EP1774066A1 - Procede pour une couche electrochimique et dispositif d application d un revetement convenant a la mise en oeuvre dudit procede - Google Patents

Procede pour une couche electrochimique et dispositif d application d un revetement convenant a la mise en oeuvre dudit procede

Info

Publication number
EP1774066A1
EP1774066A1 EP05771997A EP05771997A EP1774066A1 EP 1774066 A1 EP1774066 A1 EP 1774066A1 EP 05771997 A EP05771997 A EP 05771997A EP 05771997 A EP05771997 A EP 05771997A EP 1774066 A1 EP1774066 A1 EP 1774066A1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
field strength
flow
layer
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05771997A
Other languages
German (de)
English (en)
Inventor
Christian Hansen
Rene Jabado
Ursus KRÜGER
Daniel Körtvelyessy
Ralph Reiche
Michael Rindler
Volkmar Luethen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1774066A1 publication Critical patent/EP1774066A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/007Electroplating using magnetic fields, e.g. magnets
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/28Three-dimensional patterned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • F05D2250/61Structure; Surface texture corrugated

Definitions

  • the invention relates to a method for the electrochemical production of a layer on a substrate, in which a magnetic field acts on the layer formation process.
  • a method of the type mentioned can be found for example in the abstract of JP 08-333666-A.
  • the paragraph describes a coating installation with a container for an electrochemical coating bath in which a steel strip can be galvanically coated.
  • treadmill is intended to generate a magnetic field in the coating bath by means of a Magnetfelderzeu ⁇ gers through which the galva ⁇ African deposition process can be improved.
  • the object of the invention is to specify a method for electrochemical production of a layer under the influence of a magnetic field with which the influence possibilities of the magnetic field on the electrochemical production process can be adjusted comparatively universally to the requirement profile of the component to be coated.
  • the magnetic field is generated at the surface of the substrate to be coated with a field strength distribution which varies locally between a plurality of field strength values.
  • the field strength of the electric field in the electrolyte which occurs during the coating on the surface to be coated is adversely affected by the locally changing field strength of the superimposed magnetic field. flow.
  • the electric field strength at the Oberflä ⁇ che influences the deposition rate of electrochemical see coating so that in areas of high field strength increases the deposition rate and in areas of low density Feldlinien ⁇ decreases the deposition rate.
  • this effect can only be achieved when the Feldchver ⁇ distribution of the magnetic field locally, ie in a repetitive sequence in small areas of altered surface to be coated, then the field line density that the sectionbe ⁇ concentrate rich local high field strength and from the ever ⁇ Weil adjacent areas locally retreat low field strength as it were.
  • the field strength should, based on a specific location of the surface is preferably kept constant. Otherwise, the effects would compensate for different loan growth layer so that no three-dimen ⁇ dimensional design of the layer thickness would be possible. In order to avoid this, at least the relationship between local len areas of the surface with high or low Feld ⁇ strength not reverse.
  • the field strength distribution is formed such that preparation ⁇ che each locally equal field strength berconstruction in substantially constant distance to each other running lines on the O- and each having separate from other lines with a different field strength from each other, are.
  • a field strength distribution as a height distribution on the
  • the inventive method can be advantageously the three-dimensional surface configuration of a precoat ⁇ th component influence, wherein the surface - that is, the layer thickness distribution - can be made by a suitable arrangement of one or more magnetic field generators.
  • the surface - that is, the layer thickness distribution - can be made by a suitable arrangement of one or more magnetic field generators.
  • permanent magnets or electromagnets can be used, wherein, for example, a Produce surface ripple of the coating, which facilitate a cleaning of the surface.
  • treadmill is intended that the lines are formed to extend straight or in continuous ver ⁇ current curvatures.
  • the resistor Strömungswi ⁇ reducing effect of coated groove surfaces has been discovered in nature on the shark skin, so that technically referred to as sharkskin or "shark coat" according to this model generated surfaces.
  • the lines can be straight or continuously curved, wherein the continuous curvature simulates a likewise curved Strö ⁇ flow direction on the surface of the substrate.
  • the continuous curvature simulates a likewise curved Strö ⁇ flow direction on the surface of the substrate.
  • the effect ⁇ can be increased degree of gas turbines, so that an emission of exhaust gases is reduced and lowered simultaneously by reduced energy consumption and operating costs NEN kön-.
  • the blades of Strömungskraftma ⁇ are often not straight but machines Ü berströmt in curved paths. These can be len by generating a suitable magnetic field directly on the surface of the blades herstel ⁇ , wherein the field strength distribution of the Magnetfel ⁇ generated is generated as an image of a certain extent of the flow conditions on the blade.
  • the magnetic field as electromagnetic ⁇ ULTRASONIC field is generated.
  • the generation of an electromagnetic field ⁇ rule has the particular advantage that by e- lectrical power in producing directly on the field strength of the magnetic ⁇ can be influenced.
  • the electromagnetic field can be generated in the form of a standing wave, which is aligned at least substantially parallel to the surface. This makes it possible advantageously with a comparatively simple magnetic field generator, a field strength ⁇ distribution on the surface of the TES to be coated Substra ⁇ generate whose undulations along ge of the field strength rade of forming a film thickness distribution of the layer leads to the already mentioned flow-, Ii nienförmigen course having. Therefore, the electromagnetic field a streamlined layer on the substrate can he be generated ⁇ by generating in the form of a standing wave ins ⁇ particular.
  • the invention relates to a coating plant specific elektrochemi ⁇ relates to a container for an electrophotographic ⁇ chemical plating, and a magnetic field generator for a magnetic field which extends into er ⁇ into the container.
  • a coating system is disclosed by the cited prior art (abstract of JP 08-333666 A).
  • the magnetic field generator is designed so that an electromagnetic ⁇ cal field in the form of a standing wave can be generated.
  • the standing wave as already explained, it is possible to produce a layer structure in the coating installation whose Local layer thickness distribution according to the Feldstär ⁇ kenverlaufes the standing wave is alternately thicker and ELL ⁇ ner, so that the coating produced is particularly suitable for reducing the flow resistance of the coated component.
  • the flow properties of the fluid for which the flow resistance of the surface is to be reduced must be taken into account with regard to the geometry of the linear "ridges" and "ravines".
  • the coating which can be produced using the coating system according to the invention is also referred to as a "shark coat".
  • FIG. 1 shows an exemplary embodiment of the coating plant according to the invention in a schematic section
  • FIG. 3 schematically shows the flow course between adjacent blade lattices of a flow engine
  • Figure 4 details one embodiment of the OF INVENTION ⁇ to the invention coating process for loading ⁇ coating a turbine blade according to FIG. 3
  • a coating system according to FIG. 1 has a container
  • two magnetic field generators 16a, 16b each consisting of a coil 17 and an iron core 18, are arranged.
  • the magnetic field generators 16a, 16b are opposite one another and are electrically connected to a controller 19.
  • the controller 19 the magnetic field generators 16a, 16b can be controlled such that a magnetic field in the form of a standing wave 20 is generated between them.
  • a high-frequency control of the coils 17 is necessary, which causes the magnetic field to propagate in each case as a standing wave, that is to say that the individual magnetic fields generated by the magnetic field generators superimpose in such a way that at least at every point of the surface 21 of the substrate 14 to be coated ⁇ a temporal change in the strength of the magnetic field is prevented.
  • FIG. 2 shows the coating process of the substrate 14 according to FIG. 1 as a detail.
  • Figure 2 and the geometry of a galvanically produced layer 22 superimposed to scale is the graphical Dar ⁇ position of a magnetic field 23 which is a by the magnetic field ⁇ generators 16a, 16b according to Figure 1 is produced, and as the course of the magnetic field strength H as a function on the surface 21 aligned running variable x can be seen as a standing Wei-ee 20.
  • the standing wave has a sinusför ⁇ -shaped course and causes variations in the field strength H at the surface 21, 24 affect the electric field lines of the galvanic coating process.
  • the illustrated layer profile has a positive effect on the flow resistance of the layer surface 27 produced as soon as a flow sweeps over it, which is perpendicular to the sectional plane according to FIG.
  • the spacing a is in the Mik ⁇ rometer area.
  • FIG. 3 schematically shows a flow channel 28 through which a fluid flows in an indicated direction of the arrow.
  • the flow channel can be, for example, an annular channel which is formed by the rotor and the housing wall (both not shown) of a gas turbine.
  • blades 29, which are respectively mounted in the housing or on the rotor and thus form Git ⁇ ter, the succession of the flow of were ⁇ the.
  • the path of the flow is interpreted by streamlines 30 an ⁇ .
  • the curvature of the streamlines is influenced both by the outflow of the previous as well as by the inflow of the following lattice. It depends on the course of the deflection in the circumferential direction.
  • the magnetic field producers 16a, 16b arranged such that the distance the magnetic field generator 16a is smaller than the distance of the magnetic field generator 16b.
  • the magnetic field generators are respectively arranged on the blade root 31 and on the upper edge 32 of the blade.
  • the alignment of the standing waves shown in FIG. 2 also changes such that the ridges 26 and grooves 25 (FIG. 2) produced thereby are continuously curved.
  • the ridges 26 are represented by lines 33a and the grooves 25 by dashed lines 33b on the upper surface 21 of the blade 29.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

L'invention concerne un procédé d'application d'un revêtement par voie électrochimique, selon lequel un substrat (14) est soumis à l'action d'un champ magnétique (23) pendant le processus de formation de la couche. Cette invention concerne également un dispositif d'application d'un revêtement par voie électrochimique. Selon la présente invention, le champ magnétique (23) est généré au niveau de la surface à enduire (21) du substrat (14) avec une répartition d'intensités de champ H(x) variable localement, des lignes de champ électriques (24) étant ainsi concentrées dans l'électrolyte sur les zones à intensité de champ magnétique élevée. Ainsi, la croissance d'une couche (22) dans ces zones est accrue, ce qui permet de produire, par exemple, un profil ondulé (27) sans étape de traitement ultérieur. En dimensions appropriées, cette surface ondulée réduit avantageusement la résistance à l'écoulement de la surface (27) de la couche, c'est pourquoi un revêtement de ce type convient, par exemple, à des aubes de turbine optimisées du point de vue de l'écoulement.
EP05771997A 2004-08-06 2005-07-26 Procede pour une couche electrochimique et dispositif d application d un revetement convenant a la mise en oeuvre dudit procede Withdrawn EP1774066A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004038724A DE102004038724B3 (de) 2004-08-06 2004-08-06 Verfahren zum Herstellen einer elektrochemischen Schicht und für dieses Verfahren geeignete Beschichtungsanlage
PCT/EP2005/053634 WO2006032562A1 (fr) 2004-08-06 2005-07-26 Procede pour produire une couche electrochimique et dispositif d'application d'un revetement convenant a la mise en oeuvre dudit procede

Publications (1)

Publication Number Publication Date
EP1774066A1 true EP1774066A1 (fr) 2007-04-18

Family

ID=34973199

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05771997A Withdrawn EP1774066A1 (fr) 2004-08-06 2005-07-26 Procede pour une couche electrochimique et dispositif d application d un revetement convenant a la mise en oeuvre dudit procede

Country Status (3)

Country Link
EP (1) EP1774066A1 (fr)
DE (1) DE102004038724B3 (fr)
WO (1) WO2006032562A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1890004A1 (fr) 2006-08-08 2008-02-20 Siemens Aktiengesellschaft Procédé pour la production d'un revêtement à partir du matériau d'un revêtement recyclé
DE102006044416A1 (de) * 2006-09-18 2008-03-27 Siemens Ag Verfahren zum elektrochemischen Be- oder Entschichten von Bauteilen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB328057A (en) * 1929-01-30 1930-04-24 Kurt Breusing Improvements in or relating to electrolytic processes
US3556954A (en) 1968-07-29 1971-01-19 Gen Electric Method for obtaining circumferential orientation of magnetic films electroplated on wires
US3592746A (en) * 1969-05-15 1971-07-13 Burroughs Corp Electroplating method of fabricating plated wire memory units
JPS63307295A (ja) * 1987-06-08 1988-12-14 Brother Ind Ltd メッキ処理方法
JPH06128795A (ja) * 1991-02-15 1994-05-10 Mitsubishi Heavy Ind Ltd 電気めっき方法
JPH05106080A (ja) * 1991-10-16 1993-04-27 Isuzu Motors Ltd 弱導電性物のメツキ装置
JP3411425B2 (ja) * 1995-06-05 2003-06-03 Jfeスチール株式会社 溶融金属めっき鋼板の製造方法
JP2001023932A (ja) * 1999-07-07 2001-01-26 Nec Corp 半導体素子製造方法及び製造装置
KR20010010788A (ko) * 1999-07-19 2001-02-15 최시영 자장을 이용한 전해 도금 기술
KR100352976B1 (ko) 1999-12-24 2002-09-18 한국기계연구원 전기도금법에 의한 2축 집합조직을 갖는 니켈 도금층 및 그 제조방법
JP3361793B2 (ja) * 2000-07-21 2003-01-07 名古屋市 電磁攪拌による分散めっき法
JP2002241990A (ja) * 2001-02-08 2002-08-28 Semiconductor Leading Edge Technologies Inc めっき装置、及び半導体装置の製造方法
DE10229001B4 (de) * 2002-06-28 2007-02-15 Advanced Micro Devices, Inc., Sunnyvale Verfahren und System zum Steuern der Ionenverteilung während des galvanischen Auftragens eines Metalls auf eine Werkstückoberfläche

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006032562A1 *

Also Published As

Publication number Publication date
WO2006032562A1 (fr) 2006-03-30
DE102004038724B3 (de) 2006-04-27

Similar Documents

Publication Publication Date Title
DE60008130T2 (de) Verfahren und werkzeug zum elektrochemischen bearbeiten
DE19821781C2 (de) Beschichtungsverfahren und Beschichtungsgerät zur Herstellung dreidimensionaler Metallgegenstände
DE102004057527B4 (de) Verfahren zum elektro-chemischen Bearbeiten eines Werkstücks und Elektrode für ein solches Verfahren
DE102016123068A1 (de) Rotierende elektrische Maschine und besonders angepasstes Verfahren zum Herstellen einer solchen
DE102004036598A1 (de) Verfahren zum Herstellen aerodynamischer Strukturen bei der Fertigung von integral beschaufelten Gasturbinenrotoren
DE102006044416A1 (de) Verfahren zum elektrochemischen Be- oder Entschichten von Bauteilen
EP3551786B1 (fr) Procédé d'électropolissage et électrolyte pour ce procédé
DE69727464T2 (de) Elektromechanische vorrichtung, spulenanordnung fur diese vorrichtung und gerät fur datenspeicherung und/oder wiedergabe mit einer derartigen vorrichtung
WO2006032562A1 (fr) Procede pour produire une couche electrochimique et dispositif d'application d'un revetement convenant a la mise en oeuvre dudit procede
DE102012217685A1 (de) Verfahren zum Beschichten durch thermisches Spritzen mit geneigtem Partikelstrahl
DE102013004514B3 (de) Elektrodeneinrichtung für eine Plasmaentladung mit gleitendem Lichtbogen
DE2602513C2 (de) Verfahren und Vorrichtung zum Schneiden, Erodieren, Schweißen oder Niederlegen eines metallischen oder nichtmetallischen Materials mittels eines elektrischen, durch ein elektromagnetisches Drehfeld bewegten Licht- oder Plasmabogens
EP1743053B1 (fr) Procede de production d'un revetement
WO2021023778A1 (fr) Procédé et système de revêtement électrolytique d'une bande d'acier au moyen d'une technologie d'impulsions
DE2911439A1 (de) Elektromagnetischer wandler fuer den antrieb einer elektrischen uhr
DE3730641A1 (de) Verfahren zur herstellung eines magnetisch-induktiven messrohres
WO2022129230A1 (fr) Procédé d'assemblage de nanostratifiés par électrodéposition
DE102013219342A1 (de) Verfahren zur Strukturierung von Schichten oxidierbarer Materialien mittels Oxidation sowie Substrat mit strukturierter Beschichtung
DE102011015932A1 (de) Elektrode für ein elektrochemisches Abtragverfahren
DE102020124712A1 (de) Elektrische induktorvorrichtung
DE102007062559A1 (de) Verfahren zur Herstellung und Reparatur eines Bauteils und Bauteil einer Gasturbine
DE112017004716T5 (de) Magnetisierende Vorrichtung und magnetisierendes Verfahren für einen magnetischen Encoder
WO2004031699A2 (fr) Debitmetre inductif
DE102016201087A1 (de) Energiegewinnungsvorrichtung
DE102017114153A1 (de) Elektromagnetischer Schwingungsanreger zur Schwingungsanregung der Schaufeln eines Schaufelkranzes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE GB IT LI

17Q First examination report despatched

Effective date: 20071108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110201