EP1771468B1 - Auf tumore zielende zellen, die den "tumor necrosis factor-related apoptosis-inducing ligand" (trial) produzieren - Google Patents
Auf tumore zielende zellen, die den "tumor necrosis factor-related apoptosis-inducing ligand" (trial) produzieren Download PDFInfo
- Publication number
- EP1771468B1 EP1771468B1 EP05764208A EP05764208A EP1771468B1 EP 1771468 B1 EP1771468 B1 EP 1771468B1 EP 05764208 A EP05764208 A EP 05764208A EP 05764208 A EP05764208 A EP 05764208A EP 1771468 B1 EP1771468 B1 EP 1771468B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cells
- trail
- tumor
- cell
- apoptosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108700012411 TNFSF10 Proteins 0.000 title claims abstract description 87
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 34
- 210000004027 cell Anatomy 0.000 claims abstract description 223
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 claims abstract description 98
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 claims abstract description 98
- 206010025323 Lymphomas Diseases 0.000 claims abstract description 9
- 238000011282 treatment Methods 0.000 claims abstract description 9
- 239000013598 vector Substances 0.000 claims abstract description 4
- 206010006187 Breast cancer Diseases 0.000 claims description 15
- 208000026310 Breast neoplasm Diseases 0.000 claims description 15
- 201000011510 cancer Diseases 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 5
- 239000003102 growth factor Substances 0.000 claims description 4
- 210000005259 peripheral blood Anatomy 0.000 claims description 4
- 239000011886 peripheral blood Substances 0.000 claims description 4
- 210000004443 dendritic cell Anatomy 0.000 claims description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 2
- 230000002463 transducing effect Effects 0.000 claims description 2
- 239000003814 drug Substances 0.000 claims 2
- 201000008275 breast carcinoma Diseases 0.000 claims 1
- 210000000822 natural killer cell Anatomy 0.000 abstract description 6
- 238000001990 intravenous administration Methods 0.000 abstract description 5
- 230000006907 apoptotic process Effects 0.000 description 27
- 230000026683 transduction Effects 0.000 description 18
- 238000010361 transduction Methods 0.000 description 18
- 238000002474 experimental method Methods 0.000 description 17
- 238000003501 co-culture Methods 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 230000001640 apoptogenic effect Effects 0.000 description 13
- 230000030833 cell death Effects 0.000 description 13
- 210000004881 tumor cell Anatomy 0.000 description 13
- 241000701161 unidentified adenovirus Species 0.000 description 13
- 239000012636 effector Substances 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 230000004083 survival effect Effects 0.000 description 11
- 208000015181 infectious disease Diseases 0.000 description 10
- 238000012258 culturing Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 230000000259 anti-tumor effect Effects 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- 101000830565 Homo sapiens Tumor necrosis factor ligand superfamily member 10 Proteins 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 238000012384 transportation and delivery Methods 0.000 description 7
- 238000011579 SCID mouse model Methods 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 108010000449 TNF-Related Apoptosis-Inducing Ligand Receptors Proteins 0.000 description 5
- 102000002259 TNF-Related Apoptosis-Inducing Ligand Receptors Human genes 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 108091007178 TNFRSF10A Proteins 0.000 description 4
- 102100040113 Tumor necrosis factor receptor superfamily member 10A Human genes 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 208000037842 advanced-stage tumor Diseases 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000001338 necrotic effect Effects 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 206010028851 Necrosis Diseases 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- 230000001093 anti-cancer Effects 0.000 description 3
- 230000005735 apoptotic response Effects 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 238000010166 immunofluorescence Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000017074 necrotic cell death Effects 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- 108090000672 Annexin A5 Proteins 0.000 description 2
- 102000004121 Annexin A5 Human genes 0.000 description 2
- 102100025752 CASP8 and FADD-like apoptosis regulator Human genes 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010040476 FITC-annexin A5 Proteins 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 101000914211 Homo sapiens CASP8 and FADD-like apoptosis regulator Proteins 0.000 description 2
- 238000012404 In vitro experiment Methods 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 241001068263 Replication competent viruses Species 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000011319 anticancer therapy Methods 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 230000007541 cellular toxicity Effects 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000003394 haemopoietic effect Effects 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 102000044949 human TNFSF10 Human genes 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000005918 in vitro anti-tumor Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000002601 intratumoral effect Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 239000012679 serum free medium Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000003211 trypan blue cell staining Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 206010001258 Adenoviral infections Diseases 0.000 description 1
- 108050005848 Annexin A10 Proteins 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 108700003785 Baculoviral IAP Repeat-Containing 3 Proteins 0.000 description 1
- 102100021662 Baculoviral IAP repeat-containing protein 3 Human genes 0.000 description 1
- 101710082513 C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000009058 Death Domain Receptors Human genes 0.000 description 1
- 108010049207 Death Domain Receptors Proteins 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 102100032817 Integrin alpha-5 Human genes 0.000 description 1
- 108010008212 Integrin alpha4beta1 Proteins 0.000 description 1
- 108010041014 Integrin alpha5 Proteins 0.000 description 1
- 108010042918 Integrin alpha5beta1 Proteins 0.000 description 1
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 1
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 101710088580 Stromal cell-derived factor 1 Proteins 0.000 description 1
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 108010000134 Vascular Cell Adhesion Molecule-1 Proteins 0.000 description 1
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 108010013985 adhesion receptor Proteins 0.000 description 1
- 102000019997 adhesion receptor Human genes 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000005775 apoptotic pathway Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000012137 double-staining Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000005917 in vivo anti-tumor Effects 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005210 lymphoid organ Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 210000004882 non-tumor cell Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108700015048 receptor decoy activity proteins Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000005748 tumor development Effects 0.000 description 1
- 230000002476 tumorcidal effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4747—Apoptosis related proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
- A61K2239/48—Blood cells, e.g. leukemia or lymphoma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
- A61K2239/49—Breast
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4613—Natural-killer cells [NK or NK-T]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464436—Cytokines
- A61K39/464438—Tumor necrosis factors [TNF], CD70
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/525—Tumour necrosis factor [TNF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
- C12N15/861—Adenoviral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0646—Natural killers cells [NK], NKT cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0693—Tumour cells; Cancer cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K2035/124—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/48—Regulators of apoptosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
Definitions
- the present invention relates to tumor-homing cells expressing the tumor necrosis factor-related apoptosis inducing ligand (TRAIL) and the use thereof in anti-tumor therapy.
- TRAIL tumor necrosis factor-related apoptosis inducing ligand
- apoptotic pathways represent attractive therapeutic targets for restoring apoptosis sensitivity of malignant cells or activating agonists of apoptosis [2].
- DR4, DR5, FLIP extrinsic
- cIAP2 convergence
- Tumor necrosis factor-related apoptosis-inducing ligand belongs to the TNF family of death receptor ligands [4].
- Isolated DNA sequences coding for TRAIL, expression vectors comprising said DNA sequences and recombinant TRAIL polypeptides are disclosed in WO 97/01633 .
- TRAIL binds to death receptor 4 (DR4) and death receptor 5 (DR5), which are expressed on the cell surface of many cancer cells [5]. Binding soluble TRAIL to DR4 or DR5 leads to to caspase activation and apoptosis [6].
- TRAIL soluble recombinant TRAIL
- TRAIL selectively induces apoptosis in many transformed cells, while sparing normal cells [4].
- TRAIL administration in mice exerts a remarkable efficacy against tumor xenografts of colon carcinoma [8, 9], breast cancer [10], multiple myeloma [11] or glioma [12, 13].
- soluble TRAIL An additional limitation to the use of soluble TRAIL is represented by the impaired apoptotic response observed in a substantial number and variety of tumor cell lines which require either a prolonged incubation time or very high dose of soluble TRAIL to undergo apoptosis [17, 18]. Given the pharmacokinetic profile of TRAIL after intravenous injection (plasmatic half-life of 32 minutes and elimination half-life of 4.8 hours), conditions of prolonged exposure time and high concentrations are not transferable for any in vivo treatment strategy [10]. In order to overcome limitations related to soluble recombinant TRAIL and specifically target tumor cells, several adenoviral-mediated TRAIL gene transfer approaches are currently being exploited using different animal models [19, 20].
- adenoviral gene transfer approaches largely depend on the efficient infection of the tumor and avoidance of immune clearance to be effective [21].
- several safety issues concerning the systemic injection of adenoviral vectors still remain to be addressed [22].
- adenoviral gene transfer of TRAIL overcomes an impaired apoptotic response of hepatoma cells, but causes severe apoptosis in primary human hepatocytes [19].
- adenoviral-based gene therapy approaches mainly rely on the intratumoral delivery of TRAIL-encoding adenovirus [23]. Despite a local antitumoral activity, intratumoral delivery of TRAIL has no systemic antitumor activity, thus lacking any clinical value.
- CD34+ cells [25] and natural killer (NK) cells [26] may be used as delivery vehicles for anticancer molecules.
- CD34+ cells display specific homing properties, including the capacity to permanently colonize the bone marrow, and transiently colonize the liver and spleen [27-30]. These homing properties are strictly related to the expression of adhesion receptors (e.g., CXCR-4, VLA-4, VLA-5, CD44, etc.) which interact with specific ligands (e.g., SDF-1, VCAM-1, etc.) which are expressed on stromal cells residing within the bone marrow microenvironment as well as the tumor microenvironment [31-34].
- adhesion receptors e.g., CXCR-4, VLA-4, VLA-5, CD44, etc.
- specific ligands e.g., SDF-1, VCAM-1, etc.
- NK cells are a subset of lymphocytes that play an essential role in the cellular-based immune defense against tumor cells through major histocompatibility complex non-restricted mechanisms [35]. Following intravenous infusion, NK cells home to the bone marrow and lymphoid organs and extravasate at tumor sites under the influence of appropriate cytokine signals. Many groups have, therefore, sought to use NK cells to home to tumors for therapeutic purposes [36-38].
- NK-cells Even though the tumor-homing properties of NK-cells is known, genetically modified cells undergo a stress which depend on the kind of the transduced gene. As a consequence of said stress, the cells may loose the original tumor-homing properties when transduced with the TRIAL gene. No reasonable expectation of success is therefore present and the actual experimental tests are necessary to confirm whether the specific considered approach may be viable or not.
- CD34+ cells cells engineered to express TRAIL can be advantageously exploited for achieving a cell-mediated, anti-tumor activity in vivo.
- CD34+ tumor-homing cells are engineered to produce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by adenoviral-mediated gene transfer.
- TRAIL tumor necrosis factor-related apoptosis-inducing ligand
- the cells according to the present invention can be systemically administered to deliver TRAIL to the tumor site without causing the aforementioned drawbacks.
- the present invention relates to tumor-homing cells expressing TRAIL and cell preparations containing them.
- the invention also relates to the use of said cells for the preparation of cell compositions for anti-cancer therapy, in particular for the therapy of human lymphoma.
- the cells of the invention can be obtained by transducing tumor-homing cells with a replication-deficient adenovirus encoding the human TRAIL gene (Ad-TRAIL) under the control of a suitable promoter, e.g. the CMV promoter.
- Ad-TRAIL a replication-deficient adenovirus encoding the human TRAIL gene
- the transduction can be carried out according to methods well-known to molecular biologists, preferably following the procedure disclosed in the examples.
- tumor-homing cells is used according to the invention to define cells able: (1) to home to tumor tissue following intravenous injection, and (2) to express adequate amounts of membrane-bound TRAIL (mTRAIL) for at least a few days.
- mTRAIL membrane-bound TRAIL
- the tumor-homing cells of the present invention are CD34+ hematopoietic cells from the peripheral blood of growth-factor treated cancer patients engineered to express mTRAIL.
- mTRAIL Several methods can be envisaged in order to obtain adequate expression of mTRAIL, including use of plasmids and viral vectors with appropriate regulatory genetic elements such as tissue-specific promoters and/or enhancers.
- An optimal transduction efficiency of CD34+ cells may be obtained exposing to graded (50 to 500) Multiplicity of Infection (MOI) of Ad-TRAIL (50 to 500) under serum-free conditions at 37°C. Serum-supplemented medium (RPMI-1640/FBS 20%) is then added, and a few hours later cultures were supplemented with Gene Booster (1:200) and further incubated for 18 hours.
- MOI Multiplicity of Infection
- compositions of the invention can be prepared by using vehicles suitable for parenteral, particularly intravenous, administration, such as those reported in REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Pub. Co., N.J. 1991 ).
- excipients which may be used include any pharmaceutical agent that is not harmful to the individual receiving the composition, e.g. water, saline, glycerol and ethanol optionally in admixture with auxiliary substances, such as wetting or emulsifying agents, buffers, and the like in.
- auxiliary substances such as wetting or emulsifying agents, buffers, and the like in.
- Appropriate doses will depend, among other factors, on the sex, age and conditions of the subject to be treated, the severity of the disease. An appropriate effective amount can be readily determined by any skilled practitioner and may anyhow be determined by means of clinical studies.
- a therapeutically effective dose will generally be from about 10 3 to about 10 15 of transduced cells. Other dosages can be of course established by means of conventional experiments, i.e.
- Dosage treatment may be a single dose or a multiple dose schedule.
- the subject may be administered as many doses as appropriate. The skilled practitioner will easily determine the most effective dosage regimen.
- the effectiveness of intravenous administration provides a distinct advantage of the present invention in comparison protocols based to intra-tumor delivery.
- Example 1 In vitro triggering of apoptosis in lymphoma cell lines co-cultured with CD34+ cells expressing TRAIL following adenoviral-mediated gene transfer
- Ad-TRAIL adenoviral vector expressing TRAIL
- Adenovirus encoding the human TRAIL gene A replication-deficient adenovirus encoding the human TRAIL gene (Ad-TRAIL) expressed from the CMV promoter was used for these experiments [39].
- the Ad-TRAIL contains the entire coding sequence of human TRAIL cloned into the Xho I and Not I sites of pAd5CMVK-NpA.
- the resultant plasmid and adenovirus backbone sequences (Ad5) that had the E1 genes deleted are transfected into human embryonic kidney 293 cells, and viral particles are isolated and amplified for analysis of TRAIL expression.
- Recombinant adenoviruses are screened for replication competent virus by A549 plaque assay, and virus titer is determined by plaque assay on 293 cells. Purified viruses are stored in PBS with 3% sucrose and kept at -80°C until use. TRAIL gene product is expressed on the cell surface of transduced cells and can be detected by means of flow cytometry.
- CD34+ cells to be transduced with Ad-TRAIL were obtained from the peripheral blood of consenting cancer patients receiving chemotherapy and treated with hematopoietic growth factors.
- CD34+ cells were enriched from leukapheretic samples by means of an immunomagnetic technique and positive selection (Miltenyi Biotech).
- IMDM serum-free medium
- MOI multiplicity of infections
- Co-cultures The apoptosis triggering activity of TRAIL expressed on the membrane of CD34+ cells was tested in vitro by means of co-culture experiments. Briefly, Ad-TRAIL/CD34+ cells (effector cells) were co-cultured with lymphoma cells (target cells). Apoptosis induction was evaluated 24 and 48 hours after the onset of co-culture. In these experiments, the effector: target cell ratio was calculated on the basis of the transduction efficiency of effector cells.
- CD34+ cells Adenoviral transduction of CD34+ cells.
- IMDM/FBS 20% An equal volume of serum-supplemented medium (IMDM/FBS 20%) was then added, and 4 hours later cultures were supplemented with Gene Booster (1:200) and further incubated for 18 hours.
- Gene Booster Gene Booster
- CD34+ cells were transduced with an MOI of 1,000 and analyzed for TRAIL expression up to 7 days after transduction.
- MOI granulocyte colony-stimulating factor
- G-CSF granulocyte colony-stimulating factor
- CD34+ cells transduced under optimal conditions according to the infection protocols described above were collected 24 hours after the initial exposure to adenovirus, extensively washed and co-cultured with KMS-11 or JVM-2 cells.
- Ad-TRAIL/CD34+ cells were co-cultured at an effector: target cell ratio of 0.8:1, a substantial proportion (81%) of apoptotic and necrotic cells was detected for KMS-11 cells after a 24-hour co-culture. The amount of apoptotic cells was further increased after a 48-hour co-culture (93% apoptotic cells).
- Co-culture experiments were also performed by incubating Ad-TRAIL/CD34+ cells or Ad-TRAIL/NK cells with the soluble TRAIL-resistant NM-2 cell line.
- Ad-TRAIL/CD34+ cells were co-cultured at an effector: target cell ratio of 0.8:1, a substantial proportion (51%) of apoptotic and necrotic cells was detected for the TRAIL-resistant JVM-2 cells after a 48-hour co-culture.
- the potency of the apoptotic effect exerted by membrane-bound TRAIL was significantly higher than that exerted by a 48-hour exposure to a high-dose (100 ng/ml) of soluble TRAIL (table 4).
- Table 4 - Effect of soluble TRAIL on JVM-2 cells Amount of soluble TRAIL % of viable cells after 24 hours % of viable cells after 48 hours 0 ng/ml 87 84 100 ng/ml 86 80
- effector cells Ad-TRAIL/CD34+ cells were co-cultured with target cells (KMS-11 cell line) for 24 hours at different effector: target ratios.
- Ad-TRAIL/CD34+ cells triggered a substantial percentage (66%) of KMS-11 cells to undergo apoptosis or necrosis in co-cultures set-up with an effector: target ratio of 0.4:1.
- Table 5 - Induction of apoptosis by co-culturing Ad-TRAIL/CD34+ cells and KMS-11 cells for 24 hours at increasing E:T ratios CD34+/KMS-11 ratio 0:1 0.08:1 0.4:1 0.8:1 % of residual viable cells 71 67 34 22
- Example 2 In vivo evaluation in NOD/SCID mice of the anticancer activity of CD34+ cells engineered to express TRAIL following adenoviral-mediated gene transfer
- mice were reinfused with the TRAIL-sensitive KMS-11 multiple myeloma cell line. Subsequently, mice were injected with Ad-TRAIL/CD34+ cells and mice survival was used as a readout of the antitumor efficacy of cell-based TRAIL delivery.
- mice were inoculated intravenously (IV) with KMS-11 cells (0.5 x 10 6 per mouse).
- Treatment with Ad-TRAIL/CD34+ cells (1 x 10 6 per mouse) consisted in IV weekly injections for 4 weeks starting either on day 7 or 17 after tumor cell inoculation.
- the mean transduction efficiencies of reinfused Ad-TRAIL/CD34+ cells were 83 ⁇ 8% and 61 ⁇ 18%, respectively.
- each mouse received an average number of 3.32 x 10 6 TRAIL-expressing CD34+ cells over four injections.
- Mice were checked twice weekly for tumor appearance, body weight measurements and toxicity. The survival times of animals in each group were recorded and differences among the groups were evaluated by statistical analysis.
- Appropriate control groups included: (i) mice injected with tumor cells only, (iii) mice injected with tumor cells plus non-transduced CD34+ cells.
- Ad-TRAIL/CD34+ cells Ad-TRAIL/CD34+ cells .
- Mice xenografted with KMS-11 cells 0.5 x 10 6 per mouse
- Example 3 In vitro antitumor activity of CD34/Ad-TRAIL cells against breast cancer cell lines
- the sensitivity of breast cancer cell lines to the killing effects of sTRAIL was evaluated in comparison with the evaluation of the in vitro triggering of apoptosis of sTRAIL-sensitive and sTRAIL-resistant breast cancer cell lines co-cultured with CD34/Ad-TRAIL cells.
- MCF-7 and MDA-MB-361 Two breast cancer cell lines, i.e., MCF-7 and MDA-MB-361were used.
- tumor cells 5 - 10 x 10 4 /ml
- a high (100 ng/ml) dose of sTRAIL were exposed for 72 hours to a low (10 ng/ml) and a high (100 ng/ml) dose of sTRAIL.
- apoptosis was evaluated by annexin-V/propidium iodide double staining.
- The-breast-cancer cell lines MCF-7 and MDA-MB-361 were purchased from the DSMZ (Braunschweig, Germany, EU) and ATCC (Manassas, VA, USA), respectively. Cells were periodically tested by polymerase chain reaction for mycoplasma contamination. All in vitro experiments were performed with exponentially growing cells.
- Annexin-V expression The Annexin V-FITC assay (PharMingen) was used to quantitatively determine the percentage of cells undergoing early or late apoptosis and necrosis. Briefly, cells to be analyzed were washed twice with cold PBS and then resuspended in binding buffer (10 nM HEPES, 140 nM NaCI, 5 nM CaC12, pH 7.4). Following incubation, 0.1 ml of the cell suspension was transferred to a 5 ml culture tube and 5 microl of Annexin V-FITC and 10 microL of propidium iodide was added. After vortexing, the samples were incubated for 1 S min at room temperature in the dark. At the end of the incubation, 0.4 ml of binding buffer were added and the cells were analyzed immediately by flow cytometry.
- MCF-7 and MDA-MB-361 cell lines were exposed to sTRAIL (10 - 100 ng/ml, 72 hours) and then the percentages of apoptotic and necrotic cells was detected by FACS analysis. As shown in Table 7, exposure to sTRAIL failed to induce any apoptotic response in MCF-7 cells, whereas it resulted in a significant cell death response by MDA-MB-361 cells when exposed to 100- ng/ml of sTRAIL for 72 hours. According to these results, MCF-7 is a sTRAIL-resistant cells line, whereas MDA-MB-361 is a sTRAIL-sensitive cell line.
- Adenovirus encoding the human TRAIL gene A replication-deficient adenovirus encoding the human TRAIL gene (Ad-TRAIL) expressed from the CMV promoter was used for these experiments [39].
- the Ad-TRAIL contains the entire coding sequence of human TRAIL cloned into the Xho I and Not I sites of pAd5CMVK-NpA.
- the resultant plasmid and adenovirus backbone sequences (Ad5) that had the E1 genes deleted are transfected into human embryonic kidney 293 cells, and viral particles are isolated and amplified for analysis of TRAIL expression.
- Recombinant adenoviruses are screened for replication competent virus by A549 plaque assay, and virus titer is determined by plaque assay on 293 cells. Purified viruses are stored in PBS with 3% sucrose and kept at -80°C until use. TRAIL gene product is expressed on the cell surface of transduced cells and can be detected by means of flow cytometry.
- CD34+ cells to be transduced with Ad-TRAIL were obtained from the peripheral blood of consenting cancer patients receiving chemotherapy and treated with hematopoietic growth factors.
- CD34+ cells were enriched from leukapheretic samples by means of an immunomagnetic technique and positive selection (Miltenyi Biotech).
- IMDM serum-free medium
- MOI multiplicity of infections
- CD34+ cells Adenoviral transduction of CD34+ cells. An optimal transduction efficiency of CD34+ cells was consistently achieved by exposing CD34+ cells (2 x 10 6 /ml) to graded Ad-TRAIL at an MOI of 500 under serum-free conditions for 2 hours (37 °C). While no background TRAIL signal was detected in control cells, TRAIL-expressing cells revealed a percentage of TRAIL-positive CD34+ cells of 93 ⁇ 8% (mean ⁇ SD). Cell viability, as evaluated by the Trypan blue dye exclusion test, was unaffected by an MOI as high as 1,000 (with ⁇ 85% viable cells).
- the potency of the apoptotic effect exerted by a 48-hour exposure to mTRAIL was similar to that exerted by a 72-hour exposure to a high-dose (100 ng/ml) of sTRAIL (Table 7).
- MDA-MB-361 cells were co-cultured with mock-transduced CD34+ cells. As shown in Table 2, co-culturing MDA-MB-361 cells with mock-transduced CD34+ cells was associated with a modest cell death effect only detected at the highest E:T ratio. Such a modest cell death induction was likely related to culture overcrowding.
- MDA-MB-361 cells were exposed to 10 6 plaque forming unit (pfu). No evidence of cell toxicity could be detected by exposing MDA-MB-361 cells to 10 6 viral particles (Table 8).
- the number of pfu was calculated as follows.
- CD34+ cells were washed 3x in culture medium.
- a 1:20 dilution factor was used, i.e., the suspension culture was diluted at least 8,000-fold.
- the potency of the apoptotic effect exerted by a 48-hour exposure to mTRAIL was significantly higher than that exerted by a 72-hour exposure to a high-dose (100 ng/ml) of sTRAIL (Tables 7 & 8).
- MCF-7 cells either co-cultured with mock-transduced CD34+ cells. As shown in Table 8, co-culturing MCF-7 cells with mock-transduced CD34+ cells was associated with a modest cell death effect which is likely related to culture overcrowding.
- MCF-7 cells were exposed to 10 6 pfu. No evidence of cell toxicity could be detected by exposing MCF-7 cells to 10 6 pfu (Table 8).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Cell Biology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Oncology (AREA)
- General Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Mycology (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hospice & Palliative Care (AREA)
- Virology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Claims (7)
- CD34+ blutbildende Zellen, die aus peripherischem Blut von wachstumsfaktorbehandelten Krebspatienten stammen und mit dem Tumor-Nekrosis-Faktor-spezifischen Apoptose-induzierenden Ligand transduziert worden sind, mit der Bedingung, daß die Zellen keine dendritischen Zellen sind.
- Zellen nach Anspruch 1, welche durch Transduzieren von CD34+-Zellen mit adenoviralen Vektoren, welche für den Tumor-Nekrosis-Faktor-spezifischen Apoptose-induzierenden Ligand codieren, erzeugbar sind.
- Zellzusammensetzungen enthaltend die Zellen nach Ansprüchen 1-2 zusammen mit physiologisch zulässigen Trägerstoffen.
- Verwendung der Zellen nach Ansprüchen 1-2 für die Herstellung eines Arzneimittels für die Behandlung von Tumoren.
- Verwendung nach Anspruch 4, wobei der Tumor ein Lymphom ist.
- Verwendung nach Anspruch 4, wobei der Tumor ein Brustkarzinom ist.
- Verwendung nach einem der Ansprüche 4, 5 oder 6, wobei das Arzneimittel intravenös verabreicht wird.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL05764208T PL1771468T3 (pl) | 2004-07-29 | 2005-07-21 | Zasiedlające nowotwory komórki inżynierowane w celu wytwarzania ligandu czynnika martwicy nowotworu indukującego apoptozę (TRAIL) |
SI200530969T SI1771468T1 (sl) | 2004-07-29 | 2005-07-21 | CELICE, KI CILJAJO NA TUMORJE IN SO VZGOJENE ZA PROIZVODNJO "TUMOR NECROSIS FACTOR-RELATED APOPTOSIS-INDUCING LIGAND" (TRAIL) |
EP05764208A EP1771468B1 (de) | 2004-07-29 | 2005-07-21 | Auf tumore zielende zellen, die den "tumor necrosis factor-related apoptosis-inducing ligand" (trial) produzieren |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04017907A EP1621550A1 (de) | 2004-07-29 | 2004-07-29 | Tumor-ansteuernde Zellen, welche "tumor necrosis factor-related apoptosis inducing ligand" (TRAIL) exprimieren |
PCT/EP2005/007957 WO2006010558A1 (en) | 2004-07-29 | 2005-07-21 | Tumor-homing cells engineered to produce tumor necrosis factor-related apoptosis-inducing ligand (trail) |
EP05764208A EP1771468B1 (de) | 2004-07-29 | 2005-07-21 | Auf tumore zielende zellen, die den "tumor necrosis factor-related apoptosis-inducing ligand" (trial) produzieren |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1771468A1 EP1771468A1 (de) | 2007-04-11 |
EP1771468B1 true EP1771468B1 (de) | 2010-01-20 |
Family
ID=34925971
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04017907A Withdrawn EP1621550A1 (de) | 2004-07-29 | 2004-07-29 | Tumor-ansteuernde Zellen, welche "tumor necrosis factor-related apoptosis inducing ligand" (TRAIL) exprimieren |
EP05764208A Active EP1771468B1 (de) | 2004-07-29 | 2005-07-21 | Auf tumore zielende zellen, die den "tumor necrosis factor-related apoptosis-inducing ligand" (trial) produzieren |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04017907A Withdrawn EP1621550A1 (de) | 2004-07-29 | 2004-07-29 | Tumor-ansteuernde Zellen, welche "tumor necrosis factor-related apoptosis inducing ligand" (TRAIL) exprimieren |
Country Status (25)
Country | Link |
---|---|
US (1) | US20070264231A1 (de) |
EP (2) | EP1621550A1 (de) |
JP (1) | JP5042826B2 (de) |
KR (1) | KR20070047757A (de) |
CN (1) | CN101076540B (de) |
AT (1) | ATE455847T1 (de) |
AU (1) | AU2005266543B2 (de) |
BR (1) | BRPI0513855A (de) |
CA (1) | CA2571426A1 (de) |
DE (1) | DE602005019050D1 (de) |
DK (1) | DK1771468T3 (de) |
ES (1) | ES2340400T3 (de) |
HK (1) | HK1110874A1 (de) |
HR (1) | HRP20100227T1 (de) |
IL (1) | IL180233A (de) |
MX (1) | MX2007001152A (de) |
NO (1) | NO20070956L (de) |
NZ (1) | NZ552223A (de) |
PL (1) | PL1771468T3 (de) |
PT (1) | PT1771468E (de) |
RS (1) | RS51381B (de) |
RU (1) | RU2390558C2 (de) |
SI (1) | SI1771468T1 (de) |
WO (1) | WO2006010558A1 (de) |
ZA (1) | ZA200701231B (de) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070050911A (ko) * | 2004-06-18 | 2007-05-16 | 제넨테크, 인크. | Apo2l 수용체 작동제 및 nk 세포 활성화제의 사용방법 |
DE102006020307A1 (de) * | 2006-05-03 | 2007-11-08 | Martin-Luther-Universität Halle-Wittenberg | TNF-related apoptosis-including (TRAIL)stabil transgen exprimierende mesenchymale Stammzellen, Verfahren zu ihrer Herstellung und zu ihrer Verwendung |
WO2008142862A1 (ja) * | 2007-05-18 | 2008-11-27 | National University Corporation Asahikawa Medical College | 血管内皮前駆細胞の移植による抗がん療法 |
CN102154213B (zh) * | 2011-01-19 | 2012-07-25 | 郑骏年 | 一种运载荷载细胞因子的双调控溶瘤腺病毒的新型cik细胞 |
EP2811023B1 (de) * | 2012-02-01 | 2018-10-24 | Postech Academy-Industry Foundation | Vektor zur gleichzeitigen expression von dodecamerischen pfad- und hsv-tk-selbstmordgenen sowie stammzellentherapeutikum damit |
CN103288966B (zh) * | 2013-05-17 | 2015-01-21 | 华侨大学 | 一种融合受体及其用于治疗大肠癌的基因药物 |
RU2552609C1 (ru) * | 2013-10-28 | 2015-06-10 | Федеральное государственное бюджетное учреждение науки Институт молекулярной биотехнологии им. В.А. Энгельгардта Российской академии наук (ИМБ РАН) | Способ получения системы направленной доставки белковых молекул (онколитических белков) в опухолевые ткани на основе активированных лимфоцитов |
EP3209382B1 (de) | 2014-10-24 | 2020-11-25 | Calidi Biotherapeutics, Inc. | Kombinationsimmuntherapieansatz zur behandlung von krebs |
ES2890859T3 (es) | 2015-07-29 | 2022-01-24 | Onk Therapeutics Ltd | Células asesinas naturales modificadas y líneas de células asesinas naturales que tienen citotoxicidad aumentada |
US10906951B2 (en) | 2015-07-29 | 2021-02-02 | Onk Therapeutics Limited | Modified natural killer cells and natural killer cell lines having increased cytotoxicity |
WO2019232631A1 (en) * | 2018-06-06 | 2019-12-12 | Stemcell Technologies Canada Inc. | Kits, compositions and methods for myeloid-derived suppressor cell enrichment |
US20220143089A1 (en) * | 2019-03-21 | 2022-05-12 | Onk Therapeutics Limited | Modified immune effector cells with increased resistance to cell death |
EP3712257A1 (de) | 2019-03-21 | 2020-09-23 | ONK Therapeutics Limited | Modifizierte natürliche killerzellen mit erhöhter resistenz gegen zelltod |
WO2021209625A1 (en) | 2020-04-17 | 2021-10-21 | Onk Therapeutics Limited | High potency natural killer cells |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2332435T3 (es) * | 1997-06-04 | 2010-02-04 | Oxford Biomedica (Uk) Limited | Vector dirigido a tumores. |
AU2001290720A1 (en) * | 2000-09-11 | 2002-03-26 | Musc Foundation For Research Development | Method and composition for treating tumors by selective induction of apoptosis |
WO2002066044A2 (en) * | 2000-10-24 | 2002-08-29 | Immunex Corporation | Method for dendritic cells based immunotherapy of tumors using combination therapy |
US7235358B2 (en) * | 2001-06-08 | 2007-06-26 | Expression Diagnostics, Inc. | Methods and compositions for diagnosing and monitoring transplant rejection |
JP4493882B2 (ja) * | 2001-06-19 | 2010-06-30 | 株式会社カネカ | 抗原およびこの抗原を識別するモノクローナル抗体 |
-
2004
- 2004-07-29 EP EP04017907A patent/EP1621550A1/de not_active Withdrawn
-
2005
- 2005-07-21 WO PCT/EP2005/007957 patent/WO2006010558A1/en active Application Filing
- 2005-07-21 CA CA002571426A patent/CA2571426A1/en not_active Abandoned
- 2005-07-21 PL PL05764208T patent/PL1771468T3/pl unknown
- 2005-07-21 BR BRPI0513855-8A patent/BRPI0513855A/pt not_active IP Right Cessation
- 2005-07-21 DK DK05764208.4T patent/DK1771468T3/da active
- 2005-07-21 ES ES05764208T patent/ES2340400T3/es active Active
- 2005-07-21 KR KR1020077000005A patent/KR20070047757A/ko not_active Application Discontinuation
- 2005-07-21 AU AU2005266543A patent/AU2005266543B2/en not_active Ceased
- 2005-07-21 ZA ZA200701231A patent/ZA200701231B/xx unknown
- 2005-07-21 RU RU2007107369/13A patent/RU2390558C2/ru not_active IP Right Cessation
- 2005-07-21 CN CN2005800324298A patent/CN101076540B/zh not_active Expired - Fee Related
- 2005-07-21 MX MX2007001152A patent/MX2007001152A/es active IP Right Grant
- 2005-07-21 DE DE602005019050T patent/DE602005019050D1/de active Active
- 2005-07-21 RS RSP-2010/0179A patent/RS51381B/en unknown
- 2005-07-21 PT PT05764208T patent/PT1771468E/pt unknown
- 2005-07-21 EP EP05764208A patent/EP1771468B1/de active Active
- 2005-07-21 US US11/631,262 patent/US20070264231A1/en not_active Abandoned
- 2005-07-21 NZ NZ552223A patent/NZ552223A/en not_active IP Right Cessation
- 2005-07-21 SI SI200530969T patent/SI1771468T1/sl unknown
- 2005-07-21 AT AT05764208T patent/ATE455847T1/de active
- 2005-07-21 JP JP2007522989A patent/JP5042826B2/ja not_active Expired - Fee Related
-
2006
- 2006-12-21 IL IL180233A patent/IL180233A/en not_active IP Right Cessation
-
2007
- 2007-02-20 NO NO20070956A patent/NO20070956L/no not_active Application Discontinuation
-
2008
- 2008-05-13 HK HK08105289.1A patent/HK1110874A1/xx not_active IP Right Cessation
-
2010
- 2010-04-19 HR HR20100227T patent/HRP20100227T1/hr unknown
Also Published As
Publication number | Publication date |
---|---|
SI1771468T1 (sl) | 2010-07-30 |
HK1110874A1 (en) | 2008-07-25 |
WO2006010558A1 (en) | 2006-02-02 |
ES2340400T3 (es) | 2010-06-02 |
JP5042826B2 (ja) | 2012-10-03 |
NZ552223A (en) | 2009-01-31 |
RS51381B (en) | 2011-02-28 |
PL1771468T3 (pl) | 2010-07-30 |
KR20070047757A (ko) | 2007-05-07 |
AU2005266543A1 (en) | 2006-02-02 |
CN101076540B (zh) | 2012-10-24 |
RU2390558C2 (ru) | 2010-05-27 |
EP1771468A1 (de) | 2007-04-11 |
NO20070956L (no) | 2007-02-20 |
IL180233A (en) | 2010-12-30 |
DE602005019050D1 (de) | 2010-03-11 |
CA2571426A1 (en) | 2006-02-02 |
AU2005266543B2 (en) | 2012-02-02 |
RU2007107369A (ru) | 2008-09-10 |
DK1771468T3 (da) | 2010-05-25 |
MX2007001152A (es) | 2007-04-18 |
BRPI0513855A (pt) | 2008-05-20 |
JP2008507961A (ja) | 2008-03-21 |
PT1771468E (pt) | 2010-04-20 |
HRP20100227T1 (hr) | 2010-07-31 |
ZA200701231B (en) | 2008-08-27 |
CN101076540A (zh) | 2007-11-21 |
ATE455847T1 (de) | 2010-02-15 |
IL180233A0 (en) | 2007-07-04 |
US20070264231A1 (en) | 2007-11-15 |
EP1621550A1 (de) | 2006-02-01 |
WO2006010558A8 (en) | 2006-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1771468B1 (de) | Auf tumore zielende zellen, die den "tumor necrosis factor-related apoptosis-inducing ligand" (trial) produzieren | |
Redeker et al. | Improving adoptive T cell therapy: the particular role of T cell costimulation, cytokines, and post-transfer vaccination | |
CN106659742B (zh) | 表达免疫应答刺激细胞因子以吸引和/或激活免疫细胞的基因修饰间充质干细胞 | |
Klimp et al. | A potential role of macrophage activation in the treatment of cancer | |
EP1648931B1 (de) | Multifunktionelle cytokine | |
US20230257706A1 (en) | T lymphocyte and use thereof | |
JP2011045375A (ja) | 新規多機能性サイトカイン | |
CN113416260B (zh) | 靶向Claudin18.2的特异性嵌合抗原受体细胞及其制备方法和应用 | |
CN108495865B (zh) | 具有细胞因子受体激活或阻断结构域的嵌合抗原受体 | |
CN111378625A (zh) | 一种cxcl13趋化型car-t细胞的制备和应用 | |
CN115838439B (zh) | 嵌合转换受体基因修饰的nk细胞制备方法及应用 | |
JP2021526842A (ja) | I型インターフェロン及びcd40−配位子を用いる腫瘍溶解性ウイルス又は抗原提示細胞媒介性癌治療 | |
EP4299592A1 (de) | Co-exprimierte cxcr2- und t-zellen eines für gpc3 spezifischen sterns und verwendung davon | |
US20240180983A1 (en) | Adenovirus encoding il-15 | |
CN116041542A (zh) | 逆转肿瘤微环境抑制性信号的nk细胞制备方法及应用 | |
US20210221903A1 (en) | Bcma-targeting chimeric antigen receptor and uses thereof | |
CN115819614B (zh) | 一种基于il34的嵌合抗原受体免疫细胞制备及其应用 | |
CN115806626B (zh) | 一种基于csf1的嵌合抗原受体免疫细胞制备及其应用 | |
WO2022262764A1 (zh) | 一种基于lox1构建的嵌合抗原受体免疫细胞制备及其应用 | |
Qian et al. | Gene therapy of cancer: induction of anti-tumor immunity | |
CN117304342B (zh) | 嵌合抗原受体及其应用 | |
US11364267B1 (en) | Bi-specific targeting human NKG2DL and CLDN18A2 chimeric antigen receptor cells, preparation method and application thereof | |
WO2022262765A1 (zh) | 一种基于颗粒酶b构建的嵌合抗原受体免疫细胞制备及其应用 | |
CN116059329A (zh) | 溶瘤病毒与car t细胞联合治疗血液肿瘤的方法 | |
CN116178562A (zh) | 基于efna1构建的嵌合抗原受体免疫细胞制备及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070124 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17Q | First examination report despatched |
Effective date: 20070529 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CARLO-STELLA, CARMELO Inventor name: COLOTTA, FRANCESCO Inventor name: GIANNI, ALESSANDRO, M. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DOMPE' S.P.A. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602005019050 Country of ref document: DE Date of ref document: 20100311 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20100227 Country of ref document: HR Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20100414 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20100400870 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER & PEDRAZZINI AG |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2340400 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 7115 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100520 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20100227 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E007993 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100120 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100420 |
|
26N | No opposition filed |
Effective date: 20101021 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20110725 Year of fee payment: 7 Ref country code: DK Payment date: 20110720 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20110719 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20100227 Country of ref document: HR Payment date: 20120705 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100721 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20120713 Year of fee payment: 8 Ref country code: IE Payment date: 20120730 Year of fee payment: 8 Ref country code: MC Payment date: 20120717 Year of fee payment: 8 Ref country code: GB Payment date: 20120809 Year of fee payment: 8 Ref country code: EE Payment date: 20120704 Year of fee payment: 8 Ref country code: LT Payment date: 20120705 Year of fee payment: 8 Ref country code: RO Payment date: 20120705 Year of fee payment: 8 Ref country code: SE Payment date: 20120730 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LV Payment date: 20120724 Year of fee payment: 8 Ref country code: PL Payment date: 20120713 Year of fee payment: 8 Ref country code: SK Payment date: 20120718 Year of fee payment: 8 Ref country code: GR Payment date: 20120726 Year of fee payment: 8 Ref country code: TR Payment date: 20120723 Year of fee payment: 8 Ref country code: SI Payment date: 20120704 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120723 Year of fee payment: 8 Ref country code: DE Payment date: 20120809 Year of fee payment: 8 Ref country code: FR Payment date: 20120816 Year of fee payment: 8 Ref country code: HU Payment date: 20120724 Year of fee payment: 8 Ref country code: ES Payment date: 20120831 Year of fee payment: 8 Ref country code: BE Payment date: 20120809 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20120719 Year of fee payment: 8 Ref country code: PT Payment date: 20120123 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20120720 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: PBON Ref document number: P20100227 Country of ref document: HR Effective date: 20130722 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20140121 |
|
BERE | Be: lapsed |
Owner name: DOMPE' S.P.A. Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20140201 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MM4D Effective date: 20130721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 455847 Country of ref document: AT Kind code of ref document: T Effective date: 20130721 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130721 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 7115 Country of ref document: SK Effective date: 20130721 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: ML Ref document number: 20100400870 Country of ref document: GR Effective date: 20140204 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: MM4A Ref document number: E004235 Country of ref document: EE Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130722 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 Ref country code: EE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: LT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130722 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20140401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140204 Ref country code: LV Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130722 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005019050 Country of ref document: DE Effective date: 20140201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: LAPE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130721 |