EP1758979A1 - Mehrkammer-pouch - Google Patents

Mehrkammer-pouch

Info

Publication number
EP1758979A1
EP1758979A1 EP05754593A EP05754593A EP1758979A1 EP 1758979 A1 EP1758979 A1 EP 1758979A1 EP 05754593 A EP05754593 A EP 05754593A EP 05754593 A EP05754593 A EP 05754593A EP 1758979 A1 EP1758979 A1 EP 1758979A1
Authority
EP
European Patent Office
Prior art keywords
acid
water
preferred
washing
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05754593A
Other languages
English (en)
French (fr)
Other versions
EP1758979B1 (de
Inventor
Wolfgang Barthel
Salvatore Fileccia
Arno DÜFFELS
Maren Jekel
Birgit Burg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34971187&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1758979(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL05754593T priority Critical patent/PL1758979T3/pl
Publication of EP1758979A1 publication Critical patent/EP1758979A1/de
Application granted granted Critical
Publication of EP1758979B1 publication Critical patent/EP1758979B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions

Definitions

  • the present invention relates to a process for the preparation of multiphase detergents and cleaners.
  • this invention relates to a process which makes it possible to provide multi-phase detergents and cleaners in the form of metering units which contain a water-soluble or water-dispersible container.
  • Detergents or cleaners are now available to the consumer in a variety of forms.
  • this offer also includes, for example, detergent concentrates in the form of extruded or tabletted compositions.
  • These fixed, concentrated or compressed forms of supply are characterized by a reduced volume per dosing unit and thus reduce the costs for packaging and transport.
  • the washing or cleaning agent tablets additionally meet the consumer's desire for simple dosing.
  • the corresponding means are comprehensively described in the prior art.
  • compacted detergents or cleaners also have a number of disadvantages.
  • Especially tableted supply forms are characterized by their high compression often by a delayed disintegration and thus a delayed release of their ingredients.
  • solid or liquid detergents or cleaners which have a water-soluble or water-dispersible packaging are increasingly being described in recent years. These agents are characterized as the tablets by a simplified dosage, since they can be dosed together with the outer packaging in the washing machine or dishwasher, on the other hand, but at the same time allow the Ko ⁇ fetation ist liquid or powder detergents or cleaning agents, which Compared to the compact data by a better resolution and faster effectiveness.
  • EP 1 314 654 A2 discloses a dome-shaped pouch with a receiving chamber containing a liquid.
  • the container can be produced by the thermoforming process.
  • the application WO 01/83657 A2 discloses pouches which contain a solid and a liquid component, the liquid component being welded into a separate bag, which is subsequently welded together with the solid component in another bag.
  • the bags are made by the deep drawing process.
  • EP 1 256 623 A1 Subject of the European application EP 1 256 623 A1 (Procter & Gamble) is a kit of at least two bags with different composition and optics. The bags are separate and not as a compact single product.
  • a bag of water-soluble or water-dispersible material which has two receiving chambers and is suitable, for example, for packaging toxic substances is disclosed in the application WO 93/08095 A1 (Rhone-Poulenc).
  • the bags can be made by the thermoforming process.
  • WO 02/42401 A1 Procter & Gamble
  • a method for the automated cleaning of dishes takes place using a container with severalhay ⁇ chambers.
  • the corresponding containers have a horizontal arrangement of the individual receiving chambers and are produced by sequential bonding of individual films to form the receiving chambers, whereby individual, thermoforming molding films can be used.
  • WO 02/85738 A1 (Reckitt Benckiser) are water-soluble containers with at least two receiving troughs.
  • the preparation of these containers is carried out by stepwise sealing of individual films or prefabricated Einzelkompartimente to the final container.
  • WO 02/85736 A1 (Reckitt Benckiser) describes water-soluble containers having at least two receiving chambers.
  • the receiving chambers can be produced by injection molding or deep drawing are, and are designed so that the closed chambers can be folded by folding in a mirror image arrangement.
  • the products of the packaging processes described in the prior art are characterized by a high proportion of packaging materials.
  • the proportion of packaging materials in deep-drawn or injection-molded packages increases due to the material used for the partitions with the number of separate, contained in these packages receiving chambers.
  • the separation of the receiving chambers is achieved through the use of webs or punches over which a film to be formed is drawn, the resulting products generally have a "loss volume” which corresponds to the volume of this web or stamp and forms the space between the separate receiving chambers. Such "loss volumes” reduce the stability of the packaged end product.
  • the process should allow a reduction in the production costs of multiphase detergents and cleaners, the process end products being intended to be optically appealing.
  • the process end products should be characterized by an optimized use of space of the packaging body and increased rigidity and transport or storage stability of the resulting container.
  • a water-soluble or water-dispersible container is prepared for producing the multiphase washing and cleaning agent portions, filled with a first washing or cleaning agent to form the first phase, and subsequently to a separating layer solidifying liquid release agent applied to this phase and in the last step, the container is filled with a second detergent or cleaning agent to form a second phase.
  • the present application relates to a process for producing multiphase detergents or cleaners, comprising the steps of: a) preparing a water-soluble or water-dispersible container; b) filling the container with a first washing or cleaning agent to form a first phase; c) applying a liquid release agent to said first phase and solidifying said release agent to form a release layer; d) filling the container with a second washing or cleaning agent to form a second phase.
  • the present application also relates to a multiphase washing or cleaning composition
  • a multiphase washing or cleaning composition comprising a) a water-soluble or water-dispersible container of a first water-soluble or water-dispersible shell material; and b) at least two separate phases of washing or cleaning agents, which are arranged side by side and / or one above the other in layers and separated from one another by a separating layer of a solidified, liquid release agent.
  • a first receiving chamber or separating layer which is located between the bottom surface and this further receiving chamber or separating layer relative to a further receiving chamber or separating layer, is therefore "below". this further receiving chamber or separating layer, while the further receiving chamber or separating layer "above" the first receiving chamber or separating layer is arranged.
  • deep-drawing or “deep-drawing process” refers to processes for processing packaging materials in which these are subjected to optional pretreatment by heat and / or solvent and / or conditioning by means of relative atmospheric humidities and / or temperatures modified by ambient conditions appropriately shaped die are brought into shape.
  • the packaging material for example, as a plate or foil between the two parts of the Tooling, the positive and the negative, introduced and deformed by compressing these parts, the deformation can also be done without the use of a negative tool by the action of a vacuum and / or compressed air and / or the weight of the trapped detergents or cleaning agents.
  • the deep-drawing process can be between methods in which the shell material is guided horizontally in a forming station and from there in a horizontal manner for filling and / or sealing and / or separating and methods in which the shell material via a continuously rotating Matrizenformwalze (optionally with optional a counter-guided Patrizenformwalze, which lead the forming upper punch to the cavities of the Matrizenform ⁇ roller), different.
  • the first-mentioned process variant of the flat bed process is to be operated both continuously and discontinuously, the process variant using a molding roll generally being continuous. All of the mentioned deep drawing methods are suitable for the production of the inventively preferred means.
  • the receiving troughs located in the matrices can be arranged "in series" or staggered.
  • the covering material is provided in the form of a film over a recessed die and by the action of compressed air from the top of the films or by the action of a vacuum from the underside of the films, more preferably below simultaneous action of compressed air and vacuum is introduced into the recesses of the die and shaped according to the shape of the recess.
  • Particularly advantageous methods are characterized in that the film is pretreated before deformation by the action of heat and / or solvents.
  • a film is pressed into the depression of a die by the action of a stamp and / or by the action of the weight of the filling material.
  • a container is produced with one, preferably two, three, four or more receiving chambers.
  • the action of heat and / or solvents on the shell material serves to facilitate its plastic deformation.
  • the heating of the enveloping material can be done for example by heat radiation, hot air or, more preferably, by direct contact with a hot plate. Alternatively, it is also possible to use heated rollers or rollers for heating the enveloping material.
  • the duration of the heat treatment and the temperature of the heat radiation used, hot air or Schuplattenober Assembly is naturally dependent on the type of shell material used.
  • a temperature between 90 and 13O 0 C, in particular between 105 and 115 ° C is preferred.
  • the duration of the heat treatment in particular the contact time when using a hotplate is preferably between 0.1 and 7 seconds, more preferably between 0.2 and 6 seconds and in particular between 0.3 and 4 seconds.
  • the wrapping material may be passed between two opposing plates, at least one of which serves as a heating plate, and brought into direct contact with their surfaces by lowering and / or lifting one of these plates.
  • the sheath material can also be passed under or over a heated surface and subsequently made contact by blowing the material to the surface by means of compressed air.
  • the heating of the preferably film-shaped enveloping material can take place uniformly over the entire surface of the film or unevenly by means of a so-called target heating.
  • the heating is targeted by means located in the heating plate Schuhöfe.
  • the Schuhöfe located in the heating plates can be planar, concave or convex. If the heating zones are convex or concave, then the ratio of the maximum diameter of the heating courtyard to its maximum height is preferably greater than 2, more preferably greater than 4 and in particular greater than 8.
  • Preferred continuous deep-drawing processes that is to say processes on a continuous endless die, in which the receiving chambers produced by deformation remain in the depressions of the die until they have been filled or even cut out, are characterized in that the receiving containers formed in the depressions pass through a vacuum which is applied during the deformation process and held in its deformed state until the completion of the filling process, preferably until completion of the sealing process, particularly preferably until the cutting out of the containers from the foil lattice.
  • the preformed containers in the filling station be in with the die recesses identical or spatially similar to these wells Beladeformen be spent in which before and / or during and / or after filling a vacuum is applied to hold the preformed receiving chambers in shape and, for example, to prevent shrinkage and / or wrinkling.
  • the vacuum should be chosen so that the formed from the flat film receiving chambers held in shape, the corresponding shell material is not damaged by the action of the vacuum and spillage of / the after filling in the melodikammem active ingredients (s) by return shrinkage the receiving chambers is avoided.
  • the exact value for the vacuum depends, inter alia, on the type of shell material used or its wall thickness. Typically, however, a vacuum in the range of 0.01 to 1 bar, preferably between 0.1 and 0.8 bar, more preferably between 0.2 and 0.6 bar.
  • the water-soluble or water-dispersible containers can be produced not only by deep drawing but also by injection molding.
  • Injection molding refers to the forming of a molding material such that the mass contained in a mass cylinder for more than one injection molding process is softened plastically under the action of heat and flows through a nozzle into the cavity of a previously closed tool under pressure.
  • Injection molding is mainly used for non-hardenable molding compounds which solidify in the mold by cooling (thermoplastics). But it is also the processing of thermosets and elastomers possible; Here, however, an electric heater of the tool for curing or vulcanization of the injected material is used. Injection molding is a very economical modern process for the production of non-cutting shaped objects and is particularly suitable for automated mass production.
  • thermoplastic molding compounds are heated to liquefaction (up to 180 0 C) and injected under high pressure (up to 140 MPa) in closed, two-piece, that is from Gesenk (earlier Die) and core (formerly male) existing, preferably water-cooled molds, where they cool and solidify.
  • Suitable molding compositions are water-soluble polymers such as, for example, the cellulose ethers, pectins, polyethylene glycols, polyvinyl alcohols, polyvinylpyrrolidones, alginates, gelatin or starch.
  • the molding compositions which are preferred in the process according to the invention for producing the water-soluble or water-dispersible container are described below.
  • the injection molding process produces an open hollow body containing one, preferably two, three, four or more receiving chambers.
  • the cooling phase which can last between 1 and 30 s, preferably between 1, 5 and 25 s, particularly preferably between 1, 7 and 20 s, in particular between 2 and 15 s, follows the ejection of the molding.
  • wall thicknesses of the containers produced in the process according to the invention can be selected specifically. In this way it is possible with optimum stability of the container to ensure the lowest possible consumption of shell material. In contrast to the deep-drawing process, containers with constant wall thicknesses can also be produced, which leads to an increase in stability and thus also to an improvement in the storage and transportability.
  • wall thicknesses in injection-molded containers are above 100 ⁇ m, preferably greater than 200 ⁇ m, particularly preferably between 250 and 1000 ⁇ m, very particularly preferably between 300 and 800 ⁇ m, in particular between 350 and 700 ⁇ m.
  • melt-casting Method is used to produce the water-soluble or water-dispersible container. Melt-casting is the shaping of a molding compound in such a way that the mass contained in a mass cylinder, preferably for more than one melt-casting process, softens plastically under the effect of heat and flows into the cavity of a previously closed tool.
  • melt casting is also preferred for non-hardenable molding compounds which solidify in the mold by cooling (thermoplastics). But it is also the processing of thermosets and elastomers possible; Here, however, an electric heater of the tool for curing or vulcanization of the injected material is used.
  • the molding compositions are potted in the preferred method and solidify subsequently to a dimensionally stable casting.
  • solidification characterizes any curing mechanism which delivers a body which is solid at room temperature from a deformable, preferably flowable mixture or substance or mass, without the need for pressing or compacting forces
  • the purpose of the present invention is therefore, for example, the curing of melts of solid substances at room temperature by cooling.
  • Solidification processes in the context of the present application are also the curing of formable materials by time-delayed water binding, by evaporation of solvents, by chemical reaction, crystallization, etc. and the reactive curing of flowable powder mixtures to form stable hollow bodies.
  • the production of preferred casting is carried out by casting a molding compound into a mold and subsequent demolding of the solidified cast body to form a (trough) shaped body.
  • Tools which have cavities which can be filled with pourable substances are preferably used as "molds.”
  • Such tools can be designed, for example, in the form of individual cavities or also in the form of plates having a plurality of cavities mounted horizontally circulating conveyor belts, which allow a continuous or discontinuous transport of the cavities, for example, along a number of different workstations (eg: casting, cooling, filling, sealing, demolding, etc.).
  • the shaping of the above-mentioned depressions preferably succeeds by subsequent impressions of a correspondingly shaped tool into the already flowing molding compound.
  • the viscosity of the molding material already by 1 - 50%, preferably 1 - 35%, in particular 1 - 20% compared to the viscosity, which had the molding material when flowing into the mold, has increased.
  • the wall thicknesses of the containers produced in the method according to the invention by means of melt casting can be adjusted specifically by the choice of suitable molds, which allows an optimization of the stability of the container and thus the storage and transportability.
  • the wall thicknesses of the containers produced are preferably above 100 .mu.m, preferably greater than 200 .mu.m, particularly preferably between 250 and 1000 .mu.m, very particularly preferably between 300 and 800 .mu.m, in particular between 350 and 700 microns.
  • Melt casting not only allows the production of thin-walled containers but also the provision of containers which already contain washing or cleaning agents in the molding compound.
  • the production of preferred casting is carried out, for example, by pouring a washing or cleaning active preparation into a mold and subsequent demolding the solidified molded body to form a (trough) shaped body, which is further filled with one or more washing or cleaning agent (s).
  • the wall thicknesses of this shaped body are preferably between 0.3 and 25 mm, more preferably between 0.3 and 15 mm, very particularly preferably between 0.3 and 10 mm, in particular between 0.3 and 5 mm.
  • the length of the spin phase is preferably 1 to 60 s, preferably 2 to 45 s, more preferably 3 to 30 s, in particular 3 to 15 s.
  • the matrices used and the receiving troughs located in these matrices are particularly suitable for cooling.
  • the cooling is preferably carried out at temperatures below 20 ° C, preferably below 15 ° C, more preferably at temperatures between 2 and 14 ° C. and in particular to temperatures between 4 and 12 ° C.
  • the cooling takes place continuously from the beginning of the preparation of the water-soluble or water-dispersible container to the sealing and separation of the receiving chambers. Cooling fluids, preferably water, which are circulated in special cooling lines within the matrix, are particularly suitable for cooling.
  • melt casting in the process according to the invention an open hollow body (casting) containing one, preferably two, three, four or more receiving chambers produced.
  • the container produced in step a) contains one, two, three, four, five or more receiving chambers. These are obtained by using the injection molding method or the melt flow method by the choice of suitable molding tools.
  • containers with a plurality of receiving chambers are accessible, for example, by combining a plurality of receiving chambers adjacent to the thermoforming die into a dosing unit or by using thermoforming dies with lowerable portions.
  • a preferred process for preparing multiphase detergents and cleaners comprises the steps:
  • the ratio of the height of the container outer wall to the heights of the intermediate walls dividing the container into a plurality of receiving chambers is less than 1: 1.
  • the intermediate wall is smaller than the Be Daveer ⁇ outer wall.
  • the ratio of the height of the container outer wall to the heights of the intermediate walls is between 1: 0.2 and 1: 1, more preferably between 1: 0.3 and 1: 0.9, most preferably between 1: 0.4 and 1 : 0.8, in particular between 1: 0.4 and 1: 0.7 and is in direct proportion to the ratio of the filling heights of the filled below the separating layer washing or cleaning agent to the above the release layer filled detergents or cleaning agents.
  • the container has at least two, preferably three, four or more intermediate walls, the ratio of the height of the container outer wall to the height of at least one of the intermediate walls being 1: 1, while the ratio of the height the container outer wall to the height of at least one mare ⁇ ren of the intermediate walls between 1: 0.2 and 1: 1, more preferably between 1: 0.3 and 1: 0.9, most preferably between 1: 0.4 and 1: 0 , 8, in particular between 1: 0.4 and 1: 0.7.
  • the receiving chambers formed by the deep-drawing method, the injection molding method or the melt-casting method can have any technically feasible form.
  • Spherical, dome-shaped, cylindrical or cubic chambers are particularly preferred.
  • Preferred receiving chambers have at least one edge and one corner, receiving chambers of two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty or more edges, or two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty or more corners are also feasible and preferred in the invention , Further feasible and preferred in alternative embodiments of the inventive method receiving chambers have a dome-shaped structure.
  • the side walls of the receiving chambers are preferably planar. Spatially opposite side walls can be arranged both parallel and not parallel to each other.
  • the Base surface of the receiving chambers may be convex, concave or planar, with planar bases are preferred.
  • the base itself can be configured as a circle, but can also have corners. Ground areas with a corner (drop shape), two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, or more corners are in Preferred within the scope of the present application.
  • the transition of the base to the side walls or the transition of the side walls into each other is configured in preferred embodiments of this application in a rounded shape.
  • the receiving chambers therefore have no sharp or sharp but rather rounded edges on the outside.
  • a preferred method according to the invention is therefore characterized in that the base surfaces of the receiving chambers are planar.
  • the dimensions and volume of the receiving chambers and spaces formed by the shaping processing will primarily be based on the later intended use of the resulting containers.
  • receiving chambers with a total volume between 0.1 and 1000 ml, preferably between 0.2 and 100 ml, more preferably between 0.4 and 50 ml, most preferably between 0.6 and 30 ml and in particular between 0.8 and 10 ml. It is desirable in the context of the method according to the invention in a preferred embodiment that the at least two receiving chambers have the same spatial shape and an identical volume.
  • the at least two receiving chambers present in the container have different volumes, the ratio of these volumes preferably being between 25: 1 and 1:05: 1, preferably between 20: 1 and 2: 1 and in particular between 15: 1 and 4: 1.
  • the container has two receiving chambers of different volumes, the volume of the smaller receiving chamber being at least 2%, preferably at least 5%, more preferably at least 10% and especially at least 20%, 30%, 40%, 50%, 60%. , 65%, 70%, 75% or 80% of the volume of the larger receiving chamber amounts to.
  • the volume of the individual chambers is preferably between 0.05 and 900 ml, particularly preferably between 0.1 and 90 ml, very particularly preferably between 0.5 and 40 ml and in particular between 1, 0 and 25 ml.
  • the containers have receiving chambers with different depths. There is not necessarily a direct relationship with the chamber depth and the chamber volume.
  • the receiving chamber with the lower chamber depth may well have the larger chamber volume, while the receiving chamber with the larger chamber depth has a smaller volume.
  • the two or more chambers may have the same volume despite different chamber depth.
  • Containers produced according to a preferred method according to the invention have receiving chambers with vertically sloping side walls.
  • the receiving chambers has an inclined side wall.
  • the angle between the side wall and an imaginary seal closing the receiving chamber is accordingly less than 90 °.
  • the receiving chambers have only a single side wall (cylinder-like receiving chambers), this side wall can have different angles when the thermoforming molds or molding tools are correspondingly formed.
  • Preference is given to receiving chambers in which said angle between 30 and 90 °, preferably between 35 and 89 °, more preferably between 40 and 88 ° and in particular between 45 and 87 °.
  • the receiving chamber created by the shaping processing may further have gradations.
  • the corresponding, produced in a preferred process variant receiving chamber therefore has no flat side walls, but rather has side walls, which are characterized by steps or curves.
  • the number of curvatures may vary, whereby methods are preferred in which the number of steps and / or curvatures in a receiving chamber is at most 10, preferably between 1 and 9, more preferably between 1 and 8, very particularly preferably between 2 and 7 and especially between 2 and 6.
  • the steps or curves can be formed circumferentially or only on individual side walls.
  • the course of the steps or curves is preferably horizontal. However, steps and / or curves with a screw thread-like upward or downward course are also feasible and preferred for certain fields of application.
  • shell materials which can be processed by deep-drawing methods, injection molding methods or melt-casting methods can be used, although the use of water-soluble or water-dispersible packaging materials is preferred.
  • Some particularly preferred water-soluble or water-dispersible shell materials which are suitable both for the preparation of the receiving chambers, as well as for their sealing / use as a release layer, are listed below.
  • the polymers referred ' can both alone and in combination with each other or in combination with other substances, for example plasticizers, glidants or lubricants, or solubilizers are used as shell material.
  • Water-soluble polymers in the context of the invention are those polymers which are soluble in water at room temperature in excess of 2.5% by weight.
  • the container comprises one or more water-soluble polymer (s), preferably a material from the group (optionally acetalized) polyvinyl alcohol (PVAL), polyvinylpyrrolidone, polyethylene oxide, gelatin, cellulose, and derivatives thereof and mixtures thereof.
  • PVAL polyvinyl alcohol
  • PVP polyvinylpyrrolidone
  • Polyvinyl alcohols (abbreviated PVAL, occasionally PVOH) is the name for polymers of the general structure
  • polyvinyl alcohols which are available as white-yellowish powders or granules with degrees of polymerization in the range of about 100 to 2500 (molar masses of about 4000 to 100,000 g / mol), have degrees of hydrolysis of 98-99 or 87-89 mol%. , so still contain a residual content of acetyl groups.
  • the polyvinyl alcohols are characterized by the manufacturer by indicating the degree of polymerization of the starting polymer, the degree of hydrolysis, the saponification number or the solution viscosity.
  • polyvinyl alcohols are soluble in water and a few highly polar organic solvents (formamide, dimethylformamide, dimethyl sulfoxide); They are not attacked by (chlorinated) hydrocarbons, esters, fats and oils.
  • Polyvinyl alcohols are classified as toxicologically safe and are biologically at least partially degradable.
  • the water solubility can be achieved by post-treatment with aldehydes (Acetalization), by complexation with Ni or Cu salts or by treatment with dichromates, boric acid or Borax reduce.
  • the coatings of polyvinyl alcohol are largely impermeable to gases such as oxygen, nitrogen, helium, hydrogen, carbon dioxide, but allow water vapor to pass through.
  • the coating material used in the process according to the invention at least partially comprises a polyvinyl alcohol whose degree of hydrolysis 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%.
  • the first shell material used in the method according to the invention comprises at least 20% by weight, particularly preferably at least 40% by weight, very particularly preferably at least 60% by weight and in particular at least 80% by weight. of a polyvinyl alcohol whose degree of hydrolysis is 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol%, and more preferably 82 to 88 mol%.
  • Polyvinyl alcohols of a certain molecular weight range are preferably used as materials for the containers, it being preferred according to the invention that the coating material comprises a polyvinyl alcohol whose molecular weight is in the range of 10,000 to 100,000 gmol -1 , preferably 11,000 to 90,000 gmol -1 , particularly preferably 12,000 to 80,000 gmol "1 and in particular from 13,000 to 70,000 gmol '1 .
  • the degree of polymerization of such preferred polyvinyl alcohols is between about 200 to about 2100, preferably between about 220 to about 1890, more preferably between about 240 to about 1680, and most preferably between about 260 to about 1500.
  • polyvinyl alcohols described above are widely available commercially, for example under the trade name Mowiol ® (Clariant).
  • Mowiol ® Commercially, for example under the trade name Mowiol ® (Clariant).
  • particularly suitable polyvinyl alcohols are, for example, Mowiol ® 3-83, Mowiol ® 4-88, Mowiol ® 5-88 and Mowiol ® 8-88.
  • polyvinyl alcohols are as shell material ® ELVANOL 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (trademark of Du Pont), ALCOTEX 72.5 ®, 78, B72, F80 / 40, F88 / 4, F88 / 26, F88 / 40, F88 / 47 (trademark of Harlow Chemical Co.), Gohsenol ® NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Trademark of Nippon Gohsei KK).
  • the water solubility of PVAL can be altered by post-treatment with aldehydes (acetalization) or ketones (ketalization).
  • aldehydes acetalization
  • ketones ketalization
  • polyvinyl alcohols have been found to be acetalated or ketalized with the aldehyde or keto groups of saccharides or polysaccharides or mixtures thereof.
  • reaction products of PVAL and starch are particularly advantageous.
  • PVAL films examples are those available under the name "SOLUBLON® ®” from Syntana bottlesgesellschaft E. Harke GmbH & Co. PVAL films. Their solubility in water can be adjusted to the exact degree and films of this product series are available which are soluble in aqueous phase at all temperature ranges relevant for the application.
  • PVP Polyvinylpyrrolidones
  • PVP are prepared by radical polymerization of 1-vinylpyrrolidone.
  • Commercially available PVP have molecular weights in the range of about 2,500 to 750,000 g / mol and are offered as white, hygroscopic powders or as aqueous solutions.
  • Polyethylene oxides, PEOX for short, are polyalkylene glycols of the general formula
  • ethylene oxide oxirane
  • ethylene glycol as the starting molecule. They have molar masses in the range of about 200 to 5,000,000 g / mol, corresponding to polymerization degrees n of about 5 to> 100,000.
  • Polyethylene oxides have an extremely low concentration of reactive hydroxy end groups and only show weak glycol properties.
  • Gelatin is a polypeptide (molecular weight: about 15,000 to> 250,000 g / mol), which is obtained primarily by hydrolysis of the collagen contained in the skin and bones of animals under acidic or alkaline conditions.
  • the amino acid composition of the gelatin corresponds largely to that of the collagen from which it was obtained, and varies depending on its provenance.
  • the use of gelatin as water-soluble coating material is extremely widespread, especially in pharmacy in the form of hard or soft gelatin capsules. In the form of films, gelatin has little use because of its high price compared to the polymers mentioned above.
  • Shell materials which comprise a polymer from the group of starch and starch derivatives, cellulose and cellulose derivatives, in particular methyl cellulose, and mixtures thereof are preferred within the scope of the process according to the invention.
  • Starch is a homoglycan, wherein the glucose units are linked ⁇ -glycosidically.
  • Starch is composed of two components of different molecular weight: from about 20 to 30% straight-chain amylose (MW 50,000 to 150,000) and 70 to 80% branched-chain amylopectin (MW about 300,000 to 2,000,000).
  • small amounts of lipids, phosphoric acid and cations are still present.
  • the amylose forms long, helical, entangled chains with approximately 300 to 1,200 glucose molecules as a result of the 1, 4-position bond
  • the amylopectin branch branches off into a branch-like structure after an average of 25 glucose building blocks by 1,6-bonding with about 1,500 to 12,000 molecules of glucose.
  • starch-derivatives which are obtainable from starch by polymer-analogous reactions are also suitable for the preparation of water-soluble coatings of the detergent, detergent and cleaner portions in the context of the present invention.
  • Such chemically modified starches include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted. But even starches in which the hydroxy groups have been replaced by functional groups that are not bound by an oxygen atom, can be used as starch derivatives.
  • the group of starch derivatives includes, for example, alkali starches, carboxymethyl starch (CMS), starch esters and ethers, and amino starches.
  • Pure cellulose has the formal gross composition (C 6 H 10 Os) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5,000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • Suitable matrix materials for casting bodies which are produced by melt solidification are, in particular, fusible substances from the group of fats and / or triglycerides and / or fatty acids and / or fatty alcohols and / or waxes and / or paraffins.
  • Fat (s) or triglyceride (s) is the name for compounds of glycerol in which the three hydroxy groups of glycerol are esterified by carboxylic acids.
  • the naturally occurring fats are triglycerides, which usually contain different fatty acids in the same glycerol molecule.
  • synthetic triglycerides in which only one fatty acid is bound are also available (for example tripalmitin, triolein or tristearin).
  • Natural and / or synthetic fats and / or mixtures of the two are preferred as matrix material or matrix constituent for cast bodies or one of the other stated solids in the context of the present invention.
  • fatty acids in the present application aliphatic saturated or unsaturated, carboxylic acids with branched or unbranched carbon chain called.
  • carboxylic acids with branched or unbranched carbon chain called.
  • fatty acids aliphatic saturated or unsaturated, carboxylic acids with branched or unbranched carbon chain called.
  • preferred fatty acids have a melting point which permits processing of these fats as material or constituent of a casting.
  • fatty acids have proved to be particularly advantageous, which have a melting point above 25 ° C.
  • Preferred matrix materials and / or constituents are therefore capric acid and / or undecanoic acid and / or lauric acid and / or tridecanoic acid and / or myristic acid and / or pentadecanoic acid and / or palmitic acid and / or margaric acid and / or stearic acid and / or nonadecanoic acid and / or arachidic acid and / or erucic acid and / or elaeosteraric acid.
  • fatty acids with a melting point below 25 0 C can be used as part of the matrix for casting or other of the above solids.
  • Fatty alcohol is a collective name for the linear, saturated or unsaturated primary alcohols having 6 to 22 carbon atoms obtainable by reduction of the triglycerides, fatty acids or fatty acid esters.
  • the fatty alcohols may be saturated or unsaturated depending on the method of preparation.
  • the solids enclosed in the containers produced according to the invention contain waxes as matrix material.
  • Preferred waxes have a melting range of between about 45 0 C and about 75 0 C. That is, in the present case, the melting range occurs within the specified temperature interval and does not indicate the width of the melting range.
  • Waxes with a melting range such are, on the one but at room temperature form stable melt at for machine dishwashing typical temperatures of 30 ° C to 90 0 C and are thus more easily dispersible in water at these temperatures.
  • Waaxes a number of natural or synthetic substances is understood that melt usually about 4O 0 C. without decomposition and have little are relatively low viscosity and not stringy above the melting point. They have a strong temperatur ⁇ dependent consistency and solubility. According to their origin, the waxes are divided into three groups, the natural waxes, chemically modified waxes and the synthetic waxes.
  • the natural waxes include, for example, vegetable waxes such as candelilla wax, carnauba wax, Japan wax, Espartograswachs, cork wax, guaruma wax, rice germ oil wax, sugarcane wax, ouricury wax, or montan wax, animal waxes such as beeswax, shellac wax, spermaceti, lanolin (wool wax), or crepe fat, mineral waxes such as ceresin or ozokerite (groundwax), or petrochemical waxes such as petrolatum, paraffin waxes or microwaxes.
  • vegetable waxes such as candelilla wax, carnauba wax, Japan wax, Espartograswachs, cork wax, guaruma wax, rice germ oil wax, sugarcane wax, ouricury wax, or montan wax
  • animal waxes such as beeswax, shellac wax, spermaceti, lanolin (wool wax), or crepe
  • the chemically modified waxes include, for example, hard waxes such as montan ester waxes, Sassol waxes or hydrogenated jojoba waxes.
  • Synthetic waxes are generally understood as meaning polyalkylene waxes or polyalkylene glycol waxes. It is also possible to use as meltable or softenable substances for the compositions which cure by cooling, and compounds of other substance classes which fulfill the stated requirements with regard to the softening point.
  • suitable synthetic compounds have, for example, higher esters of phthalic acid, in particular dicyclohexyl, which is commercially available under the name Unimoll 66 ® (Bayer AG), proved.
  • Synthetic waxes of lower carboxylic acids and fatty alcohols such as dimyristyl tartrate, sold under the name Cosmacol ® ETLP (Condea).
  • esters of lower alcohols can be used with fatty acids from natural sources.
  • This class of substances includes, for example, Tegin® 90 (Goldschmidt), a glycerol monostearate palmitate.
  • Shellac for example shellac KPS three-ring SP (Kalkhoff GmbH) can also be used according to the invention as a matrix material in solids, preferably in casting bodies.
  • Wax alcohols are higher molecular weight, water-insoluble fatty alcohols having generally about 22 to 40 carbon atoms.
  • the wax alcohols are, for example, in the form of wax esters of relatively high molecular weight fatty acids (wax acids) as the main constituent of many natural waxes.
  • wax alcohols are lignoceryl alcohol (1-tetracosanol), cetyl alcohol, myristyl alcohol or melissyl alcohol.
  • the solid particles coated can optionally also contain wool wax alcohols which are understood to be triterpenoid and steroid alcohols, for example lanolin understood, which is obtainable for example under the trade name Argowax ® (Pamentier & Co).
  • one or more of the solids enclosed in the containers produced according to the invention, but preferably a cast body produced by melt solidification contains / predominantly paraffin wax (paraffin) as matrix material. That is, at least 50% by weight of the total contained meltable or softenable substances, preferably more, consist of paraffin wax.
  • paraffin wax contents (based on the total weight of the matrix materials) of about 60 wt .-%, about 70 wt .-% or about 80 wt .-%, with still higher levels of, for example, more than 90 wt .-% are particularly preferred ,
  • the entire matrix material of one or more of the solids filled in the containers is paraffin wax.
  • paraffin waxes have the advantage over the other natural waxes mentioned that, when the containers according to the invention are used as dosing unit for detergents and cleaning agents in an alkaline cleaning agent environment, no hydrolysis of the waxes takes place (as described, for example, in US Pat Wax esters is to be expected), since paraffin wax contains no hydrolyzable groups.
  • Paraffin waxes consist mainly of alkanes and low levels of iso- and cycloalkanes.
  • the paraffin to be used according to the invention preferably has essentially no constituents with a melting point of more than 70 ° C., more preferably of more than 60 ° C.
  • Preferred solids in particular castings, comprise as a matrix material and / or matrix component of at least one paraffin wax having a melting range of from 40 0 C to 60 0 C.
  • the content of the paraffin wax used at ambient temperature (usually about 10 to about 30 0 C) solid alkanes, isoalkanes and cycloalkanes as high as possible.
  • wax alcohols ie fatty alcohols with approx. 24-36 carbon atoms, which are the main constituent of many natural waxes in the form of wax esters of relatively high molecular weight fatty acids (wax acids).
  • wax alcohols are lignoceryl alcohol, ceryl alcohol, myricyl alcohol or melissyl alcohol.
  • Dispersions are particularly suitable for processing as a casting, dispersions with washing or cleaning active substances or mixtures of active substances with particular Preference be used.
  • the washing or cleaning-active preparation used to produce the casting is a dispersion of solid particles in a dispersion medium, dispersions which, based on their total weight, i) from 10 to 85% by weight of dispersing agent and ii) contain from 15 to 90% by weight of dispersed matter, more preferably.
  • dispersion in this application a system of several phases is referred to, one of which is dispersed continuously (dispersion medium) and at least one further (dispersed substances).
  • Particularly preferred dispersions are characterized in that they contain the dispersant in amounts above 11% by weight, preferably above 13% by weight, more preferably above 15% by weight, very preferably above 17% by weight and in particular above 19 Wt .-%, each based on the total weight of the dispersion.
  • dispersions which have a dispersion with a proportion by weight of dispersant above 20% by weight, preferably above 21% by weight and in particular above 22% by weight, in each case based on the total weight of the dispersion.
  • the maximum content of preferred dispersions of dispersant is preferably less than 63% by weight, preferably less than 57% by weight, particularly preferably less than 52% by weight, very particularly preferably less than 47% by weight .-% and in particular less than 37 wt .-%.
  • dispersing agents in amounts of from 12 to 62% by weight, preferably from 14 to 49% by weight and in particular from 16 to 38% by weight. % contain.
  • the dispersants used are preferably water-soluble or water-dispersible.
  • the solubility of these dispersants is preferably more than 200 g / l, preferably more than 300 g / l, more preferably more than 400 g / l, most preferably between 430 and 620 g / l and especially between 470 and at 25 0 C 580 g / l.
  • Suitable dispersants in the context of the present invention are preferably the water-soluble or water-dispersible polymers, in particular the water-soluble or water-dispersible nonionic polymers.
  • the dispersant may be either a single polymer or mixtures of various water-soluble or water-soluble polymers act water-dispersible polymers.
  • the dispersant or at least 50 wt .-% of the polymer mixture of water-soluble or water-dispersible nonionic polymers from the group of polyvinylpyrrolidone, vinylpyrrolidone / vinyl ester copolymers, cellulose ethers, polyvinyl alcohols, polyalkylene glycols, in particular polyethylene glycol and / or polypropylene glycol.
  • Polyalkylene glycols already mentioned above are, in particular, polyethylene glycols and polypropylene glycols.
  • Polymers of ethylene glycol those of the general formula
  • n can assume values between 1 (ethylene glycol) and several thousand.
  • n can assume values between 1 (ethylene glycol) and several thousand.
  • polyethylene glycols there are various nomenclatures that can lead to confusion.
  • PEG average relative molecular weight following the indication "PEG”
  • PEG 200 characterizes a polyethylene glycol having a relative molecular weight of about 190 to about 210.
  • PEG abbreviation PEG is hyphenated and directly followed by the hyphen followed by a number corresponding to the number n in the above formula.
  • polyethylene glycols are, for example, under the trade name Carbowax ® PEG 200 (Union Carbide), Emkapol ® 200 (ICI Americas), Lipoxol ® 200 MED (Huls America), polyglycol ® E-200 (Dow Chemical), Alkapol ® PEG 300 (Rhone -Poulenc), Lutrol ® E300 (BASF) and the corresponding trade names with higher numbers.
  • the average relative molecular weight of at least one of the dispersants used in the detergents or cleaners according to the invention, in particular at least one of the poly (alkylene) glycols used, is preferably between 200 and 36,000, preferably between 200 and 6000 and more preferably between 300 and 5000.
  • Polypropylene glycols are polymers of propylene glycol which are of the general formula
  • dispersions which contain, as dispersants, a nonionic polymer, preferably a poly (alkylene) glycol, preferably a poly (ethylene) glycol and / or a poly (propylene) glycol, where the weight fraction of the poly (ethylene) glycol is the total weight of all dispersing agents is preferably between 10 and 90% by weight, more preferably between 30 and 80% by weight and in particular between 50 and 70% by weight.
  • a nonionic polymer preferably a poly (alkylene) glycol, preferably a poly (ethylene) glycol and / or a poly (propylene) glycol
  • the weight fraction of the poly (ethylene) glycol is the total weight of all dispersing agents is preferably between 10 and 90% by weight, more preferably between 30 and 80% by weight and in particular between 50 and 70% by weight.
  • dispersions in which the dispersant contains more than 92% by weight, preferably more than 94% by weight, more preferably more than 96% by weight, very particularly preferably more than 98%
  • Dispersing agents which also contain poly (propylene) glycol in addition to poly (ethylene) glycol preferably have a ratio of the weight proportions of poly (ethylene) glycol to poly (propylene) glycol between 40: 1 and 1: 2, preferably between 20: 1 and 1: 1, more preferably between 10: 1 and 1, 5: 1 and in particular between 7: 1 and 2: 1 on.
  • nonionic surfactants which are used alone, but particularly preferably in combination with a nonionic polymer.
  • Detailed information on the usable nonionic surfactants can be found in the description of washing or cleaning-active substances below.
  • Dispersions preferably used are characterized in that at least one dispersant has a melting point above 25 ° C, preferably above 35 ° C and in particular above 4O 0 C. Particularly preferred is the use of dispersants having a melting point or melting range between 30 and 8O 0 C, preferably between 35 and 75 ° C, more preferably between 40 and 70 ° C and in particular between 45 and 65 0 C, these dispersants, based on the total weight of the dispersants used, a weight fraction above 10 wt .-%, preferably above 40 wt .-%, more preferably above 70 wt.% And in particular between 80 and 100 wt .-%.
  • the water content of the dispersions preferably used in the process according to the invention is, based on their total weight, preferably less than 30 wt .-%, preferably less than 23 wt .-%, preferably less than 19 wt .-%, more preferably less than 15 wt .-% and in particular less than 12 wt .-%.
  • Dispersions preferably used in accordance with the invention are low in water or anhydrous. Particularly preferably used dispersions are characterized in that they contain, based on their total weight, a content of free water below 10 wt .-%, preferably below 7 wt .-%, more preferably below 3 wt .-% and in particular below 1 wt. -% exhibit.
  • the dispersions used with preference as washing or cleaning active preparation are characterized by a high density. Particular preference is given to using dispersions having a density of above 1.040 g / cm 3 .
  • Processes preferred according to the invention are characterized in that the washing and cleaning active preparation has a density of above 1.040 g / cm 3 , preferably above 1.15 g / cm 3 , particularly preferably above 1.30 g / cm 3 and in particular above 1, 40 g / cm 3 .
  • This high density not only reduces the total volume of a molded body dosing unit but also improves its mechanical stability.
  • the method according to the invention particularly preferred are, therefore, characterized in that the dispersion has a density of between 1, 050 and 1, 670 g / cm 3, preferably between 1, 120 and 1, 610 g / cm 3, more preferably between 1, 210 and 1, 570 g / cm 3, most preferably between 1, 290 and 1, 510 g / cm 3, and especially between 1, 340 and 1,480 g / cm 3, the information density in each case relate to the densities of the agent at 2O 0 C.
  • dispersants and dispersed materials have densities less than 0.6 g / cm 3 , preferably less than 0.4 g / cm 3 and in particular differ by less than 0.3 g / cm 3 .
  • Dispersio ⁇ used nen are characterized in that they are in water (40 0 C) in less than 9 minutes, preferably less than 7 minutes, preferably in less than 6 minutes, more preferably in less dissolve for 5 minutes and more preferably in less than 4 minutes.
  • 20 g of the dispersion are introduced into the interior of a dishwashing machine (Miele G 646 PLUS).
  • the main rinse of a standard rinse program (45 ° C) is started.
  • the determination of the solubility is carried out by the measurement of the conductivity, which is recorded via a conductivity sensor.
  • the dissolution process is on reaching of the conductivity maximum ended. In the conductivity diagram, this maximum corresponds to a plateau.
  • the conductivity measurement starts with the replacement of the circulation pump in the main wash cycle.
  • the amount of water used is 5 liters.
  • Preferred methods according to the invention are characterized in that at least one of the shell materials used is transparent or translucent.
  • the shell material used for deep-drawing, injection and / or melt casting is preferably transparent.
  • transparency is to be understood as meaning that the permeability within the visible spectrum of the light (410 to 800 nm) is greater than 20%, preferably greater than 30%, more preferably greater than 40% and in particular greater than 50%. is.
  • a wavelength of the visible spectrum of the light has a transmittance greater than 20%, it is to be regarded as transparent within the meaning of the invention.
  • the shell material is colored to improve the visual impression.
  • Plasticizers are preferably added to the shell material of the containers produced in the process according to the invention. These are up to 22 wt .-%, preferably between 2 and 20% by weight, more preferably between 4 and 19 wt .-% in the shell materials used.
  • plasticizers known to those skilled in the art may be used as plasticizers, but preference is given to using pentaerythritol, depentaerythriol, sorbitol, mannitol, glycerol and glycols such as glycerol, ethylene glycol and polyethylene glycol.
  • Solids such as talc, stearic acid, magnesium stearate, silica, zinc stearate and colloidally dispersed silica as well as magnesium trisilicate prevent the formation of sticky surfaces and allow the container wall thickness to be reduced. They are preferably added to the shell material.
  • Containers produced within a preferred embodiment of the method according to the invention, for the production of which transparent wrapping material has been used, may contain a stabilizing agent.
  • Stabilizing agents in the context of the invention are materials which protect the ingredients contained in the receiving chambers from decomposition or deactivation by light irradiation. Antioxidants, UV absorbers and fluorescent dyes have proven to be particularly suitable here. Particularly suitable stabilizing agents in the context of the invention are the antioxidants.
  • the formulations may contain antioxidants. Examples of antioxidants which may be used here are sterically hindered groups, substituted phenols, bisphenols and thiobisphenols.
  • propyl gallate examples include butylhydroxytoluene (BHT), butylhydroxyanisole (BHA), t-butylhydroquinone (TBHQ), tocopherol and the long chain (C8-C22) esters of gallic acid, such as dodecyl gallate.
  • BHT butylhydroxytoluene
  • BHA butylhydroxyanisole
  • TBHQ t-butylhydroquinone
  • C8-C22 long chain esters of gallic acid, such as dodecyl gallate.
  • aromatic amines preferably secondary aromatic amines and substituted p-phenylenediamines
  • phosphorus compounds with trivalent phosphorus such as phosphines, phosphites and phosphonites
  • citric acids and citric acid derivatives such as isopropyl citrate
  • compounds containing endiol groups so-called reductones, such as ascorbic acid and its derivatives
  • organosulfur compounds such as the esters of 3,3 ' -Thiodipropionklad with Ci.
  • Antioxidants may be present in the formulations in amounts of up to 35% by weight, preferably up to 25% by weight, particularly preferably from 0.01 to 20 and in particular from 0.03 to 20% by weight.
  • UV absorbers can improve the light stability of the formulation components. These are understood to be organic substances (light protection filters) which are able to absorb ultraviolet rays and to release the absorbed energy in the form of longer-wave radiation, for example heat. Compounds having these desired properties include, for example, the non-radiative deactivating compounds and derivatives of benzophenone having substituents in the 2- and / or 4-position.
  • substituted benzotriazoles such as the water-soluble benzenesulfonic acid-3- (2H-benzotriazol-2-yl) - 4-hydroxy-5- (methylpro-pyl) monosodium salt (Ciba Fast ® H), 3-phenyl-substituted acrylates ( Cinnamic acid derivatives), optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's own urocanic acid.
  • the biphenyl and especially stilbene derivatives which are available as Tinosorb ® FD or Tinosorb ® FR ex Ciba commercial.
  • UV-B absorber are 3-Benzylidencampher or 3-Benzylidennorcampher and its derivatives, for example 3- (4-methylbenzylidene) camphor; 4-aminobenzoic acid derivatives, preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoic acid ester; Esters of cinnamic acid, preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester, 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene); Ester of Salicylic acid, preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homo
  • 2-phenylbenzimidazole-5-sulfonic acid and its alkali, alkaline earth, ammonium, alkylammonium, alkanolammonium and glucammonium salts Sulfonic acid derivatives of benzophenones, preferably 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and its salts
  • Sulfonic acid derivatives of 3-Benzylidencamphers such as 4- (2-oxo-3-bomylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) sulfonic acid and salts thereof.
  • UV-A filter in particular derivatives of benzoylmethane come into question, such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1, 3-dione, 4-tert-butyl 4'-methoxydibenzoylmethane (Parsol 1789), 1-phenyl-3- (4'-isopropylphenyl) -propane-1, 3-dione and enamine compounds.
  • the UV-A and UV-B filters can also be used in mixtures.
  • insoluble photoprotective pigments namely finely dispersed, preferably nano-metal oxides or salts, are also suitable for this purpose.
  • suitable metal oxides are in particular zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • silicates (talc) barium sulfate or zinc stearate can be used.
  • the oxides and salts are already used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They may have a spherical shape, but it is also possible to use those particles which have an ellipsoidal or otherwise deviating shape from the spherical shape.
  • the pigments can also be surface treated, i. hydrophilized or hydrophobized.
  • Typical examples are coated titanium dioxides, e.g. Titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck).
  • Suitable hydrophobic coating agents are in particular silicones and in particular trialkoxyoctylsilanes or simethicones.
  • micronized zinc oxide is used.
  • UV absorbers can be used in amounts of up to 5% by weight, preferably up to 3% by weight, particularly preferably from 0.01 to 2.0 and in particular from 0.03 to 1% by weight, based in each case on the Total weight of a substance mixture in a receiving chamber, be included.
  • stabilizers to be used are the fluorescent dyes. They include the 4,4'-diamino-2,2'-stilbenedisulfonic acids (flavonic), 4,4 '-Distyrylbiphenylen, methyl umbelliferone, coumarins, dihydroquinolinones, 1, 3- diarylpyrazolines, naphthalimides, benzoxazole, benzisoxazole, and Benzimidazole systems and substituted by heterocycles pyrene derivatives. Of particular importance are the sulfonic acid salts of diaminostilbene derivatives and polymeric fluorescent substances.
  • Fluorescent substances can, based on the total weight of a substance mixture in a receiving chamber, in amounts of up to 5 wt .-%, preferably to 1 wt .-%, particularly preferably from 0.01 to 0.5 and in particular from 0.03 to 0, 1 wt .-% contained.
  • the abovementioned stabilizers are used in any mixtures.
  • the stabilizers are, based on the total weight of a substance mixture in a receiving chamber, in amounts of up to 40 wt .-%, preferably up to 30 wt .-%, particularly preferably from 0.01 to 20 wt .-%, in particular from 0.02 used to 5 wt .-%.
  • At least one of the shell material (s) used consists of a water-soluble or water-dispersible polymer, preferably a polymer film.
  • Preferred process variants are characterized in that the film used in step a) of the process according to the invention has a thickness of from 5 to 2000 .mu.m, preferably from 10 to 1000 .mu.m, particularly preferably from 15 to 500 .mu.m, very particularly preferably from 20 to 200 .mu.m and in particular from 25 to 100 microns.
  • the films used may be single-layer or multi-layer films (laminate films).
  • the water content of the films is preferably below 10 wt .-%, more preferably below 7 wt .-%, most preferably below 5 wt .-% and in particular below 4 wt .-%.
  • the agents produced by the process according to the invention are particularly suitable for the controlled release of the active substances contained in the group of detergents or cleaners.
  • an embodiment according to which the container as a whole is water-soluble or water-dispersible, ie dissolves (completely) when used properly during washing or mechanical cleaning, when the conditions provided for dissolution are reached.
  • the essential advantage of this embodiment is that the container within a practically relevant short time - as a non-limiting example, can be at least partially solve or disperse under well-defined conditions in the cleaning liquor for a few seconds to 5 min and thus according to the requirements of the wrapped content, ie the cleaning-active material or several materials in the fleet brings. This release can only be controlled or controlled in different ways.
  • the water-soluble container comprises regions which are less soluble or water-insoluble / water-dispersible or only water-soluble at high temperature / water-dispersible regions and readily water-soluble / water-dispersible or water-soluble / water-dispersible at low temperatures ,
  • the container does not consist of a uniform material that has the same water solubility / water dispersibility in all areas, but of materials of different water solubility / water dispersibility.
  • areas of good water solubility / water dispersibility are to be distinguished from areas with less good water solubility / water dispersibility, poor or even absent water solubility / water dispersibility, or areas where water solubility / water dispersibility occurs only at a higher temperature or at a different pH or water content only at a changed electrolyte concentration reaches the desired value, on the other hand.
  • This may result in certain areas of the container dissolving / dispersing under normal conditions under normal conditions of use, while leaving other areas intact.
  • a container provided with pores or holes is formed, into which water and / or liquor can penetrate, which can dissolve washing-active, rinse-active or cleaning-active ingredients and remove them from the container.
  • controlled release systems of the detergent-active, rinse-active or cleaning-active ingredients can be produced.
  • containers can be made in which a uniform polymeric material comprises small areas of incorporated compounds (for example, salts) that are more rapidly water-soluble / water-dispersible than the polymeric material.
  • incorporated compounds for example, salts
  • polymer materials with different water solubility / water dispersibility can be mixed (polymer blend), so that the faster soluble polymer material under defined conditions by water or the fleet is disintegrated faster than the slower soluble.
  • the less readily water-soluble / water-dispersible areas or even water-insoluble / water-dispersible areas or only at higher temperature water-soluble / water-dispersible areas of the container areas are made of a material chemically substantially that of the highly water-soluble / water dispersible areas or at lower temperature water-soluble / water-dispersible areas, but has a higher layer thickness and / or a modified degree of polymerization of the same polymer and / or has a higher degree of crosslinking the same polymer structure and / or a higher degree of acetalization (in PVAL, for example with saccharides, polysaccharides as starch) and / or has a content of water-insoluble / water-dispersible salt components and / or a content of a water-insoluble / wasserundispergie having polymers.
  • PVAL for example with saccharides, polysaccharides as starch
  • Possible “switches” which influence the dissolving behavior of the active substances enclosed in the containers according to the invention are, in particularly preferred embodiments, physicochemical parameters. Examples thereof, which should not be construed as limiting, are
  • the preparation prepared comprises at least one active substance or active substance preparation whose release is delayed.
  • the delayed release is preferably carried out by the use of at least one of the agents described above, but in particular by the use of different packaging materials and / or the use of selected coating materials, it being particularly preferred that this delayed release when using active substances or mixtures of active substances from the group the washing or cleaning agent at the earliest 5 minutes, preferably at the earliest 7 minutes, more preferably at the earliest 10 minutes, most preferably at the earliest 15 minutes and in particular at the earliest 20 minutes after the beginning of the cleaning or washing process.
  • Particular preference is given to the use of fusible coating materials from the group of waxes or paraffins.
  • volume of the receiving chambers in the context of this application, the filling volume is referred to, which can be realized when filling the chambers or spaces with a liquid without overflow of this liquid on the preferably planar sealing edges.
  • the receiving chambers produced by the deep-drawing process, the injection molding process or the melt-casting process can be filled with solids or liquids.
  • a preferred multiphase washing or cleaning agent according to the invention is characterized in that the two separate phases of washing or cleaning agents are a solid and a liquid
  • step a) of the method according to the invention the filling of these two, three, four, five or more chambers can take place simultaneously or with a time offset. It is further preferred that at least one, preferably two, three, or four of the receiving chambers produced in step a) are not filled prior to sealing.
  • the resulting packaging is characterized by an increased buoyancy when used in liquid, preferably aqueous media.
  • An inventively particularly preferred method is characterized in that the resulting container has at least two receiving chambers, which with each be filled with different means.
  • the agents may differ both in their composition, as well as in their composition and physical state.
  • the present application relates to a process for producing multiphase detergents or cleaners, comprising the steps of: a) preparing a water-soluble or water-dispersible container which has two receiving chambers; b) filling the container with a first and a second detergent and / or cleaning agent; c) applying a liquid release agent to these detergents or cleaning agents and solidifying the release agent to form a release layer; d) filling the container with a third, preferably with a third and a fourth washing or cleaning agent.
  • the present application relates to a process for producing multiphase detergents or cleaners, comprising the steps of: a) preparing a water-soluble or water-dispersible container which has three receiving chambers; b) filling the container with a first, a second and a third detergent or cleaning agent; c) applying a liquid release agent to these detergents or cleaning agents and solidifying the release agent to form a release layer; d) filling the container with at least one other washing or cleaning agent.
  • the present application relates to a process for preparing multiphase detergents or cleaners, comprising the steps of: a) preparing a water-soluble or water-dispersible container which has four receiving chambers; b) filling the container with a first, a second, a third and a fourth washing or cleaning agent; c) applying a liquid release agent to these detergents or cleaning agents and solidifying the release agent to form a release layer; d) filling the container with at least one other washing or cleaning agent.
  • a method preferred according to the invention is characterized in that the receiving chambers of a container which has at least two receiving chambers are filled with the same means.
  • at least one, particularly preferably two, very particularly preferably three, in particular four, of the compositions have a composition and / or have / have an aggregate state that does not correspond to any other of the filled agents.
  • all agents filled in differ in their composition and / or their state of aggregation.
  • a preferred embodiment of the method according to the invention is characterized in that at least one of the washing or cleaning agents filled in steps b) and d) is a solid.
  • a further preferred embodiment of the method according to the invention is characterized in that at least one of the washing or cleaning agents filled in steps b) and d) is a liquid.
  • solid and liquid compositions with respect to the states of aggregation of the fillable active substances or combinations of active substances, the active substances and combinations of active substances being combined as solids in the context of the present application, which have a solid, ie dimensionally stable, non-flowable consistency.
  • This category includes, for example, substances in the solid state, but also form-stable substances such as dimensionally stable gels and combinations of these substances.
  • filled bodies with a solid outer shell are referred to as solids, regardless of the state of aggregation of the fillers contained in these filled bodies.
  • solids are preferably powders and / or granules and / or extrudates and / or compacts and / or casting bodies, regardless of whether they are pure substances or mixtures of substances.
  • the stated solids may be present in amorphous and / or crystalline and / or partially crystalline form.
  • Preferred solids in the context of the present invention have a water content (for example determinable as loss on drying or according to Karl Fischer) below 7% by weight, preferably below 4.5% by weight, and particularly preferably below 2% by weight.
  • Powder is a general term for a form of division of solids and / or mixtures obtained by comminution, that is, grinding or crushing in the mortar (pulverization), grinding in mills or as a result of atomization or freeze-drying.
  • a particularly fine division is often called atomization or micronization; the corresponding powders are called micro-powders.
  • Preferred powders have a uniform (homogeneous) mixtures of the solid, finely divided constituents and, in the case of substances like particles, in particular do not tend to separate into individual constituents of these mixtures.
  • particularly preferred powders therefore have a particle size distribution in which at least 80% by weight, preferably at least 60 Wt .-%, particularly preferably at least 95 wt .-% and in particular at least 99 wt .-% of the powder, in each case based on the total weight, to a maximum of 80%, preferably at most 60% and especially at most 40% of the average particle size of this powder differ.
  • powders of any particle size can be used, but preferred powders have average particle sizes of from 40 to 500 .mu.m, preferably from 60 to 400 .mu.m and in particular from 100 to 300 .mu.m. Methods for determining the mean particle size are usually based on the aforementioned sieve analysis and are described in detail in the prior art.
  • the powders produced therefore contain flow aids or powdering agents, preferably in proportions by weight of from 0.1 to 4% by weight, more preferably from 0.2 to 3% by weight and in particular from 0.3 to 2 wt .-%, each based on the total weight of the powder.
  • Preferred flow aids or powdering agents are, preferably in very finely ground form, silicates and / or silica and / or urea.
  • powders can be agglomerated by a variety of techniques. Each of the methods known in the art for the agglomeration of particulate mixtures is in principle suitable for converting the solids enclosed in the containers produced according to the invention into larger aggregates.
  • agglomerates used as solid (s) are, in addition to the granules, the compacts and extrudates.
  • Granules are aggregates of granules.
  • a granule (granule) is an asymmetric aggregate of powder particles.
  • Granulation methods are widely described in the art.
  • Granules can be prepared by wet granulation, by dry granulation or compaction and by melt solidification granulation.
  • the most common granulation technique is wet granulation, since this technique is subject to the fewest restrictions and leads most safely to granules with favorable properties.
  • the wet granulation is carried out by moistening the powder mixtures with solvents and / or solvent mixtures and / or solutions of binders and / or Solutions of adhesives and is preferably carried out in mixers, fluidized beds or spray towers, said mixer can be equipped, for example, with stirring and kneading tools.
  • combinations of fluidized bed (s) and mixer (s) or combinations of different mixers can also be used for the granulation.
  • the granulation is dependent on the starting material and the desired product properties under the action of low to high shear forces.
  • melt solidification melting
  • aqueous, slurries spray drying
  • solid substances which are sprayed at the top of a tower in a defined droplet size, solidify in free fall or dry and on Floor of the tower incurred as granules.
  • Melt solidification is generally particularly suitable for shaping low-melting substances which are stable in the melting temperature range (eg urea, ammonium nitrate and various formulations such as enzyme concentrates, pharmaceuticals etc.), the corresponding granules are also referred to as prills.
  • Spray drying is used especially for the production of detergents or detergent ingredients.
  • extruder or perforated roll granulations in which powder mixtures optionally mixed with granulating liquid are plastically deformed during perforation by perforated disks (extrusion) or on perforated rolls.
  • the products of extruder granulation are also referred to as extrudates.
  • Compactates can be made, for example, by dry granulation techniques such as tabletting or roll compaction.
  • dry granulation techniques such as tabletting or roll compaction.
  • the multi-phase tablets include, for example, the coated tablets and the tablet tablets (bull-eye tablets).
  • the briquettes like the slugs produced in compacting rolls, can be comminuted by means of opposing spiked rolls or beaten through sieves following compaction.
  • Castings are furthermore considered to be solids which, for example, can be prepared by solidification and / or crystallization from melts or solutions by the above-described processes, without these casting bodies necessarily having to have the spatial form of the water-soluble or water-dispersible containers described above.
  • the solidification and / or crystallization preferably takes place in prefabricated matrices.
  • the cast bodies released after solidification from the matrices can be subsequently, depending on the size of the die and intended use of the casting, in their original size or optionally be used after comminution as solids in the water-soluble containers according to the invention.
  • Gels Form-stable gels are another solid which is particularly preferred in the context of the present invention.
  • the term "dimensionally stable” refers to gels which have an intrinsic dimensional stability which enables them to assume a stable, non-disintegrating spatial form under normal conditions of manufacture, storage, transport and handling by the consumer, whereby these Room form under the conditions mentioned also for a long time, preferably 4 weeks, more preferably, 8 weeks and especially 32 weeks, not changed, that is under the usual conditions of manufacture, storage, transport and handling by the consumer in the by the preparation conditional spatial-geometric shape remains, that is, for example, does not dissolve, or returns to the action of an external under the conditions of manufacture, storage, transport and handling usual force in this spatial-geometric shape.
  • thickening agent one or more substances from the group of agar-agar, carrageenan, Tragacanth, gum arabic, alginates, pectins, polyoses, guar gum, locust bean gum, starch, dextrins, gelatin, casein, carboxymethyl cellulose, gum ethers, polyacrylic and the like.
  • polymethacrylic compounds vinyl polymers, polycarboxylic acids, polyethers, polyimines, polyamides, polysilicic acids, clay minerals such as montmorillonites, zeolites and silicic acids, it being particularly advantageous if the gels contain these or one of the following thickeners in amounts between 0.2 and 10 wt .-%, preferably between 0.3 and 7 wt .-% and particularly preferably between 0.4 and 4 wt .-% based on the total weight of the molding.
  • Natural-derived polymers used as thickening agents in the present invention are, as described above, for example, agar-agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, locust bean gum, starch, dextrins, gelatin and casein.
  • Modified natural products come mainly from the group of modified starches and celluloses, examples which may be mentioned here carboxymethylcellulose and other cellulose ethers, hydroxyethyl and propylcellulose and core flour ethers.
  • a large group of thickeners which find wide use in a variety of applications, are the fully synthetic polymers such as polyacrylic and polymethacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines, polyamides and polyurethanes.
  • Thickening agents from these classes of compounds are widely available commercially and are sold for example under the trade name Acusol ® -820 (methacrylic acid (stearyl alcohol 20 EO) ester-acrylic acid copolymer, 30% in water, Rohm & Haas), Dapral ®-GT-282 -S (alkyl polyglycol ethers, Akzo), DEUTEROL ® polymer-11 (dicarboxylic acid copolymer, Schoner GmbH) deuteron ® -xg (anionic heteropolysaccharide based on ß-D-glucose, D-mannose, D-glucuronic acid, Schoner GmbH) , deuteron ® -XN (nichtionoge ⁇ es polysaccharide Schoner GmbH), DICRYLAN ® -Verdicker-O (ethylene oxide adduct, 50% solution in water / isopropanol, Pfersse Chemie), EMA ® -81 and EMA ®
  • preferred gels contain various solvents, gels having proved to be particularly advantageous in terms of their product properties, the water and / or one or more water-miscible solvents in amounts of 5 to 70 wt .-%, preferably from 10 to 65 wt .-% and particularly preferably from 15 to 60 wt .-%.
  • the water-miscible solvents comprise one or more substances from the group of the group ethanol, n- or i-propanol, n- or sec- or tert-butanol, glycol, propane or butanediol, glycerol, Diglycol, propyl or butyl diglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether, dipropylene glycol monomethyl, or ethyl ether, di-isopropylene glycol monomethyl , or -ethyl ether, methoxy, ethoxy or butoxytriglycol, 1-butoxyethoxy-2-prop
  • Capsules Further solids enclosed in the containers within a preferred method of the invention are the capsules.
  • "Capsule” is a name for a commonly used packaging form, which in different sized, possibly colored shell layers Gelatin, wax, or wafer material contains solid, semi-solid or liquid substances. Most commonly used are the gelatin capsules (hard or soft gelatin).
  • one, several or all of the solids filled in the containers produced according to the invention ie one, several or all of these containers, have filled powder and / or granules and / or extrudate (s) and / or compact (s) and / or castings and / or dimensionally stable gel (s) and / or capsule (s), a coating (coating) on.
  • a coating can serve various purposes.
  • by coating for example, undesired contact of hydrolysis- or oxidation-sensitive active substances contained in the solids with the outside air or other solids enclosed in the water-soluble container according to the invention can be avoided.
  • a coating and a beneficial visual effect can be achieved.
  • liquids and solids are suitable according to the previously mentioned.
  • solids a distinction is made, inter alia, between powders, granules, extrudates, compactates, cast bodies and dimensionally stable gels.
  • liquids also include low-viscosity, flowable liquids or flowable gels, as well as flowable dispersions, for example emulsions or suspensions.
  • Container with two receiving chambers Container with three receiving chambers 3U
  • At least one receiving chamber with a liquid and at least one further receiving chamber is filled with a solid.
  • at least one receiving chamber is filled with a cast body (melt), and at least one further receiving chamber is filled with a solid.
  • a solid release agent which solidifies to form a separating layer is applied (step c)).
  • This can be introduced vertically or horizontally to the container bottom.
  • Oblique separating layers in which the angle between the separating layer and the container bottom is between 0 and 90 ° can also be realized. However, preference is given to the formation of separating layers which are parallel to the container bottom.
  • the further filling of the water-soluble or water-dispersible container takes place (step d)).
  • a preferred method is characterized in that steps c) and d) are repeated once, twice or three times or many times.
  • the liquid release agent can be sequentially applied to the individual partially filled containers, but it is preferred that the application be batchwise to 2, preferably 2-4, preferably 4-6, more preferably 6-8, most preferably 8-10, especially 10 - 25 partially filled containers at the same time.
  • a partially filled container is understood to be a water-soluble or water-dispersible container which has already been filled with one or more washing agents in step b).
  • the liquid release agents are all known in the art for this purpose devices.
  • the spraying is preferably carried out by means of single-fluid or high-pressure spray nozzles, two-component spray nozzles or three-component spray nozzles.
  • a high melt pressure 5-15 MPa
  • spraying in two-component spray nozzles by means of a compressed air flow can take place (at 0.15-0.3 MPa).
  • Spraying with two-component spray nozzles is more favorable, in particular with regard to possible clogging of the nozzle, but is more complicated due to the high compressed air consumption.
  • there is the three-component spray nozzles which in addition to the Preßluftstrom for atomization another air ducting system to prevent clogging and dripping at the nozzle.
  • the application of the liquid release agent is carried out by a spray device within 6 s, preferably 4 s, preferably 2 s, more preferably 1 s, in particular 0.2 s.
  • the inner diameter of the spray nozzles used is between 0.2 and 5 mm, preferably between 0.2 and 4 mm, in particular between 0.2 and 3 mm.
  • spray nozzles with inner diameters between 0.05 and 1 mm are used.
  • the drop diameter of the sprayed on liquid release agent is preferably between 1 and 100 .mu.m, more preferably between 2 and 80 .mu.m, most preferably between 4 and 70 .mu.m and in particular between 8 and 60 microns.
  • the liquid release agent solidifies after application to the already filled detergent or cleaning agent. Also preferred is a process in which the application of a further component is necessary for solidifying the separation layer, and the solid separation layer is formed by a chemical reaction, chemisorption or physisorption.
  • the present invention is a multi-phase detergent or cleaning agent characterized in that it is a solidified solution in the separation layer. Since the liquid release agent is preferably sprayed onto the washing or cleaning agent (s) filled in step b), ie sprayed on, suspensions or melts or aqueous solutions are preferably used as release agents.
  • aqueous solutions is particularly advantageous in those process variants in which the first washing or cleaning agent filled in step b) contains solid, hygroscopic substances, for example hydratable salts.
  • the curing of the release agent is accelerated by the interaction between the aqueous release agent solution and the hygroscopic substance, on the other hand, at least superficial curing of the first detergent or cleaning agent and thus an improvement of the release force of the release agent and an increase in container stability and rigidity is achieved.
  • aqueous solutions are used as release agents, the water content of these solutions is preferably between 10 and 90% by weight, preferably between 20 and 80% by volume and in particular between 30 and 80% by weight.
  • a suspension is a special form of the dispersion in which insoluble solid particles are contained in liquids, plastic masses or solidified melts.
  • suspensions as a liquid release agent is to be noted within this invention that it comes with larger solid particles to sedimentation of the suspended particles and thus the release agent is no longer homogeneous.
  • the suspension used contains no solid particles having particle sizes greater than 500 ⁇ m, preferably 400 ⁇ m, particularly preferably 300 ⁇ m, very particularly preferably 200 ⁇ m, in particular 100 ⁇ m.
  • Coarser solid components are preferably comminuted in a rolling process. Here is it is particularly preferred to carry out the rolling process with the already suspended filling material.
  • the suspensions used therefore preferably contain less than 80% by weight, preferably less than 60% by weight, more preferably between 1 and 40% by weight and in particular between 2 and 20% by weight of solvent.
  • Suspension aids also increase the stability of a suspension and are preferably used in the method according to the invention.
  • Suspending aids are preferably surfactants that act by increasing the wetting of the suspended particles with the solvent.
  • surfactants particularly preferably surfactants with linear carbon chains, application.
  • the group of surfactants is described below. However, preference is also given to using polar solvents such as alcohols, ethers, pyridines and alkyl formates.
  • melts are preferably present in the liquid release agent.
  • the melting point of the melt is preferably less than 150 0 C, preferably less than 120 ° C, more preferably between 30 and 100 0 C and in particular between 40 and 80 0 C. features that are to be considered in the processing of fusion, were incubated at the production of castings already discussed.
  • the separating layer is intended to serve for the spatial separation of different washing or cleaning agents and thus their reaction with each other, such as, for example, bleaching of a dye in a washing or cleaning agent by the bleaching agent of another washing or cleaning agent, as well as thorough mixing of the different detergents and cleaners prevent. Thicknesses of the separating layer between 1 and 1000 .mu.m, preferably between 1 and 300 .mu.m, particularly preferably between 1 and 100 .mu.m and in particular between 1 and 40 .mu.m, have proven to be suitable.
  • a preferred multiphase washing or cleaning agent is characterized in that the separating layer has a thickness between 1 and 1000 ⁇ m, preferably between 1 and 300 ⁇ m, particularly preferably between 1 and 100 ⁇ m and in particular between 1 and 40 ⁇ m.
  • the release layer may further have stabilizing properties. Taking into account these and other factors, a thickness of the separating layer between 5 and 1000 ⁇ m, preferably between 10 and 500 ⁇ m, particularly preferably between 20 and 300 ⁇ m and in particular between 40 and 100 ⁇ m, has proven to be suitable. Particularly preferred is the use Such stabilizing separating layers, when used as detergents or cleaning agents flowable substances or liquids.
  • a preferred multiphase washing or cleaning agent is characterized in that the separating layer has a thickness between 5 and 1000 ⁇ m, preferably between 10 and 500 ⁇ m, particularly preferably between 20 and 300 ⁇ m and in particular between 40 and 100 ⁇ m.
  • the aim of the present invention was to reduce the weight content of the packaging material in relation to the multiphase washing or cleaning agent packed with water-soluble or water-dispersible coating material in comparison with the prior art.
  • the reduction of the material requirement is made possible by the application of a liquid release agent.
  • liquid release agent - is used, while e.g. when applying and sealing a film, waste is produced which must be disposed of or recycled.
  • step c) the application of the film, the sealing of container and applied film, separating or cutting off excess film and recycling the film blend, in the process according to the invention by the step c), ie the application of a liquid release agent and Solidifying this release agent to form a solid release layer, replaced.
  • the material savings should allow the proportion by weight of the release agent based on the total weight of the water-soluble or water-dispersible shell material packed multiphase washing or cleaning agent preferably less than 10 wt .-%, preferably less than 8 wt .-%, particularly preferably between 0, 1 and 6 wt .-% and in particular between 0.5 and 4 wt .-% is.
  • a liquid release agent is used whose solidified form, that is to say the separating layer, is water-soluble or water-dispersible.
  • Suitable constituents of the liquid release agent are all agents known to the person skilled in the art. However, those containing organic polymers and / or inorganic or organic salts are preferably used.
  • water-soluble or water-dispersible materials which are also suitable for providing the separating layer in addition to the preparation of the receiving chambers, are the water-soluble polymers.
  • polymers and / or copolymers are preferably used, which contain as monomers polyvinyl alcohol, polyvinylpyrrolidone, alkylacrylamide, acrylic acid, vinyl acetate, polyethylene oxide, and derivatives thereof.
  • polymers of saturated and unsaturated carboxylic acids Cellulose which can be used esterified or etherified, starch, gelatin and polysiloxanes used for the preparation of the liquid separating material.
  • Alcohols and esters of mono- and polycarboxylic acids such as tartaric acid, citric acid, agaric acid and 1,2,3-propanetricarboxylic acid, trimellitic acid, trimesic acid, pyromellitic acid and mellitic acid are particularly preferably used as monomers from the group of saturated and unsaturated carboxylic acids.
  • Other preferred polymers for providing the liquid release agent are described in the shell materials. The polymers mentioned there can be used both alone and in combination with one another or in combination with other substances, for example plasticizers, lubricants or lubricants, or as solubilizers as liquid release agents.
  • Another class of compounds which preferably finds use in the liquid release agent used in the process according to the invention are the sugars, sugar acids and sugar alcohols.
  • the monosaccharides, disaccharides and oligosaccharides and derivatives and mixtures thereof are preferably used. Particularly preferred are glucose, fructose, ribose, maltose, lactose, sucrose, maltodextrin and isomalt ® and mixtures of two, three, four or more mono- and / or di-saccharides and / or derivatives of mono- and / or di-saccharides.
  • the sugar acids can be used alone or in combination with other substances such as the above-mentioned sugars as part of a preferred liquid release agent.
  • Preferred sugar acids are gluconic acid, galactonic acid, mannonic acid, fructonic acid, arabinonic acid, xylonic acid, ribonic acid, and 2-deoxyribonic acid and derivatives thereof.
  • derivatives of the sugar acids, sugars and / or sugar derivatives or alone are used compounds from the group of the sugar alcohols, preferably mannitol, sorbitol, XyNt, Dulcit and Arabit.
  • liquid release agent comprises an inorganic or organic salt.
  • inorganic and organic salts care must be taken to ensure that they do not react with the detergents and cleaning agents.
  • Particularly preferred are next the salts of the above-mentioned sugar acids, the acetates, acrylates, adipates, alginates, aspartates, azelates, benzoates, carbamates, carbonates, chlorides, chlorosulfates, cinnamates, citrates, sulfates, enantates, fluats, fluoroborates, fluorosilicates, formates, glutamates, glycolates, bicarbonates , Hydrogen phosphates, hydrogen sulfates, iodides, lactates, laureates, malates, maleates, malonates, mandelates, mesylates, metaphosphates, nitrates, octoates, oleates, orotates, oxalates, pectates, pectinates, phosphates, phosphonates,
  • alkali metal salts alkaline earth metal salts, ammonium, zinc and / or aluminum salts.
  • salts which contain sodium, potassium, magnesium, calcium, zinc, aluminum and ammonium as cations.
  • Preference is furthermore given to the salts of fatty acids, in particular the soaps.
  • liquid release agent As further constituents of the liquid release agent are adhesive systems into consideration. Both chemically setting and physically setting adhesive systems can be used within the present invention.
  • Physically setting adhesives generally consist of only one component and can set by evaporation of the solvent or by changing the state of aggregation.
  • Examples of preferred physically setting adhesives are hotmelt adhesives such as styrene-butadiene copolymers, polyamides, ethylene-vinyl acetate copolymers and polyesters, plastisol adhesives such as polyvinyl chlorides with plasticizers and adhesion promoters, pressure-sensitive adhesives such as rubbers and polyacrylates, contact adhesives such as polyurethanes, polyacrylates, nitriles or polyethers Styrene-butadiene copolymers and polychloroprenes, solvent or dispersion adhesives such as polyurethanes, vinyl acetate, vinyl chloride, vinylidene chloride copolymers, isoprene rubber, homo- and copolymers of acrylic acid esters such as Polyvinyl acetate, poly (meth) acrylates and ethylene-vinyl acetate
  • chemically setting adhesive systems are based on one or more components;
  • the bonding can be based on all polyreactions.
  • two-component systems of epoxy resins and acid anhydrides or polyamines react after polyaddition, cyanoacrylates or methacrylates according to polymerization and systems based on aminoplast or phenoplast based on polycondensation mechanisms.
  • Examples of preferred chemically setting adhesive systems are: epoxy resins with acid anhydrides, epoxy resins with polyamines, polyisocyanates with polyols, cyanoacrylates, methacrylates, unsaturated polyesters with styrene or methacrylates, silicone resins with moisture, phenolic resins with polyvinylformalen or Acrylic 1,3-butadiene rubber, polyimides or polybenzimidazoles, urea resins, melamine-formaldehyde resins, phenolic resins and resorcinol-formaldehyde resins. Further preferred are polyanhydride resins, coumaran-indene resins and isocyanate resins.
  • the separation layer formed in step c) should be at least partially transparent or translucent, since this property improves the visual impression that the consumer gains from the process end product.
  • a preferred embodiment of the method according to the invention is accordingly characterized in that the separating layer formed in step c) is at least partially transparent or translucent. Preference is given to a multiphase washing or cleaning agent, characterized in that the separating layer is at least partially transparent or translucent.
  • Transparency is to be understood here as meaning that the transmittance within the visible spectrum of the light (410 to 800 nm) is greater than 20%, preferably greater than 30%, most preferably greater than 40% and in particular greater than 50%. Thus, once a wavelength of the visible spectrum of the light has a transmittance greater than 20%, it is to be regarded as transparent within the meaning of the invention.
  • the release agent is preferably colored.
  • the preferred colors include red, yellow, blue, as well as mixed colors of these such as green, purple and purple.
  • Separating layers produced within a preferred embodiment of the process according to the invention, for the preparation of which transparent release agent has been used, may contain a stabilizing agent.
  • Antioxidants, UV absorbers and fluorescent dyes have proved to be particularly suitable here.
  • the stabilizers have already been described in the shell materials of the water-soluble and water-dispersible containers.
  • step d) After the application of the separating layer, the container is filled with a further washing or cleaning agent to form a further phase.
  • a further washing or cleaning agent both flowable, solid and liquid detergents or cleaning agents can be filled.
  • the use, preferably flowable powder, granules, casting, or capsules and the use of gels and liquids in step d) of the method according to the invention is preferred.
  • the solids and liquids have already been described above, and therefore reference is made to avoid repetition. Inventive methods in which flowable or liquid washing or cleaning agents are filled in step b) and / or d) are preferred according to the invention.
  • Water-soluble or water-dispersible containers are preferably used in the process according to the invention, in which the entire container is divided by means of partitions into two, preferably three, preferably four, more preferably five or more receiving chambers.
  • These intermediate walls can end at the level of the separating layer to be applied, so that now only a large receiving chamber is to be filled above the separating layer;
  • the intermediate walls are as high as the container outer walls, so that at least two, preferably three, preferably four, more preferably five or more receiving chambers are available for filling above the separating layer.
  • containers in which a part of the intermediate walls has a height which coincides with the distance of the separating layer of container bottom, while the other part of the walls is as high as the container outer walls are suitable in the context of the present invention for the production of multiphase cleaning agents.
  • the number of receiving chambers to be filled in step d) in this case is preferably one, more preferably two, most preferably three, in particular four smaller than the number of receiving chambers to be filled in step b).
  • the receiving chambers can be filled simultaneously or at different times within the method according to the invention.
  • one, preferably two, three or four, of the receiving chambers located above the separating layer are not filled to increase the buoyancy of the multiphase washing or cleaning agent.
  • the receiving chambers of a container which has at least two receiving chambers above the separating layer are preferably filled with the same agent in step d).
  • at least one, particularly preferably two, very particularly preferably three, in particular four, of the compositions have / have a composition and / or an aggregate state which corresponds to no other agent introduced in step d).
  • all agents charged in step d) differ in their composition and / or their state of aggregation.
  • the receiving chambers of a container having at least two receiving chambers are preferably filled with the same agent in step b) and in step d).
  • at least one, particularly preferably two, very particularly preferably three, in particular four, of the compositions have / have a composition and / or an aggregate state which corresponds to no other agent introduced in steps b) and d).
  • all agents introduced in steps b) and d) differ in their composition and / or their state of aggregation.
  • a preferred embodiment of the process according to the invention is characterized in that at least one of the washing or cleaning agents introduced in steps b) and d) is a solid.
  • a preferred embodiment of the method according to the invention is characterized in that at least one of the washing or cleaning agents filled in steps b) and d) is a liquid.
  • the ratio of the filling levels of the washing and cleaning agents below the separating layer to the filling levels of the washing agents above the separating layer is in a preferred method between 9: 1 and 1: 9, preferably between 5: 1 and 1: 2, particularly preferably between 3: 1 and 1: 1, in particular between 1: 1 and 1: 0.2.
  • steps c) and d) are repeated once, twice, three times or many times.
  • step d Above the separating layer, which has been formed by solidifying the liquid separating agent, one, preferably two, particularly preferably three, in particular four further washing or cleaning agents are filled in step d). Preferably, these cleaning agents are not covered with a shell material, that is sealed. However, in a further preferred embodiment of the method according to the invention, the filled receiving chamber (s) can be sealed after being filled with a wrapping material. The sealing is preferably carried out by the action of pressure and / or heat and / or solvent.
  • the further shell material used for the sealing can be identical to the shell materials or liquid release agents used in step a) or with the method c), but may also differ in their composition or thickness from these two materials.
  • a preferred embodiment of the method according to the invention is characterized in that the filled container is sealed in a further step e) by means of a water-soluble film.
  • the surface of the shell material is first dissolved by solvent before sealing (in the case of water-soluble films is particularly suitable water) and adhesively bonded to the water-soluble or water-dispersible container.
  • the seal can also done by the action of pressure and / or heat.
  • Suitable sealing temperatures for water soluble membrane materials are, for example, 120 to 200 0 C, preferably temperatures in the range from 130 to 170 0 C, in particular in the range of 140 to 15O 0 C.
  • sealing pressure have pressures in the range from 250 to 800 kPa, preferably 272 to 554 kPa, more preferably from 341 to 481 kPa proved to be advantageous.
  • the sealing times are preferably at least 0.3 seconds, preferably between 0.4 and 4 seconds. Sealing temperatures, pressures and sealing times are determined not only by the shell material used but also by the sealing machine used.
  • laser melting is preferably used. Also preferred are methods that use the infrared, ultrasonic, or radio-frequency waves.
  • the water-soluble films used for sealing the containers according to step e) preferably have wall thicknesses between 20 and 800 ⁇ m, more preferably between 30 and 600 ⁇ m, very particularly preferably between 40 and 400 ⁇ m and in particular between 50 and 200 ⁇ m.
  • the sealing seams have a width between 0.5 and 7 mm, preferably between 1, 0 and 6 mm and in particular between 1.5 and 5 mm.
  • Sealing seams having a width of more than 2 mm, preferably more than 2.5 mm, particularly preferably more than 3 mm and in particular more than 3.5 mm, have proved to be sufficiently durable. Since the width of the sealed seam can vary depending on the production even with a single package, the above-mentioned information about the width of the sealed seam refers to the minimum seam width measured in a single package.
  • a seal takes place especially when the filling material is liquid or free-flowing. Examples of such fillers are liquids, gels or particulate solids such as powder.
  • the release agent is preferably identical to the release agent used in step c).
  • the use of all other available liquid release agents, these have already been described above, but is also possible.
  • the thickness of the seal obtained in step e) by use of a liquid release agent is 5 to 1000 ⁇ m, preferably between 10 and 500 ⁇ m, more preferably between 20 and 300 ⁇ m and in particular between 40 and 100 ⁇ m. In some cases, however, starches between 1 and 1000 .mu.m, preferably between 1 and 300 .mu.m, more preferably between 1 and 100 .mu.m and in particular between 1 and 40 .mu.m may be preferred.
  • the seal By sealing the receiving chambers, not only contact of the filled active substances or active substance mixtures with one another or with the surrounding atmosphere (eg atmospheric oxygen, atmospheric moisture) or skin contact with the consumer can be avoided; Rather, the seal also allows controlled release of the active ingredients within the sealed cavity through the choice of suitable sealing materials.
  • An example of such a control is the use of water-soluble or water-dispersible sealing and / or wrapping materials having different solubilities with the aim of releasing the contents of individual receiving chambers in a time-defined sequence into the surrounding aqueous medium.
  • the shell materials used to seal the receiving chambers are the same or different materials.
  • the same shell materials are used for the sealing of the receiving chambers. This embodiment enables the simultaneous release of the contents located below the sealing surfaces.
  • the materials used for sealing the receiving chambers differ.
  • the liquid release agent is applied not only to the first phase of the washing or cleaning agent, but in addition to the inner and or outer wall of the water-soluble or water-dispersible container, preferably sprayed.
  • the release agent is applied in the region of the wall, which is later connected to the applied in step e) sealing film, continue to increases the adhesive strength of this sealing film.
  • the containers produced in the process according to the invention are preferably singulated by the action of knives or punches to form a brim running around the top of the container.
  • the width of this brim is dependent, among other parameters, also on the choice of the method used to produce the corresponding container.
  • two variants can be distinguished, among others, which are all particularly preferred for carrying out the method according to the invention. These are methods in which the wrapping material is guided horizontally into a forming station and from there in a horizontal manner for filling and / or sealing and / or separating, again distinguishing between continuous and discontinuous methods, and methods in which the Covering material is passed over a continuously rotating molding roll.
  • compositions according to the invention or the compositions prepared by the process according to the invention described above contain washing and cleaning-active substances, preferably washing and cleaning-active substances from the group of builders, surfactants, polymers, bleaches, bleach activators, enzymes, glass corrosion inhibitors , Corrosion inhibitors, disintegration aids, fragrances and perfume carriers. These preferred ingredients will be described in more detail below.
  • the builders include, in particular, zeolites, silicates, carbonates, organic co-builders and, where there are no ecological prejudices against their use, also the phosphates.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • commercially available and preferably usable in the context of the present invention is, for example, a cocrystal of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by the company CONDEA Augusta SpA under the brand name VEGOBOND AX ® and by the formula
  • the zeolite can be used both as a builder in a granular compound, as well as for a kind of "powdering" of a granular mixture, preferably a mixture to be compressed, whereby usually both ways for incorporation of the zeolite are used in the premix suitable zeolites have an average particle size of less than 10 microns (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22 wt .-%, in particular 20 to 22 wt .-% of bound water.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 • H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • crystalline layer-form silicates of the general formula NaMSi x O 2x + I • y H 2 O are used, in which M represents sodium or hydrogen, x is a number from 1.9 to 22, preferably from 1 , 9 to 4, and y is a number from 0 to 33.
  • the crystalline layered silicates of the formula NaMSi x O 2x + I • y H 2 O are sold, for example, by Clariant GmbH (Germany) under the trade name Na-SKS.
  • silicates Na-SKS-1 (Na 2 Si 22 O 45 • x H 2 O 1 kenyaite), Na-SKS-2 (Na 2 Si 14 O 29 • x H 2 O, magadiite), Na-SKS -3 (Na 2 Si 8 O 17 • x H 2 O) or Na-SKS-4 (Na 2 Si 4 O 9 • x H 2 O, Makatite).
  • crystalline phyllosilicates of the formula NaMSi x O 2x + I • y H 2 O in which x is 2.
  • Na-SKS-5 U-Na 2 Si 2 O 5
  • Na-SKS-7 ⁇ -Na 2 Si 2 0 5 , natrosilite
  • Na-SKS-9 NaHSi 2 O 5 • H 2 O
  • Na-SKS-10 NaHSi 2 O 5 • 3 H 2 O, kanemite
  • Na-SKS-11 t-Na 2 Si 2 0 5
  • Na-SKS-13 Na-SKS-13
  • Na-SKS-6 5-Na 2 Si 2 O 5 ).
  • these compositions preferably comprise a proportion by weight of the crystalline layered silicate of the formula NaMSi x O 2x + 1 • y H 2 O from 0.1 to 20 wt .-%, from 0.2 to 15 wt .-% and in particular from 0.4 to 10 wt .-%, each based on the total weight of these agents.
  • Such automatic dishwashing agents have a total silicate content of less than 7% by weight, preferably less than 6% by weight, preferably less than 5% by weight, more preferably less than 4% by weight, most preferably less than 3% by weight % and in particular below 2.5 wt .-%, wherein it is in this silicate, based on the total weight of the silicate contained, preferably at least 70 wt .-%, preferably at least 80 wt .-% and in particular to At least 90 wt .-% of silicate of the general formula NaMSi x O 2x + 1 ⁇ y H 2 O is.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-radiation, which have a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of the size of ten to a few hundred nm, with values of up to max. 50 nm and in particular up to max. 20 nm are preferred. Such so-called X-ray-amorphous silicates likewise have a dissolving delay compared to conventional waterglasses. Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • compositions according to the invention or agents prepared by the process according to the invention as automatic dishwasher detergents which is particularly preferred in the context of the present application.
  • alkali metal phosphates with particular preference of pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), are of greatest importance in the washing and cleaning agent industry.
  • Alkalimetallphosphate is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) n and orthophosphoric H 3 PO 4 in addition to high molecular weight representatives.
  • the phosphates combine several advantages: they act as Alkaline carriers, prevent limescale deposits on machine parts or Kalkinkrustationen in tissues and also contribute to the cleaning performance.
  • Suitable phosphates are for example the sodium dihydrogen phosphate, NaH 2 PO 4 , in the form of the dihydrate (density 1, 91 like “3 , melting point 60 °) or in the form of the monohydrate (density 2.04 like “ 3 ), the disodium hydrogen phosphate (secondary sodium phosphate) , Na 2 HPO 4 , which is anhydrous or with 2 mol (density 2.066 like '3 , water loss at 95 °), 7 mol (density 1, 68 like “3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol Water (density 1, 52 like "3 , melting point 35 ° with loss of 5 H 2 O) can be used, but in particular the trisodium phosphate (tertiary sodium phosphate) Na 3 PO 4 , which as dodecahydrate, as decahydrate (corresponding to 19- 20% P 2 O 5 ) and in anhydrous form (corresponding to 39-40% P 2 O 5 ) can be
  • Another preferred phosphate is the tripotassium phosphate (tertiary or tribasic potassium phosphate), K 3 PO 4 .
  • the tetrasodium diphosphate sodium pyrophosphate
  • Na 4 P 2 O 7 which in anhydrous form (density 2.534 like * 3 , melting point 988 °, also indicated 880 °) and as decahydrate (density 1, 815-1, 836 like ' 3 , melting point 94 ° with loss of water)
  • potassium salt potassium diphosphate potassium 4 P 2 O 7 .
  • the corresponding potassium salt pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate) is marketed, for example, in the form of a 50% strength by weight solution (> 23% P 2 O 5 , 25% K 2 O).
  • the potassium polyphosphates are widely used in the washing and cleaning industry.
  • sodium potassium tripolyphosphates which can also be used in the context of the present invention. These arise, for example, when hydrolyzed sodium trimetaphosphate with KOH:
  • phosphates are used as detergents or cleaning agents in the context of the present application
  • preferred agents comprise these phosphate (s), preferably alkali metal phosphate (s), more preferably pentasodium or pentapotassium triphosphate (sodium or pentasodium) Potassium tripolyphosphate), in amounts of from 5 to 80% by weight, preferably from 15 to 75% by weight, in particular from 20 to 70% by weight, based in each case on the weight of the washing or cleaning agent.
  • potassium tripolyphosphate and sodium tripolyphosphate in a weight ratio of more than 1: 1, preferably more than 2: 1, preferably more than 5: 1, more preferably more than 10: 1 and in particular more than 20: 1. It is particularly preferred to use exclusively potassium tripolyphosphate without admixtures of other phosphates.
  • alkali carriers are, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogencarbonates, alkali metal sesquicarbonates, the alkali silicates mentioned, alkali metal silicates, and mixtures of the abovementioned substances, preference being given for the purposes of this invention to using the alkali metal carbonates, in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate.
  • the alkali metal hydroxides are preferably only in small amounts, preferably in amounts below 10 wt .-%, preferably below 6 wt .-%, more preferably below 4 wt .-% and in particular below 2 wt .-%, each based on the total weight of the detergent or cleaning agent used.
  • Particularly preferred are agents which, based on their total weight, contain less than 0.5% by weight and in particular no alkali metal hydroxides.
  • compositions which, based on the weight of the washing or cleaning agent, contain less than 20% by weight, preferably less than 17% by weight, preferably less than 13% by weight and in particular less than 9% by weight of carbonate ( e) and / or bicarbonate (s), preferably alkali metal carbonate (s), particularly preferably sodium carbonate.
  • organic co-builders are polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA) 1, if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or of polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group. Also suitable are copolymeric polycarboxylates, in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable. Their relative molecular weight, based on free acids, is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of detergents or cleaners to (co) polymeric polycarboxylates is preferably 0.5 to 20 wt .-%, in particular 3 to 10 wt .-%.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those which contain as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives ,
  • copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors. Particular preference is given to polyaspartic acids or their salts.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range of 0.5 to 40, in particular from 2 to 30 is preferred, wherein DE is a common measure of the reducing effect of a polysaccharide compared to dextrose, which has a DE of 100.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Oxydisuccinates and other derivatives of disuccinates are also suitable co-builders.
  • ethylenediamine-N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred. Suitable amounts are in zeolithissen and / or silicate-containing formulations at 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • surfactants The group of surfactants includes nonionic, anionic, cationic and amphoteric surfactants.
  • nonionic surfactants it is possible to use all nonionic surfactants known to the person skilled in the art. Low-foaming nonionic surfactants are used as preferred surfactants.
  • washing or cleaning agents in particular automatic dishwashing detergents, comprise nonionic surfactants, in particular nonionic surfactants from the group of the alkoxylated alcohols.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture may contain, as they usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 moles of EO per mole of alcohol are preferred.
  • Preferred ethoxylated alcohols include, for example, Ci 2 - 14 alcohols with 3 EO or 4 EO, C9-11 alcohol containing 7 EO, C. 13 15- alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 .ia alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -i 4 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical mean values which, for a specific product, may correspond to an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of these are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants and alkyl glycosides of the general formula RO (G) x can be used in which R is a primary straight-chain or methyl-branched, especially methyl-branched in the 2-position aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10; preferably x is 1, 2 to 1, 4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are polyhydroxy fatty acid amides of the formula
  • R 1 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula
  • R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms
  • C M alkyl or phenyl radicals are preferred
  • [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives thereof residue.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • surfactants are further used which contain one or more Taigfettalkohole with 20 to 30 EO in combination with a silicone defoamer.
  • Nonionic surfactants from the group of alkoxylated alcohols are also used with particular preference.
  • nonionic surfactants which have a melting point above room temperature.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which may be solid or highly viscous at room temperature.
  • nonionic surfactants which are highly viscous at room temperature, it is preferred that they have a viscosity above 20 Pa ⁇ s, preferably above 35 Pa ⁇ s and in particular above 40 Pa ⁇ s. Nonionic surfactants which have waxy consistency at room temperature are also preferred.
  • surfactants which are solid at room temperature, come from the groups of alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols and mixtures of these surfactants with structurally complicated surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene ((PO / EO / PO) surfactants).
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • the nonionic surfactant having a melting point above room temperature is an ethoxylated nonionic surfactant consisting of the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms, preferably at least 12 mol, more preferably at least 15 mol, especially at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol emerged.
  • a particularly preferred, solid at room temperature nonionic surfactant is selected from a straight chain fatty alcohol having 16 to 20 carbon atoms (C16. C20 alcohol), preferably a C 18 alcohol and at least 12 moles, preferably obtained at least 15 mol and in particular at least 20 moles of ethylene oxide.
  • C16. C20 alcohol a straight chain fatty alcohol having 16 to 20 carbon atoms
  • C 18 alcohol preferably a C 18 alcohol and at least 12 moles, preferably obtained at least 15 mol and in particular at least 20 moles of ethylene oxide.
  • the so-called “narrow rank ethoxylates" are particularly preferred.
  • ethoxylated nonionic surfactants which consists of C ⁇ . 20 monohydroxyalkanols or C 6 . 20- alkylphenols or C 16 - 2 o-fatty alcohols and more than 12 moles, preferably more than 15 moles and in particular more than 20 moles of ethylene oxide per mole of alcohol were used.
  • the nonionic surfactant solid at room temperature preferably additionally has propylene oxide units in the molecule.
  • such PO units make up to 25 wt .-%, more preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant from.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably constitutes more than 30% by weight, more preferably more than 50% by weight and in particular more than 70% by weight of the total molecular weight of such nonionic surfactants.
  • preferred Agents are characterized in that they contain ethoxylated and propoxylated nonionic surfactants, in which the propylene oxide units in the molecule up to 25 wt .-%, preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant turn off.
  • More particularly preferred nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25% by weight. % of a block copolymer of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
  • Non-ionic surfactants that can be used with particular preference are available, for example, under the name Poly Tergent ® SLF-18 from the company Onn Chemicals.
  • R 1 is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1, 5 and y is a value of at least 15 are further particularly preferred nonionic surfactants.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical
  • x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 may be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, radicals having 8 to 18 carbon atoms are particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x ⁇ 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, the range of variation increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18. Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • end-capped poly (oxyalkylated) nonionic surfactants are of the formula
  • R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical
  • x are values between 1 and 30
  • k and j are values between 1 and 12, preferably between 1 and 5, preference being given to surfactants of the type
  • nonionic surfactants in which x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18, are particularly preferred.
  • particularly preferred nonionic surfactants have been low foaming nonionic surfactants which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of the other groups follows.
  • R i is -O- (CH 2 -CH 2 -O) - (CH 2 -CHO) - (CH 2 -CH 2 -O) r (CH 2 -CH-O) -H
  • R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24 alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 J 2 and the indices w, x, y, z independently stand for integers from 1 to 6.
  • the preferred nonionic surfactants of the above formula can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in the above formula may vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is usually unbranched, the linear radicals being selected from alcohols of natural origin having 12 to 18 C atoms, for example from coconut, palm, tallow or Oleyl alcohol, are preferred. Examples of alcohols which are accessible from synthetic sources are the Guerbet alcohols or methyl-branched or linear and methyl-branched radicals in the 2-position, such as are usually present in oxo alcohol radicals.
  • nonionic surfactants in which R 1 in the above formula is an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 to 11 Carbon atoms.
  • alkylene oxide unit which is contained in the preferred nonionic surfactants in alternation with the ethylene oxide unit, in particular butylene oxide is considered in addition to propylene oxide.
  • R 2 and R 3 are independently selected from - CH 2 CH 2 -CH 3 or CH (CH 3 J 2 are the nonionic surfactants are used the above formula preferably suitable, in which R 2 respectively.
  • R 3 is a radical -CH 3
  • w and x are independently of one another values of 3 or 4
  • y and z independently of one another, are values of 1 or 2.
  • nonionic surfactants having a C 8-15 alkyl group having 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units followed by 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units.
  • These surfactants have the required low viscosity in aqueous solution and can be used according to the invention with particular preference.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 2 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably between 1 and have 5 hydroxy groups and are preferably further functionalized with an ether group
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2- Butyl radical and x stands for values between 1 and 40.
  • R 1 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms
  • R 2 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably have between 1 and 5 hydroxyl groups and x stands for values between 1 and 40.
  • R 1 O [CH 2 CH 2 O] x CH 2 CH (OH) R 2 in addition to a radical R 1 , which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms, furthermore a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having 1 to 30 carbon atoms R 3 , which is a monohydroxylated intermediate group -CH 2 CH (OH) - adjacent.
  • x in this formula stands for values between 1 and 90.
  • radical R 1 which in addition to a radical R 1 , which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 22 carbon atoms, further a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having 1 to 30 carbon atoms, preferably 2 to 22 carbon atoms, which is adjacent to a monohydroxylated intermediate group -CH 2 CH (OH) - and in which x is between 40 and 80, preferably between 40 and 60.
  • R 1 which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 22 carbon atoms, further a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having 1 to 30 carbon atoms, preferably 2 to 22 carbon atoms, which is adjacent to a monohydroxylated intermediate group -CH 2 CH (
  • the corresponding end-capped poly (oxyalkylated) nonionic surfactants of the above formula can be prepared, for example, by reacting a terminal epoxide of the formula R 2 CH (O) CH 2 with an ethoxylated alcohol of the formula R 1 O [CH 2 CH 2 O]) M CH 2 CH 2 OH received.
  • R 1 and R 2 independently of one another are a linear or branched, saturated or mono- or polyunsaturated hydrocarbon radical having 2 to 26 carbon atoms
  • R 3 is independently selected from -CH 3 -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 , but preferably -CH 3
  • x and y are independently of one another values between 1 and 32, nonionic surfactants having values for x of 15 to 32 and y of 0, 5 and 1, 5 are very particularly preferred.
  • R 1 and R 2 independently of one another are a linear or branched, saturated or mono- or polyunsaturated hydrocarbon radical having 2 to 26 carbon atoms
  • R 3 is independently selected from -CH 3 -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 , but preferably represents -CH 3
  • x and y independently of one another are values between 1 and 32 are preferred according to the invention, wherein nonionic surfactants with values of x from 15 to 32 and y of 0.5 and 1.5 are very particularly preferred.
  • the C-terminal lengths given, as well as degrees of ethoxylation or degrees of alkoxylation of the abovementioned nonionic surfactants represent statistical mean values which, for a specific product, may be an integer or a fractional number.
  • commercial products of the formulas mentioned are usually not made up of an individual representative but of mixtures, which may result in mean values for the C chain lengths as well as the degrees of ethoxylation or degrees of alkoxylation and, consequently, fractional numbers.
  • nonionic surfactants can be used not only as individual substances, but also as surfactant mixtures of two, three, four or more surfactants.
  • Mixtures of surfactants are not mixtures of nonionic surfactants which fall in their entirety under one of the abovementioned general formulas, but rather mixtures which contain two, three, four or more nonionic surfactants which can be described by different general formulas ,
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • the surfactants of the sulfonate type are preferably C 9 . 13- Alkylbenzolsul- fonate, olefinsulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as obtained for example from Ci 2 .i ⁇ monoolefins with terminal or internal double bond by sulfonating with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation, into consideration.
  • alkanesulfonates consisting of C 12 .
  • esters of ⁇ -sulfo fatty acids for example, the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or Taigfettklaren are suitable.
  • suitable anionic surfactants are sulfated fatty acid glycerol esters.
  • Fatty acid glycerol esters are the mono-, di- and triesters and mixtures thereof, as obtained in the preparation by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol become.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) ylsulfates are the alkali metal salts and, in particular, the sodium salts of the sulfuric acid half esters of C 12 -C 18 fatty alcohols, for example of coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or of C 10 -C 20 Oxo alcohols and those half-esters of secondary alcohols of these chain lengths are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • the C 12 -C 6 -alkyl sulfates and C 12 -C 15 -alkyl sulfates and also C 14 -C 15 -alkyl sulfates are preferred.
  • 2,3-alkyl sulfates which can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • 21 -alcohols such as 2-methyl-branched C 9-11 alcohols having an average of 3.5 moles of ethylene oxide (EO) or C 12-18 fatty alcohols having 1 to 4 EO, are suitable. Due to their high foaming behavior, they are only used in detergents in relatively small quantities, for example in amounts of from 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which by themselves are nonionic surfactants.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable fatty acids are saturated fatty acids, such as the salts of lauric acid, myristic acid, palmitic acid, stearin acid, hydrogenated erucic acid and behenic acid and, in particular, from natural fatty acids, for example coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamines.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • anionic surfactants are part of automatic dishwasher detergents, their content, based on the total weight of the compositions, is preferably less than 4% by weight, preferably less than 2% by weight and very particularly preferably less than 1% by weight. Machine dishwashing detergents which do not contain anionic surfactants are particularly preferred.
  • cationic active substances for example, cationic compounds of the following formulas can be used:
  • the content of cationic and / or amphoteric surfactants is preferably less than 6% by weight, preferably less than 4% by weight, very particularly preferably less than 2% by weight and in particular less than 1% by weight. %. Automatic dishwashing detergents containing no cationic or amphoteric surfactants are particularly preferred.
  • the group of polymers includes, in particular, the detergents or cleaning polymers, for example the rinse aid polymers and / or polymers which act as softeners.
  • the detergents or cleaning polymers for example the rinse aid polymers and / or polymers which act as softeners.
  • cationic, anionic and amphoteric polymers can be used in detergents or cleaners in addition to nonionic polymers.
  • “Cationic polymers” for the purposes of the present invention are polymers which carry a positive charge in the polymer molecule, which can be realized, for example, by (alkyl) ammonium groups or other positively charged groups present in the polymer chain quaternized cellulose derivatives, the polysiloxanes with quaternary groups, the cationic guar derivatives, the polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid, the copolymers of vinylpyrrolidone with quaternized derivatives of dialkylaminoacrylate and methacrylate, the vinylpyrrolidone-methoimidazolinium chloride Copolymers, the quaternized polyvinyl alcohols or specified under the INCI names Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27 polymers.
  • amphoteric polymers further comprise, in addition to a positively charged group in the polymer chain, also negatively charged groups or monomer units. These groups may be, for example, carboxylic acids, sulfonic acids or phosphonic acids.
  • particularly preferred cationic or am particularly preferred cationic or
  • R 1 and R 4 are each independently H or a linear or branched hydrocarbon radical having 1 to 6 carbon atoms
  • R 2 and R 3 independently represent an alkyl, hydroxyalkyl, or aminoacyl group in which the alkyl radical is linear or branched and has from 1 to 6 carbon atoms, preferably a methyl group
  • x and y independently represent integers between 1 and 3.
  • X represents a counterion, preferably a counterion from the group consisting of chloride, bromide, iodide, sulfate, hydrogensulfate, methosulfate, lauryl sulfate, dodecylbenzenesulfonate, p-toluenesulfonate (tosylate), cumene sulfonate, xylenesulfonate, phosphate, citrate, formate, acetate or mixtures thereof.
  • Preferred radicals R 1 and R 4 in the above formula are selected from -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -OH , -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , -CH (OH) -CH 2 -CH 3 , and - (CH 2 CH 2 -O) n H.
  • cationic or amphoteric polymers contain a monomer unit of the general formula
  • R 1 HC CR 2 -C (O) -NH- (CH 2 ) -N + R 3 R 4 R 5
  • R 1 , R 2 , R 3 , R 4 and R 5 independently of one another are a linear or branched, saturated or unsaturated alkyl or hydroxyalkyl radical having 1 to 6 carbon atoms, preferably a linear or branched alkyl radical selected from -CH 3 , -CH 2 -CH 3 , - CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 - CH (OH) -CH 3 , -CH (OH) -CH 2 -CH 3 , and - (CH 2 CH 2 -O) n H and x is an integer between 1 and 6.
  • H 2 C C (CH 3 ) -C (O) -NH- (CH 2) ⁇ -N + (CH 3 ) 3
  • MAPTAC Metalacrylamidopropyl trimethylammonium chloride
  • amphoteric polymers have not only cationic groups but also anionic groups or monomer units.
  • anionic monomer units are derived, for example, from the group of linear or branched, saturated or unsaturated carboxylates, linear or branched, saturated or unsaturated phosphonates, linear or branched, saturated or unsaturated sulfates or linear or branched, saturated or unsaturated sulfonates.
  • Preferred monomer units are acrylic acid, (meth) acrylic acid, (dimethyl) acrylic acid, (ethyl) acrylic acid, cyanoacrylic acid, vinylic acid, allylacetic acid, crotonic acid, maleic acid, the fumaric acid, the cinnamic acid and its derivatives, the allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid or the allylphosphonic acids.
  • Preferred useful amphoteric polymers are selected from the group of the alkylacrylamide / acrylic acid copolymers, the alkylacrylamide / methacrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid copolymers, the alkylacrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkyl acrylamide / alkymethacrylate / alkylaminoethyl methacrylate / alkyl methacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically derivatized unsaturated carboxylic acids and optionally further ionic or nonionic mono
  • Preferably usable zwitterionic polymers are selected from the group of acrylamidoalkyltrialkylammonium chloride / acrylic acid copolymers and their alkali metal and ammonium salts, the acrylamidoalkyltrialkylammonium chloride / methacrylic acid copolymers and their alkali metal and ammonium salts and the methacroylethylbetaine / methacrylate copolymers.
  • amphoteric polymers which comprise, in addition to one or more anionic monomers as cationic monomers, methacrylamidoalkyltrialkylammonium chloride and dimethyl (diallyl) ammonium chloride.
  • Particularly preferred amphoteric polymers are selected from the group of methacrylamidoalkyltrialkylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers, methacrylamidoalkyltrialkylammonium chloride / dimethyl (diallyl) ammonium chloride / methacrylic acid copolymers and methacrylamidoalkyltrialkylammonium chloride / dimethyldiallyl / ammonium chloride / alkyl (meth) acrylic acid.
  • Copolymers and their alkali metal and ammonium salts Particular preference is given to amphoteric polymers from the group of the methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers, the methacrylamidopropyltrimethylammonium chloride / dimethyldiallylammonium chloride / acrylic acid copolymers and the methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / alkyl (meth) acrylic acid copolymers as well as their alkali and ammonium salts.
  • the polymers are present in prefabricated form.
  • the encapsulation of the polymers by means of water-soluble or water-dispersible coating compositions, preferably by means of water-soluble or water-dispersible natural or synthetic polymers; the encapsulation of the polymers by means of water-insoluble, meltable coating compositions, preferably by means of water-insoluble coating agents from the group of waxes or paraffins having a melting point above 30 0 C; the co-granulation of the polymers with inert carrier materials, preferably with carrier materials from the group of washing- or cleaning-active substances, more preferably from the group of builders or cobuilders.
  • Detergents or cleaning agents contain the aforementioned cationic and / or amphoteric polymers preferably in amounts of between 0.01 and 10 wt .-%, each based on the total weight of the detergent or cleaning agent.
  • Effective polymers as softeners are, for example, the sulfonic acid-containing polymers which are used with particular preference.
  • sulfonic acid-containing polymers are copolymers of unsaturated carboxylic acids, sulfonic acid-containing monomers and optionally other ionic or nonionic monomers.
  • R 1 to R 3 independently of one another are -H, -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals or -COOH or -COOR 4 , wherein R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • R 3 CH 3
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3 Methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propenylsulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 3-sulfopropyl methacrylate , Sulfomethacrylamide, sulfomethylmethacrylamide and water-soluble salts of said acids.
  • Particularly suitable other ionic or nonionic monomers are ethylenically unsaturated compounds.
  • the content of the polymers used in these other ionic or nonionic monomers is preferably less than 20% by weight, based on the polymer.
  • copolymers consist of i) one or more unsaturated carboxylic acids from the group of acrylic acid, methacrylic acid and / or maleic acid ii) one or more sulfonic acid group-containing monomers of the formulas:
  • the copolymers may contain the monomers from groups i) and ii) and, if appropriate, iii) in varying amounts, it being possible for all representatives from group i) to be combined with all representatives from group ii) and all representatives from group iii).
  • Particularly preferred polymers have certain structural units, which are described below.
  • copolymers which are structural units of the formula are preferred.
  • These polymers are prepared by copolymerization of acrylic acid with a sulfonic acid-containing acrylic acid derivative.
  • acrylic acid derivative containing sulfonic acid groups is copolymerized with methacrylic acid, another polymer is obtained whose use is likewise preferred.
  • the corresponding copolymers contain the structural units of the formula
  • Acrylic acid and / or methacrylic acid can also be copolymerized completely analogously with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • copolymers which are structural units of the formula [CH 2 -CHCOOHW [CH 2 -C (CH 3 ) C (O) -Y-SO 3 H] P-
  • maleic acid can also be used as a particularly preferred monomer from group i). This gives way to inventively preferred copolymers, the structural units of the formula
  • the sulfonic acid groups may be wholly or partially in neutralized form, i. the acidic acid of the sulfonic acid group in some or all sulfonic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • partially or fully neutralized sulfonic acid-containing copolymers is preferred according to the invention.
  • the monomer distribution of the copolymers preferably used according to the invention in the case of copolymers which contain only monomers from groups i) and ii) is preferably in each case from 5 to 95% by weight i) or ii), particularly preferably from 50 to 90% by weight monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • terpolymers particular preference is given to those containing from 20 to 85% by weight of monomer from group i), from 10 to 60% by weight of monomer from group ii) and from 5 to 30% by weight of monomer from group iii) ,
  • the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred washing or cleaning agents are characterized in that the copolymers have molar masses of 2000 to 200,000 gmol '1 , preferably from 4000 to 25,000 gmol ' 1 and in particular from 5000 to 15,000 gmol * 1 .
  • Bleaching agents are a substance of particular preference for use in washing or cleaning. Among the compounds serving as bleaches in water H 2 O 2 , sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -forming peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • bleaching agents from the group of organic bleaching agents can also be used.
  • Typical organic bleaches are the diacyl peroxides such as dibenzoyl peroxide.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid [phthaliminoperoxyhexanoic acid (PAP)] , o-Carboxybenzamidoperoxycaproic acid, N-Nonenylamidoperadipic Acid and N-Nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-Diperoxycarboxylic acid, 1,9-Diperoxyazelaic acid, Diperocysebacic acid, Diperoxybrassic acid, the diperoxyphthalic acids, 2-De
  • chlorine or bromine releasing substances can be used.
  • suitable chlorine or bromine releasing materials are, for example, heterocyclic N-bromo- and N-chloroamides, for example trichloroisocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium.
  • DICA dichloroisocyanuric acid
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydantoin are also suitable.
  • washing or cleaning agents in particular automatic dishwashing agents, are preferred which contain from 1 to 35% by weight, preferably from 2.5 to 30% by weight, particularly preferably from 3.5 to 20% by weight and in particular from 5 to 15% by weight % Bleach, preferably sodium percarbonate.
  • the active oxygen content of the washing or cleaning agents, in particular the automatic dishwashing agents in each case based on the total weight of the composition, preferably between 0.4 and 10 wt .-%, particularly preferably between 0.5 and 8 wt .-% and in particular between 0.6 and 5 wt .-%.
  • Particularly preferred agents have one Active oxygen content above 0.3 wt .-%, preferably above 0.7 wt .-%, more preferably above 0.8 wt .-% and in particular above 1, 0 wt .-% to.
  • Bleach activators are used in detergents, for example, to achieve an improved bleaching effect when cleaned at temperatures of 60 ° C. and below.
  • As bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylene diamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, especially tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5- diacetoxy-2,5-dihydrofuran.
  • TAED tetraacetylethylened
  • R 1 for -H, -CH 3 a C 2 . 24 alkyl or alkenyl, a substituted C 2 . 24 -alkyl or alkenyl radical having at least one substituent selected from the group consisting of -Cl, -Br, -OH, -NH 2 , -CN, an alkyl or alkenylaryl radical having a C 1-24 -alkyl group, or a substituted alkyl radical or alkenylaryl radical having a Ci.
  • bleach activators are compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylene diamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT) 1 acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI) 1 acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5- Diacetoxy-2,5-dihydrofuran, n-methyl-morpholinium
  • bleach activators preference is given to bleach activators from the group of the polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (US Pat.
  • TAED tetraacetylethylenediamine
  • N-acylimides in particular N-nonanoylsuccinimide (NOSI)
  • acylated phenolsulfonates in particular n-nonanoyl or isononanoyloxybenzenesulfonate
  • n- or iso-NOBS n- or iso-NOBS
  • n-methyl-morpholinium-acetonitrile-methylsulfate MMA
  • MMA n-methyl-morpholinium-acetonitrile-methylsulfate
  • bleach catalysts can also be used.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn 1 Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) Complexes of the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, manganese sulfate are used in conventional amounts, preferably in an amount up to 5 wt .-%, in particular of 0.0025 wt % to 1 wt .-% and particularly preferably from 0.01 wt .-% to 0.25 wt .-%, each based on the total weight of the bleach activator-containing agents used. But in special cases, more bleach activator can be used.
  • Enzymes Enzymes can be used to increase the washing and cleaning performance of detergents or cleaners. These include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents and cleaners, which are preferably used accordingly. Washing or cleaning composition preferably contain enzymes in total amounts of 1 x 10 "* to 5 wt .-% based on active protein. The protein concentration can be known by using methods, for example the BCA method and the biuret method to be determined.
  • subtilisin type those of the subtilisin type are preferable.
  • these are the subtilisins BPN 1 and Carlsberg, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase, proteinase K and the subtilases, but not the subtilisins in the narrower sense Proteases TW3 and TW7.
  • Subtilisin Carlsberg is in an evolved form below the Tradenames Alcalase ® from Novozymes A / S, Bagsvaerd, Denmark.
  • subtilisins 147 and 309 are sold under the trade names Esperase ®, or Savinase ® from Novozymes. From the protease from Bacillus lentus DSM 5483 derived under the name BLAP ® variants are derived.
  • proteases are, for example, under the trade names Durazym ®, relase ®, Everlase® ®, Nafizym, Natalase ®, Kannase® ® and Ovozymes ® from Novozymes, under the trade names Purafect ®, Purafect ® OxP and Properase.RTM ® by the company Genencor, that under the trade name Protosol® ® from Advanced Biochemicals Ltd., Thane, India, under the trade name Wuxi ® from Wuxi Snyder Bioproducts Ltd., China, under the trade names Proleather® ® and protease P ® by the company Amano Pharmaceuticals Ltd., Nagoya, Japan, and the enzyme available under the name Proteinase K-16 from Kao Corp., Tokyo, Japan.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, B. amyloliquefaciens or B. stearothermophilus and also their further developments improved for use in detergents and cleaners.
  • the enzyme from B. licheniformis is available from Novozymes under the name Termamyl ® and from Genencor under the name Purastar® ® ST. Development products of this ⁇ - amylase are available from Novozymes under the trade names Duramyl ® and Termamyl ® ultra, from Genencor under the name Purastar® ® OxAm and from Daiwa Seiko Inc., Tokyo, Japan, as Keistase ®.
  • the ⁇ -amylase from B. amyloliquefaciens is marketed by Novozymes under the name BAN ®, and derived variants from the ⁇ - amylase from B. stearothermophilus under the names BSG ® and Novamyl ®, likewise from Novozymes.
  • ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from B. agaradherens (DSM 9948).
  • lipases or cutinases are also usable according to the invention, in particular because of their triglyceride-splitting activities, but also in order to generate in situ peracids from suitable precursors.
  • these include, for example, the lipases originally obtainable from Humicola lanuginosa (Thermomyces lanuginosus), or further developed, especially those with the amino acid exchange D96L. They are for example marketed by Novozymes under the trade names Lipolase ®, Lipolase Ultra ®, LipoPrime® ®, Lipozyme® ® and Lipex ®.
  • the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens.
  • lipases are available from Amano under the designations Lipase CE ®, Lipase P ®, Lipase B ®, or lipase CES ®, Lipase AKG ®, Bacillis sp. Lipase® , Lipase AP® , Lipase M- AP® and Lipase AML® are available. From the company Genencor, for example, the lipases, or cutinases can be used, the initial enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii.
  • Suitable mannanases are available, for example under the name Gamanase ® and Pektinex AR ® from Novozymes, under the name Rohapec ® B1 L from AB Enzymes and under the name Pyrolase® ® from Diversa Corp., San Diego, CA, USA , The .beta.-glucanase obtained from B. subtilis is available under the name Cereflo ® from Novozymes.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • peroxidases such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases
  • Suitable commercial products Denilite® ® 1 and 2 from Novozymes should be mentioned.
  • organic, particularly preferably aromatic, compounds which interact with the enzymes in order to enhance the activity of the relevant oxidoreductases (enhancers) or to ensure the flow of electrons (mediators) at greatly varying redox potentials between the oxidizing enzymes and the soils.
  • the enzymes originate, for example, either originally from microorganisms, such as the genera Bacillus, Streptomyces, Humicola, or Pseudomonas, and / or are produced by biotechnological methods known per se by suitable microorganisms, such as transgenic expression hosts of the genera Bacillus or filamentous fungi.
  • suitable microorganisms such as transgenic expression hosts of the genera Bacillus or filamentous fungi.
  • the purification of the relevant enzymes is preferably carried out by methods which are in themselves established, for example by precipitation, sedimentation, concentration, filtration of the liquid phases, microfiltration, ultrafiltration, the action of chemicals, deodorization or suitable combinations of these steps.
  • the enzymes can be used in any form known in the art. These include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, sparing in water and / or added with stabilizers.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • a preferably natural polymer or in the form of capsules for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • One group of stabilizers are reversible protease inhibitors. Frequently, benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are used, including in particular derivatives with aromatic groups, such as ortho-substituted, meta-substituted and para-substituted phenylboronic acids, or their salts or esters.
  • peptidic protease inhibitors are, inter alia, ovomucoid and leupeptin to mention; An additional option is the formation of fusion proteins from proteases and peptide inhibitors.
  • enzyme stabilizers are aminoalcohols, such as up to Ci 2, such as succinic acid, other dicarboxylic acids or salts of said acids, mono-, di-, triethanol- and -propanolamine and mixtures thereof, aliphatic carboxylic acids. End-capped fatty acid amide alkoxylates are also suitable. Certain organic acids used as builders are additionally capable of stabilizing a contained enzyme.
  • Lower aliphatic alcohols but especially polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other frequently used enzyme stabilizers.
  • polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other frequently used enzyme stabilizers.
  • calcium salts such as calcium acetate or calcium formate, and magnesium salts.
  • Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or cellulose ethers, acrylic polymers and / or polyamides stabilize the enzyme preparation, inter alia, against physical influences or pH fluctuations.
  • Polyamine N-oxide containing polymers act as enzyme stabilizers.
  • Other polymeric stabilizers are the linear C 8 -C 18 polyoxyalkylenes.
  • Alkyl polyglycosides can stabilize the enzymatic components and even increase their performance.
  • Crosslinked N-containing compounds also act as enzyme stabilizers.
  • a sulfur-containing reducing agent is, for example, sodium sulfite.
  • combinatons of stabilizers are used, for example of polyols, boric acid and / or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts.
  • the effect of peptide-aldehyde stabilizers is enhanced by the combination with boric acid and / or boric acid derivatives and polyols and further enhanced by the additional use of divalent cations, such as calcium ions.
  • Glass corrosion inhibitors Glass corrosion inhibitors prevent the occurrence of turbidity, streaks and scratches, but also the iridescence of the glass surface of machine-cleaned glasses.
  • Preferred Glas ⁇ corrosion inhibitors come from the group of magnesium and / or zinc salts and / or magnesium and / or zinc complexes.
  • a preferred class of compounds that can be used to prevent glass corrosion are insoluble zinc salts.
  • Insoluble zinc salts in the context of this preferred embodiment are zinc salts which have a solubility of a maximum of 10 grams of zinc salt per liter of water at 20 ° C.
  • Examples of particularly preferred insoluble zinc salts according to the invention are zinc silicate, zinc carbonate, zinc oxide, basic zinc carbonate (Zn 2 (OH) 2 CO 3 ), zinc hydroxide, zinc oxalate, zinc monophosphate (Zn 3 (PO 4 J 2 ) and zinc pyrophosphate (Zn 2 (P 2 O 7 )).
  • the zinc compounds mentioned are preferably used in amounts which have a content of the zinc ions of between 0.02 and 10% by weight, preferably between 0.1 and 5.0% by weight and in particular between 0.2 and 1.0 Wt .-%, each based on the total glass corrosion inhibitor-containing agent effect.
  • the exact content of the agent on the zinc salt or zinc salts is naturally dependent on the type of zinc salts - the less soluble the zinc salt used, the higher its concentration should be in the funds.
  • the particle size of the salts is a criterion to be observed, so that the salts do not adhere to glassware or machine parts.
  • the insoluble zinc salts have a particle size below 1, 7 millimeters.
  • the insoluble zinc salt has an average particle size which is significantly below this value in order to further minimize the risk of insoluble residues, for example an average particle size of less than 250 ⁇ m. Again, this is even more true the less the zinc salt is soluble.
  • the glass corrosion inhibiting effectiveness increases with decreasing particle size.
  • the average particle size is preferably below 100 microns. For still less soluble salts, it may be even lower; For example, average particle sizes below 60 ⁇ m are preferred for the very poorly soluble zinc oxide.
  • Another preferred class of compounds are magnesium and / or zinc salt (s) of at least one monomeric and / or polymeric organic acid. These have the effect that, even with repeated use, the surfaces of glassware do not undergo corrosive changes, in particular no clouding, streaks or scratches, but also no iridescence of the glass surfaces.
  • magnesium and / or zinc salt (s) of monomeric and / or polymeric organic acids can be used, yet the magnesium and / or zinc salts of monomeric and / or polymeric organic acids from the groups of unbranched saturated or unsaturated monocarboxylic acids, the branched saturated or unsaturated monocarboxylic acids, the saturated and unsaturated dicarboxylic acids, the aromatic mono-, di- and tricarboxylic acids, the sugar acids, the hydroxy acids, the oxo acids, the amino acids and / or the polymeric carboxylic acids are preferred.
  • the spectrum of the inventively preferred zinc salts of organic acids ranges from salts which are difficult or insoluble in water, ie a solubility below 100 mg / l, preferably below 10 mg / l, in particular below 0.01 mg / l have, to those salts which have a solubility in water above 100 mg / l, preferably above 500 mg / l, more preferably above 1 g / l and in particular above 5 g / l (all solubilities at 2O 0 C water temperature).
  • the first group of zinc salts includes, for example, the zinc nitrate, the zinc oleate and the zinc stearate, and the group of soluble zinc salts includes, for example, zinc formate, zinc acetate, zinc lactate and zinc gluconate.
  • At least one zinc salt of an organic carboxylic acid more preferably a zinc salt from the group zinc stearate, zinc oleate, zinc gluconate, zinc acetate, zinc lactate and / or Zinkeitrat used.
  • Zinc ricinoleate, zinc abietate and zinc oxalate are also preferred.
  • the content of cleaning agents to zinc salt is preferably between 0.1 to 5 wt .-%, preferably between 0.2 to 4 wt .-% and in particular between 0.4 to 3 wt .-%, or the content of zinc in oxidized form (calculated as Zn 2+ ) is between 0.01 and 1% by weight, preferably between 0.02 and 0.5% by weight and in particular between 0.04 and 0.2% by weight. -%, in each case based on the total weight of the glass corrosion inhibitor-containing agent.
  • Corrosion inhibitors serve to protect the items to be washed or the machine, with particular silver protectants being of particular importance in the field of automatic dishwashing.
  • silver protectants selected from the group of triazoles, benzotriazoles, bisbenzotriazoles, aminotriazoles, alkylaminotriazoles and transition metal salts or complexes can be used in particular. Particularly preferred to use are benzotriazole and / or alkylaminotriazole.
  • 3-amino-5-alkyl-1, 2,4-triazoles preferably used according to the invention which may be mentioned are: propyl, butyl, pentyl, heptyl, octyl, nonyl, decyl -, undecyl, - dodecyl, -sononyl, -Versatic-10-alkyl, -phenyl, -p-tolyl, - (4-tert-butylphenyl) -, - (4-methoxyphenyl) -, - (2-, 3-, 4-pyridyl) -, - (2-thienyl) -, - (5-methyl-2-furyl) -, - (5-oxo-2-pyrrolidinyl) -, -3 amino-1, 2,4-triazole.
  • Preferred acids for salt formation are hydrochloric acid, sulfuric acid, phosphoric acid, carbonic acid, sulphurous acid, organic carboxylic acids such as acetic, glycolic, citric, succinic acid.
  • cleaner formulations often contain active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • oxygen- and nitrogen-containing organic redox-active compounds such as di- and trihydric phenols, e.g. Hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucin, pyrogallol or derivatives of these classes of compounds used.
  • salt and complex inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts which are selected from the group of the manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammin) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) - Complexes, the chlorides of cobalt or manganese and manganese sulfate. Also, zinc compounds can be used to prevent corrosion on the items to be washed.
  • redox-active substances can be used. These substances are preferably inorganic redox-active substances from the group of manganese, titanium, zirconium, hafnium, vanadium, cobalt and cerium salts and / or complexes, wherein the metals preferably in one of the oxidation states II, III, IV, V or VI are present.
  • the metal salts or metal complexes used should be at least partially soluble in water.
  • the counterions suitable for salt formation comprise all customary mono-, di- or tri-positively negatively charged inorganic anions, for example oxide, sulfate, nitrate, fluoride, but also organic anions such as stearate.
  • Metal complexes in the context of the invention are compounds which consist of a central atom and one or more ligands and optionally additionally one or more of the above-mentioned.
  • Anions exist.
  • the central atom is one of the o.g. Metals in one of the above Oxidation states.
  • the ligands are neutral molecules or anions that are mono- or polydentate;
  • the term "ligand" within the meaning of the invention is e.g. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart / New York, 9th edition, 1990, page 2507" explained in more detail.
  • the charge of the central atom and the charge of the ligand (s) do not add up to zero, either one or more of the above may be provided, depending on whether there is cationic or anionic charge excess.
  • Anions or one or more cations e.g. Sodium, potassium, ammonium ions, for charge balance.
  • Suitable complexing agents are e.g. Citrate, acetylacetonate or 1-hydroxyethane-1,1-diphosphonate.
  • metal salts and / or metal complexes are selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [1-hydroxyethane-1, 1- diphosphonate], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co (NO 3 ) 2 , Ce (NO 3 J 3 , and mixtures thereof, such that the metal salts and / or metal complexes selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (IIMi-hydroxyethane-1, 1-diphosphonat], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6
  • metal salts or metal complexes are generally commercially available substances which can be used for the purpose of silver corrosion protection without prior purification in detergents or cleaners.
  • the mixture of pentavalent and tetravalent vanadium (V 2 O 5 , VO 2 , V 2 O 4 ) known from the SO 3 production (contact method) is suitable, as well as by diluting a Ti (SO 4 ) 2 solution of resulting titanyl sulfate, TiOSO 4 .
  • the inorganic redox-active substances are preferably coated, ie completely coated with a water-tight material which is readily soluble in the cleaning temperatures, in order to prevent their premature decomposition or to prevent oxidation during storage.
  • Preferred coating materials which are applied by known processes, such as Sandwik melt coating processes from the food industry are paraffins, microwaxes, waxes of natural origin such as carnauba wax, candellila wax, beeswax, higher-melting alcohols such as hexadecanol, soaps or fatty acids.
  • the coating material which is solid at room temperature is applied in the molten state to the material to be coated, for example by spinning finely divided material to be coated in a continuous stream through a likewise continuously produced spray zone of the molten coating material.
  • the melting point must be selected so that the coating material dissolves easily during the silver treatment or melts quickly.
  • the melting point should ideally be in the range between 45 ° C and 65 ° C and preferably in the range 50 0 C to 60 0 C.
  • the metal salts and / or metal complexes mentioned are contained in cleaning agents, preferably in an amount of 0.05 to 6 wt .-%, preferably 0.2 to 2.5 wt .-%, each based on the total corrosion inhibitor-containing agent.
  • Disintegration Aids In order to facilitate the disintegration of preformed shaped bodies, it is possible to incorporate disintegration aids, so-called disintegrants into these agents in order to shorten the disintegration times.
  • disintegration aids so-called disintegrants into these agents in order to shorten the disintegration times.
  • excipients are understood to mean excipients which are suitable for rapid disintegration of tablets in water or gastric juice and for the release of the drugs in resorbable form.
  • Disintegration aids are preferably used in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight, based in each case on the total weight of the disintegration assistant-containing agent.
  • Preferred disintegrating agents used are cellulose-based disintegrating agents, so that preferred washing and cleaning agents contain such cellulose-based disintegrants in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight. % contain.
  • Pure cellulose has the formal gross composition (C 6 H 10 Os) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose. Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted. Celluloses in which the hydroxy groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as disintegrating agents based on cellulose, but used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrating agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of cellulose derivatives.
  • the cellulose used as a disintegration aid is preferably not used in finely divided form, but converted into a coarser form, for example granulated or compacted, before it is added to the premixes to be tabletted.
  • the particle sizes of such disintegrating agents are usually above 200 .mu.m, preferably at least 90 wt .-% between 300 and 1600 .mu.m and in particular at least 90 wt .-% between 400 and 1200 microns.
  • the above and described in more detail in the documents cited coarser disintegration aids are preferred as disintegration aids and are commercially available, for example under the name of Arbocel ® TF-30-HG from Rettenmaier available in the present invention.
  • microcrystalline cellulose As a further disintegrating agent based on cellulose or as a component of this component microcrystalline cellulose can be used.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which attack and completely dissolve only the amorphous regions (about 30% of the total cellulose mass) of the celluloses, leaving the crystalline regions (about 70%) intact. Subsequent deaggregation of the microfine celluloses resulting from the hydrolysis provides the microcrystalline celluloses which have primary particle sizes of about 5 microns and, for example, compactable into granules having an average particle size of 200 microns.
  • Preferred disintegration aids preferably a disintegration aid based on cellulose, preferably in granular, cogranulated or compacted form, are present in the disintegrating agent-containing agents in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6 wt .-%, each based on the total weight of the disintegrating agent-containing agent.
  • gas-evolving effervescent systems can furthermore be used as tablet disintegration auxiliaries.
  • the gas-evolving effervescent system may consist of a single substance that releases a gas upon contact with water.
  • the gas-releasing effervescent system in turn consists of at least two constituents which react with one another to form gas.
  • Preferred effervescent systems consist of alkali metal carbonate and / or bicarbonate and an acidifying agent which is suitable for liberating carbon dioxide from the alkali metal salts in aqueous solution.
  • the sodium and potassium salts are clearly preferred over the other salts for reasons of cost.
  • the relevant pure alkali metal carbonates or bicarbonates do not have to be used; Rather, mixtures of different carbonates and bicarbonates may be preferred.
  • Acidifying agents which release carbon dioxide from the alkali metal salts in aqueous solution include, for example, boric acid and alkali metal hydrogen sulfates, alkali metal dihydrogen phosphates and other inorganic salts.
  • organic acidifying agents preference is given to using organic acidifying agents, the citric acid being a particularly preferred acidifying agent.
  • Organic sulfonic acids such as sulfamic acid are also usable.
  • a commercially available as an acidifier in the context of the present invention also preferably be used is Sokalan ® DCS (trademark of BASF), a mixture of succinic acid (max. 31 wt .-%), glutaric acid (max. 50 wt .-%) and adipic acid ( at most 33% by weight).
  • Acidifying agents in the effervescent system from the group of organic di-, tri- and oligocarboxylic acids or mixtures are preferred.
  • perfume oils or fragrances may be individual fragrance compounds, e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used. Fragrance compounds of the ester type are known e.g.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes e.g.
  • the linear alkanals having 8-18 C atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g.
  • the alcohols include anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol;
  • the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures such as are available from vegetable sources, e.g.
  • Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil are also suitable.
  • fragrance To be perceptible, a fragrance must be volatile, whereby besides the nature of the functional groups and the structure of the chemical compound, the molecular weight also plays an important role plays. For example, most odorants have molecular weights up to about 200 daltons, while molecular weights of 300 daltons and above are more of an exception. Due to the different volatility of fragrances, the odor of a perfume or fragrance composed of several fragrances changes during evaporation, whereby the odor impressions in "top note”, “Middle note or body” and “base note” (end note or dry out) divided.
  • the top note of a perfume or fragrance does not consist solely of volatile compounds, while the base note consists for the most part of less volatile, ie adherent fragrances.
  • the base note consists for the most part of less volatile, ie adherent fragrances.
  • more volatile fragrances can be bound to certain fixatives, preventing them from evaporating too quickly.
  • the subsequent classification of the fragrances in "more volatile” or “adherent” fragrances so nothing is said about the olfactory impression and whether the corresponding fragrance is perceived as the head or middle note.
  • Adhesive-resistant fragrances which can be used in the context of the present invention are, for example, the essential oils such as angelica root oil, aniseed oil, arnica blossom oil, basil oil, bay oil, bergamot oil, Champacablütenöl, Edel fir oil, Edeltannenzapfen oil, Elemiöl, eucalyptus oil, fennel oil, spruce needle oil, galbanum oil, geranium oil, ginger grass oil, Guaiac wood oil, gurdy balm oil, helichrysum oil, ho oil, ginger oil, iris oil, cajeput oil, calamus oil, chamomile oil, camphor oil, kanaga oil, cardamom oil, cassia oil, pine oil, copa ⁇ va balsam oil, coriander oil, spearmint oil, caraway oil, cumin oil, lavender oil, lemongrass oil, lime oil, tangerine oil, lemon balm oil, Musk Grain Oil, Myrrh Oil, Clove
  • fragrances can be used in the context of the present invention as adherent fragrances or fragrance mixtures, ie fragrances.
  • These compounds include the following compounds and mixtures thereof: ambrettolide, ⁇ -amylcinnamaldehyde, anethole, anisaldehyde, anisalcohol, anisole, methyl anthranilate, acetophenone, benzylacetone, benzaldehyde, ethyl benzoate, benzophenone, benzyl alcohol, benzyl acetate, benzyl benzoate, benzyl formate, benzyl valerate, borneol , Bornyl acetate, ⁇ -bromostyrene, n-decyl aldehyde, n-dodecyl aldehyde, eugenol, eugenol methyl ether, eucalyptol,
  • the more volatile fragrances include in particular the lower-boiling fragrances of natural or synthetic origin, which can be used alone or in mixtures.
  • Examples of more readily volatile fragrances are alkyl isothiocyanates (alkyl mustard oils), butanedione, limonene, linalool, linayl acetate and propionate, menthol, menthone, methyl-n-heptenone, phellandrene, phenylacetaldehyde, terpinyl acetate, citral, citronellal.
  • the fragrances can be processed directly, but it can also be advantageous to apply the fragrances on carriers that provide a slower fragrance release for long-lasting fragrance.
  • carrier materials for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • Dyes Preferred dyestuffs the selection of which presents no difficulty to a person skilled in the art, have a high storage stability and insensitivity to the other ingredients of the compositions and to light and no pronounced substantivity towards the substrates to be treated with the dye-containing agents, such as textiles, glass, ceramics or plastic dishes, so as not to stain them.
  • the above-mentioned Basacid ® Green or the above-mentioned Sandolan Blue ® are typically chosen dye concentrations in the range of some 10 '2 to 10' 3 wt .-%.
  • the appropriate concentration of the colorant is in washing or cleaning agents, however, typically a few 10 '3 to' ⁇ 0 ⁇ 4 wt. -%.
  • Dyeing agents which can be oxidatively destroyed in the washing process and mixtures thereof with suitable blue dyes, so-called blue toners, are preferred.
  • colorants which are soluble in water or at room temperature in liquid organic substances.
  • Suitable examples are anionic colorants, for example anionic nitrosofarbstoffe.
  • One possible dye is, for example, naphthol green (Color Index (CI) Part 1: Acid Green 1; Part 2: 10020)., That is as a commercial product, for example as Basacid ® Green 970 from BASF, Ludwigshafen available, as well as mixtures thereof with suitable blue dyes.
  • Pigmosol come ® Blue 6900 (CI 74160), Pigmosol ® Green 8730 (CI 74260), Basonyl ® Red 545 FL (CI 45170), Sandolan® ® rhodamine EB400 (CI 45100), Basacid® ® Yellow 094 (CI 47005) Sicovit ® Patentblau 85 e 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, Cl Acidblue 183), pigment Blue 15 (Cl 74160), Supranol Blue ® GLW (CAS 12219-32-8, Cl Acidblue 221 )), Nylosan Yellow ® N-7GL SGR (CAS 61814-57-1, Cl Acidyellow 218) and / or Sandolan Blue ® (Cl Acid Blue 182, CAS 12219-26-0) is used.
  • the detergents and cleaners can contain further ingredients which further improve the performance and / or aesthetic properties of these compositions.
  • Preferred agents contain one or more of the group of electrolytes, pH adjusters, fluorescers, hydrotopes, foam inhibitors, silicone oils, anti redeposition agents, optical brighteners, grayness inhibitors, anti-shrinkage agents, crease inhibitors, dye transfer inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, antistatic agents, ironing aids , Phobic and impregnating agents, swelling and anti-slip agents and UV absorbers.
  • electrolytes from the group of inorganic salts a wide number of the most diverse salts can be used.
  • Preferred cations are the alkali and alkaline earth metals, be ⁇ preferred anions are the halides and sulfates. From a manufacturing point of view, the use of NaCl or MgCl 2 in the washing or cleaning agents is preferred.
  • pH adjusters In order to bring the pH of detergents or cleaners into the desired range, the use of pH adjusters may be indicated. Can be used here are all known acids or alkalis, unless their use is not for technical application or environmental reasons or for reasons of consumer protection prohibited. Usually, the amount of these adjusting agents does not exceed 1% by weight of the total formulation.
  • Suitable foam inhibitors are, inter alia, soaps, oils, fats, paraffins or silicone oils, which may optionally be applied to support materials.
  • Suitable support materials are, for example, inorganic salts such as carbonates or sulfates, cellulose derivatives or silicates and mixtures of the aforementioned materials.
  • preferred agents include paraffins, preferably unbranched paraffins (n-paraffins) and / or silicones, preferably linear-polymeric silicones, which are constructed according to the scheme (R 2 SiO) X and are also referred to as silicone oils. These silicone oils are usually clear, colorless, neutral, odorless, hydrophobic liquids having a molecular weight between 1,000 and 150,000, and viscosities between 10 and 1,000,000 mPa.s.
  • Suitable anti-redeposition agents which are also referred to as soil repellents, are, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropylcellulose with a proportion of methoxy groups of 15 to 30% by weight and of hydroxypropyl groups of 1 to 15% by weight, based in each case on the nonionic cellulose ether as well as the known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof. In particular preferred of these are the sulfonated derivatives of phthalic and terephthalic acid polymers.
  • Optical brighteners may be added to laundry detergents or cleaners to remove graying and yellowing of the treated fabrics which will attract the fiber and cause lightening and fake bleaching by exposing invisible ultraviolet radiation to visible, longer wavelength light where the ultraviolet light absorbed from the sunlight is emitted as a faint bluish fluorescence and gives a pure white with the yellow color of the grayed or yellowed laundry, for example suitable compounds from the substance classes of the 4,4'-diamino-2,2 ' - stilbenedisulfonic (flavonic), 4,4'-biphenylene -Distyryl, Methylumbelliferone, coumarins, dihydroquinolinones, 1, 3-diaryl pyrazolines, naphthalimides, benzoxazole, benzisoxazole, and benzimidazole systems, and pyrene derivatives substituted by heterocycles.
  • suitable compounds from the substance classes of the 4,4'-diamino-2,2 '
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether sulfonic acids or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose. It is also possible to use soluble starch preparations and starch products other than those mentioned above, for example degraded starch, aldehyde starches etc. Polyvinylpyrrolidone is also useful.
  • graying inhibitors are cellulose ethers such as carboxymethylcellulose (Na salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof.
  • cellulose ethers such as carboxymethylcellulose (Na salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof.
  • synthetic anti-crease agents can be used. These include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, alkylol esters, -alkylolamides or fatty alcohols, which are usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid ester.
  • Phobic and impregnation processes are used to furnish textiles with substances that prevent the deposition of dirt or facilitate its leaching ability.
  • Preferred repellents and impregnating agents are perfluorinated fatty acids, also in the form of their aluminum u. Zirconium salts, organic silicates, silicones, polyacrylic acid esters with perfluorinated alcohol component or polymerizable compounds coupled with perfluorinated acyl or sulfonyl radical.
  • Antistatic agents may also be included. The antisoiling equipment with repellents and impregnating agents is often classified as an easy-care finish.
  • the penetration of the impregnating agent in the form of solutions or emulsions of the active substances in question can be facilitated by adding wetting agents which reduce the surface tension.
  • a further field of application of repellents and impregnating agents is the water-repellent finish of textiles, tents, tarpaulins, leather, etc., in which, in contrast to waterproofing, the fabric pores are not closed, so the fabric remains breathable (hydrophobing).
  • the water repellents used for hydrophobizing coat textiles, leather, paper, wood, etc. with a very thin layer of hydrophobic groups, such as longer alkyl chains or siloxane groups. Suitable hydrophobizing agents are e.g. Paraffins, waxes, metal soaps, etc.
  • hydrophobized materials do not feel greasy; nevertheless, similar to greasy substances, water droplets emit from them without moistening.
  • Silicone-impregnated textiles have a soft feel and are water and dirt repellent; Stains from ink, wine, fruit juices and the like are easier to remove.
  • Antimicrobial agents can be used to combat microorganisms. Here one differentiates depending on the antimicrobial spectrum and mechanism of action between bacteriostats and bactericides, fungistats and fungicides, etc. Important substances from these groups are for example Benzalkoniumchloride, Alkylarlylsulfonate, halophenols and Phenolmercuriacetat, which can be completely dispensed with these compounds.
  • compositions may contain anti-oxidants.
  • This class of compounds includes, for example, substituted phenols, hydroquinones, catechols and aromatic amines, as well as organic sulfides, polysulfides, dithiocarbamates, phosphites and phosphonates.
  • Antistatic agents increase the surface conductivity and thus allow an improved drainage of formed charges.
  • External antistatic agents are generally substances with at least one hydrophilic molecule ligand and give a more or less hygroscopic film on the surfaces. These mostly surface-active antistatic agents can be subdivided into nitrogen-containing (amines, amides, quaternary ammonium compounds), phosphorus-containing (phosphoric acid esters) and sulfur-containing (alkyl sulfonates, alkyl sulfates) antistatic agents.
  • Lauryl (or stearyl) dimethylbenzylammonium chlorides are also suitable as antistatic agents for textiles or as an additive to detergents, wherein additionally a softening effect is achieved.
  • Softeners can be used to care for the textiles and to improve the textile properties such as a softer "handle” (avivage) and reduced electrostatic charge (increased wearing comfort).
  • the active ingredients in softener formulations are "esterquats", quaternary ammonium compounds having two hydrophobic groups, such as disteryldimethylammonium chloride, which, however, due to its insufficient biodegradability, is increasingly being replaced by quaternary ammonium compounds containing in their hydrophobic groups ester groups as breaking points for biodegradation.
  • esters with improved biodegradability are obtainable, for example, by esterifying mixtures of methyldiethanolamine and / or triethanolamine with fatty acids and then quaternizing the reaction products in a manner known per se with alkylating agents. Further suitable as a finish is dimethylolethyleneurea.
  • Silicone derivatives can be used to improve the water absorbency, rewettability of the treated fabrics, and ease of ironing the treated fabrics. These additionally improve the rinsing out of detergents or cleaning agents by their foam-inhibiting properties.
  • Preferred silicone derivatives are, for example, polydialkyl or alkylaryl siloxanes in which the alkyl groups have one to five carbon atoms and are completely or partially fluorinated.
  • Preferred silicones are Polydimethylsiloxanes, which may optionally be derivatized and are then amino-functional or quaternized or have Si-OH, Si-H and / or Si-Cl bonds.
  • silicones are the polyalkylene oxide-modified polysiloxanes, ie polysiloxanes which comprise, for example, polyethylene glycols and also the polyalkylene oxide-modified dimetylpolysiloxanes.
  • UV absorbers which are absorbed by the treated textiles and improve the light resistance of the fibers.
  • Compounds having these desired properties include, for example, the non-radiative deactivating compounds and derivatives of benzophenone having substituents in the 2- and / or 4-position. Also suitable are substituted benzotriazoles, phenyl-substituted acrylates (cinnamic acid derivatives) in the 3-position, optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's own urocanic acid.
  • Protein hydrolyzates are due to their fiber-care effect further in the context of the present invention preferred active substances from the field of detergents and cleaners.
  • Protein hydrolysates are product mixtures obtained by acid, alkaline or enzymatically catalyzed degradation of proteins (proteins).
  • protein hydrolysates of both vegetable and animal origin can be used.
  • Animal protein hydrolysates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolysates, which may also be present in the form of salts.
  • Preferred according to the invention is the use of protein hydrolysates of plant origin, e.g. Soy, almonds, rice, pea, potato and wheat protein hydrolysates.
  • protein hydrolysates are preferred as such, amino acid mixtures or individual amino acids obtained otherwise, such as, for example, arginine, lysine, histidine or pyrroglutamic acid, may also be used in their place. Also possible is the use of derivatives of protein hydrolysates, for example in the form of their fatty acid condensation products.
  • the nonaqueous solvents which can be used according to the invention include, in particular, the organic solvents, of which only the most important can be listed here: alcohols (methanol, ethanol, propanols, butanols, octanols, cyclohexanol), glycols (ethylene glycol, diethylene glycol), ethers and glycol ethers (diethyl ether, dibutyl ether, anisole, dioxane, tetrahydrofuran, mono-, di-, tri-, polyethylene glycol ethers), ketones (acetone, butanone, cyclohexanone), esters (acetic esters, glycol esters), amides and other nitrogen compounds (dimethylformamide, Pyridine, N-methylpyrrolidone, acetonitrile), sulfur compounds (carbon disulfide, dimethyl sulfoxide, sulfolane), nitro compounds (nitrobenzene), Halogenated hydrocarbons (dich
  • a solvent mixture which is particularly preferred in the context of the present application is, for example, benzine, a mixture of various hydrocarbons suitable for dry cleaning, preferably containing C12 to C14 hydrocarbons above 60% by weight, more preferably above 80% by weight and in particular above 90 wt .-%, each based on the total weight of the mixture, preferably having a boiling range of 81 to 110 0 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Wrappers (AREA)
  • Detergent Compositions (AREA)
  • Containers And Plastic Fillers For Packaging (AREA)
  • Bag Frames (AREA)

Description

Mehrkammer-Pouch
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittel. Insbesondere betrifft diese Erfindung ein Verfahren, welches es gestattet, mehrphasige Wasch- und Reinigungsmittel in Form von Dosiereinheiten, welche einen wasser¬ löslichen oder wasserdispergierbaren Behälter enthalten, bereitzustellen.
Wasch- oder Reinigungsmittel sind heute für den Verbraucher in vielfältigen Angebotsformen erhältlich. Neben Waschpulvern und -granulaten umfasst dieses Angebot beispielsweise auch Reinigungsmittelkonzentrate in Form extrudierter oder tablettierter Zusammensetzungen. Diese festen, konzentrierten bzw. verdichteten Angebotsformen zeichnen sich durch ein verringertes Volumen pro Dosiereinheit aus und senken damit die Kosten für Verpackung und Transport. Insbesondere die Wasch- oder Reinigungsmitteltabletten erfüllen dabei zusätzlich den Wunsch des Verbrauchers nach einfacher Dosierung. Die entsprechenden Mittel sind im Stand der Technik umfassend beschrieben. Neben den angeführten Vorteilen weisen kompaktierte Wasch¬ oder Reinigungsmittel jedoch auch eine Reihe von Nachteilen auf. Insbesondere tablettierte Angebotsformen zeichnen sich aufgrund ihrer hohen Verdichtung häufig durch einen verzögerten Zerfall und damit eine verzögerte Freisetzung ihrer Inhaltsstoffe aus. Zur Auflösung dieses „Widerstreits" zwischen ausreichender Tablettenhärte und kurzen Zerfallszeiten wurden in der Patentliteratur zahlreiche technische Lösungen offenbart, wobei an dieser Stelle beispielhaft auf die Verwendung so genannter Tablettensprengmittel verwiesen werden soll. Dieses Zerfallsbeschleuniger werden den Tabletten zusätzlich zu den wasch- oder reinigungsaktiven Substanzen zugesetzt, wobei sie selbst in der Regel keine wasch- oder reinigungsaktiven Eigenschaften aufweisen, und erhöhen auf diese Weise die Komplexität und die Kosten dieser Mittel. Ein weiterer Nachteil der Tablettierung von Aktivsubstanzgemischen, insbesondere wasch- oder reinigungsaktiv-substanzhaltigen Gemischen, ist die Inaktivierung der enthaltenen Aktivsubstanzen durch den bei der Tablettierung auftretenden Kompaktierungsdruck. Eine Inaktivierung der Aktivsubstanzen kann auch auf Grund der in Folge der Tablettierung vergrößerten Kontaktflächen der Inhaltsstoffe durch chemische Reaktion erfolgen.
Als Alternative zu den zuvor beschriebenen partikulären oder kompaktierten Wasch- oder Reinigungsmitteln werden in den letzten Jahren zunehmend feste oder flüssige Wasch- oder Reinigungsmittel beschrieben, welche eine wasserlösliche oder wasserdispergierbare Verpackung aufweisen. Diese Mittel zeichnen sich wie die Tabletten durch eine vereinfachte Dosierung aus, da sie zusammen mit der Umverpackung in die Waschmaschine oder die Geschirrspülmaschine dosiert werden können, andererseits ermöglichen sie aber gleichzeitig auch die Koπfektionierung flüssiger oder pulverförmiger Wasch- oder Reinigungsmittel, welche sich gegenüber den Kompaktaten durch eine bessere Auflösung und schnellere Wirksamkeit auszeichnen.
So offenbart beispielsweise die EP 1 314 654 A2 (Unilever) einen kuppeiförmigen Pouch mit einer Aufnahmekammer, welche eine Flüssigkeit enthält. Der Behälter kann nach dem Thermoform- verfahren hergestellt werden.
Neben den Verpackungen, welche nur eine Aufnahmekammer aufweisen wurden im Stand der Technik auch Angebotsformen offenbart, die mehr als eine Aufnahmekammer, bzw. mehr als eine Konfektionsform umfassen.
Die Anmeldung WO 01/83657 A2 (Procter&Gamble) offenbart hingegen Pouches, welche eine feste und eine flüssige Komponente enthalten, wobei die flüssige Komponente in eine eigenen Beutel eingeschweißt wird, welcher im Anschluss zusammen mit der festen Komponente in einem weiteren Beutel eingeschweißt wird. Die Beutel werden nach dem Tiefziehverfahren hergestellt.
Gegenstand der europäischen Anmeldung EP 1 256 623 A1 (Procter&Gamble) ist ein Kit aus mindestens zwei Beuteln mit unterschiedlicher Zusammensetzung und unterschiedlicher Optik. Die Beutel liegen getrennt voneinander und nicht als kompaktes Einzelprodukt vor.
Ein Beutel aus wasserlöslichem oder wasserdispergierbaren Material, welcher zwei Aufnahme¬ kammern aufweist und beispielsweise zur Verpackung toxischer Substanzen geeignet ist wird in der Anmeldung WO 93/08095 A1 (Rhone-Poulenc) offenbart. Die Beutel können nach dem Thermoformverfahren hergestellt werden.
In der WO 02/42401 A1 (Procter&Gamble) wird eine Methode zur maschinellen Reinigung von Geschirr beansprucht, welche unter Verwendung eines Behälters mit mehreren Aufnahme¬ kammern erfolgt. Die entsprechenden Behälter weisen eine horizontale Anordnung der einzelnen Aufnahmekammern auf und werden durch sequentielle Verklebung einzelner Folien unter Ausbildung der Aufnahmekammern hergestellt, wobei auch einzelne, durch Tiefziehen formgebend verarbeitete Folien, eingesetzt werden können.
Gegenstand der WO 02/85738 A1 (Reckitt Benckiser) sind wasserlösliche Behälter mit wenigstens zwei Aufnahmemulden. Die Herstellung dieser Behälter erfolgt durch stufenweise Versiegelung einzelner Folien oder vorgefertigter Einzelkompartimente zum Endbehälter.
Die WO 02/85736 A1 (Reckitt Benckiser) beschreibt wasserlösliche Behälter mit mindestens zwei Aufnahmekammern. Die Aufnahmekammern können durch Spritzguss oder Tiefziehen hergestellt werden, und sind so ausgebildet, dass sich die verschlossenen Kammern durch Faltung in spiegelbildlicher Anordnung zusammenklappen lassen.
Die Produkte der im Stand der Technik beschriebenen Verpackungsverfahren, insbesondere der offenbarten Spritzgussverfahren zeichnen sich durch einen hohen Anteil an Verpackungs¬ materialien aus. Generell nimmt der Anteil der Verpackungsmaterialien bei tiefgezogenen oder spritzgegossenen Verpackungen aufgrund des für die Trennwände eingesetzten Materials mit der Anzahl der in diesen Verpackungen enthaltenen, voneinander getrennten Aufnahmekammern zu. Da insbesondere bei den aus dem Stand der Technik bekannten Tiefziehverfahren die Trennung der Aufnahmekammern durch den Einsatz von Stegen oder Stempeln erreicht wird, über die eine zu verformenden Folie gezogen wird, weisen die resultieren Produkte in der Regel ein "Verlust¬ volumen" auf, das dem Volumen dieses Steges oder Stempels entspricht und den Zwischenraum zwischen den voneinander getrennten Aufnahmekammern bildet. Derartige "Verlustvolumina" verringern die Stabilität des verpackten Endprodukts.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein Verfahren zur Herstellung von mehrphasigen Wasch- und Reinigungsmitteln mit wasserlöslicher oder wasserdispergierbarer Verpackung bereitzustellen, durch welches sowohl die Mengen des eingesetzten wasserlöslichen oder wasserdispergierbaren Materials minimiert, als auch die Anzahl der Verfahrensschritte gegenüber aus dem Stand der Technik bekannten Verfahren verringert werden kann. Das Verfahren sollte bei genügender Stabilität der Verfahrensendprodukte eine Reduzierung der Herstellungskosten mehrphasiger Wasch- und Reinigungsmittel erlauben, wobei die Verfahrensendprodukte optisch ansprechend sein sollen. Desweiteren sollten sich die Verfahrensendprodukte durch eine optimierte Raumausnutzung des Verpackungskörpers sowie eine erhöhte Steifigkeit und Transport- bzw. Lagerbeständigkeit der resultierenden Behälter auszeichnen.
Es wurde nun gefunden, dass sich die vorgenannten Aufgaben lösen lassen, wenn zur Herstellung der mehrphasigen Wasch- und Reinigungsmittelportionen ein wasserlöslicher oder wasserdispergierbarer Behälter hergestellt, mit einem ersten Wasch- oder Reinigungsmittel unter Ausbildung der ersten Phase befüllt, im Folgenden ein sich zu einer Trennschicht verfestigendes flüssiges Trennmittel auf diese Phase aufgebracht und im letzten Schritt der Behälter mit einem zweiten Wasch- oder Reinigungsmittel unter Ausbildung einer zweiten Phase befüllt wird.
Gegenstand der vorliegenden Anmeldung ist ein Verfahren zur Herstellung mehrphasiger Wasch¬ oder Reinigungsmittel, umfassend die Schritte: a) Herstellung eines wasserlöslichen oder wasserdispergierbaren Behälters; b) Befüllen des Behälters mit einem ersten Wasch- oder Reinigungsmittel unter Ausbildung einer ersten Phase; c) Auftragen eines flüssigen Trennmittels auf diese erste Phase und Verfestigen des Trennmittels unter Ausbildung einer Trennschicht; d) Befüllen des Behälters mit einem zweiten Wasch- oder Reinigungsmittel unter Ausbildung einer zweiten Phase.
Gegenstand der vorliegenden Anmeldung ist auch ein mehrphasiges Wasch- oder Reinigungsmittel, umfassend a) einen wasserlöslichen oder wasserdispergierbaren Behälter aus einem ersten wasserlöslichen oder wasserdispergierbaren Hüllmaterial; sowie b) mindestens zwei voneinander getrennte Phasen aus Wasch- oder Reinigungsmitteln, welche in Schichten neben- und/oder übereinander angeordnet sind und durch eine Trennschicht aus einem verfestigten, flüssigen Trennmittel voneinander getrennt sind.
Bereitstellen des Behälters nach Punkt a) Die innerhalb des erfindungsgemäßen Verfahrens hergestellten wasserlöslichen oder wasserdispergierbaren Behälter sind prinzipiell auf jede im Stand der Technik beschriebene Art und Weise zugänglich. Besonders bevorzugt innerhalb des erfindungsgemäßen Verfahrens sind jedoch Behälter, die durch das Tiefziehverfahren, das Spritzgussverfahren oder das Schmelz¬ gussverfahren hergestellt wurden. In den nachfolgenden Ausführungen werden, sofern dies zur Verdeutlichung des Anmeldungs¬ gegenstands hilfreich erscheint, in Bezug auf den Behälter, einzelne Aufnahmekammern des Behälters bzw. die Trennschicht(en) die Bezeichnungen „unterhalb" und „oberhalb" verwendet. Als „Unterseite" des Behälters wird dabei die Bodenfläche des in Schritt a) hergestellten Behälters bezeichnet. Eine erste Aufnahmekammer oder Trennschicht, die sich relativ zu einer weiteren Aufnahmekammer oder Trennschicht zwischen der Bodenfläche und dieser weiteren Aufnahmekammer oder Trennschicht befindet, ist demnach „unterhalb" dieser weiteren Aufnahmekammer oder Trennschicht angeordnet, während die weitere Aufnahmekammer oder Trennschicht „oberhalb" der ersten Aufnahmekammer oder Trennschicht angeordnet ist.
Tiefziehverfahren Als "Tiefziehen" oder "Tiefziehverfahren" werden im Rahmen der vorliegenden Anmeldung Verfahren zur Verarbeitung von Verpackungsmaterialien bezeichnet, bei welchem diese nach optionaler Vorbehandlung durch Wärme und/oder Lösungsmittel und/oder Konditionierung durch gegenüber Umgebungsbedingungen veränderten relativen Luftfeuchten und/oder Temperaturen mittels einer entsprechend geformten Matrize in Form gebracht werden. Dabei kann das Verpackungsmaterial beispielsweise als Platte oder Folie zwischen die beiden Teile des Werkzeugs, das Positiv und das Negativ, eingebracht und durch Zusammendrücken dieser Teile verformt werden, die Verformung kann jedoch auch ohne Einsatz eines Negativ-Werkzeugs durch Einwirkung eines Vakuums und/oder von Druckluft und/oder das Eigengewicht der eingeschlossenen Wasch- oder Reinigungsmittel erfolgen.
Bei den Tiefziehverfahren lässt sich zwischen Verfahren, bei denen das Hüllmaterial horizontal in eine Formstation und von dort in horizontaler Weise zum Befüllen und/oder Versiegeln und/oder Vereinzeln geführt wird und Verfahren, bei denen das Hüllmaterial über eine kontinuierlich umlaufende Matrizenformwalze (gegebenenfalls optional mit einer gegenläufig geführten Patrizenformwalze, welche die ausformenden Oberstempel zu den Kavitäten der Matrizenform¬ walze führen) geführt wird, unterscheiden. Die zuerst genannte Verfahrensvariante des Flach¬ bettprozesses ist dabei sowohl kontinuierlich als auch diskontinuierlich zu betreiben, die Ver¬ fahrensvariante unter Einsatz einer Formwalze erfolgt in der Regel kontinuierlich. Alle genannten Tiefziehverfahren sind zur Herstellung der erfindungsgemäß bevorzugten Mittel geeignet. Die in den Matrizen befindlichen Aufnahmemulden können "in Reihe" oder versetzt angeordnet sein.
Aus der Reihe der beschriebenen Tiefziehverfahren werden solche Verfahren bevorzugt, bei denen das Hüllmaterial in Form einer Folie über einer mit Vertiefungen versehenen Matrize bereitgestellt und durch Einwirkung von Druckluft von der Oberseite der Folien oder durch Wirkung eines Vakuums von der Unterseite der Folien, besondere bevorzugt unter gleichzeitiger Einwirkung von Druckluft und Vakuum in die Vertiefungen der Matrize eingebracht und entsprechend der Form der Vertiefung ausgeformt wird. Besonders vorteilhafte Verfahren zeichnen sich dabei dadurch aus, dass die Folie vor dem Verformen durch Einwirken von Wärme und/oder Lösungsmitteln vorbehandelt wird. In einer weiteren bevorzugten Verfahrensvariante wird eine Folie nach optionaler Vorbehandlung (Lösungsmittel, Wärme) durch Einwirkung eines Stempels und/oder durch die Einwirkung der Gewichtskraft des Füllguts formgebend in die Vertiefung einer Matrize gepresst.
Durch das Tiefziehen wird im erfindungsgemäßen Verfahren ein Behälter mit einer, vorzugsweise zwei, drei, vier oder mehr Aufnahmekammern hergestellt.
Die Einwirkung von Wärme und/oder Lösungsmitteln auf das Hüllmaterial dient dessen erleichterter plastischen Verformung. Die Erwärmung des Hüllmaterials kann dabei beispielsweise durch Wärmestrahlung, Heißluft oder, besonders bevorzugt, durch direkten Kontakt mit einer Heizplatte erfolgen. Alternativ können zur Erwärmung des Hüllmaterials aber auch beheizte Rollen oder Walzen eingesetzt werden. Die Dauer der Wärmebehandlung sowie die Temperatur der eingesetzten Wärmestrahlung, Heißluft oder Heizplattenoberfläche ist dabei naturgemäß von der Art des eingesetzten Hüllmaterials abhängig. Für wasserlösliche oder wasserdispergierbare Materialien wie PVA-haltige Poylmere oder Copolymere ist eine Temperatur zwischen 90 und 13O0C, insbesondere zwischen 105 und 115°C bevorzugt. Die Dauer der Wärmebehandlung, insbesondere die Kontaktzeit bei Einsatz einer Heizplatte beträgt bevorzugt zwischen 0,1 und 7 Sekunden, besonders bevorzugt zwischen 0,2 und 6 Sekunden und insbesondere zwischen 0,3 und 4 Sekunden. Kontaktzeiten unterhalb einer Sekunde, insbesondere im Bereich von 400 bis 900 Millisekunden, vorzugsweise zwischen 500 und 800 Millisekunden haben sich für Materialien aus Polyvinylalkohol als besonders vorteilhaft erwiesen.
Um einen Kontakt zwischen dem zu verformenden Hüllmaterial und den Heizplatten zu erreichen, bestehen verschiedene Möglichkeiten. So kann das Hüllmaterial beispielsweise zwischen zwei einander gegenüberliegende Platten geführt werden, von denen wenigstens eine als Heizplatte dient, und durch Absenken und/oder Anheben einer dieser Platten in direkten Kontakt mit deren Oberflächen gebracht werden. Alternativ kann das Hüllmaterial auch unter oder über eine beheizte Oberfläche geführt und in der Folge durch Anblasen des Materials an die Oberfläche mittels Druckluft ein Kontakt hergestellt werden.
Werden Heizplatten zur Erwärmung der Hüllmaterialien eingesetzt, so kann die Erwärmung des vorzugsweise filmförmigen Hüllmaterials gleichmäßig über die gesamte Oberfläche des Films oder ungleichmäßig durch eine so genannte Zielbeheizung erfolgen. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Beheizung zielgerichtet mittels in der Heizplatte befindlicher Heizhöfe.
Die in den Heizplatten befindlichen Heizhöfe können planar, konkav oder konvex ausgebildet sein. Sind die Heizhöfe konvex oder konkav ausgebildet, so ist das Verhältnis des maximalen Durchmessers des Heizhofs zu seiner maximalen Höhe vorzugsweise größer 2, besonders bevorzugt größer 4 und insbesondere größer 8.
Durch die zuvor beschriebene Zielbeheizung entsteht auf der zu verarbeitenden Folie ein Gitter oder Netz nicht erwärmten und wenig elastischen Folienmaterials, welches eine unerwünschte Verformung und Streckung des Folienmaterials, beispielsweise durch das Eigengewicht der Folie oder die einwirkenden Zugkräfte beim Folientransport, im Bereich zwischen den erwärmten Folienstücken vermeidet. Die räumliche Orientierung der Aufnahmemulden zueinander sowie die räumliche Orientierung des Aufnahmemulden innerhalb des Films werden auf diese Weise stabilisiert, die Aufnahmemulden befinden sich also beim Weitertransport zum Befüllen, Versiegeln und Vereinzeln in den vorgesehenen Positionen und eine fehlerhafte Befüllung, Versiegelung oder Vereinzelung wird vermieden. Das oben beschriebene Anlegen eines Vakuums an der Innenseite der Vertiefungen der Matrize beim Verformen der Folie hat dabei den Vorteil, dass die in der Vertiefung unterhalb des sich verformenden Hüllmaterials befindliche Luft auf einfache Weise entfernt und das verformte Hüllmaterial in dem verformten Zustand gehalten werden kann. Bevorzugte kontinuierliche Tiefziehverfahren, das heißt Verfahren auf einer umlaufenden Endlosmatrize, bei welcher die durch Verformung erzeugten Aufnahmekammern bis zum Befüllen bzw. Versiegeln oder sogar bis zum Ausschneiden in den Vertiefungen der Matrize verbleiben, zeichnen sich dadurch aus, dass die in den Vertiefungen gebildeten Aufnahmebehälter durch ein Vakuum, welches während des Verformvorgangs angelegt wird und bis zur Beendigung des Befüllvorgangs, vorzugsweise bis zum Abschluss des Versiegeins, besonders bevorzugt bis zum Ausschneiden der Behälter aus dem Foliengittern anhält, in ihrem verformten Zustand gehalten werden. Bei diskontinuierlichen Verfahren, das heißt Verfahren, bei welchen der Filmtransport periodisch unterbrochen wird und das verformte Hüllmaterial vor dem Befüllen aus den Vertiefungen der Matrizen entfernt und in eine Füllstation befördert wird, ist es bevorzugt, dass die vorgeformten Behältnisse in der Füllstation in mit den Matrizenvertiefungen identische oder diesen Vertiefungen räumlich ähnliche Beladeformen verbracht werden, in denen vor und/oder während und/oder nach dem Befüllen ein Vakuum angelegt wird um die vorgeformten Aufnahmekammern in ihrer Form zu halten und beispielsweise eine Schrumpfung und/oder Faltenbildung zu verhindern. Das Vakuum sollte dabei so gewählt werden, dass die aus der flachen Folie gebildete Aufnahmekammern in ihrer Form gehalten, das entsprechende Hüllmaterial durch die Einwirkung des Vakuums nicht beschädigt und ein Verschütten des/der nach dem Befüllen in die Aufnahmekammem befindlichen Wirkstoffe(s) durch Rückschrumpfung der Aufnahmekammern vermieden wird. Der genaue Wert für das Vakuum ist dabei u.a. abhängig von der Art des eingesetzten Hüllmaterials oder dessen Wandstärke. Typischerweise wird jedoch ein Vakuum im Bereich von 0,01 bis 1 bar, vorzugsweise zwischen 0,1 und 0,8 bar, besonders bevorzugt zwischen 0,2 und 0,6 bar.
Spritzgussverfahren Die wasserlöslichen oder wasserdispergierbaren Behälter können außer durch Tiefziehen auch durch Spritzgießen hergestellt werden. Spritzgießen bezeichnet dabei das Umformen einer Formmasse derart, dass die in einem Massezylinder für mehr als einen Spritzgießvorgang enthaltene Masse unter Wärmeeinwirkung plastisch erweicht wird und durch eine Düse in den Hohlraum eines vorher geschlossenen Werkzeuges unter Druck einfließt.
Das Spritzgießen wird hauptsächlich bei nichthärtbaren Formmassen angewendet, die im Werkzeug durch Abkühlen erstarren (Thermoplaste). Es ist aber auch die Verarbeitung von Duroplasten und Elastomeren möglich; hier wird jedoch eine elektrische Heizung des Werkzeuges zur Härtung bzw. Vulkanisation des eingespritzten Materials eingesetzt. Spritzguss ist ein sehr wirtschaftliches modernes Verfahren zur Herstellung spanlos geformter Gegenstände und eignet sich besonders für die automatisierte Massenfertigung. Im praktischen Betrieb erwärmt man die thermoplastischen Formmassen (Pulver, Körner, Würfel, Pasten u. a.) bis zur Verflüssigung (bis 180 0C) und spritzt sie dann unter hohem Druck (bis 140 MPa) in geschlossene, zweiteilige, das heißt aus Gesenk (früher Matrize) und Kern (früher Patrize) bestehende, vorzugsweise wassergekühlte Hohlformen, wo sie abkühlen und erstarren. Einsetzbar sind Kolben- und Schneckenspritzgussmaschinen. Als Formmassen (Spritzgussmassen) eignen sich wasserlösliche Polymere wie beispielsweise die Celluloseether, Pektine, Polyethylenglykole, Polyvinylalkohole, Polyvinylpyrrolidone, Alginate, Gelatine oder Stärke. Die in dem erfindungsgemäßen Verfahren zur Herstellung des wasserlöslichen oder wasserdispergierbaren Behälters bevorzugten Formmassen werden weiter unten beschrieben.
Duch das Spritzgießen wird im erfindungsgemäßen Verfahren ein offener Hohlkörper enthaltend eine, vorzugsweise zwei, drei, vier oder mehr Aufnahmekammern hergestellt.
Nach dem Einspritzen der Formmasse in das Formwerkzeug ist es bevorzugt durch Nachdrücken die Schrumpfung des erkalteten Formteils zu kompensieren. Der Abkühlphase, die zwischen 1 und 30 s, bevorzugt zwischen 1 ,5 und 25 s, besonders bevorzugt zwischen 1 ,7 und 20 s, insbesondere zwischen 2 und 15 s dauern kann, folgt das Auswerfen des Formteils.
Ein Vorteil des Spritzgussverfahrens ist es, dass die Wandstärken der im erfindungsgemäßen Verfahren hergestellten Behälter gezielt gewählt werden können. Auf diese Weise ist es möglich bei optimaler Stabilität der Behälter einen geringst möglichen Verbrauch an Hüllmaterial zu gewährleisten. Im Gegensatz zum Tiefziehverfahren können auch Behälter mit konstanten Wanddicken hergestellt werden, was zu einer Steigerung der Stabilität und somit auch zur Verbesserung der Lager- und Transportfähigkeit führt. Üblicherweise liegen Wandstärken bei Spritzgussbehältern oberhalb von 100 μm, bevorzugt größer 200 μm, besonders bevorzugt zwischen 250 und 1000 μm, ganz besonders bevorzugt zwischen 300 und 800 μm, insbesondere zwischen 350 und 700 μm.
Da die Wahl der formgebenden Werkszeuge keinerlei Beschränkung unterliegt, ist es auch möglich und in diesem Verfahren bevorzugt, ein Zeichen und/oder Schriftzug/Logo mittels Spritz¬ gussverfahren auf den für den Verbraucher sichtbaren Teil des wasserlöslichen oder wasser¬ dispergierbaren Behälters aufzubringen und so den Wiedererkennungswert des Produktes zu steigern. Eine zusätzliche optische Aufwertung erfährt das Verfahrensendprodukt, wenn als Hüllenmaterial eine transparente oder transluzente Formmasse verwendet wird. Diese Ausführungsform ist besonders bevorzugt. Schmelzgussverfahren In einer dritten bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird zur Herstellung des wasserlöslichen oder wasserdispergierbaren Behälters das Schmelzgussverfahren eingesetzt. Als Schmelzgießen bezeichnet man das Umformen einer Formmasse derart, dass die in einem Massezylinder, vorzugsweise für mehr als einen Schmelzgussvorgang enthaltene Masse unter Wärmeeinwirkung plastisch erweicht und in den Hohlraum eines vorher geschlossenen Werkzeuges einfließt.
Wie das Spritzgießen wird auch das Schmelzgießen bevorzugt bei nichthärtbaren Formmassen angewendet, die im Werkzeug durch Abkühlen erstarren (Thermoplaste). Es ist aber auch die Verarbeitung von Duroplasten und Elastomeren möglich; hier wird jedoch eine elektrische Heizung des Werkzeuges zur Härtung bzw. Vulkanisation des eingespritzten Materials eingesetzt.
Die Formmassen werden in dem bevorzugten Verfahren vergossen und erstarren nachfolgend zu einem formstabilen Gießkörper. „Erstarren" kennzeichnet dabei im Rahmen der vorliegenden Erfindung jedweden Aushärtungsmechanismus, der aus einer umformbaren, vorzugsweise fließfähigen Mischung bzw. eines solchen Stoffes oder einer solchen Masse einen bei Raumtemperatur festen Körper liefert, ohne dass Press- oder Kompaktierkräfte notwendig sind. „Erstarren" im Sinne der vorliegenden Erfindung ist daher beispielsweise die Aushärtung von Schmelzen von bei Raumtemperatur festen Substanzen durch Abkühlen. „Erstarrungsvorgänge" im Sinne der vorliegenden Anmeldung sind auch die Aushärtung umformbarer Massen durch zeitlich verzögerte Wasserbindung, durch Verdampfung von Lösungsmitteln, durch chemische Reaktion, Kristallisation usw. sowie die reaktive Härtung von fließfähigen Pulvergemischen zu stabilen Hohlkörpern.
Die Herstellung bevorzugter Gießkörper erfolgt durch Vergießen einer Formmasse in ein Formwerkzeug und anschließendes Entformen des erstarrten gegossenen Körpers unter Ausbildung eines (Mulden)-Formkörpers. Als „Formwerkzeug" dienen vorzugsweise Werkzeuge, welche Kavitäten aufweisen, die mit gießbaren Substanzen befüllt werden können. Derartige Werkzeuge können beispielsweise in Form einzelner Kavitäten aber auch in Form von Platten mit mehreren Kavitäten ausgebildet sein. Die Einzelkavitäten oder Kavitätenplatten sind in industriellen Verfahren vorzugsweise auf horizontal umlaufenden Förderbändern montiert, welche einen kontinuierlichen oder diskontinuierlichen Transport der Kavitäten beispielsweise entlang einer Reihe unterschiedlicher Arbeitsstationen (z.B.: Gießen, Kühlen, Füllen, Versiegeln, Entformen etc.) ermöglichen. Die Formung der oben genannten Mulden gelingt vorzugsweise durch nachträgliches Eindrücken eines entsprechend geformten Werkzeugs in die bereits eingeflossene Formmasse. Hierbei ist besonders bevorzugt, dass sich zum Zeitpunkt des Eindrückens des Werkzeugs die Viskosität der Formmasse bereits um 1 - 50%, bevorzugt 1 - 35 %, insbesondere 1 - 20% im Vergleich zur Viskosität, die die Formmasse bei Einfließen in die Gießform hatte, erhöht hat.
Die Wandstärken der im erfindungsgemäßen Verfahren mittels Schmelzgussverfahren hergestellten Behälter können durch die Wahl der geeigneten Formwerkzeuge gezielt eingestellt werden, was eine Optimierung der Stabilität der Behälter und damit der Lager- und Transportfähigkeit ermöglicht. Die Wandstärken der hergestellten Behälter liegen bevorzugt oberhalb von 100 μm, bevorzugt größer 200 μm, besonders bevorzugt zwischen 250 und 1000 μm, ganz besonders bevorzugt zwischen 300 und 800 μm, insbesondere zwischen 350 und 700 μm.
Das Schmelzgießen erlaubt neben der Herstellung dünnwandiger Behälter auch die Bereitstellung von Behältern, die bereits wasch- oder reinigungsaktive Mittel in der Formmasse enthalten. Die Herstellung bevorzugter Gießkörper erfolgt beispielsweise durch Vergießen einer wasch- oder reinigungsaktiven Zubereitung in ein Formwerkzeug und anschließendes Entformen des erstarrten gegossenen Körpers unter Ausbildung eines (Mulden)-Formkörpers, welcher im Weiteren mit einem oder mehreren Wasch- oder Reinigungsmittel(n) befüllt wird. Die Wandstärken dieses Formkörpers betragen bevorzugt zwischen 0,3 und 25 mm, besonders bevorzugt zwischen 0,3 und 15 mm, ganz besonders bevorzugt zwischen 0,3 und 10 mm, insbesondere zwischen 0,3 und 5 mm.
Zur Verarbeitung eignen sich generell alle wasch- oder reinigungsaktiven Zubereitungen, die durch Gießtechniken verarbeitet werden können. Die in dem erfindungsgemäßen Verfahren zur Herstellung des wasserlöslichen oder wasserdispergierbaren Behälters bevorzugten Formmassen werden weiter unten beschrieben.
Eine Erhöhung der Homogenität des Gießkörpers und damit eine Optimierung des optischen Eindrucks gelingt, wenn der Gießkörper nach dem Einfließen der Formmasse in das Formwerk¬ zeug eine nachgeschaltete Schleuderphase durchläuft. Die Länge der Schleuderphase beträgt vorzugsweise 1 - 6O s, bevorzugt 2 - 45 s, besonders bevorzugt 3 - 3O s, insbesondere 3 - 15 s.
Zur Abführung der durch die in die Aufnahmekammern gefüllten Mittel eingebrachten Wärme (z.B. Schmelzen), ist es bevorzugt die eingesetzten Matrizen und die in diesen Matrizen befindlichen Aufnahmemulden zu kühlen. Die Kühlung erfolgt dabei vorzugsweise auf Temperaturen unterhalb 20°C, bevorzugt unterhalb 15°C, besonders bevorzugt auf Temperaturen zwischen 2 und 14°C und insbesondere auf Temperaturen zwischen 4 und 12°C. Vorzugsweise erfolgt die Kühlung kontinuierlich vom Beginn der Herstellung der wasserlöslichen oder wasserdispergierbaren Behälter bis zur Versiegelung und Vereinzelung der Aufnahmekammern. Zur Kühlung eignen sich insbesondere Kühlflüssigkeiten, vorzugsweise Wasser, welche in speziellen Kühlleitungen innerhalb der Matrize zirkuliert werden.
Durch das Schmelzgießen wird im erfindungsgemäßen Verfahren ein offener Hohlkörper (Gießkörper) enthaltend eine, vorzugsweise zwei, drei, vier oder mehr Aufnahmekammern hergestellt.
Form der wasserlöslichen oder wasserdispergierbaren Behälter In bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens enthält der im Schritt a) hergestellte Behälter eine, zwei, drei, vier ,fünf oder mehr Aufnahmekammern. Diese werden bei Anwendung des Spritzgussverfahrens oder auch des Schmelzflussverfahrens durch die Wahl der geeigneten Formwerkzeuge erhalten. Bei Anwendung des Tiefziehverfahrens sind Behälter mit mehreren Aufnahmekammern beispielsweise durch Kombination mehrerer auf der Tiefziehmatrize benachbarter Aufnahmekammern zu einer Dosiereinheit oder durch Verwendung von Tiefziehmatrizen mit absenkbaren Teilbereichen zugänglich.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens beträgt das Verhältnis der Höhe der Behälteraußenwand zu den Höhen der Zwischenwände, die den Behälter in mehrere Aufnahmekammern unterteilen, 1 :1 , das heißt, die Behälteraußenwand und die Zwischenwand weisen die gleiche Höhe auf. Werden in einem solchen Behälter die zwei, drei, vier oder mehr Aufnahmekammern in Schritt b) nur teilweise befüllt, so stehen nach Auftragen und Aushärten der flüssigen Trennschicht (Schritt c)) die verbleibenden Volumina dieser Aufnahmekammern zur Befüllung mit weiteren Wasch- und Reinigungsmitteln (Schritt d)) zur Verfügung.
Ein bevorzugtes Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittel umfasst die Schritte:
a) Herstellung eines wasserlöslichen oder wasserdispergierbaren Behälters, welcher zwei, bevorzugt drei, besonders bevorzugt vier, insbesondere fünf oder mehr Aufnahmekammern enthält; b) Befüllen des Behälters mit den ersten zwei, bevorzugt drei, besonders bevorzugt vier, insbesondere fünf oder mehr unterschiedlichen Wasch- oder Reinigungsmitteln; c) Auftragen eines flüssigen Trennmittels auf diese ersten Wasch- und Reinigungsmittel und Verfestigen des Trennmittels unter Ausbildung einer Trennschicht; d) Befüllen des Behälters mit weiteren zwei, bevorzugt drei, besonders bevorzugt vier, insbesondere fünf oder mehr unterschiedlichen Wasch- oder Reinigungsmitteln.
Ebenfalls bevorzugt ist ein Verfahren, in dem das Verhältnis der Höhe der Behälteraußenwand zu den Höhen der Zwischenwände, die den Behälter in mehrere Aufnahmekammern unterteilen, kleiner als 1 :1 ist. In einem solchen Behälter ist die Zwischenwand kleiner als die Behälter¬ außenwand. Werden die von der Zwischenwand getrennten Aufnahmekammern in Schritt b) im wesentlichen vollständig befüllt, so resultiert nach dem Auftragen und Aushärten der flüssigen Trennschicht und dem Versiegeln dieser Aufnahmekammern (Schnitt c)) nur eine weitere Aufnahmekammer, welche oberhalb der in Schritt b) befüllten zwei, drei, vier oder mehr Aufnahmekammern angeordnet ist und zur Befüllung mit einem weiteren Wasch- und Reinigungsmittel (Schritt d)) zur Verfügung steht. Bevorzugt beträgt das Verhältnis der Höhe der Behälteraußenwand zu den Höhen der Zwischenwände zwischen 1 :0,2 und 1 :1 , besonders bevorzugt zwischen 1 :0,3 und 1 :0,9, ganz besonders bevorzugt zwischen 1 :0,4 und 1 :0,8, insbesondere zwischen 1 :0,4 und 1 : 0,7 und steht im direkten Verhältnis zu dem Verhältnis der Füllhöhen der unterhalb der Trennschicht eingefüllten Wasch- oder Reinigungsmittel zu den oberhalb der Trennschicht eingefüllten Wasch- oder Reinigungsmitteln.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens weist der Behälter mindestens zwei, vorzugsweise drei, vier oder mehr Zwischenwände auf, wobei das Ver¬ hältnis der Höhe der Behälteraußenwand zu Höhe mindestens einer der Zwischenwände 1 :1 be¬ trägt, während das Verhältnis der Höhe der Behälteraußenwand zu Höhe mindestens einer weite¬ ren der Zwischenwände zwischen 1 :0,2 und 1 :1 , besonders bevorzugt zwischen 1 :0,3 und 1 :0,9, ganz besonders bevorzugt zwischen 1 :0,4 und 1 :0,8, insbesondere zwischen 1 :0,4 und 1 : 0,7 beträgt.
Die durch das Tiefziehverfahren, das Spritzgussverfahren oder das Schmelzgussverfahren gebildeten Aufnahmekammern können jede technisch realisierbare Form aufweisen. Sphärisch- kuppeiförmige, zylindrische oder kubische Kammern sind besonders bevorzugt. Bevorzugte Aufnahmekammern weisen mindestens eine Kante und eine Ecke auf, Aufnahmekammern mit zwei, drei, vier, fünf, sechs, sieben, acht, neun, zehn, elf, zwölf, dreizehn, vierzehn, fünfzehn, sechszehn, siebzehn, achtzehn, neunzehn, zwanzig oder mehr Kanten bzw. zwei, drei, vier, fünf, sechs, sieben, acht neun, zehn, elf, zwölf, dreizehn, vierzehn, fünfzehn, sechszehn, siebzehn, achtzehn, neunzehn, zwanzig oder mehr Ecken sind ebenfalls realisierbar und erfindungsgemäß bevorzugt. Weitere realisierbare und in alternativen Ausführungsformen des erfindungsgemäßen Verfahrens bevorzugte Aufnahmekammern weisen einen kuppeiförmigen Aufbau auf. Die Seitenwände der Aufnahmekammern sind vorzugsweise planar. Räumlich gegenüberliegende Seitenwände können sowohl parallel als auch nicht parallel zueinander angeordnet sein. Die Grundfläche der Aufnahmekammern kann konvex, konkav oder planar sein, wobei planare Grundflächen bevorzugt sind. Die Grundfläche selbst kann als Kreis ausgestaltet, kann aber auch Ecken aufweisen. Grundflächen mit einer Ecke (Tropfenform), zwei, drei, vier, fünf, sechs, sieben, acht, neun, zehn, elf, zwölf, dreizehn, vierzehn, fünfzehn, sechszehn, siebzehn, achtzehn, neunzehn, zwanzig oder mehr Ecken sind im Rahmen der vorliegenden Anmeldung bevorzugt. Der Übergang der Grundfläche zu der oder den Seitenwänden bzw. der Übergang der Seitenwände ineinander wird in bevorzugten Ausführungsformen dieser Anmeldung in abgerundeter Form ausgestaltet. Die Aufnahmekammern weisen demnach nach außen keine spitzen oder scharfen sondern vielmehr abgerundete Kanten auf.
Ein bevorzugtes erfindungsgemäßes Verfahren ist demnach dadurch gekennzeichnet, dass die Grundflächen der Aufnahmekammern planar sind.
Die Abmessungen und das Volumen der durch die formgebenden Verarbeitung gebildeten Aufnahmekammern und Zwischenräume wird sich in erster Linie an dem späteren Anwendungszweck der resultierenden Behälter orientieren. In einer bevorzugten Varianten des erfindungsgemäßen Verfahrens werden Aufnahmekammern mit einem Gesamtvolumen zwischen 0,1 und 1000 ml, vorzugsweise zwischen 0,2 und 100 ml, besonders bevorzugt zwischen 0,4 und 50 ml, ganz besonders bevorzugt zwischen 0,6 und 30 ml und insbesondere zwischen 0,8 und 10 ml hergestellt. Dabei ist es im Rahmen des erfindungsgemäßen Verfahrens in einer bevorzugten Ausführungsform erwünscht, dass die mindestens zwei Aufnahmekammern die gleich räumliche Form sowie ein identisches Volumen aufweisen. In einer anderen bevorzugten Ausführungsform weisen die mindestens zwei in dem Behälter vorhandenen Aufnahmekammern unterschiedliche Volumen auf, wobei das Verhältnis dieser Volumina vorzugsweise zwischen 25:1 und 1 ,05:1 , vorzugsweise zwischen 20:1 und 2:1 und insbesondere zwischen 15:1 und 4:1 beträgt. Bei bevorzugten erfindungsgemäßen Verfahren weist der Behälter zwei Aufnahmekammern unterschiedlichen Volumens auf, wobei das Volumen der kleineren Aufnahmekammer mindestens 2 %, vorzugsweise mindestens 5 %, besonders bevorzugt mindestens 10 % und insbesondere mindestens 20 %, 30 %, 40 %, 50 %, 60 %, 65 %, 70 %, 75 % oder 80 % des Volumens der größeren Aufnahmekammer beträgt. Das Volumen der Einzelkammern beträgt dabei vorzugsweise zwischen 0,05 und 900 ml, besonders bevorzugt zwischen 0,1 und 90 ml, ganz besonders bevorzugt zwischen 0,5 und 40 ml und insbesondere zwischen 1 ,0 und 25 ml.
In einer bevorzugten Ausführungsform des erfindungsgemäße Verfahrens weisen die Behälter Aufnahmekammern mit unterschiedlichen Tiefen auf. Dabei besteht nicht notwendigerweise ein direkter Zusammenhang mit der Kammertiefe und dem Kammervolumen. So kann in einem Behälter mit zwei Aufnahmekammern die Aufnahmekammer mit der geringeren Kammertiefe durchaus das größer Kammervolumen aufweisen, während die Aufnahmekammer mit der größeren Kammertiefe ein geringeres Volumen hat. Auch können die zwei oder mehr Kammern trotz unterschiedlicher Kammertiefe auch das gleiche Volumen besitzen. Bevorzugt wird jedoch im Rahmen der vorliegenden Anmeldung ein Verfahren, bei welchem die Aufnahmekammer mit der geringeren Kammertiefe auch ein im Vergleich mit der/den weiteren Aufnahmekammer(n) eine geringeres Volumen aufweist, wobei im Bezug auf die absoluten Volumina und die Volumenverhältnisse auf die obigen Angaben verwiesen wird.
Nach einem bevorzugten erfindungsgemäßen Verfahren hergestellte Behälter weisen Aufnahmekammern mit senkrecht abfallenden Seitenwänden auf. Besonders bevorzugt sind jedoch Behälter in denen die Aufnahmekammern eine geneigte Seitenwand besitzt. In solchen Aufnahmekammern beträgt der Winkel, welcher zwischen der Seitenwand und einer gedachten die Aufnahmekammer verschließenden Versiegelung demnach weniger als 90°. Weisen die Aufnahmekammern nur eine einzelne Seitenwand auf (Zylinder-artige Aufnahmekammern) kann bei der entsprechenden Formung der eingesetzten Tiefziehmulden oder Formwerkzeuge diese Seitenwand unterschiedliche Winkel aufweisen. Bevorzugt sind Aufnahmekammern in welchen der genannte Winkel zwischen 30 und 90°, vorzugsweise zwischen 35 und 89°, besonders bevorzugt zwischen 40 und 88° und insbesondere zwischen 45 und 87° beträgt.
Die durch die formgebende Verarbeitung erzeugte Aufnahmekammer kann weiterhin Abstufungen aufweisen. Die entsprechende, in einer bevorzugten Verfahrensvariante hergestellte Aufnahmekammer weist demnach keine ebenen Seitenwände auf, sondern besitzt vielmehr Seitenwände, welche durch Stufen oder Krümmungen gekennzeichnet sind. Die Anzahl der Krümmungen kann dabei variieren, wobei Verfahren bevorzugt sind, bei denen die Anzahl der Stufen und/oder Krümmungen in einer Aufnahmekammer maximal 10, vorzugsweise zwischen 1 und 9, besonders bevorzugt zwischen 1 und 8, ganz besonders bevorzugt zwischen 2 und 7 und insbesondere zwischen 2 und 6 beträgt. Die Stufen oder Krümmungen können dabei umlaufend oder nur auf einzelnen Seitenwände ausgebildet sein. Der Verlauf der Stufen oder Krümmungen ist vorzugsweise horizontal. Stufen und/oder Krümmungen mit einem Schraubgewinde ähnlichen auf- oder abwärts weisenden Verlauf sind jedoch auch realisierbar und für bestimmte Anwendungsgebiete bevorzugt.
Hüllmaterialien In dem erfindungsgemäßen Verfahren sind generell alle durch Tiefziehverfahren, Spritzgussverfahren oder Schmelzgussverfahren verarbeitbaren Hüllmaterialien einsetzbar, wobei jedoch der Einsatz wasserlöslicher oder wasserdispergierbarer Verpackungsmaterialien bevorzugt ist. Einige besonders bevorzugte wasserlösliche oder wasserdispergierbare Hüllmaterialien, welche sich sowohl zur Herstellung der Aufnahmekammern, als auch zu deren Versiegelung/Verwendung als Trennschicht eignen, sind in der Folge aufgeführt. Die genannten Polymere können' dabei sowohl allein, als auch in Kombination miteinander oder in Kombination mit weiteren Substanzen, beispielsweise Weichmachern, Gleit- oder Schmiermitteln, oder Lösungsvermittlern als Hüllmaterial eingesetzt werden.
a) wasserlösliche nichtionische Polymere aus der Gruppe der a1 ) Polyvinylpyrrolidone, a2) Vinylpyrrolidon/Vinylester-Copolymere, a3) Celluloseether
b) wasserlösliche amphotere Polymere aus der Gruppe der b1 ) Alkylacrylamid/Acrylsäure-Copolymere b2) Alkylacrylamid/Methacrylsäure-Copolymere b3) Alkylacrylamid/Methylmethacrylsäure-Copolymere b4) Alkylacrylamid/Acrylsäure/AlkylaminoalkyKmethJacrylsäure -Copolymere b5) Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere b6) Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure- Copolymere b7) Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat- Copolymere b8) Copolymere aus bδi) ungesättigten Carbonsäuren bδii) kationisch derivatisierten ungesättigten Carbonsäuren bδiii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
c) wasserlösliche zwitterionische Polymere aus der Gruppe der c1 ) Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze c2) Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze c3) Methacroylethylbetain/Methacrylat-Copolymere
d) wasserlösliche anionische Polymere aus der Gruppe der d1 ) Vinylacetat/Crotonsäure-Copolymere d2) Vinylpyrrolidon/Vinylacrylat-Copolymere d3) Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere d4) Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglykolen d5) gepfropften und vernetzten Copolymere aus der Copolymerisation von d5i) mindesten einem Monomeren vom nicht-ionischen Typ, d5ii) mindestens einem Monomeren vom ionischen Typ, dδiii) von Polyethylenglykol und dδiv) einem Vernetzter d6) durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere: d6i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren, dδii) ungesättigte Carbonsäuren, dδiii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe dδii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8.iβ-Alkohols d7) Terpolymere aus Crotonsäure, Vinylacetat und einem AIIyI- oder Methallylester d8) Tetra- und Pentapolymere aus d8i) Crotonsäure oder Allyloxyessigsäure dδii) Vinylacetat oder Vinylpropionat dδiii) verzweigten AIIyI- oder Methallylestem dδiv) Vinylethern, Vinylestern oder geradkettigen AIIyI- oder Methallylestem d9) Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze d10) Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure
e) wasserlösliche kationische Polymere aus der Gruppe der e1 ) quaternierten Cellulose-Derivate e2) Polysiloxane mit quaternären Gruppen e3) kationischen Guar-Derivate e4) polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure e5) Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacry- lats und -methacrylats eδ) Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere e7) quaternierter Polyvinylalkohol e8) unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquatemium 18 und Polyquaternium 27 angegeben Polymere.
Wasserlösliche Polymere im Sinne der Erfindung sind solche Polymere, die bei Raumtemperatur in Wasser zu mehr als 2,5 Gew.-% löslich sind.
In einer bevorzugten Verfahrensvariante umfasst der Behälter ein oder mehrere wasserlösliche(s) Polymer(e), vorzugsweise ein Material aus der Gruppe (gegebenenfalls acetalisierter) Polyvinylalkohol (PVAL), Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Cellulose, und deren Derivate und deren Mischungen.
"Polyvinylalkohole" (Kurzzeichen PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur
die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs
enthalten.
Handelsübliche Polyvinylalkohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten werden, haben Hydrolysegrade von 98-99 bzw. 87-89 Mol-%, enthalten also noch einen Restgehalt an Acetyl-Gruppen. Charakterisiert werden die Polyvinyl¬ alkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangs¬ polymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.
Polyvinylalkohole sind abhängig vom Hydrolysegrad löslich in Wasser und wenigen stark polaren organischen Lösungsmitteln (Formamid, Dimethylformamid, Dimethylsulfoxid); von (chlorierten) Kohlenwasserstoffen, Estern, Fetten und ölen werden sie nicht angegriffen. Polyvinylalkohole werden als toxikologisch unbedenklich eingestuft und sind biologisch zumindest teilweise abbaubar. Die Wasserlöslichkeit kann man durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure od. Borax verringern. Die Beschichtungen aus Polyvinylalkohol sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.
Im Rahmen der vorliegenden Erfindung ist es bevorzugt, dass das in dem erfindungsgemäßen Verfahren eingesetzte Hüllmaterial wenigstens anteilsweise einen Polyvinylalkohol umfasst, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt. In einer bevorzugten Ausführungsform besteht das in dem erfindungsgemäßen Verfahren eingesetzte erste Hüllmaterial zu mindestens 20 Gew.-%, besonders bevorzugt zu mindestens 40 Gew.-%, ganz besonders bevorzugt zu mindestens 60 Gew.-% und insbesondere zu mindestens 80 Gew.-% aus einem Polyvinylalkohol umfaßt, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.
Vorzugsweise werden als Materialien für die Behälter Polyvinylalkohole eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäß bevorzugt ist, dass das Hüllmaterial einen Polyvinylalkohol umfasst, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol'1, vorzugsweise von 11.000 bis 90.000 gmol'1, besonders bevorzugt von 12.000 bis 80.000 gmol"1 und insbesondere von 13.000 bis 70.000 gmol'1 liegt.
Der Polymerisationsgrad solcher bevorzugten Polyvinylalkohole liegt zwischen ungefähr 200 bis ungefähr 2100, vorzugsweise zwischen ungefähr 220 bis ungefähr 1890, besonders bevorzugt zwischen ungefähr 240 bis ungefähr 1680 und insbesondere zwischen ungefähr 260 bis ungefähr 1500.
Die vorstehend beschriebenen Polyvinylalkohole sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Mowiol® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88 sowie Mowiol® 8-88.
Weitere als Hüllmateriaf besonders geeignete Polyvinylalkohole sind der nachstehenden Tabelle zu entnehmen:
Weitere als Hüllmaterial geeignete Polyvinylalkohole sind ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (Warenzeichen der Du Pont), ALCOTEX® 72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 (Warenzeichen der Harlow Chemical Co.), Gohsenol® NK-05, A-300, AH- 22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11 Q, KZ-06 (Warenzeichen der Nippon Gohsei K. K.).
Die Wasserlöslichkeit von PVAL kann durch Nachbehandlung mit Aldehyden (Acetalisierung) oder Ketonen (Ketalisierung) verändert werden. Als besonders bevorzugt und aufgrund ihrer ausgesprochen guten Kaltwasserlöslichkeit besonders vorteilhaft haben sich hierbei Poly¬ vinylalkohole herausgestellt, die mit den Aldehyd bzw. Ketogruppen von Sacchariden oder Polysacchariden oder Mischungen hiervon acetalisiert bzw. ketalisiert werden. Als äußerst vorteilhaft einzusetzen sind die Reaktionsprodukte aus PVAL und Stärke.
Beispiele geeigneter wasserlöslicher PVAL-Folien sind die unter Bezeichnung "SOLUBLON®" von der Firma Syntana Handelsgesellschaft E. Harke GmbH & Co. erhältlichen PVAL-Folien. Deren Löslichkeit in Wasser lässt sich Grad-genau einstellen, und es sind Folien dieser Produktreihe erhältlich, die in allen für die Anwendung relevanten Temperaturbereichen in wässriger Phase löslich sind.
Polyvinylpyrrolidone, kurz als PVP bezeichnet, lassen sich durch die folgende allgemeine Formel beschreiben:
PVP werden durch radikalische Polymerisation von 1-Vinylpyrrolidon hergestellt. Handelsübliche PVP haben Molmassen im Bereich von ca. 2.500 bis 750.000 g/mol und werden als weiße, hygroskopische Pulver oder als wässrige Lösungen angeboten.
Polyethylenoxide, kurz PEOX, sind Polyalkylenglykole der allgemeinen Formel
H-[O-CH2-CH2In-OH
die technisch durch basisch katalysierte Polyaddition von Ethylenoxid (Oxiran) in meist geringe Mengen Wasser enthaltenden Systemen mit Ethylenglykol als Startmolekül hergestellt werden. Sie haben Molmassen im Bereich von ca. 200 bis 5.000.000 g/mol, entsprechend Polymerisa¬ tionsgraden n von ca. 5 bis >100.000. Polyethylenoxide besitzen eine äußerst niedrige Konzen¬ tration an reaktiven Hydroxy-Endgruppen und zeigen nur noch schwache Glykol-Eigenschaften.
Gelatine ist ein Polypeptid (Molmasse: ca. 15.000 bis >250.000 g/mol), das vornehmlich durch Hydrolyse des in Haut und Knochen von Tieren enthaltenen Kollagens unter sauren oder alkalischen Bedingungen gewonnen wird. Die Aminosäuren-Zusammensetzung der Gelatine ent¬ spricht weitgehend der des Kollagens, aus dem sie gewonnen wurde, und variiert in Abhängigkeit von dessen Provenienz. Die Verwendung von Gelatine als wasserlösliches Hüllmaterial ist insbesondere in der Pharmazie in Form von Hart- oder Weichgelatinekapseln äußerst weit ver¬ breitet. In Form von Folien findet Gelatine wegen ihres im Vergleich zu den vorstehend genannten Polymeren hohen Preises nur geringe Verwendung.
Bevorzugt sind im Rahmen des erfindungsgemäßen Verfahrens Hüllmaterialien, welche ein Polymer aus der Gruppe Stärke und Stärkederivate, Cellulose und Cellulosederivate, insbesondere Methylcellulose und Mischungen hieraus umfassen.
Stärke ist ein Homoglykan, wobei die Glucose-Einheiten α-glykosidisch verknüpft sind. Stärke ist aus zwei Komponenten unterschiedlichen Molekulargewichts aufgebaut: aus ca. 20 bis 30% geradkettiger Amylose (MG. ca. 50.000 bis 150.000) und 70 bis 80% verzweigtkettigem Amylo- pektin (MG. ca. 300.000 bis 2.000.000). Daneben sind noch geringe Mengen Lipide, Phosphor¬ säure und Kationen enthalten. Während die Amylose infolge der Bindung in 1 ,4-Stellung lange, schraubenförmige, verschlungene Ketten mit etwa 300 bis 1.200 Glucose-Molekülen bildet, verzweigt sich die Kette beim Amylopektin nach durchschnittlich 25 Glucose-Bausteinen durch 1 ,6-Bindung zu einem astähnlichen Gebilde mit etwa 1.500 bis 12.000 Molekülen Glucose. Neben reiner Stärke sind zur Herstellung wasserlöslicher Umhüllungen der Waschmittel-, Spülmittel- und Reinigungsmittel-Portionen im Rahmen der vorliegenden Erfindung auch Stärke-Derivate geeignet, die durch polymeranaloge Reaktionen aus Stärke erhältlich sind. Solche chemisch modifizierten Stärken umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Stärken, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Stärke-Derivate einsetzen. In die Gruppe der Stärke-Derivate fallen beispielsweise Alkalistärken, Carboxymethylstärke (CMS), Stärkeester und -ether sowie Aminostärken.
Reine Cellulose weist die formale Bruttozusammensetzung (C6H10Os)n auf und stellt formal betrachtet ein ß-1 ,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5.000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.
Als Matrixmaterial für Gießkörper, welche durch Schmelzerstarrung hergestellt werden, eignen sich insbesondere schmelzbare Substanzen aus der Gruppe der Fette und/oder Triglyceride und/oder Fettsäuren und/oder Fettalkohole und/oder Wachse und/oder Paraffine.
Fett(e) oder Triglycerid(e) ist die Bezeichnung für Verbindungen des Glycerins, bei denen die drei Hydroxy-Gruppen des Glycerins durch Carbonsäuren verestert sind. Die natürlich vorkommenden Fette sind Triglyceride, die in der Regel verschiedene Fettsäuren im gleichen Glycerin-Molekül enthalten. Durch Verseifung der Fette und nachfolgende Veresterung bzw. Umsetzung mit Acylchloriden sind jedoch auch synthetische Triglyceride, in denen nur eine Fettsäure gebunden ist, zugänglich (z.B. Tripalmitin, Triolein oder Tristearin). Natürliche und/oder synthetische Fette und/oder Mischungen der beiden sind als Matrixmaterial bzw. Matrixbestandteil für Gießkörper oder einen der anderen genannten Feststoffe im Rahmen der vorliegenden Erfindung bevorzugt.
Als Fettsäuren werden in der vorliegenden Anmeldung aliphatische gesättigte oder ungesättigte, Carbonsäuren mit verzweigter oder unverzweigter Kohlenstoff-Kette bezeichnet. Für die Her¬ stellung der Fettsäuren existieren eine Vielzahl von Herstellungsmethoden. Während die niederen Fettsäuren meist auf oxidative Verfahren ausgehend von Alkoholen und/oder Aldehyden sowie aliphatischen bzw. acyclischen Kohlenwasserstoffen beruhen, sind die höheren Homologen meistenteils auch heute noch am einfachsten durch Verseifung natürlicher Fette zugänglich. Durch die Fortschritte im Bereich der transgenen Pflanzen sind inzwischen fast unbegrenzte Mög¬ lichkeiten zur Variation des Fettsäure-Spektrums in den Speicherfetten von Ölpflanzen gegeben. Bevorzugte Fettsäuren weisen im Rahmen der vorliegenden Erfindung einen Schmelzpunkt auf, der eine Verarbeitung dieser Fette als Material oder Bestandteil eines Gießkörpers erlaubt. Dabei haben sich Fettsäuren als besonders vorteilhaft erwiesen, die einen Schmelzpunkt oberhalb 25°C aufweisen. Bevorzugte Matrixmaterialien und/oder -Bestandteile sind daher Caprinsäure und/oder Undecansäure und/oder Laurinsäure und/oder Tridecansäure und/oder Myristinsäure und/oder Pentadecansäure und/oder Palmitinsäure und/oder Margarinsäure und/oder Stearinsäure und/oder Nonadecansäure und/oder Arachinsäure und/oder Erucasäure und/oder Elaeosterarinsäure. Aber auch Fettsäuren mit einem Schmelzpunkt unterhalb 250C können Bestandteil der Matrix für Gießkörper oder andere der oben genannten Feststoffe eingesetzt werden.
Fettalkohol ist eine Sammelbezeichnung für die durch Reduktion der Triglyceride, Fettsäuren bzw. Fettsäureester erhältlichen linearen, gesättigten oder ungesättigten primären Alkohole mit 6 bis 22 Kohlenstoffatomen. Die Fettalkohole können in Abhängigkeit vom Herstellungsverfahren gesättigt oder ungesättigt sein. Myristylalkohol und/oder 1-Pentadecanol und/oder Cetylalkohol und/oder 1-Heptadecanl und/oder Stearylalkohol und/oder Erucylalkohol und/oder 1-Nonadecanol und/oder Arachidylalkohol und/oder 1-Heneicosanol und/oder Behenylalkohol und/oder Erucylalkohol und/oder Brassidylalkohol sind bevorzugte Bestandteile der Matrix von Gießkörpern oder anderer von den erfindungsgemäß hergestellten Behältern umschlossenen Feststoffen.
Es hat sich ebenfalls als vorteilhaft erwiesen, wenn die in den erfindungsgemäß hergestellten Behältern umschlossenen Feststoffe, insbesondere die vorzugsweise umschlossene Gießkörper, als Matrixmaterial Wachse enthalten. Bevorzugte Wachse weisen dabei einen Schmelzbereich auf, der zwischen etwa 450C und etwa 750C liegt. Das heißt im vorliegenden Fall, dass der Schmelzbereich innerhalb des angegebenen Temperaturintervalls auftritt und bezeichnet nicht die Breite des Schmelzbereichs. Wachse mit einem solchen Schmelzbereich sind zum einem bei Raumtemperatur formstabil schmelzen jedoch bei für die maschinelle Geschirreinigung typischen Temperaturen von 30°C bis 900C und sind daher bei diesen Temperaturen leichter wasserdispergierbar.
Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe verstanden, die in der Regel über 4O0C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperatur¬ abhängige Konsistenz und Löslichkeit auf. Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierte Wachse und die synthetischen Wachse.
Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett, Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffinwachse oder Mikrowachse.
Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.
Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglykolwachse verstanden. Als schmelz- oder erweichbaren Substanzen für die durch Abkühlung aushärtenden Massen einsetzbar sind auch Verbindungen aus anderen Stoffklassen, welche die genannten Erfordernisse hinsichtlich des Erweichungspunkts erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimoll® 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl Tartrat, das unter dem Namen Cosmacol® ETLP (Condea) erhältlich ist. Umgekehrt sind auch synthetische oder teilsynthetische Ester aus niederen Alkoholen mit Fettsäuren aus nativen Quellen einsetzbar. In diese Stoffklasse fällt beispielsweise das Tegin® 90 (Goldschmidt), ein Glycerinmonostearat-palmitat. Auch Schellack, beispielsweise Schellack-KPS-Dreiring-SP (Kalkhoff GmbH) ist erfindungsgemäß als Matrixmaterial in Feststoffen, vorzugsweise in Gießkörpern, einsetzbar.
Ebenfalls zu den Wachsen im Rahmen der vorliegenden Erfindung werden beispielsweise die sogenannten Wachsalkohole gerechnet. Wachsalkohole sind höhermolekulare, wasserunlösliche Fettalkohole mit in der Regel etwa 22 bis 40 Kohlenstoffatomen. Die Wachsalkohole kommen beispielsweise in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) als Hauptbe¬ standteil vieler natürlicher Wachse vor. Beispiele für Wachsalkohole sind Lignocerylalkohol (1- Tetracosanol), Cetylalkohol, Myristylalkohol oder Melissylalkohol. Die Umhüllung der erfindungsgemäß umhüllten Feststoffpartikel kann gegebenenfalls auch Wollwachsalkohole enthalten, worunter man Triterpenoid- und Steroidalkohole, beispielsweise Lanolin, versteht, das beispielsweise unter der Handelsbezeichnung Argowax® (Pamentier & Co) erhältlich ist. In einer weiteren bevorzugten Ausführungsform enthält/enthalten einer oder mehrere der in den erfindungsgemäß hergestellten Behältern umschlossenen Feststoffe, vorzugsweise jedoch ein durch Schmelzerstarrung hergestellter Gießkörper, im überwiegenden Anteil Paraffinwachs (Parafine) als Matrixmaterial. Das heißt, dass wenigstens 50 Gew.-% der insgesamt enthaltenen schmelz- oder erweichbaren Substanzen, vorzugsweise mehr, aus Paraffinwachs bestehen. Besonders geeignet sind Paraffinwachsgehalte (bezogen auf das Gesamtgewicht der Matrixmaterialien) von etwa 60 Gew.-%, etwa 70 Gew.-% oder etwa 80 Gew.-%, wobei noch höhere Anteile von beispielsweise mehr als 90 Gew.-% besonders bevorzugt sind. In einer besonderen Ausführungsform der Erfindung besteht das gesamte Matrixmaterial einer oder mehrerer der in die Behälter gefüllten Feststoffe aus Paraffinwachs.
Paraffinwachse weisen gegenüber den anderen genannten, natürlichen Wachsen im Rahmen der vorliegenden Erfindung den Vorteil auf, dass bei einem Einsatz der erfindungsgemäß hergestellten Behälter als Dosiereinheit für Wasch- und Reinigungsmittel in einer alkalischen Reinigungsmittel¬ umgebung keine Hydrolyse der Wachse stattfindet (wie sie beispielsweise bei den Wachsestern zu erwarten ist), da Paraffinwachs keine hydrolisierbaren Gruppen enthält.
Paraffinwachse bestehen hauptsächlich aus Alkanen sowie niedrigen Anteilen an Iso- und Cycloalkanen. Das erfindungsgemäß einzusetzende Paraffin weist bevorzugt im wesentlichen keine Bestandteile mit einem Schmelzpunkt von mehr als 700C, besonders bevorzugt von mehr als 600C auf.
Bevorzugte Feststoffe, insbesondere Gießkörper, enthalten als Matrixmaterial und/oder Matrixbestandteil mindestens ein Paraffinwachs mit einem Schmelzbereich von 400C bis 600C.
Vorzugsweise ist der Gehalt des eingesetzten Paraffinwachses an bei Umgebungstemperatur (in der Regel etwa 10 bis etwa 300C) festen Alkanen, Isoalkanen und Cycloalkanen möglichst hoch. Je mehr feste Wachsbestandteile in einem Wachs bei Raumtemperatur vorhanden sind, desto brauchbarer ist es im Rahmen der vorliegenden Erfindung.
Weitere vorteilhafte Bestandteile der Matrix von Feststoffen, insbesondere von Gießkörpern, sind Wachsalkohole, also Fettalkohole mit ca. 24-36 Kohlenstoffatomen, die in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) Hauptbestandteil vieler natürlicher Wachse sind. Beispielhaft für bevorzugte Wachsalkohole seien hier Lignocerylalkohol, Cerylalkohol, Myricylalkohol oder Melissylalkohol genannt.
Zur Verarbeitung als Gießkörper eignen sich insbesondere Dispersionen, wobei Dispersionen mit wasch- oder reinigungsaktiven Aktivsubstanzen oder Aktivsubstanzgemischen mit besonderem Vorzug eingesetzt werden. In einer besonders bevorzugten Ausführungsform der vorliegenden Anmeldung handelt es sich bei der zur Herstellung des Gießkörpers eingesetzten wasch- oder reinigungsaktiven Zubereitung um eine Dispersion von Feststoffteilchen in einem Dispersionsmittel, wobei Dispersionen, welche bezogen auf ihr Gesamtgewicht i) 10 bis 85 Gew.-% Dispersionsmittel und ii) 15 bis 90 Gew.-% dispergierte Stoffe enthalten, besonders bevorzugt werden.
Als Dispersion wird in dieser Anmeldung ein System aus mehreren Phasen bezeichnet von denen eine kontinuierlich (Dispersionsmittel) und mindestens eine weitere fein verteilt ist (dispergierte Stoffe). Besonders bevorzugte Dispersionen sind dadurch gekennzeichnet, dass sie das Dispersionsmittel in Mengen oberhalb 11 Gew.-%, vorzugsweise oberhalb 13 Gew.-%, besonders bevorzugt oberhalb 15 Gew.-%, ganz besonders bevorzugt oberhalb 17 Gew.-% und insbesondere oberhalb 19 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Dispersion, enthalten. Bevorzugt einsetzbar sind weiterhin Dispersionen, welche eine Dispersion mit einem Gewichtsanteil an Dispersionsmittel oberhalb 20 Gew.-%, vorzugsweise oberhalb 21 Gew.-% und insbesondere oberhalb 22 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Dispersion, aufweisen. Der maximale Gehalt bevorzugter Dispersionen an Dispersionsmittel beträgt, bezogen auf das Gesamtgewicht der Dispersion vorzugsweise weniger als 63 Gew.-%, bevorzugt weniger als 57 Gew.-%, besonders bevorzugt weniger als 52 Gew.-%, ganz besonders bevorzugt weniger als 47 Gew.-% und insbesondere weniger als 37 Gew.-%. Im Rahmen der vorliegenden Erfindung werden insbesondere solche wasch- oder reinigungsaktiven Zubereitungen, welche bezogen auf ihr Gesamtgewicht, Dispersionsmittel in Mengen von 12 bis 62 Gew.-%, vorzugsweise von 14 bis 49 Gew.-% und insbesondere von 16 bis 38 Gew.-% enthalten. Besonders bevorzugt werden Dispersionen mit einem Gehalt an Dispersionsmittel zwischen 16 und 30 Gew.-%, vorzugsweise zwischen 16 und 26 Gew.-% und insbesondere zwischen 16 und 22 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Dispersion.
Die eingesetzten Dispersionsmittel sind vorzugsweise wasserlöslich oder wasserdispergierbar. Die Löslichkeit dieser Dispersionsmittel beträgt dabei bei 250C vorzugsweise mehr als 200 g/l, bevorzugt mehr als 300 g/l, besonders bevorzugt mehr als 400 g/l, ganz besonders bevorzugt zwischen 430 und 620 g/l und insbesondere zwischen 470 und 580 g/l.
Als Dispersionsmittel eignen sich im Rahmen der vorliegenden Erfindung vorzugsweise die wasserlöslichen oder wasserdispergierbaren Polymere, insbesondere die wasserlöslichen oder wasserdispergierbaren nichtionischen Polymere. Bei dem Dispersionsmittel kann es sich dabei sowohl um ein einzelnes Polymer als auch um Gemische verschiedener wasserlöslicher oder wasserdispergierbarer Polymere handeln. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung besteht das Dispersionsmittel bzw. mindestens 50 Gew.-% des Polymergemischs aus wasserlöslichen oder wasserdispergierbaren nichtionischen Polymeren aus der Gruppe der Polyvinylpyrrolidone, Vinylpyrrolidon/Vinylester-Copolymere, Celluloseether, Polyvinylalkohole, Polyalkylenglykole, insbesondere Polyethylenglykol und/oder Polypropylenglykol.
Als bereits weiter oben erwähnte Polyalkylenglykole kommen insbesondere Polyethylenglykole und Polypropylenglykole in Betracht. Polymere des Ethylenglykols, die der allgemeinen Formel
H-(O-CH2-CH2)n-OH
genügen, wobei n Werte zwischen 1 (Ethylenglykol) und mehreren tausend annehmen kann. Für Polyethylenglykole existieren verschiedene Nomenklaturen, die zu Verwirrungen führen können. Technisch gebräuchlich ist die Angabe des mittleren relativen Molgewichts im Anschluß an die Angabe "PEG", so dass "PEG 200" ein Polyethylenglykol mit einer relativen Molmasse von ca. 190 bis ca. 210 charakterisiert. Für kosmetische Inhaltsstoffe wird eine andere Nomenklatur verwendet, in der das Kurzzeichen PEG mit einem Bindestrich versehen wird und direkt an den Bindestrich eine Zahl folgt, die der Zahl n in der vorstehenden Formel entspricht. Nach dieser Nomenklatur (sogenannte INCI-Nomenklatur, CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997) sind beispielsweise PEG-4, PEG-6, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14 und PEG-16 einsetzbar. Kommerziell erhältlich sind Polyethylenglykole beispielsweise unter den Handelnamen Carbowax® PEG 200 (Union Carbide), Emkapol® 200 (ICI Americas), Lipoxol® 200 MED (HÜLS America), Polyglykol® E-200 (Dow Chemical), Alkapol® PEG 300 (Rhone-Poulenc), Lutrol® E300 (BASF) sowie den entsprechenden Handelnamen mit höheren Zahlen. Das mittlere relative Molekulargewicht mindestens eines der in den erfindungsgemäßen Wasch- oder Reinigungsmitteln eingesetzten Dispersionsmittel, insbesondere mindestens einer der eingesetzten Poly(alkylen)glykole, beträgt vorzugsweise zwischen 200 und 36.000, bevorzugt zwischen 200 und 6000 und besonders bevorzugt zwischen 300 und 5000.
Polypropylenglykole (Kurzzeichen PPG) sind Polymere des Propylenglykols, die der allgemeinen Formel
H-(O-C H-C H2)n-OH
CH3 genügen, wobei n Werte zwischen 1 (Propylenglykol) und mehreren tausend annehmen kann. Technisch bedeutsam sind hier insbesondere Di-, Tri- und Tetrapropylenglykol, d.h. die Vertreter mit n = 2, 3 und 4 in der vorstehenden Formel.
Besonders bevorzugt werden Dispersionen eingesetzt, welche als Dispersionsmittel ein nichtionisches Polymer, vorzugsweise ein Poly(alkyleπ)glykol, bevorzugt ein Poly(ethylen)glykol und/oder ein Poly(propylen)glykol enthalten, wobei der Gewichtsanteil des Poly(ethylen)glykols am Gesamtgewicht aller Dispersionsmittel vorzugsweise zwischen 10 und 90 Gew.-%, besonders bevorzugt zwischen 30 und 80 Gew.-% und insbesondere zwischen 50 und 70 Gew.% beträgt. Besonders bevorzugt sind Dispersionen, bei denen das Dispersionsmittel zu mehr als 92 Gew.-%, vorzugsweise zu mehr als 94 Gew.-%, besonders bevorzugt zu mehr als 96 Gew.-%, ganz besonders bevorzugt zu mehr als 98 Gew.-% und insbesondere zu 100 Gew.-% aus einem Poly(alkylen)glykol, vorzugsweise Poly(ethylen)glykol und/oder Poly(propylen)glykol besteht, insbesondere jedoch Poly(ethylen)glykol besteht. Dispersionsmittel, welche neben Poly(ethylen)glykol auch Poly(propylen)glykol enthalten, weisen vorzugsweise ein Verhältnis der Gewichtsanteile von Poly(ethylen)glykol zu Poly(propylen)glykol zwischen 40:1 und 1 :2, vorzugsweise zwischen 20:1 und 1 :1 , besonders bevorzugt zwischen 10:1 und 1 ,5:1 und insbesondere zwischen 7:1 und 2:1 auf.
Weitere bevorzugte Dispersionsmittel sind die nichtionischen Tenside, welche sowohl allein, besonders bevorzugt jedoch in Kombination mit einem nichtionischen Polymer eingesetzt werden. Detaillierte Ausführungen zu den einsetzbaren nichtionischen Tensiden finden sich im Rahmen der Beschreibung wasch- oder reinigungsaktiver Substanzen weiter unten.
Bevorzugt eingesetzte Dispersionen sind dadurch gekennzeichnet, dass mindestens ein Dispersionsmittel einen Schmelzpunkt oberhalb 25°C, vorzugsweise oberhalb 35°C und insbesondere oberhalb 4O0C aufweist. Besonders bevorzugt ist der Einsatz von Dispersionsmitteln mit einem Schmelzpunkt oder Schmelzbereich zwischen 30 und 8O0C, vorzugsweise zwischen 35 und 75°C, besonders bevorzugt zwischen 40 und 70°C und insbesondere zwischen 45 und 65 0C, wobei diese Dispersionsmittel, bezogen auf das Gesamtgewicht der eingesetzten Dispersionsmittel, einen Gewichtsanteil oberhalb 10 Gew.-%, vorzugsweise oberhalb 40 Gew.-%, besonders bevorzugt oberhalb 70 Gew.% und insbesondere zwischen 80 und 100 Gew.-% aufweisen.
Als dispergierte Stoffe eignen sich im Rahmen der vorliegenden Anmeldung alle bei Raumtempe¬ ratur festen wasch- oder reinigungsaktiven Substanzen, insbesondere jedoch wasch- oder reini¬ gungsaktive Substanzen aus der Gruppe der Gerüststoffe (Builder und Cobuilder), der wasch- oder reinigungsaktiven Polymere, der Bleichmittel, der Bleichaktivatoren, der Glaskorrosions¬ schutzmittel, der Silberschutzmittel und/oder der Enzyme. Eine genauere Beschreibung dieser Inhaltsstoffe findet sich weiter unten im Text.
Der Wassergehalt der vorzugsweise in dem erfindungsgemäßen Verfahren eingesetzten Dispersionen beträgt, bezogen auf ihre Gesamtgewicht, bevorzugt weniger als 30 Gew.-%, vorzugsweise weniger als 23 Gew.-%, bevorzugt weniger als 19 Gew.-%, besonders bevorzugt weniger als 15 Gew.-% und insbesondere weniger als 12 Gew.-%. Erfindungsgemäß bevorzugt eingesetzte Dispersionen sind wasserarm oder wasserfrei. Besonders bevorzugt eingesetzte Dispersionen sind dadurch gekennzeichnet, dass sie, bezogen auf ihr Gesamtgewicht, einen Gehalt an freiem Wasser unterhalb 10 Gew.-%, vorzugsweise unterhalb 7 Gew.-%, besonders bevorzugt unterhalb 3 Gew.-% und insbesondere unterhalb 1 Gew.-% aufweisen.
Die mit Vorzug als wasch- oder reinigungsaktive Zubereitung eingesetzten Dispersionen zeichnen sich durch eine hohe Dichte aus. Besonders bevorzugt werden Dispersionen mit einer Dichte oberhalb 1 ,040 g/ cm3 eingesetzt. Erfindungsgemäß bevorzugte Verfahren sind dadurch gekennzeichnet, dass die wasch- und reinigungsaktive Zubereitung eine Dichte oberhalb 1 ,040 g/cm3, vorzugsweise oberhalb 1 ,15 g/cm3, besonders bevorzugt oberhalb 1 ,30 g/cm3 und insbesondere oberhalb 1 ,40 g/cm3 aufweist. Diese hohe Dichte verringert nicht nur das Gesamtvolumen einer Dosiereinheit gegossenen Körper sondern verbessert gleichzeitig deren mechanische Stabilität. Besonders bevorzugte erfindungsgemäße Verfahren sind daher dadurch gekennzeichnet, dass die Dispersion eine Dichte zwischen 1 ,050 und 1 ,670 g/cm3, bevorzugt zwischen 1 ,120 und 1 ,610 g/cm3, besonders bevorzugt zwischen 1 ,210 und 1 ,570 g/cm3, ganz besonders bevorzugt zwischen 1 ,290 und 1 ,510 g/cm3, und insbesondere zwischen 1 ,340 und 1,480 g/cm3 aufweisen Die Angaben zur Dichte beziehen sich jeweils auf die Dichten der Mittel bei 2O0C. Zur Vermeidung von Entmischungsvorgängen während der Verarbeitung dieser Dispersionen, insbesondere im Verlaufe der Vibration der Formwerkzeuge, weisen Dispersionsmittel und dispergierte Stoffe vorzugsweise Dichten auf, die um weniger als 0,6 g/cm3, vorzugsweise weniger als 0,4 g/cm3 und insbesondere um weniger als 0,3 g/cm3 differieren.
Erfindungsgemäß bevorzugt als wasch- oder reinigungsaktive Zubereitung eingesetzte Dispersio¬ nen zeichnen sich dadurch aus, dass sie sich in Wasser (400C) in weniger als 9 Minuten, vorzugsweise weniger als 7 Minuten, bevorzugt in weniger als 6 Minuten, besonders bevorzugt in weniger als 5 Minuten und insbesondere in weniger als 4 Minuten auflösen. Zur Bestimmung der Löslichkeit werden 20 g der Dispersion in den Innenraum einer Geschirrspülmaschine (Miele G 646 PLUS) eingebracht. Es wird der Hauptspülgang eines Standardspülprogramms (45°C) gestartet. Die Bestimmung der Löslichkeit erfolgt dabei durch die Messung der Leitfähigkeit, welche über einen Leitfähigkeitssensor aufgezeichnet wird. Der Lösevorgang ist bei Erreichen des Leitfähigkeitsmaximums beendet. Im Leitfähigkeitsdiagramm entspricht dieses Maximum einem Plateau. Die Leitfähigkeitsmessung beginnt mit dem Einsetzen der Umwälzpumpe im Hauptspülgang. Die eingesetzte Wassermenge beträgt 5 Liter.
Bevorzugte erfindungsgemäße Verfahren sind dadurch gekennzeichnet, dass mindestens eines der eingesetzten Hüllmaterialien transparent oder transluzent ist.
Das zum Tiefziehen, Spritz- und/oder Schmelzgiessen eingesetzte Hüllmaterial ist vorzugsweise transparent. Unter Transparenz ist im Sinne dieser Erfindung zu verstehen, dass die Durch¬ lässigkeit innerhalb des sichtbaren Spektrums des Lichts (410 bis 800 nm) größer als 20%, vorzugsweise größer als 30%, äußerst bevorzugt größer als 40% und insbesondere größer als 50% ist. Sobald somit eine Wellenlänge des sichtbaren Spektrums des Lichtes eine Durchlässigkeit größer als 20% aufweist, ist es im Sinne der Erfindung als transparent zu betrachten.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Hüllmaterial zur Verbesserung des optischen Eindrucks eingefärbt.
Bevorzugt wird dem Hüllmaterial der im erfindungsgemäßen Verfahren hergestellten Behältern Weichmacher zugesetzt. Diese sind bis zu 22 Gew.-%, bevorzugt zwischen 2 und 20 Gew.- %, besonders bevorzugt zwischen 4 und 19 Gew.-% in den eingesetzten Hüllmaterialien enthalten.
Als Weichmacher können sämtliche dem Fachmann bekannten Weichmacher eingesetzt werden, bevorzugt werden jedoch Pentaerythritol, Depentaerythriol, Sorbitol, Mannitol, Glycerin und Glykole wie Glykerol, Etylenglykol und Polyethylenglykol eingesetzt.
Feststoffe wie Talk, Stearinsäure, Magnesiumstearat, Siliciumdioxid, Zinkstearat und kolloidal verteiltes Silika ebenso wie Magnesiumtrisilikat verhinden die Bildung von klebrigen Oberflächen und ermöglichen die Reduziereung der Behälter-Wandstärke. Sie werden dem Hüllmaterial bevorzugt zugesetzt.
Innerhalb eines bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens hergestellte Behälter, zu deren Herstellung transparentes Hüllmaterial eingesetzt wurde, können ein Stabilisierungsmittel enthalten. Stabilisierungsmittel im Sinne der Erfindung sind Materialien, welche die in den Aufnahmekammern befindlichen Inhaltsstoffe vor Zersetzung oder Desaktivierung durch Lichteinstrahlung schützen. Als besonders geeignet haben sich hier Antioxidantien, UV-Absorber und Fluoreszensfarbstoffe erwiesen. Besonders geeignete Stabilisierungsmittel im Sinne der Erfindung sind die Antioxidantien. Um unerwünschte, durch Lichteinstrahlung und damit radikalischer Zersetzung verursachte Veränder¬ ungen an den Formulierungen zu verhindern, können die Formulierungen Antioxidantien enthalten. Als Antioxidantien können dabei beispielsweise durch sterisch gehinderte Gruppen substituierte Phenole, Bisphenole und Thiobisphenole verwendet werden. Weitere Beispiele sind Propylgallat, Butylhydroxytoluol (BHT), Butylhydroxyanisol (BHA), t-Butylhydrochinon (TBHQ), Tocopherol und die langkettigen (C8-C22) Ester der Gallussäure, wie Dodecylgallat. Andere Substanzklassen sind aromatische Amine, bevorzugt sekundäre aromatische Amine und substituierte p-Phenylendiamine, Phosphorverbindungen mit dreiwertigem Phosphor wie Phosphine, Phosphite und Phosphonite, Zitronensäuren und Zitronensäurederivate, wie Isopropylcitrat, Endiol-Gruppen enthaltende Verbindungen, sogenannte Reduktone, wie die Ascorbinsäure und ihre Derivate, wie Ascorbinsäurepalmitat, Organoschwefelverbindungen, wie die Ester der 3,3'-Thiodipropionsäure mit Ci.18-Alkanolen, insbesondere C10-i8-Alkanolen, Metallionen-Desaktivatoren, die in der Lage sind, die Autooxidation katalysierende Metallionen, wie z.B. Kupfer, zu komplexieren, wie Nitrilotriessigsäure und deren Abkömmlinge und ihre Mischungen. Antioxidantien können in den Formulierungen in Mengen bis 35 Gew.-%, vorzugsweise bis 25 Gew.-%, besonders bevorzugt von 0,01 bis 20 und insbesondere von 0,03 bis 20 Gew.-% enthalten sein.
Eine weitere Klasse bevorzugt einsetzbarer Stabilisierungsmittel sind die UV-Absorber. UV- Absorber können die Lichtbeständigkeit der Rezepturbestandteile verbessern. Darunter sind organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, wie beispielsweise das wasserlösliche Benzolsulfonsäure-3-(2H-benzotriazol-2-yl)- 4-hydroxy-5-(methylpro-pyl)-mononatriumsalz (Cibafast® H), in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet. Besondere Bedeutung haben Biphenyl- und vor allem Stilbenderivate, die kommerziell als Tinosorb® FD oder Tinosorb® FR ex Ciba erhältlich sind. Als UV-B-Absorber sind zu nennen 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4- Methylbenzyliden)campher; 4-Aminobenzoesäurederivate, vorzugsweise 4- (Dimethylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octyl-ester und 4-(Dimethylamino)benzoesäureamylester; Ester der Zimtsäure, vorzugsweise 4- Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepropylester, 4-Methoxyzimt- säureisoamylester, 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octocrylene); Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropyl-benzylester, Salicylsäurehomomenthylester; Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4- methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4- methoxybenzophenon; Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi- 2-ethylhexylester; Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1 '-hexyloxy)-1 ,3,5- triazin und Octyl Triazon oder Dioctyl Butamido Triazone (Uvasorb® HEB); Propan-1 ,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxy-phenyl)propan-1 ,3-dion; Ketotricyclo(5.2.1.0)decan-Deri- vate. Weiterhin geeignet sind 2-Phenylbenzimidazol-5-sυlfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze; Sulfonsäure- derivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze; Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3- bomylidenmethyl)benzol-sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3-dion, 4-tert.-Butyl-4'-meth- oxydibenzoylmethan (Parsol 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion sowie Enaminverbindungen. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse, vorzugsweise nanoisierte Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente bereits für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. Vorzugsweise wird mikronisiertes Zinkoxid verwendet.
UV-Absorber können in Mengen bis 5 Gew.-%, vorzugsweise bis 3 Gew.-%, besonders bevorzugt von 0,01 bis 2,0 und insbesondere von 0,03 bis 1 Gew.-%, jeweils bezogen auf das Gesamtgewicht eines in einer Aufnahmekammer befindlichen Substanzgemisches, enthalten sein.
Eine weitere bevorzugt einzusetzende Klasse von Stabilisierungsmitteln sind die Fluor¬ eszenzfarbstoffe. Zu ihnen zählen die 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyrylbiphenylen, Methyl-umbelliferone, Cumarine, Dihydrochinolinone, 1 ,3- Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate. Von besonderer Bedeutung sind dabei die Sulfonsäuresalze der Diaminostilben-Derivate sowie polymere Fluoreszenzstoffe.
Fluoreszenzstoffe können, bezogen auf das Gesamtgewicht eines in einer Aufnahmekammer befindlichen Substanzgemisches, in Mengen bis 5 Gew.-%, vorzugsweise bis 1 Gew.-%, besonders bevorzugt von 0,01 bis 0,5 und insbesondere von 0,03 bis 0,1 Gew.-% enthalten sein.
In einer bevorzugten Ausführungsform werden die vorgenannten Stabilisierungsmittel in beliebigen Mischungen eingesetzt. Die Stabilisierungsmittel werden, bezogen auf das Gesamtgewicht eines in einer Aufnahmekammer befindlichen Substanzgemisches, in Mengen bis 40 Gew.-%, vorzugsweise bis 30 Gew.-%, besonders bevorzugt von 0,01 bis 20 Gew.-%, insbesondere von 0,02 bis 5 Gew.-% eingesetzt.
Bei einem bevorzugten erfindungsgemäßen Verfahren besteht mindestens eines der eingesetzten Hüllmaterial(ien) aus einem wasserlöslichen oder wasserdispergierbaren Polymer, vorzugsweise einer Polymerfolie.
Bevorzugte Verfahrensvarianten sind dabei dadurch gekennzeichnet, dass die in Schritt a) des erfindungsgemäßen Verfahrens eingesetzte Folie eine Dicke von 5 bis 2000μm, vorzugsweise von 10 bis 1000μm, besonders bevorzugt von 15 bis 500 μm, ganz besonders bevorzugt von 20 bis 200 μm und insbesondere von 25 bis 100 μm aufweist.
Bei den eingesetzten Folien kann sich um ein- oder mehrschichtige Folien (Laminatfolien) handeln. Der Wassergehalt der Folien beträgt vorzugsweise unterhalb 10 Gew.-%, besonders bevorzugt unterhalb 7 Gew.-%, ganz besonders bevorzugt unterhalb 5 Gew.-% und insbesondere unterhalb 4 Gew.-%.
Wie den vorstehenden Angaben entnommen werden kann, eignen sich die durch das erfindungsgemäße Verfahren hergestellten Mittel in besonderer Weise zur kontrollierten Freisetzung der enthaltenen Aktivsubstanzen aus der Gruppe der Wasch- oder Reinigungsmittel. Erfindungsgemäß bevorzugt ist demnach eine Ausführungsform, gemäß welcher der Behälter als ganzes wasserlöslich oder wasserdispergierbar ist, d. h. sich bei bestimmungsgemäßem Gebrauch beim Waschen oder maschinellen Reinigen, (vollständig) auflöst, wenn die für das Lösen vorgesehenen Bedingungen erreicht sind. Wesentlicher Vorteil dieser Ausführungsform ist, dass sich der Behälter innerhalb einer praktisch relevant kurzen Zeit - als nicht begrenzendes Beispiel lassen sich wenige Sekunden bis 5 min - unter genau definierten Bedingungen in der Reinigungsflotte zumindest partiell lösen oder dispergieren und damit entsprechend den Anforderungen den umhüllten Inhalt, d. h. das reinigungsaktive Material oder mehrere Materialien, in die Flotte einbringt. Diese Freisetzung kann nur auf unterschiedliche Weise kontrolliert bzw. gesteuert werden.
In einer ersten, aufgrund vorteilhafter Eigenschaften besonders bevorzugten Ausführungsform der Erfindung umfasst der wasserlösliche Behälter weniger gut oder gar nicht wasserlösli- che/wasserdispergierbare oder erst bei höherer Temperatur wasserlösliche/wasserdispergierbare Bereiche und gut wasserlösliche/ wasserdispergierbare oder bei niedriger Temperatur wasser¬ lösliche/ wasserdispergierbare Bereiche. Mit anderen Worten: Der Behälter besteht nicht aus einem einheitlichen, in allen Bereichen die gleiche Wasserlöslichkeit/Wasserdispergierbarkeit aufweisenden Material, sondern aus Materialien unterschiedlicher Wasserlöslich- keit/Wasserdispergierbarkeit. Dabei sind Bereiche guter Wasserlöslichkeit/Wasserdispergierbarkeit einerseits zu unterscheiden von Bereichen mit weniger guter Wasserlöslichkeit/Wasserdispergierbarkeit, mit schlechter oder gar fehlender Wasserlöslichkeit/Wasserdispergierbarkeit oder von Bereichen, in denen die Wasserlöslichkeit/Wasserdispergierbarkeit erst bei höherer Temperatur oder erst bei einem anderen pH-Wert oder erst bei einer geänderten Elektrolytkonzentration den gewünschten Wert erreicht, andererseits. Dies kann dazu führen, dass sich bei bestimmungsgemäßem Gebrauch unter einstellbaren Bedingungen bestimmte Bereiche des Behälters lösen/dispergieren, während andere Bereiche intakt bleiben. So bildet sich ein mit Poren oder Löchern versehener Behälter, in den Wasser und/oder Flotte eindringen, waschaktive, spülaktive oder reinigungsaktive Inhaltsstoffe lösen und aus dem Behälter ausschleusen kann. So lassen sich Systeme mit kontrollierter Freisetzung der waschaktiven, spülaktiven oder reinigungsaktiven Inhaltsstoffe herstellen.
Zur Ausbildung derartiger Systeme unterliegt die Erfindung keinen Beschränkungen. So können Behälter hergestellt werden, in denen ein einheitliches Polymer-Material kleine Bereiche eingearbeiteter Verbindungen (beispielsweise von Salzen) umfasst, die schneller wasserlöslich/wasserdispergierbar sind als das Polymer-Material. Andererseits können auch mehrere Polymer-Materialien mit unterschiedlicher Wasserlöslichkeit/Wasserdispergierbarkeit gemischt werden (Polymer-Blend), so dass das schneller lösliche Polymer-Material unter definierten Bedingungen durch Wasser oder die Flotte schneller desintegriert wird als das langsamer lösliche.
Es entspricht einer besonders bevorzugten Ausführungsform der Erfindung, dass die weniger gut wasserlöslichen/wasserdispergierbaren Bereiche oder gar nicht wasserlöslichen/wasserdispergierbaren Bereiche oder erst bei höherer Temperatur wasserlöslichen/wasserdispergierbaren Bereiche der Behälter Bereiche aus einem Material sind, das chemisch im wesentlichen demjenigen der gut wasserlöslichen/wasserdispergierbaren Bereiche oder bei niedrigerer Temperatur wasserlöslichen/wasserdispergierbaren Bereiche entspricht, jedoch eine höhere Schichtdicke aufweist und/oder einen geänderten Polymerisationsgrad desselben Polymers aufweist und/oder einen höheren Vernetzungsgrad derselben Polymerstruktur aufweist und/oder einen höheren Acetalisierungsgrad (bei PVAL, beispielsweise mit Sacchariden, Polysacchariden, wie Stärke) aufweist und/oder einen Gehalt an wasserunlöslichen/wasserdispergierbaren Salzkomponenten aufweist und/oder einen Gehalt an einem wasserunlöslichen/wasserundispergierbaren Polymeren aufweist. Selbst unter Berück¬ sichtigung der Tatsache, dass sich die Behälter nicht vollständig lösen, können so portionierte Wasch- oder Reinigungsmittelzusammensetzungen gemäß der Erfindung bereitgestellt werden, die vorteilhafte Eigenschaften bei der Freisetzung von Aktivsubtanzen, insbesondere von Aktiv¬ substanzen aus der Gruppe der Wasch- oder Reinigungsmittel in die jeweilige Flotte aufweisen.
Neben dieser kontrollierten Freisetzung durch die gezielte Wahl der eingesetzten Hüllmaterialien stehen dem Fachmann jedoch noch weitere Verfahrensweisen zur Verfügung. Eine alternative Vorgehensweise, welche allein oder in Kombination mit der vorgenannten Steuerung durch Auswahl bestimmter Hüllmaterialien zur kontrollierten Freisetzung von Aktivsubstanzen oder Aktivsubstanzgemischen geeignet ist, ist die Integration eines oder mehrerer "Schalter" in die vorgenannten Aktivsubstanzen, Aktivsubstanzgemische oder Aktivsubstanzzubereitungen.
Mögliche "Schalter", welche das Auflöseverhalten der in den erfindungsgemäßen Behältern umschlossenen Aktivsubstanzen beeinflussen sind in besonders bevorzugten Ausführungsformen physikochemische Parameter. Beispiele hierfür, die jedoch nicht als Beschränkung verstanden werden sollten, sind
die mechanische Stabilität beispielsweise einer Kapsel, einer Beschichtung oder eines kom paktierten Formkörpers wie einer Tablette, welche - in Abhängigkeit von der Zeit, von der Temperatur oder von anderen Parametern - ein die Desintegration bestimmender Faktor sein kann; die Löslichkeit optional eingesetzter Kapseln oder Beschichtungen oder Matrizes in Abhängigkeit von pH-Wert und/oder Temperatur und/oder lonenstärke; die Lösungsgeschwindigkeit optional eingesetzter Kapseln oder Beschichtungen oder Matrizes in Abhängigkeit von pH-Wert und/oder Temperatur und/oder lonenstärke; das Schmelzverhalten (der Schmelzpunkt) optional eingesetzter Kapseln oder Beschichtungen oder Matrizes in Abhängigkeit von pH-Wert und/oder Temperatur und/oder lonenstärke;
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens umfasst das hergestellte Mittel mindestens eine Aktivsubstanz oder Aktivsubstanzzubereitung, deren Freisetzung verzögert ist. Die verzögerte Freisetzung erfolgt dabei vorzugsweise durch den Einsatz mindestens eines der zuvor beschriebenen Mittel, insbesondere jedoch durch den Einsatz unterschiedlicher Verpackungsmaterialien und/oder den Einsatz ausgewählter Beschichtungsmaterialien, wobei es insbesondere bevorzugt ist, dass diese verzögerte Freisetzung bei Einsatz von Aktivsubstanzen oder Aktivsubstanzgemische aus der Gruppe der Wasch- oder Reinigungsmittel frühestens 5 Minuten, bevorzugt frühestens 7 Minuten, besonders bevorzugt frühestens 10 Minuten, ganz besonders bevorzugt frühestens 15 Minuten und insbesondere frühestens 20 Minuten nach Beginn des Reinigungs- oder Waschverfahrens erfolgt. Besonders bevorzugt wird dabei der Einsatz von schmelzbaren Beschichtungsmaterialien aus der Gruppe der Wachse oder Paraffine.
Befüllen des Behälters nach Punkt b) Als "Volumen" der Aufnahmekammern wird im Rahmen dieser Anmeldung das Füllvolumen bezeichnet, welches bei Befüllen der Kammern bzw. Zwischenräume mit einer Flüssigkeit ohne Überlaufen dieser Flüssigkeit auf die vorzugsweise planaren Siegelränder realisierbar ist. Die durch das Tiefziehverfahren, das Spritzgussverfahren oder das Schmelzgussverfahren erzeugten Aufnahmekammern können mit Feststoffen oder Flüssigkeiten befüllt werden. Ein bevorzugtes erfindungsgemäßes mehrphasiges Wasch- oder Reinigungsmittel ist dadurch gekennzeichnet, dass es sich bei den beiden voneinander getrennten Phasen von Wasch- oder Reinigungsmitteln um einen Feststoff und eine Flüssigkeit handelt
Werden in Schritt a) des erfindungsgemäßen Verfahrens mehr als eine Kammer gebildet, so kann die Befüllung dieser zwei, drei, vier, fünf oder mehr Kammern gleichzeitig oder zeitlich versetzt erfolgen. Es ist weiterhin bevorzugt mindestens eine, vorzugsweise zwei, drei, oder vier der in Schritt a) erzeugten Aufnahmekammern vor dem Versiegeln nicht zu befüllen. Die resultierende Verpackung zeichnet sich dann bei Einsatz in flüssigen, vorzugsweise wässrigen Medien durch einen erhöhten Auftrieb aus.
Ein erfindungsgemäß besonders bevorzugtes Verfahren ist dadurch gekennzeichnet, dass der resultierende Behälter mindestens zwei Aufnahmekammern aufweist, welche mit jeweils unterschiedlichen Mitteln befüllt werden. Die Mittel können sich dabei sowohl in ihrer Zusammensetzung, als auch in Zusammensetzung und Aggregatzustand unterscheiden.
Gegenstand der vorliegenden Anmeldung ist ein Verfahren zur Herstellung mehrphasiger Wasch¬ oder Reinigungsmittel, umfassend die Schritte: a) Herstellung eines wasserlöslichen oder wasserdispergierbaren Behälters, welcher zwei Aufnahmekammem aufweist; b) Befüllen des Behälters mit einem ersten und einem zweiten Wasch- und/oder Reinigungsmittel; c) Auftragen eines flüssigen Trennmittels auf diese Wasch- oder Reinigungsmittel und Verfestigen des Trennmittels unter Ausbildung einer Trennschicht; d) Befüllen des Behälters mit einem dritten, vorzugsweise mit einem dritten und einem vierten Wasch- oder Reinigungsmittel.
Gegenstand der vorliegenden Anmeldung ist ein Verfahren zur Herstellung mehrphasiger Wasch¬ oder Reinigungsmittel, umfassend die Schritte: a) Herstellung eines wasserlöslichen oder wasserdispergierbaren Behälters, welcher drei Aufnahmekammern aufweist; b) Befüllen des Behälters mit einem ersten, einem zweiten und einem dritten Wasch- oder Reinigungsmittel; c) Auftragen eines flüssigen Trennmittels auf diese Wasch- oder Reinigungsmittel und Verfestigen des Trennmittels unter Ausbildung einer Trennschicht; d) Befüllen des Behälters mit mindestens einem weiteren Wasch- oder Reinigungsmittel.
Gegenstand der vorliegenden Anmeldung ist ein Verfahren zur Herstellung mehrphasiger Wasch¬ oder Reinigungsmittel, umfassend die Schritte: a) Herstellung eines wasserlöslichen oder wasserdispergierbaren Behälters, welcher vier Aufnahmekammern aufweist; b) Befüllen des Behälters mit einem ersten, einem zweiten, einem dritten und einem vierten Wasch- oder Reinigungsmittel; c) Auftragen eines flüssigen Trennmittels auf diese Wasch- oder Reinigungsmittel und Verfestigen des Trennmittels unter Ausbildung einer Trennschicht; d) Befüllen des Behälters mit mindestens einem weiteren Wasch- oder Reinigungsmittel.
Ein erfindungsgemäß bevorzugtes Verfahren ist dadurch gekennzeichnet, dass die Aufnahme¬ kammern eines Behälters, der mindestens zwei Aufnahmekammern aufweist, mit denselben Mitteln befüllt werden. Bevorzugt wird jedoch, dass mindestens eines, besonders bevorzugt zwei, ganz besonders bevorzugt drei, insbesondere vier der Mittel eine Zusammensetzung und/oder einen Aggregatzustand aufweist/aufweisen, die/der keinem anderen der eingefüllten Mittel entspricht. Insbesondere ist bevorzugt, dass sich alle eingefüllten Mittel in ihrer Zusammensetzung und/oder ihrem Aggregatzustand unterscheiden.
Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass es sich bei mindestens einem der in den Schritten b) und d) eingefüllten Wasch- oder Reinigungsmittel um einen Feststoff handelt.
Eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass es sich bei mindestens einem der in den Schritten b) und d) eingefüllten Wasch- oder Reinigungsmittel um eine Flüssigkeit handelt.
In der Folge wird bezüglich der Aggregatzustände der einfüllbaren Wirkstoffe oder Wirkstoffkombinationen zwischen festen und flüssigen Mitteln unterschieden, wobei als Feststoffe im Rahmen der vorliegenden Anmeldung Wirkstoffe und Wirkstoffkombinationen zusammengefasst werden, welche eine feste, das heißt formstabile nicht fließfähige Konsistenz aufweisen. Unter diese Kategorie fallen beispielsweise Substanzen im festen Aggregatzustand, aber auch formstabile Substanzen wie formstabile Gele sowie Kombinationen dieser Substanzen. Weiterhin werden befüllte Körper mit einer festen Außenhülle als Feststoffe bezeichnet, und zwar unabhängig vom Aggregatzustand der in diesen befüllten Körpern enthaltenen Füllstoffe.
Als Feststoffe gelten im Rahmen der vorliegenden Anmeldung vorzugsweise Pulver und/oder Granulate und/oder Extrudate und/oder Kompaktate und/oder Gießkörper und zwar unabhängig davon, ob es sich um Reinsubstanzen oder um Substanzgemische handelt. Die genannten Feststoffe können dabei in amorpher und/oder kristalliner und/oder teilkristalliner Form vorliegen. Bevorzugte Feststoffe weisen im Rahmen der vorliegenden Erfindung einen Wassergehalt (beispielsweise bestimmbar als Trocknungsverlust oder nach Karl Fischer) unterhalb 7 Gew.-%, vorzugsweise unterhalb 4,5 Gew.-%, und besonders bevorzugt unterhalb 2 Gew.-% auf.
Pulver ist eine allgemeine Bezeichnung für eine Form der Zerteilung fester Stoffe und/oder Stoffgemische, die man durch Zerkleinern, das heißt Zerreiben oder Zerstoßen in der Reibschale (Pulverisieren), Mahlen in Mühlen oder als Folge von Zerstäubungs- oder Gefriertrocknungen erhält. Eine besonders feine Zerteilung nennt man oft Atomisierung oder Mikronisierung; die entsprechenden Pulver werden als Mikro-Pulver bezeichnet. Bevorzugte Pulver weisen eine gleichmäßige (homogene) Mischungen der festen feinzerteilten Bestandteile auf und neigen im Falle von Stoff gern ischen insbesondere nicht zur Auftrennung in Einzelbestandteile dieser Gemische. Im Rahmen der vorliegenden Anmeldung besonders bevorzugte Pulver weisen daher eine Teilchengrößeverteilung auf, in der mindestens 80 Gew.-%, vorzugsweise mindestens 60 Gew.-%, besonders bevorzugt mindestens 95 Gew.-% und insbesondere mindestens 99 Gew.-% des Pulvers, jeweils bezogen auf dessen Gesamtgewicht, zu maximal 80 %, vorzugsweise maximal 60 % und insbesondere maximal 40 % von der mittleren Teilchengröße dieses Pulvers abweichen.
Nach der Korngröße ist eine grobe Einteilung der Pulver in Grob-, Fein- u. Feinst-Pulver üblich; eine genauere Klassifizierung pulverförmiger Schüttgüter erfolgt über ihre Schüttdichte und durch Siebanalyse. Grundsätzlich lassen sich Pulver jeglicher Partikelgröße einsetzen, bevorzugte Pulver weisen jedoch mittlere Partikelgrößen von 40 bis 500 μm, vorzugsweise von 60 bis 400 μm und insbesondere von 100 bis 300 μm auf. Methoden zur Bestimmung der mittleren Teilchengröße stützen sich gewöhnlich auf die vorgenannte Siebanalyse und sind im Stand der Technik ausführlich beschrieben.
Dem unerwünschten Zusammenbacken der Pulver kann man durch Verwendung von Rieselhilfen bzw. Pudermitteln begegnen. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens enthalten die hergestellten Pulver daher Rieselhilfen bzw. Pudermittel, vorzugsweise in Gewichtsanteilen von 0,1 bis 4 Gew.-%, besonders bevorzugt von 0,2 bis 3 Gew.-% und insbesondere von 0,3 bis 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Pulvers. Bevorzugte Rieselhilfen bzw. Pudermittel sind, vorzugsweise in feinst vermahlener Form, Silikate und/oder Siliciumoxid und/oder Harnstoff.
Als partikuläre Gemische lassen sich Pulver durch eine Reihe von Techniken agglomerieren. Jede der im Stand der Technik zur Agglomeration von partikulären Gemischen bekannte Methode ist dabei prinzipiell geeignet, die in den erfindungsgemäß hergestellten Behältern umschlossenen Feststoffe in größere Aggregate zu überführen. Im Rahmen der vorliegenden Erfindung bevorzugt als Feststoff(e) eingesetzte Agglomerate sind neben den Granulaten die Kompaktate und Extrudate.
Als Granulate werden Anhäufungen von Granulatkörnchen bezeichnet. Ein Granulatkorn (Granalie) ist ein asymmetrisches Aggregat aus Pulverpartikeln. Granulationsverfahren sind im Stand der Technik breit beschrieben. Granulate können durch Feuchtgranulierung, durch Trockengranulierung bzw. Kompaktierung und durch Schmelzerstarrungsgranulierung hergestellt werden.
Die gebräuchlichste Granuliertechnik ist die Feuchtgranulierung, da diese Technik den wenigsten Einschränkungen unterworfen ist und am sichersten zu Granulaten mit günstigen Eigenschaften führt. Die Feuchtgranulierung erfolgt durch Befeuchtung der Pulvermischungen mit Lösungsmitteln und/oder Lösungsmittelgemischen und/oder Lösungen von Bindemitteln und/oder Lösungen von Klebstoffen und wird vorzugsweise in Mischern, Wirbelbetten oder Sprühtürmen durchgeführt, wobei besagte Mischer beispielsweise mit Rühr- und Knetwerkzeugen ausgestattet sein können. Für die Granulation sind jedoch auch Kombinationen von Wirbelbett(en) und Mischer(n), bzw. Kombinationen verschiedener Mischer einsetzbar. Die Granulation erfolgt abhängig vom Ausgangsmaterial sowie den gewünschten Produkteigenschaften unter Einwirkung niedriger bis hoher Scherkräfte.
Erfolgt die Granulation in einem Sprühturm so können als Ausgangsstoffe beispielsweise Schmelzen (Schmelzerstarrung) oder, vorzugsweise wässrige, Aufschlämmungen (Sprühtrocknung) fester Substanzen eingesetzt werden, welche an der Spitze eines Turmes in definierter Tröpfchengröße eingesprüht werden, im freien Fall erstarren bzw. trocknen und am Boden des Turmes als Granulat anfallen. Die Schmelzerstarrung eignet sich im allgemeinen besonders zur Formgebung niedrigschmelzender Stoffe, die im Bereich der Schmelztemperatur stabil sind (z. B. Harnstoff, Ammoniumnitrat u. diverse Formulierungen wie Enzymkonzentrate, Arzneimittel etc.), die entsprechenden Granulate werden auch als Prills bezeichnet. Die Sprühtrocknung wird besonders für die Herstellung von Waschmitteln oder Waschmittelbestandteilen eingesetzt.
Weitere im Stand der Technik beschriebene Agglomerationstechniken sind die Extruder- oder Lochwalzengranulierungen, bei denen optional mit Granulierflüssigkeit versetzte Pulvergemische beim Verpressen durch Lochscheiben (Extrusion) oder auf Lochwalzen plastisch verformt werden. Die Produkte der Extrudergranulierung werden auch als Extrudate bezeichnet.
Kompaktate lassen sich beispielsweise durch Trockengranulationstechniken wie die Tablettierung oder Walzenkompaktierung herstellen. Durch die Kompaktierung in Tablettenpressen können ein- oder mehrphasige Tabletten oder Briketts hergestellt werden. Zu den mehrphasigen Tabletten zählen neben den Mehrschicht- oder Sandwichtabletten beispielsweise auch die Manteltabletten und die Punkttabletten (Bull-eye-Tabletten). Die Briketts können ebenso wie die in Kompaktier- walzen erzeugten Schülpen im Anschluss an die Kompaktierung durch gegenläufige Stachel¬ walzen zerkleinert oder durch Siebe geschlagen werden.
Als Feststoffe gelten weiterhin Gießkörper, welche beispielsweise nach den oben beschriebenen Verfahren durch Erstarrung und/oder Kristallisation aus Schmelzen oder Lösungen hergestellt werden können, ohne dass diese Gießkörper notwendigerweise die Raumform der oben beschriebenen wasserlöslichen oder wasserdispergierbaren Behälter aufweisen müssen. Die Erstarrung und/oder Kristallisation erfolgt bevorzugt in vorgefertigten Matrizen. Die nach Erstarrung aus den Matrizen gelösten Gießkörper können im Anschluss je nach Größe der Matrize und Verwendungszweck des Gießkörpers in ihrer ursprünglichen Größe oder gegebenenfalls nach Zerkleinerung als Feststoffe in den erfindungsgemäßen wasserlöslichen Behältern eingesetzt werden.
Gele Formstabile Gele sind ein weiterer im Rahmen der vorliegender Erfindung besonders bevorzugter Feststoff. Der Begriff "formstabil" bezeichnet dabei Gele, welche eine Eigen-Formstabilität aufweisen, die sie befähigt, unter üblichen Bedingungen der Herstellung, der Lagerung, des Transports und der Handhabung durch den Verbraucher eine gegen Bruch stabile, nicht desintegrierende Raumform einzunehmen, wobei sich diese Raumform unter den genannten Bedingungen auch über längere Zeit, vorzugsweise 4 Wochen, besonders bevorzugt, 8 Wochen und insbesondere 32 Wochen, nicht verändert, das heißt unter den üblichen Bedingungen der Herstellung, der Lagerung, des Transports und der Handhabung durch den Verbraucher in der durch die Herstellung bedingten räumlich-geometrischen Form verharrt, das heißt, beispielsweise nicht zerfließt, oder bei Einwirkung einer äußeren unter den Bedingungen der Herstellung, der Lagerung, des Transports und der Handhabung üblichen Kraft, in diese räumlich-geometrischen Form zurückkehrt.
Um die gewünschte Formstabilität, der Gele bei gleichzeitig guten Produkteigenschaften (Löslichkeit, Wasch- und Reinigungsleistung, Stabilität des Gels) zu erreichen, ist es im Rahmen der vorliegenden Erfindung bevorzugt, als Verdickungsmittel einen oder mehrere Stoffe aus der Gruppe Agar-Agar, Carrageen, Tragant, Gummi arabicum, Alginate, Pektine, Polyosen, Guar- Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Gelatine, Casein, Carboxymethylcellulose, Kernmehlether, Polyacryl- u. Polymethacryl-Verb., Vinylpolymere, Polycarbonsäuren, Polyether, Polyimine, Polyamide, Polykieselsäuren, Tonmineralien wie Montmorillonite, Zeolithe und Kieselsäuren enthalten, wobei es sich als besonders vorteilhaft erwiesen hat, wenn die Gele diese oder eines der nachfolgenden Verdickungsmittel in Mengen zwischen 0,2 und 10 Gew.-%, bevorzugt zwischen 0,3 und 7 Gew.-% und besonders bevorzugt zwischen 0,4 und 4 Gew.-% bezogen auf das Gesamtgewicht des Formkörpers enthalten.
Aus der Natur stammende Polymere, die als Verdickungsmittel im Rahmen der vorliegenden Erfindung Verwendung finden, sind wie zuvor beschrieben beispielsweise Agar-Agar, Carrageen, Tragant, Gummi arabicum, Alginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Gelatine und Casein. Abgewandelte Naturstoffe stammen vor allem aus der Gruppe der modifizierten Stärken und Cellulosen, beispielhaft seien hier Carboxymethylcellulose und andere Celluloseether, Hydroxyethyl- und -propylcellulose sowie Kernmehlether genannt. Eine große Gruppe von Verdickungsmitteln, die breite Verwendung in den unterschiedlichsten Anwendungsgebieten finden, sind die vollsynthetischen Polymere wie Polyacryl- und Polymethacryl-Verbindungen, Vinylpolymere, Polycarbonsäuren, Polyether, Polyimine, Polyamide und Polyurethane. Verdickungsmittel aus diesen Substanzklassen sind kommerziell breit erhältlich und werden beispielsweise unter den Handelsnamen Acusol®-820 (Methacrylsäure(stearylalkohol-20-EO)ester-Acrylsäure-Copolymer, 30%ig in Wasser, Rohm & Haas), Dapral®-GT-282-S (Alkylpolyglykolether, Akzo), Deuterol®-Polymer-11 (Dicarbonsäure-Copolymer, Schöner GmbH), Deuteron®-XG (anionisches Heteropolysaccharid auf Basis von ß-D-Glucose, D-Manose, D-Glucuronsäure, Schöner GmbH), Deuteron®-XN (nichtionogeπes Polysaccharid, Schöner GmbH), Dicrylan®-Verdicker-O (Ethylenoxid-Addukt, 50%ig in Wasser/Isopropanol, Pfersse Chemie), EMA®-81 und EMA®-91 (Ethyleπ-Maleinsäureanhydrid-Copolymer, Monsanto), Verdicker-QR-1001 (Polyurethan Emulsion, 19-21%ig in Wasser/Diglykolether, Rohm & Haas), Mirox®-AM (anionische Acrylsäure-Acrylsäureester-Copolymer-Dispersion, 25%ig in Wasser, Stockhausen), SER-AD-FX-1100 (hydrophobes Urethanpolymer, Servo Delden), Shellflo®-S (hochmolekulares Polysaccharid, mit Formaldehyd stabilisiert, Shell) sowie Shellflo®-XA (Xanthan-Biopolymer, mit Formaldehyd stabilisiert, Shell) angeboten.
Bedingt durch ihren Herstellungsprozess sowie zur Optimierung ihres Löseverhaltens enthalten bevorzugte Gele verschiedene Lösungsmittel, wobei sich Gele hinsichtlich ihrer Produkteigen¬ schaften als besonders vorteilhaft erwiesen haben, die Wasser und/oder ein oder mehrere wassermischbare Lösungsmittel in Mengen von 5 bis 70 Gew.-%, vorzugsweise von 10 bis 65 Gew.-% und besonders bevorzugt von 15 bis 60 Gew.-% enthalten.
Als besonders vorteilhaft hat es sich zudem erwiesen, wenn die wassermischbaren Lösungsmittel einen oder mehrere Stoffe aus der Gruppe der Gruppe Ethanol, n- oder i-Propanol, n- oder sec- oder tert-Butanol, Glykol, Propan- oder Butandiol, Glycerin, Diglykol, Propyl- oder Butyldiglykol, Hexylenglykol, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpropylether, Ethylenglykolmono-n-butylether, Diethylenglykol-methylether, Diethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder -propyl-ether, Dipropylenglykolmonomethyl-, oder -ethylether, Di-isopropylenglykolmonomethyl-, oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1- Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylen-glykol-t-butylether enthalten.
Kapseln Weitere innerhalb eines bevorzugten erfindungsgemäßen Verfahrens in den Behältern umschlossene Feststoffe sind die Kapseln. "Kapsel" ist eine Bezeichnung für eine häufig verwendete Verpackungsform, die in verschieden großen, ggf. gefärbten Hüllschichten aus Gelatine, Wachs, od. Oblatenmaterial feste, halbfeste od. flüssige Substanzen enthält. Am häufigsten werden die Gelatine-Kapseln (aus Hart- oder Weich-Gelatine) verwendet.
In einer besonderen Ausführungsform der vorliegenden Erfindung weist/weisen einer, mehrere oder alle der in die erfindungsgemäß hergestellten Behälter gefüllte Feststoffe, also beispielsweise ein, mehrere oder alle in diese Behälter gefüllte Pulver und/oder Granulat(e) und/oder Extrudat(e) und/oder Kompaktat(e) und/oder Gießkörper und/oder formstabile(s) Gel(e) und/oder Kapsel(n), eine Beschichtung (Coating) auf. Ein derartiges Coating kann dabei verschiedenen Zwecken dienen. Zum einen kann durch ein Coating beispielsweise ein unerwünschter Kontakt von in den Feststoffen enthaltenen hydrolyse- oder oxidationsempfindlichen Aktivsubstanzen, mit der Außenluft oder weiteren in dem erfindungsgemäßen wasserlöslichen Behälter umschlossenen Feststoffe vermieden werden. Andererseits kann durch eine Beschichtung auch ein vorteilhafter visueller Effekt erzielt werden.
Flüssigkeiten Als Inhaltstoffe für die Aufnahmekammern bzw. Zwischenräume eignen sich nach dem vorher Gesagten Flüssigkeiten und Feststoffe. Bei den Feststoffen wird dabei u.a. zwischen Pulvern, Granulaten, Extrudaten, Kompaktaten, Gießkörpern sowie formstabilen Gelen unterschieden. Als Flüssigkeiten gelten im Rahmen dieser Anmeldung neben niedrigviskosen, fließfähigen Flüssigkeiten oder fließfähigen Gelen auch fließfähige Dispersionen, beispielsweise Emulsionen oder Suspensionen. Als fließfähig gelten Wirkstoffe oder Wirkstoffkombinationen dann, wenn sie keine Eigen-Formstabilität aufweisen, die sie befähigt, unter üblichen Bedingungen der Herstellung, der Lagerung, des Transports und der Handhabung durch den Verbraucher eine nicht desintegrierende Raumform einzunehmen, wobei diese Raumform unter den genannten Bedingungen auch über längere Zeit, vorzugsweise 4 Wochen, besonders bevorzugt, 8 Wochen und insbesondere 32 Wochen, nicht verändert, das heißt unter den üblichen Bedingungen der Herstellung, der Lagerung, des Transports und der Handhabung durch den Verbraucher in der durch die Herstellung bedingten räumlich-geometrischen Form verharrt, das heißt, nicht zerfließt. Die Bestimmung der Fließfähigkeit bezieht sich dabei insbesondere auf die für die Lagerung und den Transport üblichen Bedingungen, also insbesondere auf Temperaturen unterhalb 5O0C, vorzugsweise unterhalb 400C. Als Flüssigkeiten gelten daher insbesondere Wirkstoffe oder Wirkstoffkombinationen mit einem Schmelzpunkt unterhalb 25°C, vorzugsweise unterhalb 200C, besonders bevorzugt unterhalb 15°C.
In den nachfolgenden Tabellen werden die nach bevorzugten erfindungsgemäßen Verfahren herstellbaren Behälter mit zwei bzw. drei befüllten Aufnahmemulden aufgeführt.
Behälter mit zwei Aufnahmekammern Behälter mit drei Aufnahmekammem 3U
Im Rahmen der vorliegenden Anmeldung besonders bevorzugte erfindungsgemäße Verfahren, sind dadurch gekennzeichnet, dass mindestens eine Aufnahmekammer mit einer Flüssigkeit und mindestens eine weitere Aufnahmekammer mit einem Feststoff befüllt wird. Besonders bevorzugt werden erfindungsgemäße Verfahren in denen mindestens eine Aufnahmekammer mit einem Gießkörper (Schmelze), mindestens eine weitere Aufnahmekammer mit einem Feststoff befüllt wird.
Auftragen und Verfestigen des Trennmittel nach Punkt c) In dem erfindungsgemäßen Verfahren wird nach Befüllen des Behälters mit dem/den ersten Wasch- oder Reinigungsmittel(n) ein festes Trennmittel, welches sich unter Ausbildung einer Trennschicht verfestigt, aufgebracht (Schritt c)). Diese kann senkrecht oder waagerecht zum Behälterboden eingeführt werden. Auch schräg verlaufende Trennschichten, bei denen der Winkel zwischen Trennschicht und Behälterboden Werte zwischen 0 und 90 ° beträgt, sind realisierbar. Bevorzugt wird jedoch die Ausbildung von Trennschichten, die parallel zum Behälterboden liegen. Im Anschluss an die Verfestigung des Trennmittels erfolgt die weitere Befüllung der wasserlöslichen oder wasserdispergierbaren Behälter (Schritt d)).
Ein bevorzugtes Verfahren ist dadurch gekennzeichnet, dass die Schritte c) und d) einmal, zweimal oder dreimal oder vielfach wiederholt werden.
Das flüssige Trennmittel kann nacheinander auf die einzelnen teilbefüllten Behälter aufgetragen werden, es ist jedoch bevorzugt, dass die Auftragung chargenweise jeweils auf 2, vorzugsweise 2-4, bevorzugt 4-6, besonders bevorzugt 6-8, ganz besonders bevorzugt 8-10, insbesondere 10 - 25 teilbefüllte Behälter gleichzeitig erfolgt. Als teilbefüllter Behälter wird hier ein wasserlöslicher oder wasserdispergierbarer Behälter verstanden, der im Schritt b) bereits mit einem oder mehreren Waschmittel(n) befüllt wurde.
Zum Einsprühen der flüssigen Trennmittel eignen sich alle dem Fachmann zu diesem Zweck bekannten Vorrichtungen. Das Besprühen erfolgt vorzugsweise mittels Einstoff- bzw. Hochdrucksprühdüsen, Zweistoffsprühdüsen oder Dreistoffsprühdüsen. Zum Versprühen mit Einstoffsprühdüsen ist in einigen Fällen die Anwendung eines hohen Massedruckes (5-15 MPa) erforderlich, während das Versprühen in Zweistoffsprühdüsen mit Hilfe eines Preßluftstromes (bei 0,15-0,3 MPa) erfolgen kann. Die Versprühung mit Zweistoffsprühdüsen ist besonders im Hinblick auf eventuelle Verstopfungen der Düse günstiger, aber durch den hohen Preßluftverbrauch aufwendiger. Als moderne Weiterentwicklung gibt es die Dreistoffsprühdüsen, welche neben dem Preßluftstrom zur Zerstäubung ein weiteres Luftführungssystem, das Verstopfungen und Tropfenbildung an der Düse verhindern soll.
Die Auftragung des flüssigen Trennmittels erfolgt durch eine Spritzvorrichtung innerhalb von 6 s, vorzugsweise 4 s, bevorzugt 2 s, besonders bevorzugt 1 s, insbesondere 0,2 s. Um auch die Auftragung viskoser Trennmittel zu gewährleisten beträgt der Innendurchmesser eingesetzter Spritzdüsen zwischen 0,2 und 5 mm, bevorzugt zwischen 0,2 und 4 mm, insbesondere zwischen 0,2 und 3 mm. Für niedrigviskose Trennmittel werden Spritzdüsen mit Innendurchmessern zwischen 0,05 und 1 mm eingesetzt. Der Tropfendurchmesser des aufgesprühten flüssigen Trennmittels beträgt vorzugsweise zwischen 1 und 100 μm, besonders bevorzugt zwischen 2 und 80 μm, ganz besonders bevorzugt zwischen 4 und 70 μm und insbesondere zwischen 8 und 60 μm.
In einem bevorzugten Verfahren verfestigt sich das flüssige Trennmittel nach Auftragen auf das bereits eingefüllte Wasch- oder Reinigungsmittel. Ebenfalls bevorzugt ist ein Verfahren, in dem zum Verfestigen der Trennschicht die Auftragung einer weiteren Komponente notwendig ist, und die feste Trennschicht durch eine chemische Reaktion, Chemisorption oder Physisorption gebildet wird.
Gegenstand der vorliegenden Erfindung ist ein mehrphasiges Wasch- oder Reinigungsmittel dadurch gekennzeichnet, dass es sich bei der Trennschicht um eine verfestigte Lösung handelt. Da das flüssige Trennmittel auf das/die im Schritt b) eingefüllte(n) Wasch- oder Reinigungsmittel vorzugsweise aufgespritzt, das heißt aufgesprüht wird, werden als Trennmittel bevorzugt Suspensionen oder Schmelzen oder wässrige Lösungen eingesetzt.
Der Einsatz wässriger Lösungen ist insbesondere bei solchen Verfahrensvarianten von Vorteil, bei denen das in Schritt b) eingefüllte erste Wasch- oder Reinigungsmittel feste, hygroskopische Substanzen, beispielsweise hydratisierbare Salze enthält. Durch die Wechselwirkung zwischen der wässrigen Trennmittellösung und der hygroskopischen Substanz wird einerseits die Aushärtung des Trennmittels beschleunigt, andererseits wird zudem eine wenigstens oberflächliche Aushärtung des ersten Wasch- oder Reinigungsmittels und damit eine Verbesserung der Trennkraft des Trennmittels und eine Erhöhung der Behälterstabilität und Rigidität erreicht.
Werden als Trennmittel wässrige Lösungen eingesetzt, so beträgt der Wassergehalt dieser Lösungen vorzugsweise zwischen 10 und 90 Gew.-%, vorzugsweise zwischen 20 und 80 Vol.-% und insbesondere zwischen 30 und 80 Gew.-%.
Als Suspension wird eine Spezialform der Dispersion bezeichnet, bei der unlösliche Feststoff¬ teilchen in Flüssigkeiten, plastischen Massen oder erstarrten Schmelzen enthalten sind. Bei der Verwendung von Suspensionen als flüssiges Trennmittel ist innerhalb dieser Erfindung zu beachten, dass es bei größeren Feststoffteilchen zu einer Sedimentation der suspendierten Teilchen kommt und somit das Trennmittel nicht mehr homogen ist. Um diesem Effekt entgegenzuwirken ist es in dem erfindungsgemäßen Verfahren bevorzugt, dass die verwendete Suspension keine Feststoffteilchen mit Teilchengrößen größer als 500 μm, bevorzugt 400 μm, besonders bevorzugt 300 μm, ganz besonders bevorzugt 200 μm, insbesondere 100 μm enthält. Gröbere Feststoffkomponenten werden bevorzugt in einem Walzenprozess zerkleinert. Hierbei ist es besonders bevorzugt, den Walzenprozess mit dem bereits suspendierten Füllmaterial durchzuführen.
Eine weitere Möglichkeit ein Absetzten der Feststoffteilchen zu verhindern ist es, die Viskosität der Suspension zu erhöhen. Dazu wird der Lösungsmittelanteil möglichst niedrig gewählt. Die eingesetzten Suspensionen enthalten daher bevorzugt weniger als 80 Gew.-%, bevorzugt weniger als 60 Gew.-%, besonders bevorzugt zwischen 1 und 40 Gew.-% und insbesondere zwischen 2 und 20 Gew.-% Lösungsmittel.
Suspendierhilfen erhöhen ebenfalls die Stabilität einer Suspension und werden bevorzugt in dem erfindungsgemäßen Verfahren eingesetzt. Suspendierhilfen sind vorzugsweise grenzflächenaktive Stoffe, die wirken, indem sie die Benetzung der suspendierten Teilchen mit dem Lösungsmittel erhöhen. Hier finden vorzugsweise Tenside, besonders bevorzugt Tenside mit linearen Kohlenstoff ketten, Anwendung. Die Gruppe der Tenside wird weiter unten beschrieben. Bevorzugt werden jedoch auch polare Lösungsmittel wie Alkohole, Ether, Pyridine und Alkylformiate eingesetzt.
Neben den Suspensionen sind im flüssiges Trennmittel vorzugsweise Schmelzen enthalten. Der Schmelzpunkt der Schmelzen beträgt vorzugsweise weniger als 1500C, bevorzugt weniger als 120°C, besonders bevorzugt zwischen 30 und 1000C und insbesondere zwischen 40 und 800C. Besonderheiten, die bei der Verarbeitung von Schmelzen zu berücksichtigen sind, wurden bei der Herstellung von Gießkörpern bereits diskutiert.
Die Trennschicht soll der räumlichen Trennung unterschiedlicher Wasch- oder Reinigungsmittel dienen und somit deren Reaktion miteinander, wie zum Beispiel ein Bleichen eines Farbstoffs in einem Wasch- oder Reinigungsmittel durch das Bleichmittel eines anderen Wasch- oder Reinigungsmittels, sowie eine Durchmischung der unterschiedlichen Wasch- und Reinigungsmittel verhindern. Als geeignet haben sich Dicken der Trennschicht zwischen 1 und 1000 μm, vorzugsweise zwischen 1 und 300 μm, besonders bevorzugt zwischen 1 und 100 μm und insbesondere zwischen 1 und 40 μm erwiesen. Ein bevorzugtes mehrphasiges Wasch- oder Reinigungsmittel ist dadurch gekennzeichnet, dass die Trennschicht eine Dicke zwischen 1 und 1000 μm, vorzugsweise zwischen 1 und 300 μm, besonders bevorzugt zwischen 1 und 100 μm und insbesondere zwischen 1 und 40 μm aufweist.
Die Trennschicht kann weiterhin stabilisierende Eigenschaften aufweisen. Als geeignet hat sich unter Berücksichtigung dieser und weiterer Faktoren eine Dicke der Trennschicht zwischen 5 und 1000 μm, vorzugsweise zwischen 10 und 500 μm, besonders bevorzugt zwischen 20 und 300 μm und insbesondere zwischen 40 und 100 μm erwiesen. Besonders bevorzugt ist der Einsatz derartiger stabilisierender Trennschichten, wenn als Wasch- oder Reinigungsmittel fließfähige Substanzen oder Flüssigkeiten eingesetzt werden. Ein bevorzugtes mehrphasiges Wasch- oder Reinigungsmittel ist dadurch gekennzeichnet, dass die Trennschicht eine Dicke zwischen 5 und 1000 μm, vorzugsweise zwischen 10 und 500 μm, besonders bevorzugt zwischen 20 und 300 μm und insbesondere zwischen 40 und 100 μm aufweist.
Ziel der vorliegenden Erfindung war es den Gewichtsanteil des Verpackungsmaterials im Bezug auf das mit wasserlöslichem oder wasserdispergierbaren Hüllmaterial verpackten mehrphasigen Wasch- oder Reinigungsmittels im Vergleich zum Stand der Technik zu verringern. Die Verringerung des Materialbedarfs wird durch das Auftragen eines flüssigen Trennmittels möglich. Im Vergleich zu anderen Methoden wird nur die benötigte Menge an Hüllmaterial - in dieser Erfindung an flüssigem Trennmittel - eingesetzt, während z.B. beim Aufbringen und Versiegeln einer Folie Verschnitt entsteht, der entsorgt oder recyceld werden muss. Neben der Materialersparnis werden mehrere Verfahrensschritte, das Aufbringen der Folie, das Versiegeln von Behälter und aufgebrachter Folie, das Vereinzeln bzw. das Abschneiden überschüssiger Folie und das Recyceln des Folienverschnitts, im erfindungsgemäßen Verfahren durch den Schritt c), also das Auftragen eines flüssigen Trennmittels und Verfestigen dieses Trennmittels unter Bildung einer festen Trennschicht, ersetzt.
Die Materialersparnis sollte es erlauben, dass der Gewichtsanteil des Trennmittels bezogen auf das Gesamtgewicht des mit wasserlöslichem oder wasserdispergierbarem Hüllmaterial verpackten mehrphasigen Wasch- oder Reinigungsmittels bevorzugt weniger als 10 Gew.-%, vorzugsweise weniger als 8 Gew.-%, besonders bevorzugt zwischen 0,1 und 6 Gew.-% und insbesondere zwischen 0,5 und 4 Gew.-% beträgt.
Vorzugsweise wird in dem erfindungsgemäßen Verfahren ein flüssiges Trennmittel verwendet, dessen verfestigte Form, das heißt die Trennschicht, wasserlöslich oder wasserdispergierbar ist. Geeignet als Bestandteile des flüssigen Trennmittels sind alle dem Fachmann auf diesem Gebiet bekannten Mittel. Es werden jedoch solche, die organische Polymere und/oder anorganische oder organische Salze enthalten, bevorzugt eingesetzt.
Einige besonders bevorzugte wasserlösliche oder wasserdispergierbare Materialien, die sich neben der Herstellung der Aufnahmekammern auch zu der Bereitstellung der Trennschicht eignen, sind die wasserlöslichen Polymere. Aus dieser Gruppe werden bevorzugt Polymere und/oder Copolymere eingesetzt, die als Monomere Polyvinylalkohol, Polyvinylpyrrolidon, Alkylacrylamid, Akrylsäure, Vinylacetat, Polyethylenoxid, sowie deren Derivate enthalten. Ebenfalls bevorzugt werden Polymere aus gesättigten und ungesättigten Carbonsäuren, Cellulose, die verestert oder verethert eingesetzt werden kann, Stärke, Gelantine und Polysiloxane zur Herstellung des flüssigen Trennmaterials verwendet. Besonders bevorzugt werden als Monomere aus der Gruppe der gesättigten und ungesättigten Carbonsäuren Alkohole und Ester der Mono- und Polycarbonsäuren, wie Weinsäure, Citronensäure, Agaricinsäure und 1 ,2,3-Propantricarbonsäure, Trimellithsäure, Trimesinsäure, Pyromellithsäure und Mellithsäure eingesetzt. Weitere zur Bereitstellung des flüssigen Trennmittels bevorzugte Polymere werden bei den Hüllmaterialien beschrieben. Die dort genannten Polymere können dabei sowohl allein, als auch in Kombination miteinander oder in Kombination mit weiteren Substanzen, beispielsweise Weichmachern, Gleit- oder Schmiermitteln, oder Lösungsvermittlern als flüssiges Trennmittel eingesetzt werden.
Eine weitere Verbindungsklasse, die bevorzugt Einsatz in dem im erfindungsgemäßen Verfahren verwendeten flüssigen Trennmittel findet, sind die Zucker, Zuckersäuren und Zuckeralkohole. Es werden vorzugsweise die Monosaccharide, Disaccharide und Oligosaccharide sowie Derivate und Mischungen aus diesen eingesetzt. Besonders bevorzugt sind Glucose, Fructose, Ribose, Maltose, Lactose, Saccharose, Maltodextrin und Isomalt® sowie Mischungen von zwei, drei, vier oder mehr Mono- und/oder Disacchariden und/oder Derivaten von Mono- und/oder Disacchariden. Die Zuckersäuren lassen sich allein oder in Kombination mit anderen Substanzen wie beispielsweise den oben genannten Zuckern als Bestandteil eines bevorzugten flüssigen Trennmittels einsetzten. Bevorzugte Zuckersäuren sind Gluconsäure, Galactonsäure, Mannonsäure, Fructonsäure, Arabinonsäure, Xylonsäure, Ribonsäure, und 2-Desoxyribonsäure sowie deren Derivate. Bevorzugt in Mischung mit diesen Zuckersäuren, Derivaten der Zuckersäuren, Zuckern und/oder Zuckerderivaten oder allein werden Verbindungen aus der Gruppe der Zuckeralkohole, bevorzugt Mannit, Sorbit, XyNt, Dulcit und Arabit eingesetzt.
Ebenfalls bevorzugt ist die Kombination eines oder mehrerer organischer Polymere mit anorganischen und/oder organischen Salzen. Ein bevorzugtes Verfahren ist dadurch gekennzeichnet, dass das flüssige Trennmittel ein anorganisches oder organisches Salz umfasst.
An dieser Stelle können alle im Bezug auf Toxizität unbedenklichen Salze eingesetzt werden, die eine ausreichende Löslichkeit aufweisen und so vom Verbraucher unbemerkt mit der Waschflotte bzw. der wässrigen Lösung des Reinigungsmittels entsorgt werden können, keinerlei Rückstände auf Gewebe oder festen Oberflächen hinterlassen oder nicht zu Verkrustungen führen.
Bei der Auswahl anorganischen und organischen Salze ist darauf zu achten, dass diese keinerlei Reaktion mit den Wasch- und Reinigungsmitteln eingehen. Als besonders bevorzugt gelten neben den Salzen der oben genannten Zuckersäuren die Acetate, Acrylate, Adipate, Alginate, Aspartate, Azelate, Benzoate, Carbamate, Carbonate, Chloride, Chlorsulfate, Cinnamate, Citrate, Sulfate, Enantate, Fluate, Fluorborate, Fluorosilicate, Formiate, Glutamate, Glykolate, Hydrogencarbonate, Hydrogenphosphate, Hydrogensulfate, lodide, Lactate, Laureate, Malate, Maleate, Malonate, Mandelate, Mesylate, Metaphosphate, Nitrate, Octoate, Oleate, Orotate, Oxalate, Pektate, Pektinate, Phosphate, Phosphonate, Pivalate, Saccharate, Salicylate, Silicate, Sorbate, Stearate, Succinate, Sulfate, Tartrate, und Valerate. Besonders bevorzugt werden Alkalimetallsalze, Erdalkalimetallsalze, Ammonium-, Zink- und/oder Aluminiumsalze eingesetzt. Bevorzugt sind insbesondere Salze, die als Kationen Natrium, Kalium, Magnesium, Calcium, Zink, Aluminium und Ammonium enthalten. Bevorzugt werden weiterhin die Salze von Fettsäuren, insbesondere die Seifen.
Als weitere Bestandteile des flüssigen Trennmittels kommen Klebstoffsysteme in Betracht. Dabei können innerhalb der vorliegenden Erfindung sowohl chemisch abbindende, als auch physikalisch abbinde Klebstoffsysteme verwendet werden.
Physikalisch abbindende Klebstoffe bestehen im allgemeinen nur aus einer Komponente und können durch Verdunstung des Lösungsmittels oder auch durch Änderung des Aggregatzustandes abbinden. Beispiele für bevorzugte physikalisch abbindende Klebstoffe sind Schmelzklebstoffe wie Styrol-Butadien-Copolymere, Polyamide, Ethylen-Vinylacetat-Copolymere und Polyester, Plastisol-Klebstoffe wie Polyvinylchloride mit Weichmachern und Haftvermittlern, Haftklebstoffe wie Kautschuke und Polyacrylate, Kontaktklebstoffe wie Polyurethane, Polyacrylate, Nitril- oder Styrol-Butadien-Copolymere und Polychloroprene, Lösungsmittel- bzw. Dispersionsklebstoffe wie Polyurethane, Vinylacetat-, Vinylchlorid-, Vinylidenchlorid-Copolymere, Isoprenkautschuk, Homo- und Copolymere von Acrylsäureestern wie z.B. Polyvinylacetat, Poly(meth)acrylate und Ethylen-Vinylacetat-Copolymere, Leime wie Glutin, Stärke, Dextrin, Casein, Polyvinylalkohol, Polyvinylpyrrolidone und Celluloseether sowie Heißsiegelklebstoffe wie (Co-)Polymere auf der Basis von Ethylen, (Meth)acrylaten, Vinylchlorid, Vinylidenchlorid und Vinylacetat sowie Polyamide, Polyester und Polyurethane.
Chemisch abbindende Klebstoffsysteme hingegen basieren auf einer oder mehreren Komponen¬ ten; das Abbinden kann auf allen Polyreaktionen basieren. So reagieren Zweikomponenten¬ systeme aus Epoxidharzen und Säureanhydriden bzw. Polyaminen nach Polyadditions-, Cyanacrylate oder Methacrylate nach Polymersiations- und Systeme auf Aminoplast- oder Phenoplast-Basis nach Polykondensation-Mechanismen. Beispiele für bevorzugte chemisch abbindende Klebstoffsysteme sind: Epoxidharze mit Säureanhydriden, Epoxidharze mit Polyaminen, Polyisocyanate mit Polyolen, Cyanacrylate, Methacrylate, ungesättigte Polyester mit Styrol oder Methacrylaten, Silicon-Harze mit Feuchtigkeit, Phenolharze mit Polyvinylformalen oder Acryl-1 ,3-Butadien-Kautschuk, Polyimide oder Polybenzimidazole, Harnstoffharze, Melamin- Formaldehyd-Harze, Phenolharze und Resorcin-Formaldehyd-Harze. Weiterhin bevorzugt sind Polyanhydridharze, Cumaran-Inden-Harze und Isocyanatharze.
Die im Schritt c) ausgebildete Trennschicht sollte wenigstens anteilsweise transparent oder transluzent sein, da diese Eigenschaft den optischen Eindruck, den der Verbraucher vom Verfahrensendprodukt gewinnt, verbessert. Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist demnach dadurch gekennzeichnet, dass die im Schritt c) ausgebildete Trennschicht wenigstens anteilsweise transparent oder transluzent ist. Bevorzugt ist ein mehrphasiges Wasch- oder Reinigungsmittel, dadurch gekennzeichnet, dass die Trennschicht wenigstens anteilsweise transparent oder transluzent ist.
Unter Transparenz ist hier zu verstehen, dass die Durchlässigkeit innerhalb des sichtbaren Spektrums des Lichts (410 bis 800 nm) größer als 20%, vorzugsweise größer als 30%, äußerst bevorzugt größer als 40% und insbesondere größer als 50% ist. Sobald somit eine Wellenlänge des sichtbaren Spektrums des Lichtes eine Durchlässigkeit größer als 20% aufweist, ist es im Sinne der Erfindung als transparent zu betrachten.
Zu einer weiteren Verbesserung des optischen Eindrucks wird das Trennmittel vorzugsweise eingefärbt. Zu den bevorzugten Farben zählen rot, gelb, blau, sowie Mischfarben aus diesen wie grün, violett und lila.
Innerhalb eines bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens hergestellte Trennschichten, zu deren Herstellung transparentes Trennmittel eingesetzt wurde, können ein Stabilisierungsmittel enthalten. Als besonders geeignet haben sich hier Antioxidantien, UV- Absorber und Fluoreszensfarbstoffe erwiesen. Die Stabilisierungsmittel wurden bereits bei den Hüllmaterialien der wasserlöslichen und wasserdispergierbaren Behälter beschrieben.
Befüllen des Behälters nach d) Nach dem Aufbringen der Trennschicht wird der Behälter mit einem weiteren Wasch- oder Reinigungsmittel unter Ausbildung einer weiteren Phase befüllt. In diesem Schritt können sowohl fließfähige, feste als auch flüssige Wasch- oder Reinigungsmittel eingefüllt werden. So ist der Einsatz, vorzugsweise fließfähiger Pulver, Granulate, Gießkörper, oder Kapseln sowie der Einsatz von Gelen und Flüssigkeiten im Schritt d) des erfindungsgemäßen Verfahrens bevorzugt. Die Feststoffe und Flüssigkeiten wurden bereits weiter oben beschrieben, weshalb zur Vermeidung von Wiederholungen an jene Stelle verwiesen sei. Erfindungsgemäße Verfahren, bei denen in Schritt b) und/oder d) fließfähige oder flüssige Wasch- oder Reinigungsmittel eingefüllt werden, sind erfindungsgemäß bevorzugt. Bevorzugt werden im erfindungsgemäßen Verfahren wasserlösliche oder wasserdispergierbare Behälter eingesetzt, bei denen der Gesamtbehälter mittels Zwischenwänden in zwei, vorzugsweise drei, bevorzugt vier, besonders bevorzugt fünf oder mehr Aufnahmekammern aufgeteilt ist. Diese Zwischenwände können auf Höhe der aufzubringenden Trennschicht enden, so dass oberhalb der Trennschicht nunmehr nur eine große Aufnahmekammer zu befüllen ist; in einer bevorzugten Ausführungsform des Verfahrens sind die Zwischenwände jedoch ebenso hoch wie die Behälteraußenwände, so dass oberhalb der Trennschicht mindestens zwei, vorzugsweise drei, bevorzugt vier, besonders bevorzugt fünf oder mehr Aufnahmekammern zur Befüllung zur Verfügung stehen. Auch Behälter, bei denen ein Teil der Zwischenwände eine Höhe aufweist, die mit dem Abstand der Trennschicht von Behälterboden übereinstimmt, während der andere Teil der Wände ebenso hoch ist wie die Behälteraußenwände sind im Rahmen der vorliegenden Erfindung zur Herstellung mehrphasiger Reinigungsmittel geeignet. Die Anzahl im Schritt d) zu befüllenden Aufnahmekammern ist in diesem Fall um bevorzugt eins, besonders bevorzugt zwei, ganz besonders bevorzugt drei, insbesondere vier kleiner als die Anzahl der im Schritt b) zu befüllenden Aufnahmekammern.
Die Aufnahmekammern können innerhalb des erfindungsgemäßen Verfahrens gleichzeitig oder zeitlich versetzt befüllt werden. In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine, vorzugsweise zwei, drei oder vier der oberhalb der Trennschicht befindlichen Aufnahmekammern zur Erhöhung des Auftriebs des mehrphasigen Wasch- oder Reinigungsmittels nicht befüllt.
Die Aufnahmekammern eines Behälters, der mindestens zwei Aufnahmekammern oberhalb der Trennschicht aufweist, werden im Schritt d) vorzugsweise mit demselben Mittel befüllt. Bevorzugt wird jedoch, dass mindestens eines, besonders bevorzugt zwei, ganz besonders bevorzugt drei, insbesondere vier der Mittel eine Zusammensetzung und/oder einen Aggregatzustand aufweist/aufweisen, die/der keinem anderen der im Schritt d) eingefüllten Mittel entspricht. Insbesondere ist bevorzugt, dass sich alle im Schritt d) eingefüllten Mittel in ihrer Zusammensetzung und/oder ihrem Aggregatzustand unterscheiden.
Die Aufnahmekammern eines Behälters, der mindestens zwei Aufnahmekammern aufweist, werden im Schritt b) und im Schritt d) vorzugsweise mit demselben Mittel befüllt. Bevorzugt wird jedoch, dass mindestens eines, besonders bevorzugt zwei, ganz besonders bevorzugt drei, insbesondere vier der Mittel eine Zusammensetzung und/oder einen Aggregatzustand aufweist/aufweisen, die/der keinem anderen der in den Schritten b) und d) eingefüllten Mittel entspricht. Insbesondere ist bevorzugt, dass sich alle in den Schritten b) und d) eingefüllten Mittel in ihrer Zusammensetzung und/oder ihrem Aggregatzustand unterscheiden. Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist dadurch gekenn¬ zeichnet, dass es sich bei mindestens einem der in den Schritten b) und d) eingefüllten Wasch¬ oder Reinigungsmittel um einen Feststoff handelt.
Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass es sich bei mindestens einem der in den Schritten b) und d) eingefüllten Wasch- oder Reinigungsmittel um eine Flüssigkeit handelt.
Das Verhältnis der Fϋllhöhen der Wasch- und Reinigungsmittel unterhalb der Trennschicht zu den Füllhöhen der Waschmittel oberhalb der Trennschicht beträgt in einem bevorzugten Verfahren zwischen 9:1 und 1 :9, vorzugsweise zwischen 5:1 und 1 :2, besonders bevorzugt zwischen 3:1 und 1 :1 , insbesondere zwischen 1 :1 und 1 :0,2.
Besonders bevorzugt ist ein erfindungsgemäßes Verfahren, in dem die Schritte c) und d) einmal, zweimal, dreimal oder vielfach wiederholt werden.
Versiegelung mit einer wasserlöslichen Folie nach Punkt e) Oberhalb die Trennschicht, die sich durch Verfestigen des flüssigen Trennmitteln ausgebildet hat, wird/werden im Schritt d) ein, bevorzugt zwei, besonders bevorzugt drei, insbesondere vier weitere Wasch- oder Reinigungsmittel aufgefüllt. Bevorzugt wird/werden diese Reinigungsmittel nicht mit einem Hüllmaterial abgedeckt, das heißt versiegelt. Jedoch kann/können die befüllte(n) Aufnahmekammer(n) in einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens nach dem Befüllen mit einem Hüllmaterial versiegelt werden. Die Versiegelung erfolgt dabei vorzugsweise durch Einwirkung von Druck und/oder Wärme und/oder Lösungsmittel. Das zur Versiegelung eingesetzte weitere Hüllmaterial kann dabei mit dem im Schritt a) oder mit dem im Punkt c) des erfindungsgemäßen Verfahrens eingesetzten Hüllmaterialien bzw. flüssigen Trennmitteln identisch sein, kann sich jedoch auch sowohl in seiner Zusammensetzung oder seiner Dicke von diesen beiden Materialien unterscheiden.
Eine bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist dadurch gekennzeich¬ net, dass der befüllte Behälter in einem weiteren Schritt e) mittels einer wasserlöslichen Folie ver¬ siegelt wird.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Oberfläche des Hüllmaterials vor dem Versiegeln zunächst durch Lösungsmittel angelöst (im Falle wasserlöslicher Folien eignet sich hier insbesondere Wasser) und mit dem wasserlöslichen oder wasserdispergierbaren Behälter haftend verbunden. Alternativ hierzu kann die Versiegelung auch durch Einwirkung von Druck und/oder Hitze erfolgen. Geeignete Siegeltemperaturen für wasserlösliche Hüllmaterialien sind beispielsweise 120 bis 2000C, vorzugsweise Temperaturen im Bereich von 130 bis 1700C, insbesondere im Bereich von 140 bis 15O0C. Als Siegeldruck haben sich Drucke im Bereich von 250 bis 800 kPa, vorzugsweise 272 bis 554 kPa, besonders bevorzugt von 341 bis 481 kPa als vorteilhaft erwiesen. Die Siegelzeiten betragen vorzugsweise mindestens 0,3 Sekunden, vorzugsweise zwischen 0,4 und 4 Sekunden. Siegeltemperaturen, - drucke und Siegelzeiten werden neben dem eingesetzten Hüllmaterial auch durch die eingesetzte Siegelmaschine bestimmt.
Neben den oben genannten Möglichkeiten zur Versiegelung der Hüllmaterialien wird bevorzugt das Laserschmelzen eingesetzt. Bevorzugt sind weiterhin Methoden, die sich der Infrarot-, Ultraschall-, oder Radiofrequenz-Wellen bedienen.
Die zur Versiegelung der Behälter gemäß Schritt e) eingesetzten wasserlöslichen Folien weisen bevorzugt Wandstärken zwischen 20 und 800 μm, besonders bevorzugt zwischen 30 und 600 μm, ganz besonders bevorzugt zwischen 40 und 400 μm und insbesondere zwischen 50 und 200 μm auf.
Die Siegelnähte weisen in einem bevorzugten erfindungsgemäßen Verfahren eine Breite zwischen 0,5 und 7 mm, vorzugsweise zwischen 1 ,0 und 6 mm und insbesondere zwischen 1,5 und 5 mm auf. Als ausreichend haltbar haben sich insbesondere Siegelnähte mit einer Breite oberhalb 2 mm, vorzugsweise oberhalb 2,5 mm, besonders bevorzugt oberhalb 3 mm und insbesondere oberhalb 3,5 mm erwiesen. Da die Breite der Siegelnaht produktionsabhängig auch bei einer einzelnen Verpackung schwanken kann, beziehen sich die vorgenannten Angaben über die Breite der Siegelnaht auf die bei einer Einzelverpackung gemessen minimale Nahtbreite. Eine Versiegelung findet insbesondere dann statt, wenn das Füllgut flüssig oder fließfähig ist. Beispiele für derartige Füllgüter sind Flüssigkeiten, Gele oder partikuläre Feststoffe wie Pulver.
Wird ein flüssiges Trennmittel, welches unter Ausbildung einer Trennschicht verfestigt werden kann, zur Versiegelung der Wasch- oder Reinigungsportion in Schritt e) eingesetzt, ist das Trennmittel vorzugsweise mit dem im Schritt c) verwendeten Trennmittel identisch. Der Einsatz aller anderen zur Verfügung stehenden flüssigen Trennmittel, diese sind bereits weiter oben beschrieben worden, ist jedoch ebenfalls möglich. Besonders bevorzugt werden flüssige Trennmittel verwendet, die sich mit dem wasserlöslichen oder wasserdispergierbaren Behälter haftend verbinden und auf diese Weise eine Versiegelung, das heißt Behandlung mit Hitze oder Lösungsmitteln, überflüssig machen. Vorzugsweise beträgt die Stärke der im Schritt e) durch Verwendung eines flüssigen Trennmittels erhaltenen Versiegelung 5 bis 1000 μm, bevorzugt zwischen 10 und 500 μm, besonders bevorzugt zwischen 20 und 300 μm und insbesondere zwischen 40 und 100 μm. In einigen Fällen können jedoch Stärken zwischen 1 und 1000 μm, vorzugsweise zwischen 1 und 300 μm, besonders bevorzugt zwischen 1 und 100 μm und insbesondere zwischen 1 und 40 μm bevorzugt sein.
Durch die Versiegelung der Aufnahmekammern lässt sich nicht nur ein Kontakt der eingefüllten Aktivstoffe oder Aktivstoffgemische miteinander oder mit der umgebenden Atmosphäre (Bsp. Luftsauerstoff, Luftfeuchte) oder ein Hautkontakt mit dem Verbraucher vermeiden; die Versiegelung ermöglicht zudem vielmehr durch die Wahl geeigneter Siegelmaterialien gleichzeitig eine gesteuerte Freisetzung der innerhalb des versiegelten Hohlraums befindlichen Aktivstoffe. Ein Beispiel für eine solche Steuerung ist der Einsatz wasserlöslicher oder wasserdispergierbarer Siegel- und/oder Hüllmaterialien mit unterschiedlichen Löslichkeiten mit dem Ziel den Inhalt einzelner Aufnahmekammern in zeitlich definierter Reihenfolge in das umgebende wässrige Medium freizusetzen. Realisierbar sind dabei im Rahmen der vorliegenden Anmeldung Verfahren, in welchen es sich bei den zur Versiegelung der Aufnahmekammern eingesetzten Hüllmaterialien um die gleichen oder um unterschiedliche Materialien handelt. In einer bevorzugten Ausführungsform werden die gleichen Hüllmaterialien für die Versiegelung der Aufnahmekammern eingesetzt. Diese Ausführungsform ermöglicht die gleichzeitige Freisetzung der unter den Siegelflächen befindlichen Füllgüter. In einer weiteren bevorzugten Ausführungsform unterscheiden sich die zur Versiegelung der Aufnahmekammern eingesetzten Materialien.
In einer weiteren bevorzugten Verfahrensvariante wird das flüssige Trennmittel nicht allein auf die erste Phase des Wasch- oder Reinigungsmittels, sondern zusätzlich auch auf die Innen- und oder Außenwandung des wasserlöslichen oder wasserdispergierbaren Behälters aufgetragen, vorzugsweise aufgesprüht. Auf diese Weise wird nicht nur die Form- und Transportstabilität der nach dem erfindungsgemäßen Verfahren hergestellten Behälter erhöht, sondern es wird, sofern das Trennmittel in dem Bereich der Wandung aufgebracht wird, die später mit der in Schritt e) aufgebrachten Siegelfolie verbunden wird, weiterhin auch die Haftfestigkeit dieser Siegelfolie erhöht.
Vor, gleichzeitig mit oder nach diesem letzten Siegelschritt werden die in dem erfindungsgemäßen Verfahren hergestellten Behälter vorzugsweise durch Einwirkung von Messer oder Stanzen unter Ausbildung einer um die Oberseite des Behälters verlaufende Krempe vereinzelt. Die Breite dieser Krempe ist dabei neben anderen Parametern auch von der Wahl des zur Herstellung der entsprechenden Behälter eingesetzten Verfahrens abhängig. Bei diesen Verfahren lassen sich u.a. zwei Varianten unterscheiden, welche alle zur Durchführung des erfindungsgemäßen Verfahrens besonders bevorzugt sind. Es sind dies Verfahren, bei denen das Hüllmaterial horizontal in eine Formstation und von dort in horizontaler Weise zum Befüllen und/oder Versiegeln und/oder Vereinzeln geführt wird, wobei hierbei wiederum zwischen kontinuierlichen und diskontinuierlichen Verfahren zu unterscheiden ist, und Verfahren, bei denen das Hüllmaterial über eine kontinuierlich umlaufende Formwalze geführt wird. Bei der Durchführung kontinuierlicher Verfahren, bei denen das verformte Hüllmaterial nach der Herstellung des wasserlöslichen oder wasserdispergierbaren Behälters in der Tiefziehmulde bzw. Gussform verbleibt sind tendenziell kleinere Krempenbreiten im Bereich von 1 bis 4 mm realisierbar, während bei diskontinuierlichen Verfahren die Krempenbreiten eher im Bereich von 2,5 bis 5 mm betragen.
Weitere Inhaltsstoffe Die zuvor beschriebenen erfindungsgemäßen Mittel bzw. die nach dem zuvor beschriebenen erfindungsgemäßen Verfahren hergestellten Mittel enthalten wasch- und reinigungsaktive Substanzen, vorzugsweise wasch- und reinigungsaktive Substanzen aus der Gruppe der Gerüststoffe, Tenside, Polymere, Bleichmittel, Bleichaktivatoren, Enzyme, Glaskorrosions¬ inhibitoren, Korrosionsinhibitoren, Desintegrationshilfsmittel, Duftstoffe und Parfümträger. Diese bevorzugten Inhaltsstoffe werden in der Folge näher beschrieben.
Gerüststoffe Zu den Gerüststoffe zählen insbesondere die Zeolithe, Silikate, Carbonate, organische Cobuilder und -wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
n Na2O (1-n) K2O AI2O3 (2 - 2,5) SiO2 (3,5 - 5,5) H2O .
beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granulären Compound eingesetzt, als auch zu einer Art „Abpuderung" einer granulären Mischung, vorzugsweise einer zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na2Si2O5 y H2O bevorzugt.
Mit besonderem Vorzug, insbesondere als Bestandteil maschineller Geschirrspülmittel, werden kristalline schichtförmige Silikate der allgemeinen Formel NaMSixO2x+I y H2O eingesetzt, worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1 ,9 bis 22, vorzugsweise von 1 ,9 bis 4, ist und y für eine Zahl von O bis 33 steht. Die kristallinen schichtförmigen Silikate der Formel NaMSixO2x+I y H2O werden beispielsweise von der Firma Clariant GmbH (Deutschland) unter dem Handels¬ namen Na-SKS vertrieben. Beispiele für diese Silikate sind Na-SKS-1 (Na2Si22O45 x H2O1 Kenyait), Na-SKS-2 (Na2Si14O29 x H2O, Magadiit), Na-SKS-3 (Na2Si8O17 x H2O) oder Na-SKS-4 (Na2Si4O9 x H2O, Makatit).
Für die Zwecke der vorliegenden Erfindung besonders geeignet sind kristalline Schichtsilikate der Formel NaMSixO2x+I y H2O, in denen x für 2 steht. Von diesen eignen sich vor allem Na-SKS-5 (U-Na2Si2O5), Na-SKS-7 (ß-Na2Si205, Natrosilit), Na-SKS-9 (NaHSi2O5 H2O), Na-SKS-10 (NaHSi2O5 3 H2O, Kanemit), Na-SKS-11 (t-Na2Si205) und Na-SKS-13 (NaHSi2O5), insbesondere aber Na-SKS-6 (5-Na2Si2O5).
Werden die Silikate als Bestandteil maschineller Geschirrspülmittel eingesetzt, so enthalten diese Mittel vorzugsweise einen Gewichtsanteil des kristallinen schichtförmigen Silikats der Formel NaMSixO2x+1 y H2O von 0,1 bis 20 Gew.-% von 0,2 bis 15 Gew.-% und insbesondere von 0,4 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht dieser Mittel. Besonders bevorzugt ist es insbesondere, wenn solche maschinellen Geschirrspülmittel einen Gesamtsilikatgehalt unterhalb 7 Gew.-%, vorzugsweise unterhalb 6 Gew.-%, bevorzugt unterhalb 5 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-%, ganz besonders bevorzugt unterhalb 3 Gew.-% und insbesondere unterhalb 2,5 Gew.-% aufweisen, wobei es sich bei diesem Silikat, bezogen auf das Gesamtgewicht des enthaltenen Silikats, vorzugsweise zu mindestens 70 Gew.-%, bevorzugt zu mindestens 80 Gew.-% und insbesondere zu mindestens 90 Gew.-% um Silikat der allgemeinen Formel NaMSixO2x+1 y H2O handelt. Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 :2 bis 1 :3,3, vorzugsweise von 1 :2 bis 1 :2,8 und insbesondere von 1 :2 bis 1 :2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, dass die Silikate bei Röntgenbeugungs- experimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokristalline Bereiche der Größe zehn bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, weisen ebenfalls eine Lösever¬ zögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Im Rahmen der vorliegenden Erfindung ist es bevorzugt, dass diese(s) Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Wasch- oder Reinigungsmitteln in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels, enthalten sind.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Dies gilt insbesondere für den Einsatz erfindungsgemäßer oder durch erfindungsgemäße Verfahren hergestellter Mittel als maschinelle Geschirrspülmittel, welcher im Rahmen der vorliegenden Anmeldung besonders bevorzugt ist. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium¬ bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) Salze der verschiedenen Phosphorsäuren, bei denen man Meta- phosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Geeignete Phosphate sind beispielsweise das Natriumdihydrogenphosphat, NaH2PO4, in Form des Dihydrats (Dichte 1 ,91 gern"3, Schmelzpunkt 60°) oder in Form des Monohydrats (Dichte 2,04 gern"3), das Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, welches wasserfrei oder mit 2 Mol (Dichte 2,066 gern'3, Wasserverlust bei 95°), 7 Mol (Dichte 1 ,68 gern"3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol Wasser (Dichte 1 ,52 gern"3, Schmelzpunkt 35° unter Verlust von 5 H2O) eingesetzt werden kann, insbesondere jedoch das Trinatrium¬ phosphat (tertiäres Natriumphosphat) Na3PO4, welches als Dodecahydrat, als Decahydrat (entsprechend 19-20% P2O5) und in wasserfreier Form (entsprechend 39-40% P2O5) eingesetzt werden kann. Ein weiteres bevorzugtes Phosphat ist das Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4. Weiterhin bevorzugt werden das Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, welches in wasserfreier Form (Dichte 2,534 gern*3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1 ,815-1 ,836 gern'3, Schmelzpunkt 94° unter Wasserverlust) existiert, sowie das entsprechende Kaliumsalz Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, farbloses, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. Das entsprechende Kaliumsalz Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar. Werden im Rahmen der vorliegenden Anmeldung Phosphate als wasch- oder reinigungsaktive Substanzen in Wasch- oder Reinigungsmitteln eingesetzt, so enthalten bevorzugte Mittel diese(s) Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 15 bis 75 Gew.-% uns insbesondere von 20 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels.
Bevorzugt ist es insbesondere Kaliumtripolyphosphat und Natriumtripolyphosphat in einem Gewichtsverhältnis von mehr als 1 :1 , vorzugsweise mehr als 2:1 , bevorzugt mehr als 5:1 , besonders bevorzugt mehr als 10:1 und insbesondere mehr als 20:1 einzusetzen. Besonders bevorzugt ist es, ausschließlich Kaliumtripolyphosphat ohne Beimischungen anderer Phosphate einzusetzen.
Weitere Gerüststoffe sind die Alkaliträger. Als Alkaliträger gelten beispielsweise Alkalimetall- hydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallsesquicarbonate, die genannten Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat. Aufgrund ihrer im Vergleich mit anderen Buildersubstanzen geringen chemischen Kompatibilität mit den übrigen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, werden die Alkalimetallhydroxide bevorzugt nur in geringen Mengen, vorzugsweise in Mengen unterhalb 10 Gew.-%, bevorzugt unterhalb 6 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-% und insbesondere unterhalb 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels, eingesetzt. Besonders bevorzugt werden Mittel, welche bezogen auf ihr Gesamtgewicht weniger als 0,5 Gew.-% und insbesondere keine Alkalimetallhydroxide enthalten.
Besonders bevorzugt ist der Einsatz von Carbonat(en) und/oder Hydrogencarbonat(en), vorzugsweise Alkalicarbonat(en), besonders bevorzugt Natriumcarbonat, in Mengen von 2 bis 50 Gew.-%, vorzugsweise von 5 bis 40 Gew.-% und insbesondere von 7,5 bis 30 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels. Besonders bevorzugt werden Mittel, welche bezogen auf das Gewicht des Wasch- oder Reinigungsmittels weniger als 20 Gew.- %, vorzugsweise weniger als 17 Gew.-%, bevorzugt weniger als 13 Gew.-% und insbesondere weniger als 9 Gew.% Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonat(e), besonders bevorzugt Natriumcarbonat enthalten. Als organische Cobuilder sind insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate zu nennen. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA)1 sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Gerüststoffe sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein. Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt von Wasch- oder Reinigungsmitteln an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindi- succinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Ein¬ satzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.- %.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Gerüststoffe eingesetzt werden.
Tenside Zur Gruppe der Tenside werden die nichtionischen, die anionischen, die kationischen und die amphoteren Tenside gezählt.
Als nichtionische Tenside können alle dem Fachmann bekannten nichtionischen Tenside eingesetzt werden. Als bevorzugte Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten Wasch- oder Reinigungsmittel, insbesondere Reinigungsmittel für das maschinelle Geschirrspülen nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 Mol EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Ci2-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13.15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12.ia-Alkoho- Ie mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-i4-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mit¬ telwerte dar, die für ein spezielles Produkt einer ganzen oder einer gebrochenen Zahl entsprechen können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einem primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen entspricht und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Ato¬ men, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Mono- glykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel,
in der R für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei CM-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N- Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Mit besonderem Vorzug werden weiterhin Tenside eingesetzt, welche ein oder mehrere Taigfettalkohole mit 20 bis 30 EO in Kombination mit einem Silikonentschäumer enthalten.
Niotenside aus der Gruppe der alkoxylierten Alkohole, besonders bevorzugt aus der Gruppe der gemischt alkoxylierten Alkohole und insbesondere aus der Gruppe der EO-AO-EO-Niotenside, werden ebenfalls mit besonderem Vorzug eingesetzt.
Insbesondere bevorzugt sind nichtionische Tenside, die einen Schmelzpunkt oberhalb Raumtemperatur aufweisen. Nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 2O0C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 6O0C und insbesondere zwischen 26,6 und 43,30C, ist/sind besonders bevorzugt. Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden Niotenside eingesetzt, die bei Raumtemperatur hochviskos sind, so ist bevorzugt, dass diese eine Viskosität oberhalb von 20 Pa-s, vorzugsweise oberhalb von 35 Pa s und insbesondere oberhalb 40 Pa s aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
Bevorzugt einzusetzende Tenside, die bei Raumtemperatur fest sind, stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen ((PO/EO/PO)-Tenside). Solche (PO/EO/PO)- Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
Ein besonders bevorzugtes, bei Raumtemperatur festes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16.20-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow ränge ethoxylates" (siehe oben) besonders bevorzugt.
Mit besonderem Vorzug werden daher ethoxylierte Niotenside, die aus Cθ.20-Monohydroxy- alkanolen oder C6.20-Alkylphenolen oder C16-2o-Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurden, eingesetzt.
Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Mittel sind dadurch gekennzeichnet, dass sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen.
Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen- Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropyten mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan, enthält.
Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen PoIy Tergent® SLF-18 von der Firma ONn Chemicals erhältlich.
Tenside der Formel
R1O[CH2CH(CH3)O]x[CH2CH2O]yCH2CH(OH)R2 ,
in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1 ,5 sowie y für einen Wert von mindestens 15 steht, sind weitere besonders bevorzugte Niotenside.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2 ,
in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2 unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlen wasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)- Gruppen einschließt, oder umgekehrt.
Besonders bevorzugte endgruppenverschlossene poly(oxyalkylierte) Alkohole der obensteheπden Formel weisen Werte von k = 1 und j = 1 auf, so dass sich die vorstehende Formel zu
R1O[CH2CH(R3)O]XCH2CH(OH)CH2OR2
vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
Fasst man die letztgenannten Aussagen zusammen, sind endgruppenverschlossene poly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2,
in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, bevorzugt, wobei Tenside des Typs
R1O[CH2CH(R3P]XCH2CH(OH)CH2OR2,
in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18 steht, besonders bevorzugt sind. Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Erfindung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind nichionisches Tenside der allgemeinen Formel
Ri-O-(C H2-C H2-O)-(C H2-C H-O)-(C H2-C H2-O )r(C H2-CH-O)-H
R2 R3
bevorzugt, in der R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -CH3, -CH2CH3, -CH2CH2-CH3, CH(CH3J2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
Die bevorzugten Niotenside der vorstehenden Formel lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R1-OH und Ethylen- bzw. Alkylenoxid herstellen. Der Rest R1 in der vorstehenden Formel kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R1 eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzweigt, wobei die linearen Reste aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, bevorzugt sind. Aus synthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylver¬ zweigte bzw. lineare und methylverzweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Unabhängig von der Art des zur Herstellung der in den Mitteln enthaltenen Niotenside eingesetzten Alkohols sind Niotenside bevorzugt, bei denen R1 in der vorstehenden Formel für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.
Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R2 bzw. R3 unabhängig voneinander ausgewählt sind aus - CH2CH2-CH3 bzw. CH(CH3J2 sind geeignet. Bevorzugt werden Niotenside der vorstehenden Formel eingesetzt, bei denen R2 bzw. R3 für einen Rest -CH3, w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen. Zusammenfassend sind insbesondere nichtionische Tenside bevorzugt, die einen C8-15- AI kylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von 1 bis 4 Ethylenoxideinheiten, gefolgt von1 bis 4 Propylenoxideinheiten aufweisen. Diese Tenside weisen in wässriger Lösung die erforderliche niedrige Viskosität auf und sind erfindungsgemäß mit besonderem Vorzug einsetzbar.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]XR2 ,
in der R1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, welche vorzugsweise zwischen 1 und 5 Hydroxygruppen aufweisen und vorzugsweise weiterhin mit einer Ethergruppe funktionalisiert sind, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest und x für Werte zwischen 1 und 40 steht.
In einer besonders bevorzugten Ausführungsform der vorliegenden Anmeldung steht R3 in der vorgenannten allgemeinen Formel für H. Aus der Gruppe der resultierenden endgruppen¬ verschlossenen poly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH2O]xR2
sind insbesondere solche Niotenside bevorzugt, bei denen R1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 20 Kohlenstoffatomen steht, R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, welche vorzugsweise zwischen 1 und 5 Hydroxygruppen aufweisen und x für Werte zwischen 1 und 40 steht.
Insbesondere werden solche endgruppenverschlossene poly(oxyalkylierten) Niotenside bevorzugt, die gemäß der Formel
R1O[CH2CH2O]xCH2CH(OH)R2 neben einem Rest R1, welcher für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 20 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest R2 mit 1 bis 30 Kohlenstoffatomen R3 aufweisen, welcher einer monohydroxylierten Zwischengruppe -CH2CH(OH)- benachbart ist. x steht in dieser Formel für Werte zwischen 1 und 90.
Besonders bevorzugt sind nichtionische Tenside der allgemeinen Formel
R1O[CH2CH2O]xCH2CH(OH)R2 ,
welche neben einem Rest R1, der für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest R2 mit 1 bis 30 Kohlenstoffatomen, vorzugsweise 2 bis 22 Kohlenstoffamtomen, aufweisen, welcher einer monohydroxylierten Zwischengruppe -CH2CH(OH)- benachbart ist und bei denen x für Werte zwischen 40 und 80, vorzugsweise für Werte zwischen 40 und 60 steht.
Die entsprechenden endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der vorstehenden Formel lassen sich beispielsweise durch Umsetzung eines endständigen Epoxids der Formel R2CH(O)CH2 mit einem ethoxylierten Alkohol der Formel R1O[CH2CH2O])MCH2CH2OH erhalten.
Besonders bevorzugt werden weiterhin solche endgruppenverschlossene poly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH2O]X[CH2CH(CH3)O]VCH2CH(OH)R2 ,
in der R1 und R2 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht, R3 unabhängig voneinander ausgewählt ist aus -CH3 -CH2CH3, -CH2CH2-CH3, CH(CH3)2 , vorzugsweise jedoch für -CH3 steht, und x und y unabhängig voneinander für Werte zwischen 1 und 32 stehen, wobei Niotenside mit Werten für x von 15 bis 32 und y von 0,5 und 1 ,5 ganz besonders bevorzugt sind.
Tenside der allgemeinen Formel Ri-O-[C H2-C H2-O]x-[C H2-C H-O]y -C H2-C H(0H)R2
R3
in der R1 und R2 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht, R3 unabhängig voneinander ausgewählt ist aus -CH3 -CH2CH3, -CH2CH2-CH3, CH(CH3)2, vorzugsweise jedoch für -CH3 steht, und x und y unabhängig voneinander für Werte zwischen 1 und 32 stehen, sind erfindungsgemäß bevorzugt, wobei Niotenside mit Werten für x von 15 bis 32 und y von 0,5 und 1 ,5 ganz besonders bevorzugt sind.
Die angegebenen C-Keüenlängen sowie Ethoxylierυngsgrade bzw. Alkoxylierungsgrade der vorgenannten Niotenside stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C-Kettenlängen als auch für die Ethoxy- lierungsgrade bzw. Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können.
Selbstverständlich können die vorgenannten nichtionischen Tenside nicht nur als Einzelsubstanzen, sondern auch als Tensidgemische aus zwei, drei, vier oder mehr Tensiden eingesetzt werden. Als Tensidgemische werden dabei nicht Mischungen nichtionischer Tenside bezeichnet, die in ihrer Gesamtheit unter eine der oben genannten allgemeinen Formeln fallen, sondern vielmehr solche Mischungen, die zwei, drei, vier oder mehr nichtionische Tenside enthalten, die durch unterschiedliche der vorgenannten allgemeinen Formeln beschrieben werden können.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9.13-Alkylbenzolsul- fonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus Ci2.iβ-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12.18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet. Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerin- estern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäure¬ halbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-Ci6-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell OiI Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7.21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, bei¬ spielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen, darstellen. Bevorzugte Sulfosuccinate enthalten C8-18- Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearin- säure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamiπ, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Sind die Aniontenside Bestandteil maschineller Geschirrspülmittel, so beträgt ihr Gehalt, bezogen auf das Gesamtgewicht der Mittel vorzugsweise weniger als 4 Gew.-%, bevorzugt weniger als 2 Gew.-% und ganz besonders bevorzugt weniger als 1 Gew.-%. Maschinelle Geschirrspülmittel, welche keine Aniontenside enthalten, werden insbesondere bevorzugt.
An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden.
Als kationische Aktivsubstanzen können beispielsweise kationische Verbindungen der nachfolgenden Formeln eingesetzt werden:
worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus Cve-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8.28-Alkyl- oder -Alkenylgruppen; R3 = R1 oder (CH2)n-T-R2; R4 = R1 oder R2 oder (CH2)n-T-R2; T = -CH2-, -O- CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist. In maschinellen Geschirrspülmitteln, beträgt der Gehalt an kationischen und/oder amphoteren Tensiden vorzugsweise weniger als 6 Gew.-%, bevorzugt weniger als 4 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-% und insbesondere weniger als 1 Gew.-%. Maschinelle Geschirrspülmittel, welche keine kationischen oder amphoteren Tenside enthalten, werden besonders bevorzugt.
Polymere Zur Gruppe der Polymere zählen insbesondere die wasch- oder reinigungsaktiven Poylmere, beispielsweise die Klarspülpolymere und/oder als Enthärter wirksame Polymere. Generell sind in Wasch- oder Reinigungsmitteln neben nichtionischen Polymeren auch kationische, anionische und amphotere Polymere einsetzbar.
„Kationische Polymere" im Sinne der vorliegenden Erfindung sind Polymere, welche eine positive Ladung im Polymermolekül tragen. Diese kann beispielsweise durch in der Polymerkette vorliegende (Alkyl-)Ammoniumgruppierungen oder andere positiv geladene Gruppen realisiert werden. Besonders bevorzugte kationische Polymere stammen aus den Gruppen der quaternierten Cellulose-Derivate, der Polysiloxane mit quaternären Gruppen, der kationischen Guar-Derivate, der polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure, der Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats, der Vinylpyrrolidon- Methoimidazoliniumchlorid-Copolymere, der quatemierter Polyvinylalkohole oder der unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere.
„Amphorere Poylmere" im Sinne der vorliegenden Erfindung weisen neben einer positiv geladenen Gruppe in der Polymerkette weiterhin auch negativ geladenen Gruppen bzw. Monomereinheiten auf. Bei diesen Gruppen kann es sich beispielsweise um Carbonsäuren, Sulfonsäuren oder Phosphonsäuren handeln.
Bevorzugte Wasch- oder Reinigungsmittel, insbesondere bevorzugte maschinelle Geschirr¬ spülmittel, sind dadurch gekennzeichnet, dass sie ein Polymer a) enthalten, welches Mono¬ mereinheiten der Formel R1R2C=CR3R4 aufweist, in der jeder Rest R1, R2, R3, R4 unabhängig voneinander ausgewählt ist aus Wasserstoff, derivatisierter Hydroxygruppe, C1-30 linearen oder verzweigten Alkylgruppen, Aryl, Aryl substitutierten Ci-30 linearen oder verzweigten Alkylgruppen, polyalkoyxylierte Alkylgruppen, heteroatomaren organischen Gruppen mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N-Atom oder mindestens eine Aminogruppe mit einer positiven Ladung im Teilbereich des pH-Bereichs von 2 bis 11 , oder Salze hiervon, mit der Maßgabe, dass mindestens ein Rest R1, R2, R3, R4 eine heteroatomare organische Gruppe mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N-Atom oder mindestens eine Aminogruppe mit einer positiven Ladung ist. Im Rahmen der vorliegenden Anmeldung besonders bevorzugte kationische oder amphotere Polymere enthalten als Monomereinheit eine Verbindung der allgemeinen Formel
bei der R1 und R4 unabhängig voneinander für H oder einen linearen oder verzweigten Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen steht; R2 und R3 unabhängig voneinander für eine Alkyl-, Hydroxyalkyl-, oder Aminoaikylgruppe stehen, in denen der Alkylrest linear oder verzweigt ist und zwischen 1 und 6 Kohlenstoffatomen aufweist, wobei es sich vorzugsweise um eine Methylgruppe handelt; x und y unabhängig voneinander für ganze Zahlen zwischen 1 und 3 stehen. X repräsentiert ein Gegenion, vorzugsweise ein Gegenion aus der Gruppe Chlorid, Bromid, lodid, Sulfat, Hydrogensulfat, Methosulfat, Laurylsulfat, Dodecylbenzolsulfonat, p- Toluolsulfonat (Tosylat), Cumolsulfonat, Xylolsulfonat, Phosphat, Citrat, Formiat, Acetat oder deren Mischungen.
Bevorzugte Reste R1 und R4 in der vorstehenden Formel sind ausgewählt aus -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2- CH(OH)-CH3, -CH(OH)-CH2-CH3, und -(CH2CH2-O)nH.
Ganz besonders bevorzugt werden Polymere, welche eine kationische Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R1 und R4 für H stehen, R2 und R3 für Methyl stehen und x und y jeweils 1 sind. Die entsprechenden Monomereinheit der Formel
H2C =C H-(C H2)-N+(C H3J2-(C H2)~C H=C H2
X'
werden im Falle von X = Chlorid auch als DADMAC (Diallyldimethylammonium-Chlorid) bezeichnet. Weitere besonders bevorzugte kationische oder amphotere Polymere enthalten eine Monomereinheit der allgemeinen Formel
R1HC=CR2-C(O)-NH-(CH2)-N+R3R4R5
in der R1, R2, R3, R4 und R5 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ungesättigten Alkyl-, oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen, vorzugsweise für einen linearen oder verzweigten Alkylrest ausgewählt aus -CH3, -CH2-CH3, - CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2- CH(OH)-CH3, -CH(OH)-CH2-CH3, und -(CH2CH2-O)nH steht und x für eine ganze Zahl zwischen 1 und 6 steht.
Ganz besonders bevorzugt werden im Rahmen der vorliegenden Anmeldung Polymere, welche eine kationsche Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R1 für H und R2, R3, R4 und R5 für Methyl stehen und x für 3 steht. Die entsprechenden Monomereinheiten der Formel
H2C=C(CH3)-C(O)-NH-(CH2)χ-N+(CH3)3
X'
werden im Falle von X = Chlorid auch als MAPTAC (Methyacrylamidopropyl-trimethylammonium- Chlorid) bezeichnet.
Erfindungsgemäß bevorzugt werden Polymere eingesetzt, die als Monomereinheiten Diallyldimethylammoniumsalze und/oder Acrylamidopropyltrimethylammoniumsalze enthalten.
Die zuvor erwähnten amphoteren Polymere weisen nicht nur kationische Gruppen, sondern auch anionische Gruppen bzw. Monomereinheiten auf. Derartige anionischen Monomereinheiten stammen beispielsweise aus der Gruppe der linearen oder verzweigten, gesättigten oder ungesättigten Carboxylate, der linearen oder verzweigten, gesättigten oder ungesättigten Phosphonate, der linearen oder verzweigten, gesättigten oder ungesättigten Sulfate oder der linearen oder verzweigten, gesättigten oder ungesättigten Sulfonate. Bevorzugte Monomerein¬ heiten sind die Acrylsäure, die (Meth)acrylsäure, die (Dimethyl)acrylsäure, die (Ethyl)acrylsäure, die Cyanoacrylsäure, die Vinylessingsäure, die Allylessigsäure, die Crotonsäure, die Maleinsäure, die Fumarsäure, die Zimtsäure und ihre Derivate, die Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure oder die Allylphosphonsäuren.
Bevorzugte einsetzbare amphotere Polymere stammen aus der Gruppe der Alkylacrylamid/Acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure-Copolymere, der Alkylacrylamid/Acrylsäure/Alkyl- aminoalkyl(meth)acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)-acrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere, der Alkyl- acrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere sowie der Copolymere aus ungesättigten Carbonsäuren, kationisch derivatisierten ungesättigten Carbonsäuren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
Bevorzugt einsetzbare zwitterionische Polymere stammen aus der Gruppe der Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze, der Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze und der Methacroylethylbetain/Methacrylat-Copolymere.
Bevorzugt werden weiterhin amphotere Polymere, welche neben einem oder mehreren anionischen Monomeren als kationische Monomere Methacrylamidoalkyl-trialkylammoniumchlorid und Dimethyl(diallyl)ammoniumchlorid umfassen. Besonders bevorzugte amphotere Polymere stammen aus der Gruppe der Methacrylamidoalkyl- trialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acrylsäure-Copolymere, der Methacryl-amidoalkyltrialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Methacrylsäure- Copolymere und der Methacrylamidoalkyltrialkylammoniumchlorid/DimethyKdiallylJammoniumchlorid/Alkyl- (meth)acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze. Insbesondere bevorzugt werden amphotere Polymere aus der Gruppe der Methacrylamidopropyltrimethylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acrylsäure- Copolymere, der Methacrylamidopropyltrimethylammoniumchlorid/DimethyKdiallylJammonium- chlorid/Acrylsäure-Copolymere und der Methacrylamidopropyltrimethylammonium- chlorid/Dimethyl(diallyl)ammoniumchlorid/Alkyl(meth)acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung liegen die Polymere in vorkonfektionierter Form vor. Zur Konfektionierung der Polymere eignet sich dabei u.a. die Verkapselung der Polymere mittels wasserlöslicher oder wasserdispergierbarer Beschichtungsmittel, vorzugsweise mittels wasserlöslicher oder wasserdispergierbarer natürlicher oder synthetischer Polymere; die Verkapselung der Polymere mittels wasserunlöslicher, schmelzbarer Beschichtungsmittel, vorzugsweise mittels wasserunlöslicher Beschichtungsmittel aus der Gruppe der Wachse oder Paraffine mit einem Schmelzpunkt oberhalb 300C; die Cogranulation der Polymere mit inerten Trägermaterialien, vorzugsweise mit Trägermaterialien aus der Gruppe der wasch- oder reinigungsaktiven Substanzen, besonders bevorzugt aus der Gruppe der Builder (Gerüststoffe) oder Cobuilder.
Wasch- oder Reinigungsmittel enthalten die vorgenannten kationischen und/oder amphoteren Polymere vorzugsweise in Mengen zwischen 0,01 und 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels. Bevorzugt werden im Rahmen der vorliegenden Anmeldung jedoch solche Wasch- oder Reinigungsmittel, bei denen der Gewichtsanteil der kationischen und/oder amphoteren Polymere zwischen 0,01 und 8 Gew.-%, vorzugsweise zwischen 0,01 und 6 Gew.-%, bevorzugt zwischen 0,01 und 4 Gew.-%, besonders bevorzugt zwischen 0,01 und 2 Gew.-% und insbesondere zwischen 0,01 und 1 Gew.-%, jeweils bezogen auf das Gesamtgewicht des maschinellen Geschirrspülmittels, beträgt.
Als Enthärter wirksame Polymere sind beispielsweise die Sulfonsäuregruppen-haltigen Polymere, welche mit besonderem Vorzug eingesetzt werden.
Besonders bevorzugt als Sulfonsäuregruppen-haltige Polymere einsetzbar sind Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren und gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.
Im Rahmen der vorliegenden Erfindung sind als Monomer ungesättigte Carbonsäuren der Formel
R1(R2)C=C(R3)COOH
bevorzugt, in der R1 bis R3 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist. Unter den ungesättigten Carbonsäuren, die sich durch die vorstehende Formel beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H)1 Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel
R5(R6)C=C(R7)-X-SO3H
bevorzugt, in der R5 bis R7 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2Jn- mit n = O bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3J2- und -C(O)-NH-CH(CH2CH3)-.
Unter diesen Monomeren bevorzugt sind solche der Formeln
H2C=CH-X-SO3H H2C=C(CH3J-X-SO3H HO3S-X-(R6)C=C(R7)-X-SO3H
in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3J2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2V mit n = O bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH- CH(CH2CH3)-.
Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure, 2-Acrylamido-2-propansulfonsäure, 2-Acrylamido-2-methyl-1- propansulfonsäure, 2-Methacrylamido-2-methyl-1 -propansulfonsäure, 3-Methacrylamido-2- hydroxy-propansulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Allyloxybenzolsulfonsäure, Methallyloxybenzolsulfonsäure, 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2- propeni-sulfonsäure, Styrolsulfonsäure, Vinylsulfonsäure, 3-Sulfopropylacrylat, 3- Sulfopropylmethacrylat, Sulfomethacrylamid, Sulfomethylmethacrylamid sowie wasserlösliche Salze der genannten Säuren. Als weitere ionogene oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der eingesetzten Polymere an diesen weiteren ionogene oder nichtionogenen Monomeren weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Formel R1(R2)C=C(R3)COOH und Monomeren der Formel R5(Rβ)C=C(R7)-X-SO3H.
Zusammenfassend sind Copolymere aus i) ungesättigten Carbonsäuren der Formel R1(R2)C=C(R3)COOH in der R1 bis R3 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, ii) Sulfonsäuregruppen-haltigen Monomeren der Formel R5(R6)C=C(R7)-X-SO3H in der R5 bis R7 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2),,- mit n = O bis 4, -COO- (CH2)k- mit k = 1 bis 6, -C(O)-N H-C(CH3)2- und -C(O)-NH-CH(CH2CH3)- iii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren besonders bevorzugt.
Weitere besonders bevorzugte Copolymere bestehen aus i) einer oder mehreren ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln:
H2C=CH-X-SO3H H2C=C(CH3J-X-SO3H HO3S-X-(R6)C=C(R7)-X-SO3H
in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2),,- mit n = O bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH- C(CH3J2- und -C(O)-NH-CH(CH2CH3)- iii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.
Die Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
So sind beispielsweise Copolymere bevorzugt, die Struktureinheiten der Formel
-[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3J2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen- haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz ebenfalls bevorzugt ist. Die entsprechenden Copolymere enthalten die Struktureinheiten der Formel
-[CH2-C(CH3)COOH]111-[CH2-CHC(O)- Y-SO3H]P-
in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoff¬ atomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH- C(CH3J2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen- haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind Copolymere, welche Struktureinheiten der Formel -[CH2-CHCOOHW[CH2-C(CH3)C(O)-Y-SO3H]P-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2Jn- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3)r oder -NH-CH(CH2CH3)- steht, ebenso bevorzugt wie Copolymere, die Struktureinheiten der Formel
-[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3J2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Copolymeren, die Struktureinheiten der Formel
-[HOOCCH-CHCOOH]01-[CH2-CHC(O)-Y-SO3H]P-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = O bis 4, für -O- (C6H4)-, für -NH-C(CH3);;- oder -NH-CH(CH2CH3)- steht, bevorzugt sind. Erfindungsgemäß bevorzugt sind weiterhin Copolymere, die Struktureinheiten der Formel
-[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O- Y-SO3HJp-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = O bis 4, für -O- (C6H4)-, für -NH-C(CHa)2- oder -NH-CH(CH2CH3)- steht. Zusammenfassend sind erfindungsgemäß solche Copolymere bevorzugt, die Struktureinheiten der Formeln
-[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- -[CH2-C(CH3)COOHU-[CH2-CHC(O)-Y-SO3H]P- -[CH2-CHCOOH]111-[CH2-C(CH3)C(O)- Y-SO3H]p- -[CH2-C(CH3)COOH]nT[CH2-C(CH3)C(O)-Y-SO3H]P- -[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p-
enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = O bis 4, für -O- (C6H4)-, für -NH-C(CHs)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. dass das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teil- oder vollneutralisierten sulfonsäuregruppenhaltigen Copolymeren ist erfindungsgemäß bevorzugt.
Die Monorπerenverteilung der erfindungsgemäß bevorzugt eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
Die Molmasse der erfindungsgemäß bevorzugt eingesetzten Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Wasch- oder Reinigungsmittel sind dadurch gekennzeichnet, dass die Copolymere Molmassen von 2000 bis 200.000 gmol'1, vorzugsweise von 4000 bis 25.000 gmol'1 und insbesondere von 5000 bis 15.000 gmol*1 aufweisen. Bleichmittel Die Bleichmittel sind eine mit besonderem Vorzug eingesetzte wasch- oder reinigungsaktive Substanz. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumpercarbonat, das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Weiterhin können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäύre, ε- Phthalimidoperoxycapronsäure [Phthaliminoperoxyhexansäure (PAP)], o- Carboxybenzamidoperoxycapronsäure, N-Nonenylamidoperadipinsäure und N- Nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1 ,12-Diperoxycarbonsäure, 1 ,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1 ,4-disäure, N1N- Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
Als Bleichmittel können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterozyklische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
Erfindungsgemäß werden Wasch- oder Reinigungsmittel, insbesondere maschinelle Geschirrspülmittel, bevorzugt, die 1 bis 35 Gew.-%, vorzugsweise 2,5 bis 30 Gew.-%, besonders bevorzugt 3,5 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Bleichmittel, vorzugsweise Natriumpercarbonat, enthalten.
Der Aktivsauerstoffgehalt der Wasch- oder Reinigungsmittel, insbesondere der maschinellen Geschirrspülmittel, beträgt, jeweils bezogen auf das Gesamtgewicht des Mittels, vorzugsweise zwischen 0,4 und 10 Gew.-%, besonders bevorzugt zwischen 0,5 und 8 Gew.-% und insbesondere zwischen 0,6 und 5 Gew.-%. Besonders bevorzugte Mittel weisen einen Aktivsauerstoffgehalt oberhalb 0,3 Gew.-%, bevorzugt oberhalb 0,7 Gew.-%, besonders bevorzugt oberhalb 0,8 Gew.-% und insbesondere oberhalb 1 ,0 Gew.-% auf.
Bleichaktivatoren Bleichaktivatoren werden in Wasch- oder Reinigungsmitteln beispielsweise eingesetzt, um beim Reinigen bei Temperaturen von 60 0C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gege¬ benenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen- diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran. Weitere im Rahmen der vorliegenden Anmeldung bevorzugt eingesetzte Bleichaktivatoren sind Verbindungen aus der Gruppe der kationischen Nitrile, insbesondere kationische Nitrile der Formel
in der R1 für -H, -CH3, einen C2.24-Alkyl- oder -Alkenylrest, einen substituierten C2.24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer Ci.24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3J-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2- CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1 , 2, 3, 4, 5 oder 6 und X ein Anion ist.
Besonders bevorzugt ist ein kationisches Nitril der Formel
in der R4, R5 und R6 unabhängig voneinander ausgewählt sind aus -CH3, -CH2-CH3, -CH2-CH2- CH3, -CH(CH3)-CH3, wobei R4 zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R5 = R6 = -CH3 und insbesondere R4 = R5 = R6 = -CH3 gilt und Verbindungen der Formeln (CH3)3N(+)CH2-CN X", (CH3CH2)3N(+)CH2-CN X" , (CH3CH2CH2)3NWCH2-CN X", (CH3CH(CH3))3N<+)CH2-CN X', oder (HO-CH2-CH2)3N(+)CH2-CN X' besonders bevorzugt sind, wobei aus der Gruppe dieser Substanzen wiederum das kationische Nitril der Formel (CH3)3N(+)CH2-CN X', in welcher X" für ein Anion steht, das aus der Gruppe Chlorid, Bromid, lodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, besonders bevorzugt wird.
Als Bleichaktivatoren können weiterhin Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C- Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen- diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT)1 acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI)1 acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n- Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA) sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.
Sofern neben den Nitrilquats weitere Bleichaktivatoren eingesetzt werden sollen, werden bevorzugt Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkataiysatoren eingesetzt werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru- Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn1 Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden.
Enzyme Zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung von Wasch- oder Reinigungsmitteln sind Enzyme einsetzbar. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Wasch- oder Reinigungsmittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 x 10"* bis 5 Gew.-% bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren oder dem Biuret-Verfahren bestimmt werden.
Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN1 und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase® von der Firma Novozymes A/S, Bagsvaerd, Dänemark, erhältlich. Die Subtilisine 147 und 309 werden unter den Handelsnamen Esperase®, beziehungsweise Savinase® von der Firma Novozymes vertrieben. Von der Protease aus Bacillus lentus DSM 5483 leiten sich die unter der Bezeichnung BLAP® geführten Varianten ab.
Weitere brauchbare Proteasen sind beispielsweise die unter den Handelsnamen Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® und Ovozymes® von der Firma Novozymes, die unter den Handelsnamen, Purafect®, Purafect®OxP und Properase® von der Firma Genencor, das unter dem Handelsnamen Protosol® von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi® von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather® und Protease P® von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K- 16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme.
Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus B. amyloliquefaciens oder aus B. stearothermophilus sowie deren für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus B. licheniformis ist von der Firma Novozymes unter dem Namen Termamyl® und von der Firma Genencor unter dem Namen Purastar®ST erhältlich. Weiterentwicklungsprodukte dieser α- Amylase sind von der Firma Novozymes unter den Handelsnamen Duramyl® und Termamyl®ultra, von der Firma Genencor unter dem Namen Purastar®OxAm und von der Firma Daiwa Seiko Inc., Tokyo, Japan, als Keistase® erhältlich. Die α-Amylase von B. amyloliquefaciens wird von der Firma Novozymes unter dem Namen BAN® vertrieben, und abgeleitete Varianten von der α- Amylase aus B. stearothermophilus unter den Namen BSG® und Novamyl®, ebenfalls von der Firma Novozymes.
Desweiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus B. agaradherens (DSM 9948) hervorzuheben.
Darüber hinaus sind die unter den Handelsnamen Fungamyl® von der Firma Novozymes erhältlichen Weiterentwicklungen der α-Amylase aus Aspergillus niger und A. oryzae geeignet. Ein weiteres Handelsprodukt ist beispielsweise die Amylase-LT®.
Erfindungsgemäß einsetzbar sind weiterhin Lipasen oder Cutinasen, insbesondere wegen ihrer Triglycerid-spaltenden Aktivitäten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der Firma Novozymes unter den Handelsnamen Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® und Lipex® vertrieben. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Ebenso brauchbare Lipasen sind von der Firma Amano unter den Bezeichnungen Lipase CE®, Lipase P®, Lipase B®, beziehungsweise Lipase CES®, Lipase AKG®, Bacillis sp. Lipase®, Lipase AP®, Lipase M-AP® und Lipase AML® erhältlich. Von der Firma Genencor sind beispielsweise die Lipasen, beziehungsweise Cutinasen einsetzbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades vertriebenen Präparationen M1 Lipase® und Lipomax® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30®, Lipase OF® und Lipase PL® vertriebenen Enzyme zu erwähnen, ferner das Produkt Lumafast® von der Firma Genencor.
Weiterhin können Enzyme eingesetzt werden, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und ß-Glucanasen. Geeignete Mannanasen sind beispielsweise unter den Namen Gamanase® und Pektinex AR® von der Firma Novozymes, unter dem Namen Rohapec® B1 L von der Firma AB Enzymes und unter dem Namen Pyrolase® von der Firma Diversa Corp., San Diego, CA, USA erhältlich. Die aus B. subtilis gewonnene ß-Glucanase ist unter dem Namen Cereflo® von der Firma Novozymes erhältlich.
Zur Erhöhung der bleichenden Wirkung können erfindungsgemäß Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie HaIo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) eingesetzt werden. Als geeignete Handelsprodukte sind Denilite® 1 und 2 der Firma Novozymes zu nennen. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluss zu gewährleisten (Mediatoren).
Die Enzyme stammen beispielsweise entweder ursprünglich aus Mikroorganismen, etwa der Gattungen Bacillus, Streptomyces, Humicola, oder Pseudomonas, und/oder werden nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, etwa durch transgene Expressionswirte der Gattungen Bacillus oder filamentöse Fungi. Die Aufreinigung der betreffenden Enzyme erfolgt vorzugsweise über an sich etablierte Verfahren, beispielsweise über Ausfällung, Sedimentation, Konzentrierung, Filtration der flüssigen Phasen, Mikrofiltration, Ultrafiltration, Einwirken von Chemikalien, Desodorierung oder geeignete Kombina¬ tionen dieser Schritte.
Die Enzyme können in jeder nach dem Stand der Technik etablierten Form eingesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.
Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kem-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so dass ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
Ein Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Wasch- oder Reinigungsmittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.
Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden Benzamidin- Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester verwendet, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-substituierte, meta-substituierte und para-substituierte Phenylboronsäuren, beziehungsweise deren Salze oder Ester. Als peptidische Proteaseinhibitoren sind unter anderem Ovomucoid und Leupeptin zu erwähnen; eine zusätzliche Option ist die Bildung von Fusionsproteinen aus Proteasen und Peptid-Inhibitoren.
Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu Ci2, wie Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäure- amidalkoxylate sind geeignet. Bestimmte als Builder eingesetzte organische Säuren vermögen zusätzlich ein enthaltenes Enzym zu stabilisieren.
Niedere aliphatische Alkohole, vor allem aber Polyole, wie beispielsweise Glycerin, Ethylenglykol, Propylenglykol oder Sorbit sind weitere häufig eingesetzte Enzymstabilisatoren. Ebenso werden Calciumsalze verwendet, wie beispielsweise Calcium-Acetat oder Calcium-Formiat, und Magnesiumsalze.
Polyamid-Oligomere oder polymere Verbindungen wie Lignin, wasserlösliche Vinyl-Copolymere oder Cellulose-Ether, Acryl-Polymere und/oder Polyamide stabilisieren die Enzym-Präparation unter anderem gegenüber physikalischen Einflüssen oder pH-Wert-Schwankungen. Polyamin-N- Oxid-enthaltende Polymere wirken als Enzymstabilisatoren. Andere polymere Stabilisatoren sind die linearen C8-C18 Polyoxyalkylene. Alkylpolyglycoside können die enzymatischen Komponenten stabilisieren und sogar in ihrer Leistung steigern. Vernetzte N-haltige Verbindungen wirken ebenfalls als Enzym-Stabilisatoren.
Reduktionsmittel und Antioxidantien erhöhen die Stabilität der Enzyme gegenüber oxidativem Zerfall. Ein schwefelhaltiges Reduktionsmittel ist beispielsweise Natrium-Sulfit.
Bevorzugt werden Kombinatonen von Stabilisatoren verwendet, beispielsweise aus Polyolen, Borsäure und/oder Borax, die Kombination von Borsäure oder Borat, reduzierenden Salzen und Bernsteinsäure oder anderen Dicarbonsäuren oder die Kombination von Borsäure oder Borat mit Polyolen oder Polyaminoverbindungen und mit reduzierenden Salzen. Die Wirkung von Peptid- Aldehyd-Stabilisatoren wird durch die Kombination mit Borsäure und/oder Borsäurederivaten und Polyolen gesteigert und durch die zusätzliche Verwendung von zweiwertigen Kationen, wie zum Beispiel Calcium-Ionen weiter verstärkt.
Bevorzugt werden ein oder mehrere Enzyme und/oder Enzymzubereitungen, vorzugsweise feste Protease-Zubereitungen und/oder Amylase-Zubereitungen, in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise von 0,2 bis 4,5 Gew.-% und insbesondere von 0,4 bis 4 Gew.-%, jeweils bezogen auf das gesamte enzymhaltige Mittel, eingesetzt. Glaskorrosionsinhibitoren Glaskorrosionsinhibitoren verhindern das Auftreten von Trübungen, Schlieren und Kratzern aber auch das Irisieren der Glasoberfläche von maschinell gereinigten Gläsern. Bevorzugte Glas¬ korrosionsinhibitoren stammen aus der Gruppe der Magnesium- und/oder Zinksalze und/oder Magnesium- und/oder Zinkkomplexe.
Eine bevorzugte Klasse von Verbindungen, die zur Verhinderung der Glaskorrosion eingesetzt werden können, sind unlösliche Zinksalze.
Unlösliche Zinksalze im Sinne dieser bevorzugten Ausführungsform sind Zinksalze, die eine Löslichkeit von maximal 10 Gramm Zinksalz pro Liter Wasser bei 200C besitzen. Beispiele für erfindungsgemäß besonders bevorzugte unlösliche Zinksalze sind Zinksilikat, Zinkcarbonat, Zinkoxid, basisches Zinkcarbonat (Zn2(OH)2CO3), Zinkhydroxid, Zinkoxalat, Zinkmonophosphat (Zn3(PO4J2) und Zinkpyrophosphat (Zn2(P2O7)).
Die genannten Zinkverbindungen werden vorzugsweise in Mengen eingesetzt, die einen Gehalt der Mittel an Zinkionen zwischen 0,02 und 10 Gew.-%, vorzugsweise zwischen 0,1 und 5,0 Gew.- % und insbesondere zwischen 0,2 und 1,0 Gew.-%, jeweils bezogen auf das gesamte glas- korrosionsinhibitorhaltige Mittel, bewirken. Der exakte Gehalt der Mittel am Zinksalz bzw. den Zinksalzen ist naturgemäß abhängig von der Art der Zinksalze - je weniger löslich das eingesetzte Zinksalz ist, umso höher sollte dessen Konzentration in den Mitteln sein.
Da die unlöslichen Zinksalze während des Geschirreinigungsvorgangs größtenteils unverändert bleiben, ist die Partikelgröße der Salze ein zu beachtendes Kriterium, damit die Salze nicht auf Glaswaren oder Maschinenteilen anhaften. Hier sind Mittel bevorzugt, bei denen die unlöslichen Zinksalze eine Partikelgröße unterhalb 1 ,7 Millimeter aufweisen.
Wenn die maximale Partikelgröße der unlöslichen Zinksalze unterhalb 1 ,7 mm liegt, sind unlösliche Rückstände in der Geschirrspülmaschine nicht zu befürchten. Vorzugsweise hat das unlösliche Zinksalz eine mittlere Partikelgröße, die deutlich unterhalb dieses Wertes liegt, um die Gefahr unlöslicher Rückstände weiter zu minimieren, beispielsweise eine mittlere Partikelgröße kleiner 250 μm. Dies gilt wiederum umso mehr, je weniger das Zinksalz löslich ist. Zudem steigt die glaskorrosionsinhibierende Effektivität mit sinkender Partikelgröße. Bei sehr schlecht löslichen Zinksalzen liegt die mittlere Partikelgröße vorzugsweise unterhalb von 100 μm. Für noch schlechter lösliche Salze kann sie noch niedriger liegen; beispielsweise sind für das sehr schlecht lösliche Zinkoxid mittlere Partikelgrößen unterhalb von 60 μm bevorzugt. Eine weitere bevorzugte Klasse von Verbindungen sind Magnesium- und/oder Zinksalz(e) mindestens einer monomeren und/oder polymeren organischen Säure. Diese bewirken, dass auch bei wiederholter Benutzung die Oberflächen gläsernen Spülguts nicht korrosiv verändert, insbesondere keine Trübungen, Schlieren oder Kratzer aber auch kein Irisieren der Glasoberflächen verursacht werden.
Obwohl alle Magnesium- und/oder Zinksalz(e) monomerer und/oder polymerer organischer Säuren eingesetzt werden können, werden doch, die Magnesium- und/oder Zinksalze monomerer und/oder polymerer organischer Säuren aus den Gruppen der unverzweigten gesättigten oder ungesättigten Monocarbonsäuren, der verzweigten gesättigten oder ungesättigten Monocarbon- säuren, der gesättigten und ungesättigten Dicarbonsäuren, der aromatischen Mono-, Di- und Tricarbonsäuren, der Zuckersäuren, der Hydroxysäuren, der Oxosäuren, der Aminosäuren und/oder der polymeren Carbonsäuren bevorzugt.
Das Spektrum der erfindungsgemäß bevorzugten Zinksalze organischer Säuren, vorzugsweise organischer Carbonsäuren, reicht von Salzen, die in Wasser schwer oder nicht löslich sind, also eine Löslichkeit unterhalb 100 mg/l, vorzugsweise unterhalb 10 mg/l, insbesondere unterhalb 0,01 mg/l aufweisen, bis zu solchen Salzen, die in Wasser eine Löslichkeit oberhalb 100 mg/l, vorzugsweise oberhalb 500 mg/l, besonders bevorzugt oberhalb 1 g/l und insbesondere oberhalb 5 g/l aufweisen (alle Löslichkeiten bei 2O0C Wassertemperatur). Zu der ersten Gruppe von Zinksalzen gehören beispielsweise das Zinkeitrat, das Zinkoleat und das Zinkstearat, zu der Gruppe der löslichen Zinksalze gehören beispielsweise das Zinkformiat, das Zinkacetat, das Zinklactat und das Zinkgluconat.
Mit besonderem Vorzug wird als Glaskorrosionsinhibitor mindestens ein Zinksalz einer organischen Carbonsäure, besonders bevorzugt um ein Zinksalz aus der Gruppe Zinkstearat, Zinkoleat, Zinkgluconat, Zinkacetat, Zinklactat und/oder Zinkeitrat eingesetzt. Auch Zinkricinoleat, Zinkabietat und Zinkoxalat sind bevorzugt.
Im Rahmen der vorliegenden Erfindung beträgt der Gehalt von Reinigungsmitteln an Zinksalz vorzugsweise zwischen 0,1 bis 5 Gew.-%, bevorzugt zwischen 0,2 bis 4 Gew.-% und insbesondere zwischen 0,4 bis 3 Gew.-%, bzw. der Gehalt an Zink in oxidierter Form (berechnet als Zn2+) zwischen 0,01 bis 1 Gew.-%, vorzugsweise zwischen 0,02 bis 0,5 Gew.-% und insbesondere zwischen 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des glaskorrosionsinhibitorhaltigen Mittels. Korrosionsinhibitoren Korrosionsinhibitoren dienen dem Schütze des Spülgutes oder der Maschine, wobei im Bereich des maschinellen Geschirrspülens besonders Silberschutzmittel eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Als Beispiele der erfindungsgemäß bevorzugt einzusetzenden 3-Amino-5-alkyl- 1 ,2,4-triazole können genannt werden: Propyl-, -Butyl-, -Pentyl-, -Heptyl-, -Octyl-, -Nonyl-, -Decyl-, -Undecyl-, -Dodecyl-, -Isononyl-, -Versatic-10-säurealkyl-, -Phenyl-, -p-Tolyl-, -(4-tert. Butylphenyl)-, -(4-Methoxyphenyl)-, -(2-, -3-, -4-Pyridyl)-, -(2-Thienyl)-, -(5-Methyl-2-furyl)-, -(5- Oxό-2-pyrrolidinyl)-, -3-amino-1 ,2,4-triazol. In Geschirrspülmitteln werden die Alkyl-amino-1 ,2,4- triazole bzw. ihre physiologisch verträglichen Salze in einer Konzentration von 0,001 bis 10 Gew.- %, vorzugsweise 0,0025 bis 2 Gew.-%, besonders bevorzugt 0,01 bis 0,04 Gew.-% eingesetzt. Bevorzugte Säuren für die Salzbildung sind Salzsäure, Schwefelsäure, Phosphorsäure, Kohlensäure, schweflige Säure, organische Carbonsäuren wie Essig-, Glykol-, Citronen-, Bernsteinsäure. Ganz besonders wirksam sind 5-Pentyl-, 5-Heptyl-, 5-Nonyl-, 5-Undecyl-, 5- Isononyl-, 5-Versatic-10-säurealkyl-3-amino-1 ,2,4-triazole sowie Mischungen dieser Substanzen.
Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und Stickstoff-haltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z.B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen eingesetzt. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan- und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Anstelle von oder zusätzlich zu den vorstehend beschriebenen Silberschutzmitteln, beispielsweise den Benzotriazolen, können redoxaktive Substanzen eingesetzt werden. Diese Substanzen sind vorzugsweise anorganische redoxaktive Substanzen aus der Gruppe der Mangan-, Titian-, Zirkonium-, Hafnium-, Vanadium-, Cobalt- und Cer-Salze und/oder -Komplexe, wobei die Metalle vorzugsweise in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen. Die verwendeten Metallsalze bzw. Metallkomplexe sollen zumindest teilweise in Wasser löslich sein. Die zur Salzbildung geeigneten Gegenionen umfassen alle üblichen ein-, zwei-, oder dreifach negativ geladenen anorganischen Anionen, z.B. Oxid, Sulfat, Nitrat, Fluorid, aber auch organische Anionen wie z.B. Stearat.
Metallkomplexe im Sinne der Erfindung sind Verbindungen, die aus einem Zentralatom und einem oder mehreren Liganden sowie gegebenenfalls zusätzlich einem oder mehreren der o.g. Anionen bestehen. Das Zentralatom ist eines der o.g. Metalle in einer der o.g. Oxidationsstufen. Die Liganden sind neutrale Moleküle oder Anionen, die ein- oder mehrzähnig sind; der Begriff "Liganden" im Sinne der Erfindung ist z.B. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart/New York, 9. Auflage, 1990, Seite 2507" näher erläutert. Ergänzen sich in einem Metallkomplex die Ladung des Zentralatoms und die Ladung des/der Liganden nicht auf Null, so sorgt, je nachdem, ob ein kationischer oder ein anionischer Ladungsüberschuß vorliegt, entweder eines oder mehrere der o.g. Anionen oder ein oder mehrere Kationen, z.B. Natrium-, Kalium-, Ammoniumionen, für den Ladungsausgleich. Geeignete Komplexbildner sind z.B. Citrat, Acetylacetonat oder 1 -Hydroxyethan-1,1-diphosphonat.
Die in der Chemie geläufige Definition für "Oxidationsstufe" ist z.B. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart/New York, 9. Auflage, 1991 , Seite 3168" wiedergegeben.
Besonders bevorzugte Metallsalze und/oder Metallkomplexe sind ausgewählt aus der Gruppe MnSO4, Mn(ll)-citrat, Mn(ll)-stearat, Mn(ll)-acetylacetonat, Mn(ll)-[1-Hydroxyethan-1 ,1- diphosphonat], V2O5, V2O4, VO2, TiOSO4, K2TiF6, K2ZrF6, CoSO4, Co(NO3)2, Ce(NO3J3, sowie deren Gemische, so dass die Metallsalze und/oder Metallkomplexe ausgewählt aus der Gruppe MnSO4, Mn(ll)-citrat, Mn(ll)-stearat, Mn(ll)-acetylacetonat, Mn(IIMi-Hydroxyethan-1 ,1- diphosphonat], V2O5, V2O4, VO2, TiOSO4, K2TiF6, K2ZrF6, CoSO4, Co(NO3)2, Ce(NO3)3 mit besonderem Vorzug eingesetzt werden.
Bei diesen Metallsalzen bzw. Metallkomplexen handelt es sich im allgemeinen um handelsübliche Substanzen, die zum Zwecke des Silberkorrosions-Schutzes ohne vorherige Reinigung in den Wasch- oder Reinigungsmitteln eingesetzt werden können. So ist z.B. das aus der SO3-Her- stellung (Kontaktverfahren) bekannte Gemisch aus fünf- und vierwertigem Vanadium (V2O5, VO2, V2O4) geeignet, ebenso wie das durch Verdünnen einer Ti(SO4)2-Lösung entstehende Titanylsulfat, TiOSO4.
Die anorganischen redoxaktiven Substanzen, insbesondere Metallsalze bzw. Metallkomplexe sind vorzugsweise gecoatet, d.h. vollständig mit einem wasserdichten, bei den Reinigungstemperaturen aber leichtlöslichen Material überzogen, um ihre vorzeitige Zersetzung oder Oxidation bei der Lagerung zu verhindern. Bevorzugte Coatingmaterialien, die nach bekannten Verfahren, etwa Schmelzcoatingverfahren nach Sandwik aus der Lebensmittelindu¬ strie, aufgebracht werden, sind Paraffine, Mikrowachse, Wachse natürlichen Ursprungs wie Carnaubawachs, Candellilawachs, Bienenwachs, höherschmelzende Alkohole wie beispielsweise Hexadecanol, Seifen oder Fettsäuren. Dabei wird das bei Raumtemperatur feste Coatingmaterial in geschmolzenem Zustand auf das zu coatende Material aufgebracht, z.B. indem feinteiliges zu coatendes Material in kontinuierlichem Strom durch eine ebenfalls kontinuierlich erzeugte Sprühnebelzone des geschmolzenen Coatingmaterials geschleudert wird. Der Schmelzpunkt muss so gewählt sein, dass sich das Coatingmaterial während der Silberbehandlung leicht löst bzw. schnell aufschmilzt. Der Schmelzpunkt sollte idealerweise im Bereich zwischen 45°C und 65°C und bevorzugt im Bereich 500C bis 6O0C liegen.
Die genannten Metallsalze und/oder Metallkomplexe sind in Reinigungsmitteln, vorzugsweise in einer Menge von 0,05 bis 6 Gew.-%, vorzugsweise 0,2 bis 2,5 Gew.-%, jeweils bezogen auf das gesamte korrosionsinhibitorhaltige Mittel enthalten.
Desintegrationshilfsmittel Um den Zerfall vorgefertigter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese Mittel einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
Bevorzugt werden Desintegrationshilfsmittel in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationshilfsmittelhaltigen Mittels, eingesetzt. Als bevorzugte Desintegrationsmittel werden Desintegrationsmittel auf Cellulosebasis eingesetzt, so dass bevorzugte Wasch- und Reinigungsmittel ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10Os)n auf und stellt formal betrachtet ein ß-1 ,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose eingesetzt werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind.
Bevorzugte Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granulärer, cogranulierter oder kompaktierter Form, sind in den desintegrationsmittelhaltigen Mitteln in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationsmittelhaltigen Mittels, enthalten.
Erfindungsgemäß bevorzugt können darüber hinaus weiterhin gasentwickelnde Brausesysteme als Tablettendesintegrationshilfsmittel eingesetzt werden. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den Wasch- und Reinigungsmittel eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.
Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate bevorzugt sein.
Bevorzugt werden als Brausesystem 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% eines Alkalimetallcarbonats oder -hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 Gew.-% und insbesondere 3 bis 10 Gew.-% eines Acidifizierungsmittels, jeweils bezogen das Gesamtgewicht des Mittels, eingesetzt.
Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihydrogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
Bevorzugt sind Acidifizierungsmittel im Brausesystem aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische.
Duftstoffe Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-lsomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die allgemeine Beschreibung der einsetzbaren Parfüme (siehe oben) stellt dabei allgemein die unterschiedlichen Substanzklassen von Riechstoffen dar. Um wahrnehmbar zu sein, muss ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Auf Grund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note), "Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahrnehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d.h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" beziehungsweise "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf- oder Herznote wahrgenommen wird, nichts ausgesagt.
Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung einsetzbar sind, sind beispielsweise die ätherischen öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Bergamottöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennadelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Helichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaϊvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lavendelöl, Lemongrasöl, Limetteöl, Mandarinenöl, Melissenöl, Moschuskörneröl, Myrrhenöl, Nelkenöl, Neroliöl, Niaouliöl, Olibanumöl, Orangenöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfeffemninzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Spiköl, Stemanisöl, Terpentinöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang- Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl, Zitronellöl, Zitronenöl sowie Zypressenöl. Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung als haftfeste Riechstoffe bzw. Riechstoffgemische, also Duftstoffe, eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, α-Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Benzylalkohol, Benzylacetat, Benzylbenzoat, Benzylformiat, Benzylvalerianat, Borneol, Bornylacetat, α-Bromstyrol, n- Decylaldehyd, n-Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Dimethylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p- Kresolmethylether, Cumarin, p-Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p-Methylchinolin, Methyl- ß-naphthylketon, Methyl-n-nonylacetaldehyd, Methyl-n-nonylketon, Muskon, ß-Naphtholethylether, ß-Naphtholmethylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy- Acetophenon, Pentadekanolid, ß-Phenylethylalkohol, Phenylacetaldehyd-Dimethyacetal, Phenylessigsäure, Pulegoπ, Safrol, Salicylsäureisoamylester, Salicylsäuremethylester, Salicylsäurehexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, γ-Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimatalkohol, Zimtsäure, Zimtsäureethylester, Zimtsäurebenzylester. Zu den leichter flüchtigen Riechstoffen zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Ursprung, die allein oder in Mischungen eingesetzt werden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und -Propionat, Menthol, Menthon, Methyl-n-heptenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.
Die Duftstoffe können direkt verarbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die durch eine langsamere Duftfreisetzung für langanhaltenden Duft sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Farbstoffe Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den farbstoffhaltigen Mitteln zu behandelnden Substraten wie beispielsweise Textilien, Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.
Bei der Wahl des Färbemittels muss beachtet werden, dass die Färbemittel im Falle von Textilwaschmitteln keine zu starke Affinität gegenüber textilen Oberflächen und hier insbesondere gegenüber Kunstfasern aufweisen, während im Falle von Reinigungsmitteln eine zu starke Affinität gegenüber Glas, Keramik oder Kunststoffgeschirr vermieden werden muss. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, dass Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, dass wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidationsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln, z.B. dem oben genannten Basacid® Grün oder dem gleichfalls oben genannten Sandolan® Blau, werden typischerweise Färbemittel-Konzentrationen im Bereich von einigen 10'2 bis 10'3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen, z.B. den oben genannten Pigmosol®- Farbstoffen, liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10'3 bis '\0~4 Gew.-%. Es werden Färbemittel bevorzugt, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z.B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist beispielsweise Naphtholgrün (Colour Index (Cl) Teil 1 : Acid Green 1 ; Teil 2: 10020), das als Handelsprodukt beispielsweise als Basacid® Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, sowie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pigmosol® Blau 6900 (Cl 74160), Pigmosol® Grün 8730 (Cl 74260), Basonyl® Rot 545 FL (Cl 45170), Sandolan® Rhodamin EB400 (Cl 45100), Basacid® Gelb 094 (Cl 47005), Sicovit® Patentblau 85 E 131 (Cl 42051), Acid Blue 183 (CAS 12217-22-0, Cl Acidblue 183), Pigment Blue 15 (Cl 74160), Supranol® Blau GLW (CAS 12219-32-8, Cl Acidblue 221)), Nylosan® Gelb N-7GL SGR (CAS 61814-57-1 , Cl Acidyellow 218) und/oder Sandolan® Blau (Cl Acid Blue 182, CAS 12219-26-0) zum Einsatz.
Zusätzlich zu den bisher ausführlich beschriebenen Komponenten können die Wasch- und Reinigungsmittel weitere Inhaltsstoffe enthalten, welche die anwendungstechnischen und/oder ästhetischen Eigenschaften dieser Mittel weiter verbessern. Bevorzugte Mittel enthalten einen oder mehrere Stoffe aus der Gruppe der Elektrolyte, pH-Stellmittel, Fluoreszenzmittel, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optische Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffen, Germizide, Fungizide, Antioxidantien, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel sowie UV-Absorber.
Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschieden¬ sten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, be¬ vorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCI oder MgCI2 in den Wasch- oder Reinigungsmitteln bevorzugt.
Um den pH-Wert von Wasch- oder Reinigungsmitteln in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 1 Gew.-% der Gesamtformulierung nicht.
Als Schauminhibitoren, kommen u.a. Seifen, öle, Fette, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Als Trägermaterialien eignen sich beispielsweise anorganische Salze wie Carbonate oder Sulfate, Cellulosederivate oder Silikate sowie Mischungen der vorgenannten Materialien. Im Rahmen der vorliegenden Anmeldung bevorzugte Mittel enthalten Paraffine, vorzugsweise unverzweigte Paraffine (n-Paraffine) und/oder Silikone, vorzugsweise linear-polymere Silikone, welche nach dem Schema (R2SiO)X aufgebaut sind und auch als Silikonöle bezeichnet werden. Diese Silikonöle stellen gewöhnlich klare, farblose, neutrale, geruchsfreie, hydrophobe Flüssigkeiten dar mit einem Molekulargewicht zwischen 1000 und 150.000, und Viskositäten zwischen 10 und 1.000.000 mPa-s.
Geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycol- terephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbe¬ sondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
Optische Aufheller (sogenannte „Weißtöner") können den Wasch- oder Reinigungsmitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1 ,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Als Vergrauungsinhibitoren einsetzbar sind weiterhin Celluloseether wie Carboxymethylcellulose (Na-SaIz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische.
Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können synthetische Knitterschutzmittel eingesetzt werden. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
Phobier- und Imprägnierverfahren dienen der Ausrüstung von Textilien mit Substanzen, welche die Ablagerung von Schmutz verhindern oder dessen Auswaschbarkeit erleichtern. Bevorzugte Phobier- und Imprägniermittel sind perfluorierte Fettsäuren, auch in Form ihrer Aluminium- u. Zirconiumsalze, organische Silikate, Silikone, Polyacrylsäureester mit perfluorierter Alkohol- Komponente oder mit perfluoriertem Acyl- oder Sulfonyl-Rest gekoppelte, polymerisierbare Verbindungen. Auch Antistatika können enthalten sein. Die schmutzabweisende Ausrüstung mit Phobier- und Imprägniermitteln wird oft als eine Pflegeleicht-Ausrüstung eingestuft. Das Eindringen der Imprägniermittel in Form von Lösungen oder Emulsionen der betreffenden Wirkstoffe kann durch Zugabe von Netzmitteln erleichtert werden, die die Oberflächenspannung herabsetzen. Ein weiteres Einsatzgebiet von Phobier- und Imprägniermitteln ist die wasserabweisende Ausrüstung von Textilwaren, Zelten, Planen, Leder usw., bei der im Gegensatz zum Wasserdichtmachen die Gewebeporen nicht verschlossen werden, der Stoff also atmungsaktiv bleibt (Hydrophobieren). Die zum Hydrophobieren verwendeten Hydrophobiermittel überziehen Textilien, Leder, Papier, Holz usw. mit einer sehr dünnen Schicht hydrophober Gruppen, wie längere Alkyl-Ketten oder Siloxan-Gruppen. Geeignete Hydrophobiermittel sind z.B. Paraffine, Wachse, Metallseifen usw. mit Zusätzen an Aluminium- oder Zirconium-Salzen, quartäre Ammonium-Verbindungen mit langkettigen Alkyl-Resten, Harnstoff-Derivate, Fettsäure¬ modifizierte Melaminharze, Chrom-Komplexsalze, Silikone, Zinn-organische Verbindungen und Glutardialdehyd sowie perfluorierte Verbindungen. Die hydrophobierten Materialien fühlen sich nicht fettig an; dennoch perlen - ähnlich wie an gefetteten Stoffen - Wassertropfen an ihnen ab, ohne zu benetzen. So haben z.B. Silikon-imprägnierte Textilien einen weichen Griff und sind wasser- und schmutzabweisend; Flecke aus Tinte, Wein, Fruchtsäften und dergleichen sind leichter zu entfernen.
Zur Bekämpfung von Mikroorganismen können antimikrobielle Wirkstoffe eingesetzt werden. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw.. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei auch gänzlich auf diese Verbindungen verzichtet werden kann.
Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Wasch- und Reinigungsmitteln und/oder den behandelten Textilien zu verhindern, können die Mittel Antioxidantien enthalten. Zu dieser Verbiπdungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl- (bzw. Stearyl-) dimethylbenzylammoniumchloride eignen sich ebenfalls als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
Zur Pflege der Textilien und zur Verbesserung der Textileigenschaften wie einem weicheren "Griff" (Avivage) und verringerter elektrostatischer Aufladung (erhöhter Tragekomfort) können Weichspüler eingesetzt werden. Die Wirkstoffe in Weichspülformulierungen sind "Esterquats", quartäre Ammoniumverbindungen mit zwei hydrophoben Resten, wie beispielsweise das Disteraryldimethylammoniumchlorid, welches jedoch wegen seiner ungenügenden biologischen Abbaubarkeit zunehmend durch quartäre Ammoniumverbindungen ersetzt wird, die in ihren hydrophoben Resten Estergruppen als Sollbruchstellen für den biologischen Abbau enthalten. Derartige "Esterquats" mit verbesserter biologischer Abbaubarkeit sind beispielsweise dadurch erhältlich, dass man Mischungen von Methyldiethanolamin und/oder Triethanolamin mit Fettsäuren verestert und die Reaktionsprodukte anschließend in an sich bekannter Weise mit Alkylierungsmitteln quaterniert. Als Appretur weiterhin geeignet ist Dimethylolethylenharnstoff.
Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügeins der behandelten Textilien können Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten von Wasch- oder Reinigungsmitteln durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C- Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Weitere bevorzugte Silikone sind die Polyalkylenoxid-modifizierten Polysiloxane, also Polysiloxane, welche beispielsweise Polyethylenglykole aufweisen sowie die Polyalkylenoxid-modifizierten Dimetylpolysiloxane.
Schließlich können erfindungsgemäß auch UV-Absorber eingesetzt werden, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
Proteinhydrolysate sind auf Grund ihrer faserpflegenden Wirkung weitere im Rahmen der vorliegenden Erfindung bevorzugte Aktivsubstanzen aus dem Gebiet der Wasch- und Reinigungsmittel. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ursprungs eingesetzt werden. Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milch- eiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z.B. Soja-, Mandel-, Reis-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische oder einzelne Aminosäuren wie beispielsweise Arginin, Lysin, Histidin oder Pyrroglutaminsäure eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure- Kondensationsprodukte.
Zu den nichtwässrigen Lösungsmittel, welche erfindungsgemäß eingesetzt werden können, zählen insbesondere die organischen Lösungsmittel, von denen hier nur die wichtigsten aufgeführt sein können: Alkohole (Methanol, Ethanol, Propanole, Butanole, Octanole, Cyclohexanol), Glykole (Ethylenglykol, Diethylenglykol), Ether und Glykolether (Diethylether, Dibutylether, Anisol, Dioxan, Tetrahydrofuran, Mono-, Di-, Tri-, Polyethylenglykolether), Ketone (Aceton, Butanon, Cyclohexanon), Ester (Essigsäureester, Glykolester), Amide und andere Stickstoff-Verbindungen (Dimethylformamid, Pyridin, N-Methylpyrrolidon, Acetonitril), Schwefel- Verindungen (Schwefelkohlenstoff, Dimethylsulfoxid, Sulfolan), Nitro-Verbindungen (Nitrobenzol), Halogenkohlenwasserstoffe (Dichlormethan, Chloroform, Tetrachlormethan, Tri-, Tetrachlorethen, 1 ,2-Dichlorethan, Chlorfluorkohlenstoffe), Kohlenwasserstoffe (Benzine, Petrolether, Cyclohexan, Methylcyclohexan, Decalin, Terpen-Lösungsmittel, Benzol, Toluol, XyIoIe). Alternativ können statt der reinen Lösungsmittel auch deren Gemische, welche beispielsweise die Lösungseigenschaften verschiedener Lösungsmittel vorteilhaft vereinigen, eingesetzt werden. Ein derartiges und im Rahmen der vorliegenden Anmeldung besonders bevorzugtes Lösungsmittelgemisch ist beispielsweise Waschbenzin, ein zur chemischen Reinigung geeignetes Gemisch verschiedener Kohlenwasserstoffe, vorzugsweise mit einem Gehalt an C12 bis C14 Kohlenwasserstoffen oberhalb 60 Gew.-%, besonders bevorzugt oberhalb 80 Gew.-% und insbesondere oberhalb 90 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Gemischs, vorzugsweise mit einem Siedebereich von 81 bis 110 0C.

Claims

Patentansprüche:
1. Verfahren zur Herstellung mehrphasiger Wasch- oder Reinigungsmittel, umfassend die Schritte: a) Herstellung eines wasserlöslichen oder wasserdispergierbaren Behälters; b) Befüllen des Behälters mit einem ersten Wasch- oder Reinigungsmittel unter Ausbildung einer ersten Phase; c) Auftragen eines flüssigen Trennmittels auf diese erste Phase und Verfestigen des Trennmittels unter Ausbildung einer Trennschicht; d) Befüllen des Behälters mit einem zweiten Wasch- oder Reinigungsmittel unter Ausbildung einer zweiten Phase.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei dem flüssigen Trennmittel um eine Lösung oder eine Suspension handelt, deren Lösungsmittelanteil vorzugsweise weniger als 80 Gew.-%, bevorzugt weniger als 60 Gew.-%, besonders bevorzugt zwischen 1 und 40 Gew.-% und insbesondere zwischen 2 und 20 Gew.-% beträgt.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass es sich bei dem flüssigen Trennmittel um eine Schmelze handelt, deren Schmelzpunkt vorzugsweise weniger als 1500C, bevorzugt weniger als 120°C, besonders bevorzugt zwischen 30 und 1000C und insbesondere zwischen 40 und 80°C beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das flüssige Trennmittel ein organisches Polymer umfasst.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das flüssige Trennmittel ein anorganisches oder organisches Salz umfasst.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Gewichtsanteil des Trennmittels bezogen auf das Gesamtgewicht des mit wasserlöslichem oder wasserdispergierbarem Hüllmaterial verpackten mehrphasigen Wasch- oder Reinigungsmittels weniger als 10 Gew.-%, vorzugsweise weniger als 8 Gew.-%, besonders bevorzugt zwischen 0,1 und 6 Gew.-% und insbesondere zwischen 0,5 und 4 Gew.-% beträgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die in Schritt c) ausgebildete Trennschicht eine Dicke zwischen 1 und 1000 μm, vorzugsweise zwischen 1 und 300 μm, besonders bevorzugt zwischen 1 und 100 μm und insbesondere zwischen 1 und 40 μm aufweist.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die in Schritt c) ausgebildete Trennschicht wenigstens anteilsweise transparent oder transluzent ist.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei mindestens einem der in der Schritten b) und d) eingefüllten Wasch- oder Reinigungsmittel um einen Feststoff handelt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es sich bei mindestens einem der in den Schritten b) und d) eingefüllten Wasch- oder Reinigungsmittel um eine Flüssigkeit handelt.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Schritte c) und d) einmal, zweimal, dreimal oder vielfach wiederholt werden.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass der befüllte Behälter in einem weiteren Schritt e) mittels einer wasserlöslichen Folien versiegelt wird.
13. Mehrphasiges Wasch- oder Reinigungsmittels, umfassend b) einen wasserlöslichen oder wasserdispergierbaren Behälter aus einem ersten wasserlöslichen oder wasserdispergierbaren Hüllmtaterial; sowie c) mindestens zwei voneinander getrennte Phasen aus Wasch- oder Reinigungsmitteln, welche in Schichten neben- und/oder übereinander angeordnet sind und durch eine Trennschicht aus einem verfestigten, flüssigen Trennmittel voneinander getrennt sind.
14. Mehrphasiges Wasch- oder Reinigungsmittel nach Anspruch 13, dadurch gekennzeichnet, dass es sich bei der Trennschicht um eine verfestigte Lösung handelt.
15. Mehrphasiges Wasch- oder Reinigungsmittel nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass die Trennschicht eine Dicke zwischen 1 und 1000 μm, vorzugsweise zwischen 1 und 300 μm, besonders bevorzugt zwischen 1 und 100 μm und insbesondere zwischen 1 und 40 μm aufweist.
16. Mehrphasiges Wasch- oder Reinigungsmittel nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die Trennschicht wenigstens anteilsweise transparent oder transluzent ist.
17. Mehrphasiges Wasch- oder Reinigungsmittel nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass es sich bei den beiden voneinander getrennten Phasen von Wasch¬ oder Reinigungsmitteln um einen Feststoff und eine Flüssigkeit handelt.
EP05754593A 2004-06-23 2005-06-11 Mehrkammer-pouch Active EP1758979B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05754593T PL1758979T3 (pl) 2004-06-23 2005-06-11 Woreczek wielokomorowy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004030318A DE102004030318B4 (de) 2004-06-23 2004-06-23 Mehrkammer-Pouch
PCT/EP2005/006290 WO2006000309A1 (de) 2004-06-23 2005-06-11 Mehrkammer-pouch

Publications (2)

Publication Number Publication Date
EP1758979A1 true EP1758979A1 (de) 2007-03-07
EP1758979B1 EP1758979B1 (de) 2011-06-08

Family

ID=34971187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05754593A Active EP1758979B1 (de) 2004-06-23 2005-06-11 Mehrkammer-pouch

Country Status (7)

Country Link
US (1) US7446084B2 (de)
EP (1) EP1758979B1 (de)
AT (1) ATE512209T1 (de)
DE (1) DE102004030318B4 (de)
ES (1) ES2365147T3 (de)
PL (1) PL1758979T3 (de)
WO (1) WO2006000309A1 (de)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061088A1 (en) * 2003-12-22 2005-07-07 Finlay Warren H Powder formation by atmospheric spray-freeze drying
CN1976988B (zh) * 2004-07-01 2010-05-05 卡吉尔公司 在纸胶料和/或涂层组合物中使用的淀粉衍生物
US8241651B2 (en) * 2004-11-10 2012-08-14 The Regents Of The University Of Michigan Multiphasic biofunctional nano-components and methods for use thereof
EP1809719B1 (de) * 2004-11-10 2013-01-16 The Regents of The University of Michigan Mehrphasige nanopartikel
US7947772B2 (en) * 2004-11-10 2011-05-24 The Regents Of The University Of Michigan Multiphasic nano-components comprising colorants
US8043480B2 (en) * 2004-11-10 2011-10-25 The Regents Of The University Of Michigan Methods for forming biodegradable nanocomponents with controlled shapes and sizes via electrified jetting
US7638475B2 (en) 2006-03-24 2009-12-29 Georgia-Pacific Consumer Products Lp Space saving toilet cleaning system
WO2008058062A2 (en) * 2006-11-07 2008-05-15 Tempra Technology, Inc. Method for adding a fusible material to a container wall
US20080157039A1 (en) * 2006-12-30 2008-07-03 Matthew Mark Zuckerman Nano-polymeric encapsulation of a key reactant to control chemo-fluorescent active reaction period for chemiluminescent paint
GB0700931D0 (en) 2007-01-18 2007-02-28 Reckitt Benckiser Nv Dosage element and a method of manufacturing a dosage element
US20090209447A1 (en) * 2008-02-15 2009-08-20 Michelle Meek Cleaning compositions
WO2009114754A1 (en) * 2008-03-14 2009-09-17 Solutions Biomed, Llc Multi-chamber container system for storing and mixing fluids
GB0805879D0 (en) * 2008-04-01 2008-05-07 Reckitt Benckiser Nv Injection moulded containers
GB0805904D0 (en) 2008-04-01 2008-05-07 Reckitt Benckiser Nv Injection moulding process
WO2010011641A2 (en) * 2008-07-21 2010-01-28 The Regents Of The University Of Michigan Microphasic micro-components and methods for controlling morphology via electrified jetting
US8789716B2 (en) * 2008-11-12 2014-07-29 Solutions Biomed, Llc Multi-chamber container system for storing and mixing liquids
WO2010056871A2 (en) 2008-11-12 2010-05-20 Solutions Biomed, Llc Two-part disinfectant system and related methods
JP6078230B2 (ja) 2009-03-02 2017-02-08 セブンス センス バイオシステムズ,インコーポレーテッド 血液サンプリングに関連する技術および装置
US9041541B2 (en) 2010-01-28 2015-05-26 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
US8827971B2 (en) 2011-04-29 2014-09-09 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
US10064971B2 (en) * 2010-01-19 2018-09-04 Highq Services, Llc Preventative solution and method of use
US8815788B2 (en) * 2010-01-19 2014-08-26 Highq Services, Llc Aerosol deodorizer
EP2555742B2 (de) * 2010-04-06 2018-12-05 The Procter and Gamble Company Verkapselungen
US8232238B2 (en) * 2010-06-03 2012-07-31 The Clorox Company Concentrated film delivery systems
WO2011163347A2 (en) 2010-06-23 2011-12-29 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
RU2541949C2 (ru) 2010-07-02 2015-02-20 Дзе Проктер Энд Гэмбл Компани Филаменты, содержащие активный агент, нетканые полотна и способы их получения
BR112012033600A2 (pt) 2010-07-02 2016-11-29 Procter & Gamble Comapny filamentos compreendendo mantas de não-tecido com agente ingerível e métodos de fabricação dos mesmos.
RU2607747C1 (ru) 2010-07-02 2017-01-10 Дзе Проктер Энд Гэмбл Компани Способ получения пленок из нетканых полотен
WO2012003351A2 (en) 2010-07-02 2012-01-05 The Procter & Gamble Company Web material and method for making same
EP2588655B1 (de) 2010-07-02 2017-11-15 The Procter and Gamble Company Verfahren für die freisetzung eines wirkstoffes
WO2012009613A1 (en) 2010-07-16 2012-01-19 Seventh Sense Biosystems, Inc. Low-pressure environment for fluid transfer devices
US20130158482A1 (en) 2010-07-26 2013-06-20 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
US20120039809A1 (en) 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
EP2609183B1 (de) * 2010-08-23 2018-11-21 Henkel IP & Holding GmbH Einheitendosierung von reinigungsmittelzusammensetzungen sowie verfahren zu ihrer herstellung und verwendung
US9482861B2 (en) 2010-10-22 2016-11-01 The Regents Of The University Of Michigan Optical devices with switchable particles
EP2637562B1 (de) 2010-11-09 2016-01-27 Seventh Sense Biosystems, Inc. Systeme und schnittstellen zur blutabnahme
WO2012149155A1 (en) 2011-04-29 2012-11-01 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
EP2702406B1 (de) 2011-04-29 2017-06-21 Seventh Sense Biosystems, Inc. Plasma- oder serumherstellung und entfernung von flüssigkeiten bei reduziertem druck
EP2751248B1 (de) * 2011-09-06 2021-06-09 Henkel IP & Holding GmbH Feste textilstoffbehandlungszusammensetzungen
US20130216631A1 (en) * 2012-02-17 2013-08-22 The Clorox Company Targeted performance of hypohalite compositions thereof
EP4043541B1 (de) 2017-03-01 2024-02-21 Ecolab USA Inc. Mechanismus der harnsäure/festsäure-interaktion unter lagerbedingungen und herstellungsverfahren zu lagerstabilen festen zusammensetzungen mit harnstoff und säure
PL3434758T3 (pl) * 2017-07-28 2022-08-16 Henkel IP & Holding GmbH Sposób wytwarzania produktów o dawce jednostkowej z zastosowaniem przechłodzenia
JP7127135B2 (ja) 2018-01-26 2022-08-29 ザ プロクター アンド ギャンブル カンパニー 水溶性物品及び関連プロセス
WO2019147533A1 (en) 2018-01-26 2019-08-01 The Procter & Gamble Company Water-soluble unit dose articles comprising enzyme
US11053466B2 (en) 2018-01-26 2021-07-06 The Procter & Gamble Company Water-soluble unit dose articles comprising perfume
CN111542590A (zh) 2018-01-26 2020-08-14 宝洁公司 包含香料的水溶性单位剂量制品
WO2019168829A1 (en) 2018-02-27 2019-09-06 The Procter & Gamble Company A consumer product comprising a flat package containing unit dose articles
DE102018208649A1 (de) * 2018-05-30 2019-12-05 Henkel Ag & Co. Kgaa Mehrkomponenten-Reinigungsmittel für automatisches Geschirrspülen
US10982176B2 (en) 2018-07-27 2021-04-20 The Procter & Gamble Company Process of laundering fabrics using a water-soluble unit dose article
WO2020159860A1 (en) 2019-01-28 2020-08-06 The Procter & Gamble Company Recycleable, renewable, or biodegradable package
EP3712237A1 (de) 2019-03-19 2020-09-23 The Procter & Gamble Company Faserige wasserlösliche einmal-dosierartikel mit wasserlöslichen faserstrukturen
US11679066B2 (en) 2019-06-28 2023-06-20 The Procter & Gamble Company Dissolvable solid fibrous articles containing anionic surfactants
DE102019126124A1 (de) * 2019-09-27 2021-04-01 Henkel Ag & Co. Kgaa Verfahren zur Herstellung Tensid enthaltender Zusammensetzungen in einem sequenziellen Verfahren
MX2023001042A (es) 2020-07-31 2023-02-16 Procter & Gamble Bolsa fibrosa soluble en agua que contiene granulos para el cuidado del cabello.
US20220380706A1 (en) * 2021-05-24 2022-12-01 Church & Dwight Co., Inc. Laundry detergent article
WO2023072458A1 (en) * 2021-10-25 2023-05-04 Unilever Ip Holdings B.V. Films and capsules
US11464384B1 (en) 2022-03-31 2022-10-11 Techtronic Cordless Gp Water soluable package for a floor cleaner

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2358382B2 (de) * 1973-11-23 1975-09-18 Ellenberger & Poensgen Gmbh, 8503 Altdorf Uberstromschaltvorrichtung mit zwei hintereinandergeschalteten Unterbrechungsstellen
NZ244818A (en) * 1991-10-24 1994-09-27 Rhone Poulenc Agrochimie Package containing a toxic composition which comprises two compartments formed by two sheets of water-soluble dispersible material by means of a water-soluble/dispersible heat seal and a third sheet
GB9906175D0 (en) 1999-03-17 1999-05-12 Unilever Plc A water soluble package
AU6152900A (en) * 1999-07-09 2001-01-30 Henkel Kommanditgesellschaft Auf Aktien Detergent or cleaning agent portion
GB2361686A (en) * 2000-04-28 2001-10-31 Procter & Gamble Water-soluble, multi-compartment pouch for detergent product
GB2361707A (en) 2000-04-28 2001-10-31 Procter & Gamble Pouched compositions
WO2002006431A2 (de) * 2000-07-14 2002-01-24 Henkel Kommanditgesellschaft Auf Aktien Kompartiment-hohlkörper enthaltend wasch-, reinigungs- oder spülmittelportion
DE10058647A1 (de) * 2000-07-14 2002-05-29 Henkel Kgaa Kompartiment- Hohlkörper III
ES2431044T5 (es) 2000-11-27 2022-05-27 Procter & Gamble Método de lavado de vajillas
US6624130B2 (en) * 2000-12-28 2003-09-23 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Laundry product
GB2374581B (en) * 2001-04-20 2004-01-28 Reckitt Benckiser Water soluble containers
GB2374580B (en) 2001-04-20 2003-07-16 Reckitt Benckiser Water-soluble containers
EP1256623A1 (de) 2001-05-08 2002-11-13 The Procter & Gamble Company Kit bestehend aus wasserlöslichen oder dispergierbaren Beuteln
US6521581B1 (en) * 2001-12-14 2003-02-18 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Water-soluble package with multiple distinctly colored layers of liquid laundry detergent
GB2391532B (en) * 2002-08-07 2004-09-15 Reckitt Benckiser Water-soluble container with spacer between compartments
DE10313456A1 (de) * 2003-03-25 2004-10-14 Henkel Kgaa Formstabile Reinigungsmittelportion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006000309A1 *

Also Published As

Publication number Publication date
WO2006000309A1 (de) 2006-01-05
PL1758979T3 (pl) 2011-11-30
ATE512209T1 (de) 2011-06-15
EP1758979B1 (de) 2011-06-08
ES2365147T3 (es) 2011-09-23
DE102004030318B4 (de) 2009-04-02
DE102004030318A1 (de) 2006-01-12
US20070167340A1 (en) 2007-07-19
US7446084B2 (en) 2008-11-04

Similar Documents

Publication Publication Date Title
DE102004030318B4 (de) Mehrkammer-Pouch
EP1776448B1 (de) Verfahren zur herstellung portionierter wasch- oder reinigungsmittel
WO2005105974A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteln
WO2006032371A1 (de) Reinigungsmittelkomponente
WO2006045449A1 (de) Wasch- oder reinigungsmittel
WO2006045452A1 (de) Wasch- oder reinigungsmittel
EP1922401B1 (de) Wasch- oder reinigungsmittel
WO2006021284A1 (de) Beschichteter wasch- oder reinigungsmittelformkörper
WO2006018107A1 (de) Klarspülhaltige wasch- und reinigungsmittel mit schwefelhaltigen aminosäuren
WO2006045451A1 (de) Wasch- oder reinigungsmittel
WO2006063724A1 (de) Schneidwerkzeug für folienbahnen
WO2004058592A1 (de) Portioniertes wasch-oder reinigungsmittel
WO2006066721A1 (de) Dosiereinheit für wasch- oder reinigungsmittel
EP1529096B1 (de) Portionierte wasch- oder reinigungsmittel mit phosphat iii
WO2005123368A1 (de) Verfahren zur herstellung von portionspackungen aus wasserlöslichem polymerfilm für wasch- oder reinigungsaktive substanzen
EP1529099B1 (de) Portionierte wasch- oder reinigungsmittel mit phosphat i
WO2004080810A1 (de) Portioniertes wasch- oder reinigungsmittel
WO2006066695A1 (de) Mehrphasiger wasch-oder reinigungsmittelformkörper
WO2004054897A1 (de) Portioniertes wasch- oder reinigungsmittel
WO2004054894A1 (de) Portioniertes wasch- oder reinigungsmittel
WO2006045453A1 (de) Wasch- oder reinigungsmitteldosiereinheit
WO2006066722A1 (de) Verpacktes wasch- oder reinigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

17Q First examination report despatched

Effective date: 20081126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005011473

Country of ref document: DE

Effective date: 20110721

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2365147

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110909

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E011933

Country of ref document: HU

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111010

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: RECKITT BENCKISER N.V.

Effective date: 20120307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005011473

Country of ref document: DE

Effective date: 20120103

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110908

RDAE Information deleted related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSDREV1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170621

Year of fee payment: 13

Ref country code: CZ

Payment date: 20170609

Year of fee payment: 13

Ref country code: RO

Payment date: 20170525

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170620

Year of fee payment: 13

Ref country code: BE

Payment date: 20170620

Year of fee payment: 13

Ref country code: LU

Payment date: 20170620

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170530

Year of fee payment: 13

Ref country code: HU

Payment date: 20170616

Year of fee payment: 13

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20180226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180611

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180611

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 512209

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180611

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180701

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180611

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAE Information deleted related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSDREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180611

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180612

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200619

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180611

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230602

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 19

Ref country code: GB

Payment date: 20230620

Year of fee payment: 19

Ref country code: ES

Payment date: 20230828

Year of fee payment: 19