48, 49 untereinander erfolgt im gezeigten Beispiel durch Schweißverbindungen 50 entlang des Umfanges der parallelen Platten 45, 46, 48, 49, es sind aber auch andere Möglichkeiten denkbar, die parallelen Platten zu einem die gekühlte Platte bildenden Paket zusammenzufassen. Die Ausbildung der gekühlten Platte als einen Stapel paralleler Platten hat neben der Möglichkeit bestimmte Materialeigenschaften in bestimmten Ebenen der gekühlten Platte zu realisieren, den weiteren Vorteil, dass sich die Kühlmittelkanäle besonders leicht, auch in komplizierten Formen und über mehrere Ebenen der gekühlten Platte verteilt, z.B. durch einfaches Freistanzen erzeugen lassen. Ein Beispiel mit aus der Schicht 46 freigestanzten Kühlmittelkanälen 11 zeigt Fig. 16 in einem Schnitt durch die besagte Schicht 46 entlang der Linie H-H (Fig. 15). Wie in der Darstellung erkennbar, sind die Kühlmittelkanäle 11 zu Ventilöffnungen 51 gering beabstandet im Bereich der Ventilstege 51.1 angeordnet und optimieren die Kühlwirkung in diesem Bereich. Neben dem vorstehend beschriebenen Freistanzen der Kühlmittelkanäle können diese auch reliefartig vertieft in die parallelen Platten eingearbeitet sein.
  • Wie bereits vorstehend insbesondere in Verbindung mit Fig. 1 beschriebenen, sind entweder ein durchgehender allen Brennräumen gemeinsamer oder mehrere jeweils wenigstens einem Brennraum zugeordnete Zylinderköpfe vorgesehen, wobei der Zylinderkopf bzw. die Zylinderköpfe lediglich die Gaswechselkanäle, die Kühlkanäle, die Die bei konventionellen Motorventile und die Aufnahme für die Einspritzventile beinhaltet. Die bei konventionellen Motorkonstruktionen üblicherweise im Zylinderkopf bzw in den Zylinderköpfen enthaltenen Steuerungs- und Betätigungsmechanismen für die Gaswechselventile sowie für die Einspritzventile sind, wie in Fig. 17 in einer Schnittzeichnung entlang der Linie A-A (Fig. 2) dargestellt, in einem Steuer- und Betätigungsmodul angeordnet, das allen Brennräumen gemeinsam ist. Nachdem sich die Darstellung in Fig. 17 von der Darstellung in Fig. 1 nur durch das Steuerungs- und Betätigungsmodul 52 unterscheidet, das sich auf der dem Brennraum 1 abgewandten Seite des Zylinderkopfes 14 an diesen anschließt, werden nachfolgend nur diese abweichenden Teile der Darstellung beschrieben. Bezüglich der übrigen auch in den Bezugszeichen mit der Fig. 1 identischen Darstellungsteile wird auf die Beschreibung zu Fig. 1 verwiesen.
  • Das Steuerungs- und Betätigungsmodul 52 verfügt über einen allen Brennräumen und damit auch allen Zylinderköpfen 14 gemeinsamen Träger 53 an dem in einem wannenförmig ausgebildeten Teilbereich 54 eine Nockenwelle 55 drehbar gelagert ist. Der Antrieb der Nockenwelle 55 erfolgt in konventioneller Weise durch eine über die Kurbelwelle 8 angetriebene, in der Darstellung nicht gezeigte Getriebeanordnung, es kann sich dabei um ein Zahnradgetriebe, eine Kette oder einen Zahnriemen handeln. Die Nockenwelle 55 wirkt in bekannter Weise über ihre Nocken 56 auf Rollenkipphebel 57, die drehbar auf einer im gemeinsamen Träger 53 gelagerten Achse 58 angeordnet sind, derart, dass die Nocken 56 der Nockenwelle 55 die nockenseitigen Enden 57.1 der Kipphebel 57 beaufschlagen. In Folge dieser Beaufschlagung betätigen die ventilseitigen Enden 57.2 der Rollenkipphebel 57 über Ventilbrücken 59 die Gaswechselventile 13 und öffnen bzw. schließen dadurch über die Ventilteller 12 die Gaswechselkanäle (nicht dargestellt).
  • Die Versorgung der Brennräume mit Kraftstoff erfolgt über im Zylinderkopf 14 angeordnete Einspritzventile 60, die über Rohrverbindungen (nicht dargestellt) mit einer Einspritzanlage (nicht dargestellt) verbunden sind. Bei der Einspritzanlage kann es sich z.B. um ein Common Rail Einspritzsystem handeln. Die Betätigung der Einspritzventile erfolgt über eine elektronische Steuerung (nicht dargestellt) auf elektrischem Wege, wie dies bei Common Rail Einspritzanlagen üblich ist. Zur Versorgung der Schmierstellen ist eine zentrale Schmiermittelbohrung 61 vorgesehen, die vom Schmiermittelkreislauf der Brennkraftmaschine (nicht dargestellt) mit Schmiermittel versorgt wird und ihrerseits mit den Schmierstellen im Steuerungsund Betätigungsmodul 52 über Schmiermittelkanäle (nicht dargestellt) direkt oder indirekt verbünden ist. Überschüssiges Schmiermittel wird im gemeinsamen Träger 53 gesammelt und über eine Rückführleitung (nicht dargestellt) in die Ölwanne der Brennkraftmaschine (nicht darstellt) rückgeführt.
  • Zur Kapselung der am gemeinsamen Träger 53 angeordneten Bauteile ist ein Deckel 62 vorgesehen, der mit dem gemeinsamen Träger 53 verschraubt ist und das Innere des Steuerungsund Betätigungsmoduls 52 gegenüber der umgebenden Atmosphäre abschließt. Die Befestigung des Deckels 62 am gemeinsamen Träger 53 erfolgt mittels Schrauben (nicht dargestellt), der gemeinsame Träger 53 seinerseits ist mittels Schrauben (nicht dargestellt) am Zylinderkopf 14 bzw. an den Zylinderköpfen 14 festgelegt.
  • Selbstverständlich ist die vorstehende Beschreibung der Mechanismen zur Betätigung der Gaswechselventile und der Einspritzventile nur beispielhaft zu verstehen. Bei der Betätigungsanordnung für die Gaswechselventile kann es sich natürlich auch um eine elektronisch gesteuerte Anordnung handeln, die die Gaswechselventile individuell über elektrisch oder hydraulisch beaufschlagte Aktuatoren betätigt. Desgleichen ist das beschriebene Common Rail Einspritzsystem nur eine mögliche Ausführung, es kann sich natürlich auch um ein Pumpe-Düse-System oder um ein Pumpe-Leitung-Düse-System handeln.
  • Auch in Verbindung mit dem vorstehend beschriebenen Steuerungs- und Betätigungsmodul eröffnen sich durch die Trennung vom Zylinderkopf neue Möglichkeiten in der Materialwahl. Es ist beispielsweise denkbar, den gemeinsamen Träger 53 aus Leichtmetall oder einen faserverstärkten Kunststoff als Spritzgussteil herzustellen, was neben Gewichtsvorteilen auch eine erhebliche Fertigungsvereinfachung mit sich bringt.
  • Abhängig von dem für den gemeinsamen Träger verwendeten Werkstoff bzw. das verwendete Fertigungsverfahren lassen sich darüber hinaus auch weitere Funktionsteile einstückig mit diesem ausführen. So ist es denkbar, das Ladeluftrohr und/oder Kühlmittelrohre zur Anbindung des Zylinderkopfes bzw. der Zylinderköpfe an das Kühlsystem der Brennkraftmaschine in den gemeinsamen Träger zu integrieren.
  • Das vorstehend in Verbindung mit der Fig. 17 beschriebene Steuerungs- und Betätigungsmodul 52 muss natürlich nicht unbedingt vom Zylinderkopf 14 getrennt sein, die Funktionalität des Steuerungs- und Betätigungsmoduls kann natürlich auch unter bestimmten Voraussetzungen in den Zylinderkopf integriert sein. So wäre bei einer unten liegenden Nockenwelle, also stößelbetätigten Kipphebeln und Einzelzylinderköpfen die Integration der Betätigungsanordnung für die Gaswechselventile in die Zylinderköpfe von Vorteil, wie dies bei derartigen Konstruktionen üblich ist.
  • Abweichend von den vorstehend beschriebenen Beispiel sind zahlreiche Abwandlungen und Ausgestaltungen denkbar, die vom grundlegenden Lösungsansatz ausgehend mit dem Fachmann zugänglichem Wissen ableitbar sind. Den vorstehend beschriebenen Anordnungen kommt deshalb nur Beispielcharakter zu.

Claims (37)

  1. Selbstzündende Brennkraftmaschinen mit Brennräumen für hohe Zünddrücke, wobei die Brennräume (1) jeweils aus einer im Kurbelgehäuse (5) der Brennkraftmaschine angeordneten Zylinderbohrung oder einer in der Zylinderbohrung angeordneten Zylinderlaufbuchse (2), einem in der Zylinderbohrung oder der Zylinderlaufbuchse (2) geführten Kolben (3) und einem gegenüber dem Kolben (3) angeordneten Zylinderkopf (14) besteht und wobei
    im Kurbelgehäuse (6) Kühlmittel führende Räume (6) angeordnet sind, derart, dass Teile der Wandung der Zylinderbohrung oder der Zylinderlaufbuchse (2) auf der dem Brennraum (1) abgewandeten Seite von dem Kühlmittel umströmt sind, der Zylinderkopf (14) einem oder mehreren Brennräumen (1) zugeordnet ist und ebenfalls von dem Kühlmittel durchströmte Kühlmittelräume (16) aufweist, im Zylinderkopf (14) für jeden Brennraum (1) Gaswechselkanäle, wenigstens ein Einspritzventil sowie Führungen für wenigstens ein Einlassventil und wenigstens ein Auslassventil angeordnet sind.
    dadurch gekennzeichnet, dass
    zwischen dem Brennraum (1) und dem Zylinderkopf (14) eine die Deckfläche des Brennraumes (1) bildende separate, mit dem Kurbelgehäuse (5) und/ oder der Zylinderlaufbuchse (2) formschlüssig und gasdicht verbundene gekühlte Platte (4) angeordnet ist, in der die Ventilsitze wenigstens eines Einlassventils und wenigstens eines Auslassventils angeordnet sind und die von dem wenigstens einen Einspritzventil durchragt wird.
  2. Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Verbindung der gekühlten Platte (4) mit dem Kurbelgehäuse (5) und/ oder der Zylinderlaufbuchse (2) möglichst dicht am Brennraumrand erfolgt.
  3. Brennkraftmaschine nach Anspruch 2, dadurch gekennzeichnet, dass die Kühlung der gekühlten Platte (4) mittels des Kühlmittels erfolgt.
  4. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) von Kühlkanälen (11) durchsetzt ist.
  5. Brennkraftmaschine nach Anspruch 4, dadurch gekennzeichnet, dass die Kühlkanäle (11) Bohrungen (11.1 - 11.6) sind, die die gekühlte Platte (4) jeweils ausgehend von der Umfangsseite der gekühlten Platte (4) durchsetzen.
  6. Brennkraftmaschine nach Anspruch 5, dadurch gekennzeichnet, dass zumindest ein Teil der Bohrungen (11.1 - 11.6) so angeordnet ist, dass sie einander schneiden, derart dass sich ein verbundenes System an Bohrungen ergibt.
  7. Brennkraftmaschine nach Anspruch 5, dadurch gekennzeichnet, dass zumindest ein Teil der von der Umfangsseite der gekühlten Platte (4) ausgehenden Bohrungen (11.1 - 11.6) zur Umfangsseite hin wieder verschlossen sind.
  8. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Umfangsseite und/ oder im überstehenden Randbereich der die Deckfläche des Brennraums (1) bildenden Flachseite der gekühlten Platte (4) und/ oder der der Deckfläche gegenüberliegenden Flachseite der gekühlten Platte (4) Zuströmöffnungen und/ oder Abströmöffnungen für das Kühlmittel vorgesehen sind und der Zustrom des Kühlmittels direkt in die gekühlte Platte (4) und/ oder über den Zylinderkopf (14) in die gekühlte Platte (4) und/ oder über das Kurbelgehäuse (5) in die gekühlte Platte (4) erfolgt und dass das Abströmen des Kühlmittels direkt aus der gekühlten Platte (4) und/ oder aus der gekühlten Platte (4) in den-Zylinderkopf (14) und/ oder aus der gekühlten Platte (4) in das Kurbelgehäuse (5) erfolgt.
  9. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zylinderlaufbuchse (2) an ihrem dem Zylinderkopf (14) zugewandten Ende einen umlaufenden Buchsenbund (9) aufweist, der sich am oberen Rand der Zylinderbohrung oder an einem umlaufenden Balkon in der Zylinderbohrung abstützt.
  10. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zuströmöffnungen und Abströmöffnungen Bohrungen in der gekühlten Platte (4) sind, die mit entsprechenden Öffnungen im Zylinderkopf (14) oder im Buchsenbund (9) der Zylinderlaufbuchse (2) oder im Kurbelgehäuse (5) oder in einem separaten Kühlmittelverteilerrohr korrespondieren und die Kühlkanäle (11) in der gekühlten Platte (4) mit den Kühlmittelräumen (16) im Zylinderkopf oder mit kühlmittel führenden Räumen (6) im Kurbelgehäuse (5) oder mit dem Kühlmittelverteilerrohr verbinden.
  11. Brennkraftmaschine nach Anspruch 10, dadurch gekennzeichnet, dass im jeweiligen Übertrittsbereich des Kühlmittels zwischen gekühlter Platte (4) und Zylinderkopf (14) oder gekühlter Platte (4) und Buchsenbund (9) oder gekühlter Platte (4) und Kurbelgehäuse (5) oder gekühlter Platte (4) und Kühlmittelverteilerrohr Dichtmittel (35) vorgesehen sind.
  12. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) aus einer hochfesten Metalllegierung gefertigt ist.
  13. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der gekühlten Platte (4) Ventilsitzringe angeordnet sind.
  14. Brennkraftmaschine nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Ventilsitze in die gekühlte Platte (4) eingearbeitet sind.
  15. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) an ihrer dem Brennraum (1) zugewandten Seite einen zylinderförmigen Ansatz (10) aufweist, dessen Außendurchmesser dem Innendurchmesser des Brennraums (1) im wesentlichen entspricht, wobei der Zylinderförmige Ansatz (10) im montierten Zustand der gekühlten Platte (4) im Innern der Zylinderbohrung oder der Zylinderlaufbuchse (2) liegt, derart, dass die gekühlte Platte (4) den oberen inneren Rand der Zylinderbohrung oder der Zylinderlaufbuchse (2) winkelförmig umgreift.
  16. Brennkraftmaschine nach Anspruch 15, dadurch gekennzeichnet, dass der Außendurchmesser des zylinderförmigen Ansatzes (10) relativ zum Innendurchmesser der Zylinderbohrung oder der Zylinderlaufbuchse (2) so gewählt ist, dass sich eine Presspassung ergibt.
  17. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem den Brennraumrand überlappenden Teil der gekühlten Platte (4) und dem diesen gegenüber liegenden Teil des Kurbelgehäuses (5) und/ oder der Zylinderlaufbuchse (2) eine Brennraumdichtung angeordnet ist.
  18. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) mit dem Kurbelgehäuse (5) oder der Zylinderlaufbuchse (2) mittels Schrauben (19) verschraubt ist.
  19. Brennkraftmaschine nach Anspruch 18, dadurch gekennzeichnet, dass die Schrauben (19) konzentrisch zur Brennraumachse angeordnet und in Umfangsrichtung gesehen im wesentliche zueinander gleich beabstandet sind.
  20. Brennkraftmaschine nach Anspruch 15, dadurch gekennzeichnet, dass die gekühlte Platte (4) mit der Zylinderlaufbuchse (2) mittels eines Innengewindes (26) am oberen Rand des Buchsenbundes (9) und eines Außengewindes (25) am Umfang des zylinderförmigen Ansatzes (10) verschraubt ist.
  21. Brennkraftmaschine nach einem der Ansprüche 1- 16, dadurch gekennzeichnet, dass die gekühlte Platte (4) mit der Zylinderlaufbuchse (2) verschweißt ist.
  22. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Verwendung einer Zylinderlaufbuchse (2) mit Buchsenbund (9) die gekühlte Platte (4) einen Außendurchmesser aufweist, der im wesentlichen dem Außendurchmesser des Buchsenbundes (9) der Zylinderlaufbuchse (2) entspricht.
  23. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) an ihrer den Brennraum (1) begrenzenden Fläche eine Beschichtung (42) mit geringer Wärmeleitfähigkeit und/ oder hoher Verschleißfestigkeit aufweist.
  24. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) aus einer Mehrzahl zum Brennraumdach parallel verlaufender Schichten (45, 46, 48, 49) aufgebaut ist, die ihrerseits plattenförmig ausgebildet sind, derart, dass sich ein Plattenpaket ergibt, wobei wenigstens eine im Inneren des Plattenpaketes liegende parallele Platte Ausnehmungen (47) aufweist, die über Kühlmittelzuführungen und Kühlmittelabführungen im Kühlmittelkreislauf der Brennkraftmaschine liegen und wobei die parallelen Schichten (45, 46, 48, 49) des Plattenpaketes untereinander verbunden sind.
  25. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine der parallelen Schichten (45, 46, 48, 49) von den übrigen parallelen Schichten (45, 46, 48, 49) abweichende Materialeigenschaften aufweist.
  26. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Zylinderköpfe (14) vorgesehen sind wobei jedem Zylinderkopf (14) wenigstens ein Brennraum (1) zugeordnet ist.
  27. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Zylinderkopf (14) vorgesehen ist, der allen Brennräumen (1) gemeinsam zugeordnet ist.
  28. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gekühlte Platte (4) vom Zylinderkopf (14) zumindest in ihrem Zentrum druckbeaufschlagt ist.
  29. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Innern des Zylinderkopfes (14) die Kühlmittelräume (16) unterteilende Schottwände (17, 18) zumindest senkrecht zur Flachseite der gekühlten Platte (4) angeordnet sind, derart, dass sich eine in Richtung auf den Brennraum (1) biegesteife Struktur ergibt.
  30. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zylinderkopf (14) bzw. die Zylinderköpfe (14) aus einer Leichtmetalllegierung gefertigt sind.
  31. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich an der den Brennräumen (1) abgewandten Seite des Zylinderkopfes (14) bzw. der Zylinderköpfe (14) wenigstens ein Steuerungs- und Betätigungsmodul (52) anschließt, wobei das Steuerungs- und Betätigungsmodul (52) einer Mehrzahl von Brennräumen (1) zugeordnet ist und an einem gemeinsamen Träger (53) zumindest die Betätigungseinrichtungen für die Einlass- und Auslassventile und die Einspritzdüsen für diese Brennräume (1) beinhaltet.
  32. Brennkraftmaschine nach Anspruch 31, dadurch gekennzeichnet, dass der gemeinsame Träger 53 wenigstens eine Nockenwelle (55) enthält.
  33. Brennkraftmaschine nach einem der Ansprüche 31 oder 32, dadurch gekennzeichnet, dass an dem gemeinsamen Träger (53) ein Deckel (62) angeordnet ist, über den die Betätigungs- und oder Steuerelemente zugänglich sind.
  34. Brennkraftmaschine nach einem der Ansprüche 31 - 33, dadurch gekennzeichnet, dass an dem gemeinsamen Träger (53) ein Schmierölzulauf und ein Schmierölrücklauf angeordnet sind.
  35. Brennkraftmaschine nach einem der Ansprüche 31 - 34, dadurch gekennzeichnet, dass das Steuer- und Betätigungsmodul (52) an dem Zylinderkopf (14) bzw. den Zylinderköpfen (14) mittels lösbarer Verbindungen befestigt ist.
  36. Brennkraftmaschine nach einem der Ansprüche 31 - 35, dadurch gekennzeichnet, dass das Steuer- und Betätigungsmodul (52) zumindest teilweise aus Kunststoff gefertigt ist.
  37. Brennkraftmaschine nach einem der Ansprüche 31 - 36, dadurch gekennzeichnet, dass am Steuer- und Betätigungsmodul (52) ein allen Brennräumen (1) gemeinsames Ladeluftrohr angeordnet ist.
EP06019137.6A 2005-10-11 2006-09-13 Selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke Active EP1775455B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06019137T PL1775455T3 (pl) 2005-10-11 2006-09-13 Samozapalny silnik spalinowy z komorami spalania do wysokich ciśnień zapłonu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005048566A DE102005048566A1 (de) 2005-10-11 2005-10-11 Selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke

Publications (3)

Publication Number Publication Date
EP1775455A2 true EP1775455A2 (de) 2007-04-18
EP1775455A3 EP1775455A3 (de) 2013-01-30
EP1775455B1 EP1775455B1 (de) 2015-07-29

Family

ID=37667413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06019137.6A Active EP1775455B1 (de) 2005-10-11 2006-09-13 Selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke

Country Status (6)

Country Link
US (1) US7533648B2 (de)
EP (1) EP1775455B1 (de)
CN (1) CN1948739B (de)
DE (1) DE102005048566A1 (de)
PL (1) PL1775455T3 (de)
RU (1) RU2405949C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010020877A1 (de) * 2010-05-18 2011-11-24 Wolfgang Müller-Mudrony Doppelzylinder-Zweitaktmotor mit Gleichstromspülung

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109836A1 (en) * 2007-03-07 2008-09-12 Seymour John C Improved engine for aeronautical applications ii
AT511601B1 (de) * 2011-07-28 2013-01-15 Avl List Gmbh Zylinderkopf mit flüssigkeitskühlung
CN102383965B (zh) * 2011-08-08 2016-03-16 靳北彪 缸盖套装配合体
CN102787940A (zh) * 2011-08-10 2012-11-21 摩尔动力(北京)技术股份有限公司 气缸缸盖配合体
US8978620B2 (en) * 2012-02-10 2015-03-17 Cummins Inc. Seatless wet cylinder liner for internal combustion engine
DE102012023803B3 (de) 2012-12-05 2014-02-06 Audi Ag Brennkraftmaschine
JP6091008B2 (ja) * 2013-11-18 2017-03-08 三菱重工業株式会社 排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法
EP3000998B1 (de) * 2014-09-24 2017-07-19 Caterpillar Motoren GmbH & Co. KG Ventilsitzeinsatz für einen Verbrennungsmotor
AT15665U1 (de) * 2016-08-29 2018-04-15 Avl List Gmbh Kühlungsstruktur für eine Brennkraftmaschine
JP2018096837A (ja) * 2016-12-13 2018-06-21 三菱重工業株式会社 摩耗計測システム、燃焼室部品及び摩耗計測方法
US10415498B2 (en) * 2017-06-02 2019-09-17 Progress Rail Locomotive Inc. Coolant outlet system
US11549459B2 (en) * 2020-02-14 2023-01-10 Caterpillar Inc. Internal combustion engine with dual-channel cylinder liner cooling
CN113586430A (zh) * 2021-08-25 2021-11-02 黄秀芳 一种钻井泵喷淋水嘴结构

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL31896C (de) *
BE388570A (de) *
US1180983A (en) * 1914-06-16 1916-04-25 Ernst Daiber Cooling device for internal-combustion engines.
FR553461A (fr) * 1921-08-19 1923-05-24 Gen Electric Co Ltd Perfectionnements aux moteurs à combustion interne
DE554299C (de) * 1932-07-06 Sulzer Akt Ges Geb Zylinderdeckel mit Kuehlraum, insbesondere fuer doppelt wirkende Brennkraftmaschinen
US1915970A (en) * 1930-12-09 1933-06-27 Gen Electric Cylinder head
US2077224A (en) * 1931-06-26 1937-04-13 Gen Electric Combustion engine
DE967809C (de) * 1952-05-22 1957-12-12 Krauss Maffei Ag Fluessigkeitsgekuehlter, als Hohlkoerper ausgebildeter Zylinderkopf fuer Brennkraftmaschinen, insbesondere Zweitakt-Dieselmaschinen
US3176666A (en) * 1964-02-03 1965-04-06 Herbert A Whitehead Internal combustion engine cylinder heads
CH471967A (de) * 1966-10-05 1969-04-30 Davey Paxman & Co Ltd Standard Flammplatte für den Brennraum einer Kolbenbrennkraftmaschine
GB1332314A (en) * 1969-11-10 1973-10-03 Kloeckner Humboldt Deutz Ag Light-metal cylinder heads for reciprocating piston internal combustion engines
US4106444A (en) * 1975-04-03 1978-08-15 Motoren-Und Turbinen-Union Friedrichshafen Gmbh Individual cylinder head
JPS59105965A (ja) * 1982-12-10 1984-06-19 Yanmar Diesel Engine Co Ltd 多弁式内燃機関の燃料弁固定装置
JPH03168351A (ja) * 1989-11-24 1991-07-22 Kubota Corp エンジンのアルミ合金製シリンダへのシリンダヘッドの取付装置
AT92U1 (de) * 1993-03-23 1995-01-25 Avl Verbrennungskraft Messtech Brennkraftmaschine mit mindestens einem gaswechselkanal pro zylinder
JPH0814051A (ja) * 1994-06-24 1996-01-16 Kubota Corp 頭上弁式エンジンの燃焼室

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2437965C2 (de) * 1974-08-07 1982-09-16 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 7990 Friedrichshafen Flüssigkeitsgekühlter Zylinderkopf
US4800853A (en) * 1988-01-11 1989-01-31 Excelermatic Inc. Adiabatic internal combustion engine
DE4420130C1 (de) * 1994-06-09 1995-11-16 Mtu Friedrichshafen Gmbh Zylinderkopf für Brennkraftmaschine
US6874479B2 (en) * 2003-03-21 2005-04-05 Avl List Gmbh Internal combustion engine

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL31896C (de) *
BE388570A (de) *
DE554299C (de) * 1932-07-06 Sulzer Akt Ges Geb Zylinderdeckel mit Kuehlraum, insbesondere fuer doppelt wirkende Brennkraftmaschinen
US1180983A (en) * 1914-06-16 1916-04-25 Ernst Daiber Cooling device for internal-combustion engines.
FR553461A (fr) * 1921-08-19 1923-05-24 Gen Electric Co Ltd Perfectionnements aux moteurs à combustion interne
US1915970A (en) * 1930-12-09 1933-06-27 Gen Electric Cylinder head
US2077224A (en) * 1931-06-26 1937-04-13 Gen Electric Combustion engine
DE967809C (de) * 1952-05-22 1957-12-12 Krauss Maffei Ag Fluessigkeitsgekuehlter, als Hohlkoerper ausgebildeter Zylinderkopf fuer Brennkraftmaschinen, insbesondere Zweitakt-Dieselmaschinen
US3176666A (en) * 1964-02-03 1965-04-06 Herbert A Whitehead Internal combustion engine cylinder heads
CH471967A (de) * 1966-10-05 1969-04-30 Davey Paxman & Co Ltd Standard Flammplatte für den Brennraum einer Kolbenbrennkraftmaschine
GB1332314A (en) * 1969-11-10 1973-10-03 Kloeckner Humboldt Deutz Ag Light-metal cylinder heads for reciprocating piston internal combustion engines
US4106444A (en) * 1975-04-03 1978-08-15 Motoren-Und Turbinen-Union Friedrichshafen Gmbh Individual cylinder head
JPS59105965A (ja) * 1982-12-10 1984-06-19 Yanmar Diesel Engine Co Ltd 多弁式内燃機関の燃料弁固定装置
JPH03168351A (ja) * 1989-11-24 1991-07-22 Kubota Corp エンジンのアルミ合金製シリンダへのシリンダヘッドの取付装置
AT92U1 (de) * 1993-03-23 1995-01-25 Avl Verbrennungskraft Messtech Brennkraftmaschine mit mindestens einem gaswechselkanal pro zylinder
JPH0814051A (ja) * 1994-06-24 1996-01-16 Kubota Corp 頭上弁式エンジンの燃焼室

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010020877A1 (de) * 2010-05-18 2011-11-24 Wolfgang Müller-Mudrony Doppelzylinder-Zweitaktmotor mit Gleichstromspülung
DE102010020877B4 (de) * 2010-05-18 2011-12-08 Wolfgang Müller-Mudrony Doppelzylinder-Zweitaktmotor mit Gleichstromspülung

Also Published As

Publication number Publication date
EP1775455A3 (de) 2013-01-30
RU2405949C2 (ru) 2010-12-10
DE102005048566A1 (de) 2007-04-12
CN1948739A (zh) 2007-04-18
US7533648B2 (en) 2009-05-19
RU2006135855A (ru) 2008-04-20
PL1775455T3 (pl) 2015-12-31
US20070079776A1 (en) 2007-04-12
EP1775455B1 (de) 2015-07-29
CN1948739B (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
EP1775455B1 (de) Selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke
DE69800204T2 (de) Verbesserte Nockenwelle einer Brennkraftmaschine
EP1573190B1 (de) Zylinderkopf einer brennkraftmaschine mit nockenwellenlagerleiste
DE102007057503A1 (de) Radialkolbenpumpe für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine
AT514076B1 (de) Motorgehäuse einer Brennkraftmaschine sowie damit ausgestattete Brennkraftmaschine
WO2006050545A2 (de) Zylinderkopfanordnung für eine brennkraftmaschine
DE102005010234A1 (de) Kolbenkühlung für eine Brennkraftmaschine
EP2994631B1 (de) Zylinderkopfhaube
EP2627884B1 (de) Brennkraftmaschine sowie verfahren zum herstellen einer solchen brennkraftmaschine
EP1108859B1 (de) Lagerung zumindest einer Nockenwelle
AT3758U1 (de) Zylinderkopfstruktur für eine brennkraftmaschine
DE19849912A1 (de) Flüssigkeitsgekühlte Brennkraftmaschine
WO2010043242A1 (de) Zylinderkopf mit nockenwellenanordnung
DE102004041958B4 (de) Hubkolbenbrennkraftmaschine mit 2- oder 4-Ventilzylinderkopf
DE10018063B4 (de) Brennkraftmaschine mit an einem Zylinderkopf gelagerten Kipphebeln
AT526344B1 (de) Flüssigkeitsgekühlter Zylinderkopf
EP2003330B1 (de) Einspritzpumpenanordnung an einem Zwei- oder Vierzylinder-Dieselmotor
DE102010061240B4 (de) Zylinderkopf
EP0890726B1 (de) Vierventil-Blockzylinderkopf mit schräg angeordneten Gaswechselventilen
EP1942264A1 (de) Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Ausbildung eines derartigen Zylinderkopfes
EP1426600B1 (de) Flüssigkeitsgekühlter, gegossener Zylinderkopf einer mehrzylindrigen Brennkraftmaschine
DE10334741B4 (de) Versorgungsaufbau für einen Verbrennungsmotor
EP1550793B1 (de) Nockenwellenversteller mit teilweise unterbrochener Druckölzufuhr
AT414020B (de) Brennkraftmaschine
DE102022107851A1 (de) Deckelstruktur für verbrennungsmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TRUCK & BUS AG

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 3/14 20060101ALN20120402BHEP

Ipc: F02F 1/40 20060101ALI20120402BHEP

Ipc: F02F 1/16 20060101AFI20120402BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02F 1/16 20060101AFI20121221BHEP

Ipc: F01P 3/14 20060101ALN20121221BHEP

Ipc: F02F 1/40 20060101ALI20121221BHEP

17P Request for examination filed

Effective date: 20130725

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20140228

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150217

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150415

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150526

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 739502

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014441

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151030

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150913

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014441

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20160502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150913

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 739502

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060913

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014441

Country of ref document: DE

Owner name: MAN TRUCK & BUS SE, DE

Free format text: FORMER OWNER: MAN TRUCK & BUS AG, 80995 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220831

Year of fee payment: 17

Ref country code: SE

Payment date: 20220923

Year of fee payment: 17

Ref country code: NL

Payment date: 20220926

Year of fee payment: 17

Ref country code: GB

Payment date: 20220920

Year of fee payment: 17

Ref country code: DE

Payment date: 20220927

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220906

Year of fee payment: 17

Ref country code: FR

Payment date: 20220926

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220926

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006014441

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20231001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230913

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230914