EP1755779A1 - Verfahren zur herstellung einer multimetalloxidmasse - Google Patents

Verfahren zur herstellung einer multimetalloxidmasse

Info

Publication number
EP1755779A1
EP1755779A1 EP05745626A EP05745626A EP1755779A1 EP 1755779 A1 EP1755779 A1 EP 1755779A1 EP 05745626 A EP05745626 A EP 05745626A EP 05745626 A EP05745626 A EP 05745626A EP 1755779 A1 EP1755779 A1 EP 1755779A1
Authority
EP
European Patent Office
Prior art keywords
multimetal oxide
mixture
sources
group
elemental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05745626A
Other languages
English (en)
French (fr)
Inventor
Hartmut Hibst
Frieder Borgmeier
Frank Rosowski
Klaus Joachim MÜLLER-ENGEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004027999A external-priority patent/DE102004027999A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of EP1755779A1 publication Critical patent/EP1755779A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • B01J37/0223Coating of particles by rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/366Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions by hydrothermal processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/008Salts of oxyacids of selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/006Compounds containing, besides molybdenum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G47/00Compounds of rhenium
    • C01G47/006Compounds containing, besides rhenium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to a method for producing a multimetal oxide mass M of general stoichiometry I,
  • M 1 at least one of the elements from the group comprising Al, Ga, In, Ge, Sn, Pb, As, Bi Se, Te and Sb;
  • M 2 at least one of the elements from the group comprising Sc, Y, La, Ti, Zr, Hf, Nb, Ta, Cr, W, Mn, Fe, Co, Ni, Zn, Cd and the lanthanides;
  • M 3 at least one of the elements from the group comprising Re, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag and Au;
  • M 4 at least one of the elements from the group comprising Li, Na, K, Rb, Cr, Be, Mg, Ca, Sr, Ba, NH 4 and TI;
  • n a number which is determined by the valency and frequency of the elements other than oxygen in (I),
  • Multimetal oxide compositions M of general stoichiometry I and processes for their preparation are known (cf. for example EP-A 318 295, EP-A 512 846, EP-A 767 164, EP-A 865 809, EP-A 529 853, EP-A 608 838, EP-A 962 253, DE-A 102 48 584, DE-A 101 19 933, DE-A 101 18 814, DE-A 100 29 338, DE-A 103 59 027, DE-A 103 21 398 , EP-A 1 407 819, Applied Catalysis A: General 194-195 (2000), pp. 479-485; Applied Catalysis A: General 200 (2000), pp. 135-143; Chem.
  • multimetal oxide compositions M as active compositions for catalysts for heterogeneously catalyzed partial gas phase oxidation and for heterogeneously catalyzed partial gas phase ammoxidation (differs from pure partial gas phase oxidation essentially by the additional presence of ammonia) of (for example 3 to 8, in particular 2 or 3 and / or 4 carbon atoms) saturated and unsaturated hydrocarbons, alcohols and aldehydes are suitable.
  • Partial oxidation products include ⁇ .ß-monoethylenically unsaturated aldehydes (e.g.
  • acrolein and methacroiein and, ß-monoethylenically unsaturated carboxylic acids (e.g. acrylic acid and methacrylic acid) and their nitriles (e.g. acrylonitrile and methacrylonitrile).
  • carboxylic acids e.g. acrylic acid and methacrylic acid
  • nitriles e.g. acrylonitrile and methacrylonitrile
  • the target compounds acrolein, acrylic acid and / or acrylonitrile are e.g. as described available from the hydrocarbons propane and / or propene.
  • Acrolein itself can also be the starting compound for the preparation of the latter two compounds.
  • These target compounds form important intermediates which e.g. used for the production of polymers, e.g. can be used as adhesives.
  • methacroiein and methacrylic acid can be obtained from isobutane and isobutene.
  • Methacroiein can also be the starting compound for the production of methacrylic acid.
  • multimetal oxide compositions M predominantly occur in two different crystal phases, which are referred to in the literature as “i-phase” and as “k-phase”.
  • the associated X-ray diffractogram is used as a fingerprint of the respective crystal phase to identify it and to identify its crystalline structure.
  • the X-ray diffractogram of the crystalline i-phase is characterized in that the subsequent X-ray diffraction pattern RMi, reproduced in the form of of the wavelength of the X-rays used 'independent interplanar spacings d [A], d [A] 3.06 + 0.2 3.17 + 0.2 3.28 + 0.2 3.99 + 0.2 9.82 + 0.4 11.24 + 0.4 13.28 + 0.5
  • the X-ray diffractogram of the crystalline k-phase is characterized in that it has the following X-ray diffraction pattern RMk, reproduced in the form of network plane distances d [A], [ ⁇ ] 4.02 + 0.2 3.16, which are independent of the wavelength of the X-ray radiation used + 0.2 2.48 + 0.2 2.01 + 0.2 1.82 + 0.1,
  • the i-phase and k-phase are similar to one another, but differ primarily in that the X-ray diffractogram of the k-phase normally has no diffraction reflections for d> 4.2 A.
  • the k phase usually also contains no diffraction reflections in the range 3.8 A> d> 3.35 A. Furthermore, the k phase generally does not contain any diffraction reflections in the range 2.95 A> d> 2.68 ⁇ .
  • the catalytic activity (activity, selectivity of target product formation) of the multimetal oxide compositions with i-phase structure is generally superior to those in other (e.g. k-phase) structures.
  • multimetal oxide compositions M of general stoichiometry I is generally carried out in such a way that an intimate dry mixture is produced from their starting compounds (sources) containing elemental constituents and this is thermally treated at elevated temperature.
  • Increased i-phase proportions up to exclusive i-phase are generally obtained if a mixture of sources of the elemental constituents of the multimetal oxide mass M is subjected to hydrothermal treatment and the newly formed solid is separated off (cf. A 2003 / 0187299A1, DE-A 100 29 338, EP-A 1 270 068, EP-A 1 346 766 and EP-A 1 407 819).
  • a disadvantage of such a hydrothermal production method is that its reproducibility, especially when it is produced in large-scale quantities, is not fully satisfactory.
  • the i-phase portion resulting from such a production fluctuates around a mean value in a comparatively large range during repeated production.
  • this mean value is often a comparatively low i-phase component.
  • the catalytic performance of the product which is immediately available hydrothermally is often unsatisfactory and generally requires subsequent thermal treatment to improve it.
  • the object of the present invention was therefore to provide a hydrothermal process for the production of multimetal oxide compositions M of general stoichiometry I which is improved with respect to the disadvantages mentioned.
  • M 1 at least one of the elements from the group comprising AI (+3), Ga (+3), In (+3), Ge (+4), Sn (+4), Pb (+4), As (+ 5), Bi (+5), Se (+6), Te (+6) and Sb (+5);
  • M 2 at least one of the elements from the group comprising Sc (+3), Y (+3), La (+3), Ti (+4), Zr (+4), Hf (+4), Nb (+ 5), Ta (+5+), Cr (+5), W (+6), Mn (+7), Fe (+3), Co (+3), Ni (+3), Zn (+2 ), Cd (+2) and the lanthanides (Ce (+4), Pr (+3), Nd (+3), Pm (+3), Sm (+3), Eu (+3), Gd (+ 3), Tb (+4), Dy (+3), Ho (+3), Er (+3), Tm (+3), Yb (+3) and Lu (+3));
  • M 3 at least one of the elements from the group comprising Re (+7), Ru (+8), Rh (+8), Pd (+8), Os (+8) lr (+8+), Pt (+8 ), Cu (+2), Ag (+1) and Au (+1);
  • M 4 at least one of the elements from the group comprising Li (+1), Na (+1), K (+1), Rb (+1), Cs (+1), Be (+2), Mg (+ 2), Ca (+2), lr (+2), Ba (+2), NH 4 (+1) and Tl (+1);
  • n a number which is determined by the valency and frequency of the elements other than oxygen in (I),
  • the sources of the elementary constituents of the multimetal oxide mass M are exclusively sources from the group comprising compounds , which consist only of the elementary constituents of the multimetal oxide mass M and elementary constituents of water (O, H, OH), the elementary constituents of the multimetal oxide mass M itself in their elemental form and elemental constituents of the multimetal oxide mass M containing ammonium salts (ie, sources from of the group comprising oxides, oxide hydrates, oxygen acids, hydroxides, oxide hydroxides of the elemental constituents, the metal elements of the elemental constituents and compounds such as ammonium metavanadate or ammonium heptamolybodate) are used with the proviso that the molar ratio MV N H ⁇ Mo from NH contained in mixture G and Mo contained in mixture G is ⁇ 0.5 and at least a partial amount
  • Sources of elementary constituents that have elementary constituents contained in these sources with an oxidation number that is below the maximum oxidation number of the respective elemental constituent this is the one behind the individually listed elements M 1 , M 2 , M 3 and M 4 in brackets with a positive sign).
  • At least a subset of the (of mixture G) sources of the elemental constituent V preferably contains the vanadium with an oxidation number ⁇ +5 (e.g. +4, or +3, or + 2, or 0).
  • the pressure range typically extends to (> 1 bar) up to 500 bar, preferably up to 250 bar.
  • temperatures above 600 ° C. and water vapor pressures above 500 bar can also be used, but this is less expedient in terms of application technology.
  • the hydrothermal treatment according to the invention is particularly advantageously carried out under conditions under which water vapor and liquid aqueous phase coexist. This is possible in the temperature range from> 100 to 374.15 ° C (critical temperature of the water) using the appropriate pressures.
  • the amounts of water are expediently dimensioned such that the liquid aqueous phase is able to absorb the total amount of the starting compounds of the elemental constituents in suspension and / or solution.
  • the hydrothermal treatment according to the invention advantageously takes place at temperatures> 100 ° C. to 300 ° C., preferably at temperatures from 120 ° C. or from 150 ° C. to 250 ° C. (e.g. 160 ° C. to 180 ° C.).
  • the weight fraction of the latter in the autoclave generally bears at least 1% by weight.
  • the aforementioned proportion by weight is usually not above 90% by weight.
  • Weight proportions of 5 to 60 or 10 to 50% by weight are preferred, more preferably 20 or 30 to 50% by weight.
  • the proportion by weight of such further substances should normally be ⁇ 10% by weight, advantageously ⁇ 5% by weight and even better ⁇ 3% by weight.
  • Foreign substances are, for example, all the substances listed in DE-A 100 29 338 and EP-A 1 407 819 but also H 2 O 2 (taking into account the preferred redox conditions).
  • the molar ratio MV is advantageously ⁇ 0.3, particularly preferably ⁇ 0.1 and very particularly preferably 0.
  • the process according to the invention preferably at least 5 mol%, or at least 10 mol%, preferably at least 20 mol% or at least 30 mol%, very particularly preferably at least 40 mol% or at least 50 mol% and most preferably at least 60 mol% or at least 70 mol% or at least 80 mol% or at least 90 mol% or more (with particular advantage the total amount) of the V contained in these sources as vanadium, the oxidation number of which is ⁇ +5.
  • the arithmetic mean oxidation number of the V averaged over the molar total amount of V of the vanadium sources contained in the mixture G is preferably +3.5 to +4.5, particularly preferably +3.8 to +4.2 and very particularly preferably +4 ,
  • the composition of the mixture G in the process according to the invention is preferably chosen with regard to the oxidation numbers of the elemental constituents contained in the sources for the mixture G in such a way that with a change of all elementary constituents different from V (+5), which are not contained in the sources of the mixture G in their maximum oxidation number (including V ( ⁇ + 5)), in their respective maximum (with V in its second highest Oxidation number +4) Oxidation number the resulting reduct potential is just sufficient to set the mean oxidation number of the total V contained in the sources of the mixture G to a value from 3.5 to 4.5, particularly preferably from 3.8 to 4.2 and very particularly preferably from 4.
  • hydrothermal treatment according to the invention is carried out under an oxidative, molecular oxygen-containing atmosphere (e.g. under standing, closed air), the aforementioned reduction potential can be correspondingly higher.
  • the conditions of the hydrothermal treatment according to the invention are preferably chosen such that the above reduction potential is actually implemented in the manner described during the hydrothermal treatment.
  • the oxidation number of an atom in a free element is zero. 2.
  • the oxidation number of a monatomic ion is equal to its charge.
  • the oxidation number corresponds to the charge that each atom contains when the binding electron pairs are completely assigned to the more electron-negative atom. With electron pairs between two identical atoms, each atom receives one electron.
  • sources of element V for the process according to the invention are primarily: vanadium oxides such as VO 2 , V 2 O 3 , V 6 O 13 , V 3 O 7 , V 4 O 9 and VO, elemental vanadium, and, under Consideration of the quantity limits according to the invention, also compounds such as V 2 O 5 and ammonium metavanadate.
  • Suitable sources for the element Mo according to the invention are, for example, molybdenum oxides such as MoO 3 and MoO 2 , but elemental Mo, taking into account those according to the invention
  • Quantity limits including compounds such as ammonium heptamolybdate and its hydrates.
  • sources of the element tellurium are, for example, tellurium oxides such as TeO 2 , metallic tellurium, but also telluric acids such as orthotelluric acid H 6 TeO 6 .
  • Antimony starting compounds which are advantageous according to the invention are, for example, antimony oxides such as Sb 2 O 3 , elemental Sb, but also antimonic acids such as HSb (OH) 6 .
  • Niobium sources suitable according to the invention are, for example, niobium oxides such as Nb 2 O 5 or elemental Nb.
  • An advantageous bismuth source according to the invention is Bi 2 O 3 .
  • An advantageous source of gold is gold hydroxide.
  • Further advantageous starting compounds for the process according to the invention are, for example, silver oxide, copper hydroxide, copper oxide, alkali and alkaline earth oxide or hydroxide, scandium oxide, iridium oxide, zinc oxide, Ga 2 O, Ga 2 O 3 etc.
  • mixed oxides also come as sources of the elemental constituents into consideration, which contain more than one elementary constituent and, if appropriate, have been obtained by a hydrothermal route, for example by the hydrothermal route according to the invention. Further sources of the elementary constituents which are suitable according to the invention can be found in the documents of the cited prior art.
  • the hydrothermal treatment according to the invention itself generally takes from a few minutes or hours to a few days. A period of 48 hours is typical.
  • the inside of the autoclave to be used for the hydrothermal treatment is coated with Teflon.
  • the autoclave optionally including the aqueous mixture it contains, can advantageously be evacuated.
  • it can preferably be filled with inert gas (N 2 , noble gas such as He, Ne and / or argon). Both measures can also be omitted in a less advantageous manner.
  • the aqueous mixture can additionally or alternatively be flushed with inert gas for advantageous inerting prior to the hydrothermal treatment according to the invention.
  • the aforementioned inert gases can also be used expediently to set above atmospheric pressure before the hydrothermal treatment in the autoclave.
  • the autoclave Upon completion of the hydrothermal treatment, the autoclave can either be quenched to room temperature or slowly, i.e. be brought to room temperature over a longer period of time (e.g. left by yourself).
  • the solid newly formed in the course of the hydrothermal treatment according to the invention and separated off after the end of the hydrothermal treatment is normally a multimetal oxide M with an increased or exclusive i-phase content and that this is obtained according to the invention in improved reproducibility , It is also essential according to the invention that the multimetal oxides M obtainable by the process according to the invention develop the desired catalytic activity even without a thermal treatment following the hydrothermal treatment.
  • the multimetal oxides M obtainable according to the invention can additionally advantageously be thermally aftertreated before they are used as active compositions for the heterogeneously catalyzed processes mentioned at the outset.
  • This thermal aftertreatment can be carried out at temperatures of 200 to 1200 ° C, preferably 350 to 700 ° C, often 400 to 650 ° C and often 400 to 600 ° C.
  • the oxidizing atmosphere is e.g. Air, air enriched with molecular oxygen or air de-oxygenated.
  • the thermal treatment is carried out under an inert atmosphere, i.e. e.g. carried out under molecular nitrogen and / or noble gas (He, Ar and / or Ne) (inert atmosphere in this document always means that the content of molecular oxygen then normally ⁇ 5% by volume, preferably ⁇ 3% by volume, particularly preferably ⁇ 1% by volume or ⁇ 0.1% by volume and most preferably 0% by volume).
  • inert atmosphere i.e. e.g. carried out under molecular nitrogen and / or noble gas (He, Ar and / or Ne)
  • inert atmosphere in this document always means that the content of molecular oxygen then normally ⁇ 5% by volume, preferably ⁇ 3% by volume, particularly preferably ⁇ 1% by volume or ⁇ 0.1% by volume and most preferably 0% by volume.
  • the thermal aftertreatment can also be carried out under vacuum.
  • the thermal aftertreatment can take up to 24 hours or more.
  • a thermal aftertreatment is preferably carried out first under an oxidizing (oxygen-containing) atmosphere (e.g. under air) at a temperature of 150 ° C to 400 ° C or 250 ° C to 350 ° C. Thereafter, the thermal aftertreatment is expediently continued under inert gas at temperatures of 350 ° C. to 700 ° C. or 400 ° C. to 650 ° C. or 400 ° C. to 600 ° C.
  • the thermal aftertreatment of the hydrothermally generated multimetal oxide M can also be carried out in such a way that the hydrothermally generated multimetal oxide M is first tableted, then thermally aftertreated and then split.
  • the multimetal oxide M obtainable in the context of the hydrothermal process according to the invention is split up for the purpose of its thermal aftertreatment.
  • both the multimetal oxide compositions M obtainable according to the invention by hydrothermal means and their secondary or successor multimetal oxide compositions which have been thermally post-treated as described can be further treated in an advantageous manner by, for example, in DE-A 102 54 279 and EP-A 1 : 4Q7 819 beBciTilben, "with suitable liquids.
  • suitable liquids for example, organic acids or their aqueous solutions (e.g. oxalic acid, formic acid, acetic acid, citric acid and tartaric acid) as well as inorganic acids and their aqueous solutions (e.g.
  • JP-A 7-232 071 and DE-A 103 21 398 also disclose a suitable washing process. Such a wash generally leaves pure i-phase (or an increased i-phase portion), which in the washed state normally also has an additionally improved catalyst performance.
  • the intimate mixing of the starting compounds of the elementary constituents to obtain the mixture G to be treated hydrothermally can take place in dry or in wet form. If it is in dry form, the starting compounds are expediently used as finely divided powders. However, the intimate mixing is preferably carried out in wet, aqueous form.
  • the starting compounds are preferably mixed with one another in the form of an aqueous solution (optionally with the use of small amounts of complexing agents) and / or finely divided suspension.
  • the X-ray diffraction pattern RMi of the multimetal oxide masses M which can be obtained hydrothermally according to the invention or their secondary masses (or also subsequent masses) which can be obtained by thermal aftertreatment and / or by washing as described (or depending on those contained) Elements and the crystal geometry (eg needle shape or platelet shape)) additional characteristic diffraction reflex intensities.
  • these (relative) diffraction reflex intensities I (%) are as follows: d [A] I (%) 3.06 + 0.2 ( preferably + 0.1) 5 to 65 3.17 + 0.2 (preferably + 0.1) 5 to 65 3.28 + 0.2 (preferably + 0.1) 15 to 130, often 15 to 95 3.99 + 0.2 (preferably + 0.1) 100 9.82 + 0.4 (preferably + 0.2) 1 to 50, often 1 to 30 11, 24 + 0.4 (preferably + 0.2) 1 to 45, often 1 to 30 13.28 + 0.5 (preferably + 0.3) 1 to 35, often 1 to 15.
  • the following x-ray diffraction pattern RMi also frequently shows the following diffraction reflections, also reproduced in the form of network plane spacings d [A] which are independent of the wavelength of the x-ray radiation used: d [A] 8.19 + 0, 3 (preferably + 0.15) 3.51 + 0.2 (preferably + 0.1) 3.42 + 0.2 (preferably + 0.1) 3.34 + 0.2 (preferably + 0.1) 2.94 + 0.2 (preferably + 0.1) 2.86 + 0.2 (preferably + 0.1).
  • the (relative) intensities I (%) of the above diffraction reflexes are often as follows: d [A] I (%) 8.19 + 0.3 (or + 0.15) 0 to 25 3.51 + _0.2 (or + 0.1) 2 to 50 3.42 + 0.2 (or + 0.1) 5 to 75 3.34 + 0.2 (or + 0.1) 5 to 80 2.94 + 0.2 (or + 0.1) 5 to 55 2.86 + 0.2 (or + 0.1 ) 5 to 60.
  • the (relative) diffraction reflex intensities obtained in the same way as above are often as follows for these diffraction reflections: d [A] I (%) 2.54 + 0.2 (or + 0.1) 0.5 to 40 2, 01 + 0.2 (or + 0.1) 5 to 60.
  • X-ray diffraction patterns RMi or the multimetal oxide masses belonging to them or their subsequent masses
  • the 2 ⁇ half-value width of the other diffraction reflections mentioned is normally ⁇ 3 °, preferably ⁇ 1, 5 °, particularly preferably ⁇ 1 °.
  • the wavelength ⁇ of the X-ray radiation used for diffraction and the diffraction angle ⁇ (the apex of a reflection in the 2 ⁇ order is used as the diffraction reflex layer in this document) are linked as follows via the Bragg relationship:
  • d is the network plane distance of the atomic spatial arrangement belonging to the respective diffraction reflex.
  • Preferred multimetal oxide compositions M of general stoichiometry I are those for which:
  • M 1 at least one of the elements from the group comprising Sb, Bi, Se and Te;
  • M 2 at least one of the elements from the group comprising Ti, Zr, Nb, Cr, W, Fe, Co, Ni and Zn;
  • n a number which is determined by the valency and frequency of the elements other than oxygen in (I).
  • the stoichiometric coefficient a of the multimetal oxide compositions M obtainable according to the invention (and the subsequent compositions belonging to them), particularly independently of the preferred ranges for the other stoichiometric coefficients of the multimetal oxide compositions M and the selected element composition, is 0.05 to 0.5 0.1 to 0.5.
  • the stoichiometric coefficient b is preferably> 0 or 0.01 to 0.5, and particularly preferably 0.1 to 0.5 or to 0.4.
  • the stoichiometric coefficient c of the multimetal oxide compositions M obtainable according to the invention is advantageously from 0.01 to 0.5 and particularly preferably from 0.1 to 0.5 or to 0.4.
  • a very particularly preferred range for the stoichiometric coefficient c which, regardless of the preferred ranges for the other stoichiometric coefficients of the multimetal oxide materials M obtainable according to the invention, can be combined with all other preferred ranges in this document and all selected element compositions, is the range 0.05 to 0 ; 2.
  • the stoichiometric coefficient d of the multimetal oxide compositions M obtainable according to the invention is preferably> 0 or 0.00005 or 0.0005 to 0.5, particularly preferably 0.001 to 0.5, often 0.002 to 0.3 and often 0.005 or 0.01 to 0.1.
  • the coefficient e can also be> 0 to 0.1 and advantageously also 0.
  • Multimetal oxide compositions M which are obtainable according to the invention and whose stoichiometric coefficients a, b, c and d are simultaneously in the following grid are particularly favorable:
  • Multimetal oxide compositions M obtainable according to the invention are particularly favorable, their stoichiometric coefficients a, b, c and d simultaneously lying in the following grid:
  • fl1 is preferably Bi, Se, Te and / or Sb and very particularly preferably Te.
  • M 2 is at least 50 mol% of its total amount of Nb, Ti, Zr, Cr, W, Fe.Co, Ni, Zn and / or Ta and very particularly when M 2 at least 50 mol% or at least 75 mol% of its total amount, or 100 mol% of its total amount Nb and at least one of the elements Ti, Zr, Cr, Ta, W, Fe, Co, Ni and Zn or Nb and / or Ta is.
  • M 3 is at least one element from the group comprising Re, Pd and Pt.
  • M 2 contains at least 50 mol% of its total amount, or at least 75 mol%, or 100 mol% Nb and M 3 contains at least one element from the group comprising Re, Pd and Pt is.
  • the multimetal oxide compositions M of the general stoichiometry I which are obtainable according to the invention by hydrothermal means as described or the secondary compositions of these multimetal oxide compositions (they generally also have the stoichiometry I) can be used as such (ie as a powder or as chippings) or as shaped articles Shaped as catalytic active materials for all partial gas phase oxidations and / or amoxidations of eg saturated and unsaturated hydrocarbons or lower aldehydes and / or alcohols are used.
  • the catalyst bed can be a fixed bed, a moving bed or a fluidized bed.
  • the shape can e.g. by extrusion or tableting in the case of unsupported catalysts or by application to a support body (production of coated catalysts) as described in DE-A 10118814 or PCT / EP / 02/04073 or DE-A 10051419.
  • the support bodies to be used in the case of coated catalysts for the multimetal oxide compositions M obtainable according to the invention and their subsequent compositions are preferably chemically inert. This means that they essentially do not intervene in the course of the partial catalytic gas phase oxidation or amoxidation of the hydrocarbon (eg propane and / or propene to give acrylic acid), alcohol or aldehyde, which is catalyzed by the multimetal oxide compositions M obtainable according to the invention and their subsequent compositions on.
  • the hydrocarbon eg propane and / or propene to give acrylic acid
  • alcohol or aldehyde which is catalyzed by the multimetal oxide compositions M obtainable according to the invention and their subsequent compositions on.
  • the surface of the carrier body can be both smooth and rough.
  • the surface of the carrier body is advantageously rough, since an increased surface roughness generally results in an increased adhesive strength of the applied active material shell.
  • the surface roughness R z of the carrier body is often in the range from 5 to 200 ⁇ m, often in the range from 20 to 100 ⁇ m (determined in accordance with DIN 4768 Sheet 1 using a "Hommel Tester for DIN-ISO surface measurement parameters" from Hommelwerke, DE).
  • the carrier material can be porous or non-porous.
  • the carrier material is expediently non-porous (total volume of the pores based on the volume of the carrier body ⁇ _1% by volume).
  • the thickness of the active oxide mass shell located in the shell catalysts according to the invention is usually from 10 to 1000 ⁇ m. However, it can also be 50 to 700 ⁇ m, 100 to 600 ⁇ m or 150 to 400 ⁇ m. Possible shell thicknesses are also 10 to 500 ⁇ m, 100 to 500 ⁇ m or 150 to 300 ⁇ m.
  • any geometries of the carrier bodies can be considered for the method according to the invention.
  • Their longest dimension is usually 1 to 10 mm.
  • balls or cylinders, in particular hollow cylinders are preferably used as carrier bodies.
  • Favorable diameters for carrier balls are 1.5 to 4 mm.
  • cylinders are used as carrier bodies, their length is preferably 2 to 10 mm and their outside diameter is preferably 4 to 10 mm.
  • the wall thickness is also usually 1 to 4 mm.
  • Annular carrier bodies suitable according to the invention can also have a length of 3 to 6 mm, an outer diameter of 4 to 8 mm and a wall thickness of 1 to 2 mm.
  • a carrier ring geometry of 7 mm x 3 mm x 4 mm or 5 mm x 3 mm x 2 mm (outer diameter x length x inner diameter) is also possible.
  • the shell catalysts can be produced in a very simple manner by forming multimetal oxide compositions M or their back-up composition in the manner according to the invention, converting them into a finely divided form and finally applying them to the surface of the support body with the aid of a liquid binder.
  • the surface of the carrier body is moistened in the simplest manner with the liquid binder, and a layer of the active composition is attached to the moistened surface by contacting it with finely divided active multimetal oxide composition M obtained according to the invention M or finely divided follower composition. Finally, the coated carrier body is dried.
  • multimetal oxide compositions M or their back-up composition in the manner according to the invention, converting them into a finely divided form and finally applying them to the surface of the support body with the aid of a liquid binder.
  • the surface of the carrier body is moistened in the simplest manner with the liquid binder, and a layer of the active composition is attached to the moistened surface by contacting it with finely divided active multimetal oxide composition M obtained
  • the fineness of the catalytically active multimetal oxide composition M of the general formula (I) to be applied to the surface of the carrier body or its subsequent composition is of course adapted to the desired shell thickness.
  • the shell thickness range from 100 to 500 " ⁇ m, £ B are suitable .
  • Such active bulk powders from which pass at least 50% of the total number of powder particles through a sieve with a mesh size of 1 to 20 ⁇ m and whose numerical proportion of particles with a longest dimension above 50 ⁇ m is less than 10%.
  • the distribution of the longest dimensions of the powder particles corresponds to a Gaussian distribution due to the manufacturing process.
  • the particle size distribution is often as follows:
  • D diameter of the particle
  • x the percentage of particles whose diameter is> D
  • y the percentage of particles whose diameter is ⁇ D.
  • the carrier bodies to be coated are rotated in a preferably inclined (the angle of inclination is generally> 0 ° and ⁇ 90 °, usually> 30 ° and ⁇ 90 °; the angle of inclination is the angle of the center axis of the rotating container against the horizontal) (e.g. B. turntable or coating drum).
  • the rotating rotary container leads the z. B. spherical or cylindrical carrier body under two consecutively arranged metering devices at a certain distance.
  • the first of the two metering devices suitably corresponds to a nozzle (for example an atomizing nozzle operated with compressed air) through which the carrier bodies rolling in the rotating turntable are sprayed with the liquid binder and moistened in a controlled manner.
  • the second metering device is located outside the atomizing cone of the sprayed-in liquid binder and serves to supply the finely divided oxidic active material (for example via a shaking channel or a powder screw).
  • the controlled, moistened carrier balls take up the active mass powder that is fed through the rolled lumbar movement on the outer surface of the z.
  • the base body coated in this way again passes through the spray nozzles in the course of the subsequent rotation, is moistened in a controlled manner in order to be able to take up a further layer of finely divided oxidic active material, etc. (intermediate drying is generally not necessary). Fine-particle oxidic active material and liquid binder are usually fed in continuously and simultaneously.
  • the removal of the liquid binder can be done after the coating z. B. by the action of hot gases such as N 2 or air.
  • hot gases such as N 2 or air.
  • the coating method described brings about both a fully satisfactory adhesion of the successive layers to one another and also the base layer on the surface of the carrier body.
  • the moistening of the surface of the carrier body to be coated is carried out in a controlled manner.
  • Detailed information on this can be found in DE-A 2909671 and in DE-A 10051419.
  • the aforementioned final removal of the liquid binder used can be carried out in a controlled manner, for. B. by evaporation and / or sublimation. In the simplest case, this can be done by exposure to hot gases of the appropriate temperature (often 50 to 300, often 150 ° C). The effects of hot gases can also only be used for predrying.
  • the final drying can then take place, for example, in a drying oven of any type (for example a belt dryer) or in the reactor.
  • the temperature acting should not be above the calcination temperature used to produce the oxidic active composition. Of course, drying can also be carried out exclusively in a drying oven.
  • binders for the coating process water, monohydric alcohols such as ethanol, methanol, propanol and butanol, polyhydric alcohols such as ethylene glycol, 1, 4-butanediol, 1, 6-hexanediol or glycerol, mono- or polyvalent organic carboxylic acids such as propionic acid, oxalic acid, malonic acid, glutaric acid or maleic acid, amino alcohols such as ethanolamine or difethane ⁇ irrirrs as well as mono- or polyvalent organic ganic amides such as formamide.
  • monohydric alcohols such as ethanol, methanol, propanol and butanol
  • polyhydric alcohols such as ethylene glycol, 1, 4-butanediol, 1, 6-hexanediol or glycerol
  • mono- or polyvalent organic carboxylic acids such as propionic acid, oxalic acid, malonic acid, glutaric acid or maleic acid
  • binders are also solutions consisting of 20 to 90% by weight of water and 10 to 80% by weight of an organic compound dissolved in water, whose boiling point or sublimation temperature at normal pressure (1 atm)> 100 ° C., preferably> 150 ° C, is.
  • the organic compound is advantageously selected from the above list of possible organic binders.
  • the organic proportion of the aforementioned aqueous binder solutions is preferably 10 to 50 and particularly preferably 20 to 30% by weight.
  • Monosaccharides and oligosaccharides such as glucose, fructose, sucrose or lactose as well as polyethylene oxides and polyacrylates are also suitable as organic components.
  • Balls, solid cylinders and hollow cylinders come into consideration as geometries (both for solid catalysts and for shell catalysts).
  • the longest dimension of the aforementioned geometries is usually 1 to 10 mm.
  • their length is preferably 2 to 10 mm and their outside diameter is preferably 4 to 10 mm.
  • the wall density is also usually 1 to 4 mm.
  • Suitable annular unsupported catalysts can also have a length of 3 to 6 mm, an outer diameter of 4 to 8 mm and a wall thickness of 1 to 2 mm.
  • a full catalyst ring geometry of 7 mm x 3 mm x 4 mm or 5 mm x 3 mm x 2 mm (outer diameter x length x inner diameter) is also possible.
  • all those of DE-A 101 01 695 are also suitable for the geometry of the multimetal oxide active compositions M obtainable according to the invention and their successor compositions.
  • the specific surface area of multimetal oxide compositions M (and their subsequent compositions) obtainable according to the invention is in many cases 1 to 80 m 2 / g between 40 m 2 / g, often 11 or 12 to 40 m 2 / g and frequently 15 or 20 to 40 or 30 m 2 / g (determined according to the BET method, nitrogen).
  • the multimetal oxide compositions M and their subsequent compositions obtainable according to the invention can also be used with finely divided, e.g. colloidal, essentially only thinning materials, such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide and niobium oxide diluted form can be used as catalytic active materials.
  • finely divided, e.g. colloidal, essentially only thinning materials such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide and niobium oxide diluted form can be used as catalytic active materials.
  • the dilution mass ratio can be up to 9 (thinner): 1 (active mass). This means that possible dilution mass ratios are, for example, 6 (thinner): 1 (active mass) and 3 (thinner): 1 (active mass).
  • the thinners can be incorporated before and / or after a thermal aftertreatment.
  • the multimetal oxide compositions M obtainable according to the invention and their successor compositions are suitable as such or in the form just described (as already mentioned) as active compositions for heterogeneously catalyzed partial gas phase oxidations (including oxide hydrogenations) and / or ammoxidations of saturated and / or unsaturated hydrocarbons and of alcohols and aldehydes (for example in a process according to DE-A 103 16465).
  • Such saturated and / or unsaturated hydrocarbons are in particular ethanol, ethylene, propane, propylene, n-butane, isobutane and isobutene.
  • the main target products are acrolein, acrylic acid, methacroiein, methacrylic acid, acrylonitrile and methacrylonitrile.
  • they are also suitable for the heterogeneously catalyzed partial gas phase oxidation and / or amoxidation of compounds such as acrolein and methacroiein.
  • ethylene, propylene and acetic acid can also be the target product.
  • a complete oxidation of a hydrocarbon, alcohol and / or aldehyde is understood in this document to mean that the total carbon contained in the hydrocarbon, alcohol and / or aldehyde is converted into oxides of carbon (CO, CO 2 ).
  • the multimetal oxide compositions M and their subsequent compositions obtainable according to this document are preferably suitable as catalytic active compositions for the conversion of propane to acrolein and / or acrylic acid, from propane to acrylic acid and / or acrylonitrile, from propylene to acrolein and / or acrylic acid, from propylene to Acrylonitrile, from isobutane to methacroiein and / or methacrylic acid, from isobutane to methacrylic acid and / or methacrylonitrile, from ethane to ethylene, from ethane to acetic acid and from ethylene to acetic acid.
  • reaction gas mixture which can be controlled in a manner known per se
  • the reaction can essentially be designed exclusively as partial oxidation, or exclusively as partial ammoxidation, or as a superimposition of both reactions; cf.
  • WO 98/22421 is known per se from the multimetal oxide compositions of general stoichiometry I of the prior art and can be carried out in a completely corresponding manner.
  • crude propane or crude propylene is used as the hydrocarbon, this is preferably composed as described in DE-A 102 46 119 or DE-A 101 18 814 or PCT / EP / 02/04073. The same procedure as described there is preferred.
  • a partial oxidation of propane to acrylic acid to be carried out with multimetal oxide M active composition (or successor active composition) catalysts can e.g. as described in EP-A 608 838, EP-A 1 407 819, WO 00/29106, JP-A 10-36311 and EP-A 1 192 987. ,
  • reaction gas starting mixture contains no noble gas, in particular no helium, as the inert diluent gas.
  • the reaction gas starting mixture can of course also comprise inert diluent gases such as N 2 , CO and CO 2 . Water vapor as a component of the reaction gas mixture is advantageous according to the invention.
  • reaction gas starting mixture with which the multimetal oxide active composition M obtainable according to the invention or its subsequent composition at reaction temperatures of e.g. 200 to 550 ° C or from 230 to 480 ° C or 300 to 440 ° C and pressures from 1 to 10 bar or 2 to 5 bar have the following composition:
  • Reaction gas starting mixtures containing water vapor are preferred.
  • compositions of the reaction gas starting mixture are:
  • the acrylic acid contained can be taken up from the product gas mixture by absorption with water or by absorption with a high-boiling inert hydrophobic organic solvent (for example a mixture of diphenyl ether and diphyl which may also contain additives such as dimethyl phthalate).
  • a high-boiling inert hydrophobic organic solvent for example a mixture of diphenyl ether and diphyl which may also contain additives such as dimethyl phthalate.
  • the resulting mixture of absorbent and acrylic acid can then be, rectification, extraction and / or crystallization worked up in a manner known per se to give pure acrylic acid.
  • the basic separation of the acrylic acid from the product gas mixture can also be carried out by fractional condensation, as described, for example, in DE-A 19 924 532.
  • the resulting aqueous acrylic acid condensate can then e.g. can be further purified by fractional crystallization (e.g. suspension crystallization and / or layer crystallization).
  • fractional crystallization e.g. suspension crystallization and / or layer crystallization.
  • the residual gas mixture remaining in the basic separation of acrylic acid contains, in particular, unreacted propane, which is preferably recycled into the gas phase oxidation. For this purpose, e.g. partially or fully separated by fractional pressure rectification and then returned to the gas phase oxidation. However, it is more favorable to bring the residual gas into contact with a hydrophobic organic solvent in an extraction device (e.g. by passing it through), which the propane is able to absorb preferentially.
  • the absorbed propane can be released again by subsequent desorption and / or stripping with air and returned to the process according to the invention. In this way, economic total propane sales can be achieved.
  • propene formed as a secondary component is generally not or not completely separated from the propane and circulated with it. This also applies to other homologous saturated and olefinic hydrocarbons. Above all, it applies very generally to heterogeneously catalyzed partial oxidations and / or amoxidations of saturated hydrocarbons according to the invention.
  • the multallall oxide masses M obtainable according to the invention and their successor masses can also heterogeneously catalyze the partial oxidation and / or amoxidation of the homologous olefinic hydrocarbon to the same target product.
  • acrylic acid by heterogeneously catalyzed partial gas phase oxidation of propene with molecular oxygen as in DE-A 101 18 814 or PCT / EP / 02/04073 or JP-A 7-53448 described.
  • reaction zone A a single reaction zone A is sufficient to carry out the process.
  • this reaction zone there are exclusively multimetal oxide mass M or successor mass catalysts available as catalytically active masses.
  • the catalysts to be used can be diluted with inert material, as was recommended in this document, for example, as a support material.
  • the propene partial oxidation process according to the invention is carried out as a fixed bed oxidation, it is expediently carried out in a tube bundle reactor, the contact tubes of which are charged with the catalyst.
  • a liquid usually a salt bath, is usually passed around the contact tubes as a heat transfer medium.
  • a plurality of temperature zones along the reaction zone A can then be realized in a simple manner by passing more than one salt bath around the contact tubes in sections along the contact tubes.
  • the reaction gas mixture is viewed in the catalyst tubes via the reactor either in cocurrent or in countercurrent to the salt bath.
  • the salt bath itself can perform a pure parallel flow relative to the contact tubes. Of course, this can also be superimposed on a cross flow.
  • the salt bath around the catalyst tubes can also carry out a meandering flow, which, viewed only via the reactor, is conducted in cocurrent or countercurrent to the reaction gas mixture.
  • the reaction temperature in the propene partial oxidation process can be 200 ° to 500 ° C. along the entire reaction zone A. Usually it will be 250 to 450 ° C.
  • the reaction temperature is preferably 330 to 420 ° C., particularly preferably 350 to 400 ° C.
  • the working pressure in the propene partial oxidation process can be either 1 bar, less than 1 bar or more than 1 bar.
  • Typical working pressures according to the invention are 1.5 to 10 bar, frequently 1.5 to 5 bar.
  • the propene to be used for the propene partial oxidation process is not subject to particularly high purity requirements.
  • propene can be used for such a process in general, e.g. Propene (also called raw propene) of the following two specifications can be used without any problems:
  • propene is also suitable as a source of propene for the process according to the invention, which is formed as a by-product in a process which differs from the process according to the invention and e.g. contains up to 40% of its weight propane.
  • This propene can additionally be accompanied by other accompanying components which do not substantially disrupt the process according to the invention.
  • Pure oxygen as well as air or air enriched or depleted with oxygen can be used as the oxygen source for the propene partial oxidation process.
  • a reaction gas starting mixture to be used for the propene partial oxidation process usually also contains at least one diluent gas.
  • nitrogen, carbon oxides, noble gases and lower hydrocarbons such as methane, ethane and propane come into consideration (higher ones, eg C 4 hydrocarbons should be avoided).
  • Water vapor is also often used as a diluent. Mixtures of the aforementioned gases frequently form the diluent gas for the partial propene oxidation process.
  • the heterogeneously catalyzed partial oxidation of propene is advantageously carried out in the presence of propane.
  • reaction gas starting mixture for the propene oxidation process is typically composed as follows (molar ratios):
  • the aforementioned ratio is preferably 1: (1-5): (1-40): (0-10).
  • propane is used as the diluent gas, this can, as described, advantageously also be partially oxidized to acrylic acid.
  • the reaction gas starting mixture advantageously contains molecular nitrogen, CO, CO 2 , water vapor and propane as the diluent gas.
  • the molar ratio of propane: propene can assume the following values in the propene oxidation process: 0 to 15, often 0 to 10, often 0 to 5, advantageously 0.01 to 3.
  • the loading of the catalyst with propene can be, for example, 40 to 250 Nl / l » h or more.
  • the loading of starting reaction gas mixture is often in the range from 500 to 15,000 Nl / I »h, often in the range 600 to 10,000 Nl / lh, often 700 to 5,000 Nl / l * h.
  • a product gas mixture is obtained which does not consist exclusively of acrylic acid. Rather, the product gas mixture contains, in addition to unconverted propene, secondary components such as propane, acrolein, CO 2 , CO, H 2 O, acetic acid, propionic acid, etc., from which the acrylic acid must be separated.
  • secondary components such as propane, acrolein, CO 2 , CO, H 2 O, acetic acid, propionic acid, etc.
  • the acrylic acid contained in the product gas mixture can be absorbed by absorption with water or by absorption with a high-boiling inert hydrophobic organic solvent (e.g. a mixture of diphenyl ether and diphyl which may also contain additives such as dimethyl phthalate).
  • a high-boiling inert hydrophobic organic solvent e.g. a mixture of diphenyl ether and diphyl which may also contain additives such as dimethyl phthalate.
  • the resulting mixture of absorbent and acrylic acid can then be worked up in a manner known per se by rectification, extraction and / or crystallization to give pure acrylic acid.
  • the basic separation of the acrylic acid from the product gas mixture can also be carried out by fractional condensation, as it is e.g. is described in DE-A 199 24 532.
  • the resulting aqueous acrylic acid condensate can then e.g. can be further purified by fractional crystallization (e.g. suspension crystallization and / or layer crystallization).
  • fractional crystallization e.g. suspension crystallization and / or layer crystallization.
  • the residual gas mixture remaining in the basic separation of acrylic acid contains, in particular, unreacted propene (and possibly propane).
  • This can be separated from the residual gas mixture, for example by fractional pressure rectification, and then recycled into the gas phase oxidation according to the invention.
  • it is more favorable to bring the residual gas into contact with a hydrophobic organic solvent in an extraction device (for example by passing it through), which the propene (and optionally propane) is able to absorb preferentially.
  • the absorbed propene (and optionally propane) can be released again by subsequent desorption and / or stripping with air and returned to the process according to the invention. In this way, economic total propene sales can be achieved.
  • propene is partially oxidized in the presence of propane, propene and propane are preferably separated off and recycled together.
  • the multimetal oxides M and their subsequent compositions obtainable according to the invention can be used as catalysts for the partial oxidation of isobutane and / or isobutene to methacrylic acid.
  • the multimetal oxide compositions M and their subsequent compositions obtainable according to the invention can also be integrated into other multimetal oxide compositions (for example, mixing their finely divided compositions, optionally pressing and calcining, or mixing, preferably aqueous) as slurries, drying and calcining (for example as described in EP-A 529 853 describes)). It is preferably calcined again under inert gas.
  • the resulting multimetal oxide compositions preferably contain> 50% by weight, particularly preferably> 75% by weight, and very particularly preferably> 90% by weight or> 95% by weight of multimetal oxide compositions M obtainable according to the invention or their successive dimensions and are also suitable for the partial oxidations and / or amoxidations discussed in this document.
  • the geometric shape of the total masses is expediently as described for the multimetal oxide masses M according to the invention and their successor masses.
  • the multimetal oxide compositions M obtainable according to the invention, their successor compositions and multimetal oxide compositions or catalysts containing such compositions are preferably put into operation as described in DE-A 101 22 027.
  • the excellent reproducibility when using the procedure according to the invention is attributed to the fact that the desired multimetal oxide M occurs in an environment which essentially contains only water and its constituents H, O, OH. In this way, the multimetal oxide M is quasi below its natural intrinsic pH, which obviously gives the procedure a particularly robust character.
  • Example 1 Production of a multimetal oxide mass of the weighing stoichiometry
  • the lid of the autoclave was closed and the portion of air in the autoclave above the aqueous phase was exchanged for nitrogen by flushing with nitrogen.
  • the autoclave was then heated continuously (linearly) to 175 ° C. in the course of 10 hours under autogenous pressure with continuous stirring (700 rpm) and held at this temperature with further stirring for 48 hours.
  • the mixture was then cooled to room temperature (25 ° C.).
  • the autoclave - was opened and the black powder formed was filtered, washed three times 'mitje' 2ü0 ml Washed water at 25 ° C and then dried at 80 ° C for 12 h in a vacuum drying cabinet.
  • FIG. 1 shows, only the i-phase is obtained.
  • SEM scanning electron micrograph (FIG. 2, three different magnifications) shows needle-shaped crystals with a high length-to-thickness ratio of approximately 50 to 100.
  • needle or “fiber shape” is likely to be that other (additional) crystallographic surfaces are more accessible to catalysis compared to an isotropic material.
  • Comparative Example 1 Production of a multimetal oxide mass of the weighing stoichiometry
  • Example 1 The procedure was then as in Example 1 (hydrothermal). The experiment carried out as described was repeated ten times. In two cases there was an increased proportion of i-phase in the multimetal oxide powder formed. In the eight other experiments, on the other hand, a phase mixture was obtained which contained only a small i-phase portion.
  • Example 2 Production of a multimetal oxide mass of the weighing stoichiometry Mo V G , 32 Bio ⁇ 027 O x
  • the powder X-ray diffractogram (cf. FIG. 3) showed in all cases only i-phase for the black powder obtained.
  • the associated scanning electron micrograph (FIG. 4, three different magnifications) shows needle-shaped crystals with a high length-to-thickness ratio of approximately 30 to 150.
  • Comparative Example 2 Production of a multimetal oxide mass of weighing stoichiometry Mo 1 V 0 ⁇ 32 Bio, o 2 7 ⁇
  • Example 2 The procedure was as in Example 2. Instead of MoO 3 , however, 151.87 g (NH) 6 Mo 7 O 2 -4H 2 O (as in Comparative Example 1) and instead of VO 2 became 66.64 g of vanadyl sulfate hydrate (VOSO 4 (H 2 O) x ) (as in Comparative Example 1). The experiment was repeated ten times. In two cases, an increased proportion of i-phase was obtained in the black powder produced.
  • VOSO 4 (H 2 O) x vanadyl sulfate hydrate
  • phase mixture with only a digestive part was obtained.
  • the remaining phases could be identified ai ⁇ ' Phase 05-0508 of the JPDS file [MoO 3 , orthorhombic], as phase 47-0872 of the JPDS file [HMo ⁇ O ⁇ OH eI JH 2 O], as phase 48-0744 of the JPDS file (Bi-VO 4 , tetragonal), as phase 85-0630 of the JPDS file (Bi 0.88 M ⁇ o , 37 Vo , 63 O), as crystal structure of phase 70-2321 (c) of the JPDS file [Sb 2 Mo 10 O 31 , orthorhombic ], as the crystal structure of phase 33-0104 of the JPDS file (Sb 4 M ⁇ 0 O 31 , hexagonal) and / or phase 77-0649 (c) of the JPDS file [(V 0 , 95 M ⁇ o, 97 ⁇ 5 , triclinic
  • Example 3 Production of a multimetal oxide mass of the weighing stoichiometry
  • the autoclave was closed and the proportion of air in the autoclave above the aqueous solution was replaced by nitrogen flushing with nitrogen.
  • the autoclave was then heated continuously (linearly) to 90 ° C. over a period of 3 hours with continuous stirring (700 rpm) and under autogenous pressure and stirred at this temperature for 10 hours.
  • the mixture was then heated continuously (linearly) to 175 ° C. in the course of 8 hours with continuous stirring (700 rpm) and under autogenous pressure and held at this temperature with stirring for 24 hours.
  • the mixture was then cooled to room temperature (25 ° C.) and, as in Example 1, the black powder formed was filtered off, washed with water and dried.
  • Example 2 The experiment carried out as described was repeated ten times. The same result as in Example 2 was obtained in six of the 10 embodiments.
  • Example 4 Production of a multimetal oxide mass of the weighing stoichiometry
  • Example 5 Preparation of a multimetal oxide material of the Stoichiometry Mo 1 V 0, 25 NbO, o Bio 98, o 42 x ⁇
  • Example 2 The procedure was as in Example 1. That is, 123.27 g of MoO 3 were weighed out again, as well as the quantities of VO 2 , Nb 2 O 5 and Bi 2 O 3 required according to the stoichiometry required.
  • Example 6 Production of a multimetal oxide mass of weighing stoichiometry M01Vo.3Sbo.25Nbo.12Ox
  • Example 2 The procedure was as in Example 1. That is, 123.27 g of M0O 3 were weighed out again, as well as the quantities of VO 2 , Sb 2 O 3 and Nb 2 O 5 required in this regard according to the stoichiometry required.
  • Example 7 Production of a multimetal oxide mass of the weighing stoichiometry M ⁇ V 0 ⁇ 3 Nbo, i 3 Sbo , i 3 ⁇ 4, 25
  • Example 2 The procedure was as in Example 1. That is, 123.27 g of M0O3 were weighed out again, as well as the quantities of VO 2 , Nb 2 O 5 and Sb 2 O 3 required according to the stoichiometry required.
  • Example 8 Production of a multimetal oxide mass of weighing stoichiometry M0 Vo.3Nbo.13Nio.13Ox
  • Example 2 The procedure was as in Example 1. That is, 123.27 g of M0O 3 were weighed out again, as well as the quantities of VO 2 , Nb 2 O 5 and NiO required in this regard according to the stoichiometry required.
  • Example 2 The procedure was as in Example 1. That is, 123.27 g of MoO 3 were weighed out again, as well as the quantities of VO 2 , Nb 2 O 5 and CoO required in this regard according to the stoichiometry required.
  • Example 10 Preparation of a multimetal oxide material of the Stoichiometry M ⁇ V 0, 3 Nb 0 ⁇ i Cro 3, O 3 iO ⁇
  • Example 11 Production of a multimetal oxide mass of the weighing stoichiometry
  • Example 2 The procedure was as in Example 2. 100 g of the obtained and dried multimetal oxide mass were placed in 500 g of a 10% strength by weight aqueous nitric acid. The resulting aqueous suspension was stirred under reflux at 80 ° C for 5 h. Then it was cooled to 25 ° C. The solid in the black suspension was separated from the aqueous phase by filtration, washed free of nitrate with water and then dried in a forced-air drying cabinet at 120 ° C. overnight.
  • Example 2 The procedure was as in Example 2. 100 g of the obtained and dried multimetal oxide mass were in a rotary ball oven (internal volume: 1 liter) according to FIG. 1 of DE-A 100 29 338 under a stream of molecular nitrogen (10 Nl / h) at a heating rate of 2 ° C./min from room temperature Heated 500 ° C and kept at this temperature while maintaining the nitrogen flow for 6 h. The mixture was then left to cool to 25 ° C. while maintaining the nitrogen flow.
  • molecular nitrogen (10 Nl / h)
  • Example 12 As in Example 5, but was thermally aftertreated as in Example 12.
  • Example 7 As in Example 7, but was thermally aftertreated as in Example 12.
  • the drum was rotated at 25 revolutions per minute.
  • the nozzle was installed in such a way that the spray cone moistened the carrier bodies in the drum, which were transported by driving plates to the uppermost point of the inclined drum, in the upper half of the rolling path.
  • the finely divided active material powder was introduced into the drum via a powder screw, the point at which the powder was added being within the rolling zone or below the spray cone. Due to the periodic repetition of wetting and powder metering, the base-coated carrier body itself became the carrier body in the subsequent period.
  • the coated carrier body was dried in air in a muffle furnace at 150 ° C. for 16 h.
  • a tubular reactor made of steel (inside diameter: 8.5 mm, length: 140 cm, wall thickness: 2.5 cm) was charged with 35.0 g each of the respective coated catalyst from B (catalyst bed length in all cases approx. 53 cm).
  • a pre-fill of 30 cm steatite balls (diameter: 2.2 to 3.2 mm, manufacturer: Ceramtec, steatite C 220) and after the catalyst bed, a bed of the same steatite balls was added to the remaining length of the tubular reactor.
  • the outside temperature T of the charged reaction tube was raised along the entire length from the outside by means of electrically heated heating mats. set the desired value.
  • the residence time (based on the catalyst bed) volume) was set to 2.4 sec.
  • the inlet pressure was 2 bar absolute.
  • the following table shows the resulting propane conversion (U PAN (mol%)), the resulting selectivity of acrylic acid formation (S A cs (mol%)) and the selectivity depending on the coated catalyst used and the set outside temperature T (° C) by-product formation on propene (S PE N (mol%)).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Ein Verfahren zur hydrothermalen Herstellung von Mo und V enthaltenden Multimetalloxidmassen, wobei als Quellen der elementaren Konstituenten der Multimetalloxidmasse im wesentlichen ausschließlich Quellen aus der Gruppe umfassend Oxide, Oxidhydrate, Sauerstoffsäuren und Hydroxide eingesetzt werden und eine Teilmenge der Quellen den enthaltenen elementaren Konstituenten in einer Oxidationszahl aufweist, die unterhalb seiner maximalen Oxidationszahl liegt.

Description

Verfahren zur Herstellung einer Multimetalloxidmasse
Beschreibung
Vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Multimetalloxidmasse M der allgemeinen Stöchiometrie I,
mit
M1 = wenigstens eines der Elemente aus der Gruppe umfassend AI, Ga, In, Ge, Sn, Pb, As, Bi Se, Te und Sb;
M2 = wenigstens eines der Elemente aus der Gruppe umfassend Sc, Y, La, Ti, Zr, Hf, Nb, Ta, Cr, W, Mn, Fe, Co, Ni, Zn, Cd und die Lanthaniden;
M3 = wenigstens eines der Elemente aus der Gruppe umfassend Re, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag und Au;
M4 = wenigstens eines der Elemente aus der Gruppe umfassend Li, Na, K, Rb, Cr, Be, Mg, Ca, Sr, Ba, NH4 und TI;
a = 0,01 bis 1; b = > 0 bis 1 ; c = > 0 bis 1; d = > 0 bis 0;57 e = > 0 bis 0,5 und n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiede- nen Elemente in (I) bestimmt wird,
bei dem man ein Gemisch G aus Quellen der elementaren Konstituenten der Multimetalloxidmasse M einer hydrothermalen Behandlung unterwirft und den sich dabei neu bildenden Feststoff abtrennt.
Multimetalloxidmassen M der allgemeinen Stöchiometrie I und Verfahren zu ihrer Herstellung sind bekannt (vgl. z.B. EP-A 318 295, EP-A 512 846, EP-A 767 164, EP-A 865 809, EP-A 529 853, EP-A 608 838, EP-A 962 253, DE-A 102 48 584, DE-A 101 19 933, DE-A 101 18 814, DE-A 100 29 338, DE-A 103 59 027, DE-A 103 21 398, EP-A 1 407 819, Applied Catalysis A: General 194-195 (2000), S. 479-485; Applied Catalysis A: General 200 (2000), S. 135-143; Chem. Commun. 1999, S. 517-518; Res. Chem. intermed. 26 (2) (2000), S 137-144; Topics Catal. 15 (2001) S. 153-160; Catalysis Sur- veys from Japan 6 (1/2) (2992) 33-44 und Appl. Catal. A: General 251 (2003), S. 411- 424.
Aus dem vorgenannten Stand der Technik ist auch bekannt, dass solche Multimetall- oxidmassen M als Aktivmässen für Katalysatoren zur heterogen katalysierten partiellen Gasphasenoxidation und zur heterogen katalysierten partiellen Gasphasenammoxida- tion (unterscheidet sich von der reinen partiellen Gasphasenoxidation im wesentlichen durch das zusätzliche Beisein von Ammoniak) von (z.B. 3 bis 8, insbesondere 2 oder 3 und/oder 4 Kohlenstoffatome aufweisenden) gesättigten und ungesättigten Kohlen- Wasserstoffen, Alkoholen und Aldehyden geeignet sind. Partielle Oxidationsprodukte sind dabei u.a. α.ß-monoethylenisch ungesättigte Aldehyde (z.B. Acrolein und Methacroiein) sowie ,ß-monoethylenisch ungesättigte Carbonsäuren (z.B. Acrylsäure und Methacrylsäure) und deren Nitrile (z.B. Acrylnitril und Methacrylnitril). Die Zielverbindungen Acrolein, Acrylsäure und/oder Acrylnitril sind z.B. wie beschrieben aus den Kohlenwasserstoffen Propan und/oder Propen erhältlich. Acrolein kann auch selbst Ausgangsverbindung zur Herstellung der letzteren beiden Verbindungen sein. Diese Zielverbindungen bilden bedeutende Zwischenprodukte, die z.B. zur Herstellung von Polymerisaten Verwendung finden, die z.B. als Klebstoffe eingesetzt werden können.
In entsprechender Weise ist aus iso-Butan und iso-Buten Methacroiein und Methacrylsäure erhältlich. Methacroiein kann auch Ausgangsverbindung zur Herstellung von Methacrylsäure sein.
Weiterhin ist aus dem gewürdigten Stand der Technik bekannt, dass Multimetalloxid- massen M vorwiegend in zwei voneinander verschiedenen Kristallphasen auftreten, die in der Literatur als „i-Phase" und als „k-Phase" bezeichnet werden.
Als Fingerabdruck der jeweiligen Kristallphase wird zu deren Kennzeichnung und zur Kennzeichnung ihrer kristallinen Struktur das zugehörige Röntgendiffraktogramm he- rangezogen.
Das Röntgendiffraktogramm der kristallinen i-Phase ist dadurch gekennzeichnet, dass es das nachfolgende Röntgenbeugungsmuster RMi, wiedergegeben, in Gestalt von von der Wellenlänge der verwendeten Röntgenstrahlung' unabhängigen Netzebenen- abständen d[A], d[A] 3,06 + 0,2 3,17 + 0,2 3,28 + 0,2 3,99 + 0,2 9,82 + 0,4 11,24 + 0,4 13,28 + 0,5,
enthält.
Das Röntgendiffraktogramm der kristallinen k-Phase ist dadurch gekennzeichnet, dass es das nachfolgende Röntgenbeugungsmuster RMk, wiedergegeben in Gestalt von von der Wellenlänge der verwendeten Röntgenstrahlung unabhängige Netzebenenab- ständen d[A], [Ä] 4,02 + 0,2 3,16 + 0,2 2,48 + 0,2 2,01 + 0,2 1 ,82 + 0,1 ,
enthält.
i-Phase und k-Phase sind einander ähnlich, unterscheiden sich jedoch vor allem dadurch, dass das Röntgendiffraktogramm der k-Phase normalerweise keine Beugungsreflexe für d > 4,2 A aufweist. Üblicherweise enthält die k-Phase auch keine Beugungsreflexe im Bereich 3,8 A > d > 3,35 A. Ferner enthält die k-Phase in der Regel keine Beugungsreflexe im Bereich 2,95 A > d > 2,68 Ä.
Ferner ist aus dem vorgenannten Stand der Technik bekannt, dass die katalytische Wirksamkeit (Aktivität, Selektivität der Zielproduktbildung) der Multimetalloxidmassen mit i-Phase-Struktur gegenüber jenen in anderer (z.B. k-Phase-)Struktur in der Regel überlegen ist.
Aus dem vorgenannten Stand der Technik ist aber auch bekannt, dass es sehr schwierig ist, Multimetalloxidmassen M in i-Phase-Struktur zu erzeugen.
So werden in der Regel Mischkristallsysteme erhalten, die nur (z.B. neben k-Phase) einen gewissen i-Phase-Anteil aufweisen und aus denen unter dem Aspekt einer optimalen Katalysatorperformance der i-Phase-Anteil dadurch isoliert wird, dass man die' anderen Phasen (z.B. die k-Phase) mit geeigneten Flüssigkeiten herauswäscht (z.B. WO 02/06199, JP-A 7-232071 , DE-A 102 54 279 und EP-A 1 407 819).
Die Herstellung von Multimetalloxidmassen M der allgemeinen Stöchiometrie I erfolgt dabei im Allgemeinen so, dass man aus ihre elementaren Konstituenten enthaltenden Ausgangsverbindungen (Quellen) ein inniges Trockengemisch erzeugt und dieses bei erhöhter Temperatur thermisch behandelt.
Erhöhte i-Phase-Anteile bis zu ausschließlicher i-Phase sind in der Regel dann erhält- lieh, wenn man ein Gemisch aus Quellen der elementaren Konstituenten der Multimetalloxidmasse M einer hydrothermalen Behandlung unterwirft und den sich dabei neu bildenden Feststoff abtrennt (vgl. US-A 2003/0187299A1 , DE-A 100 29 338, EP-A 1 270 068, EP-A 1 346 766 und EP-A 1 407 819).
Als Quellen der elementaren Konstituenten kommen dabei gemäß der Lehre des Standes der Technik mehr oder weniger alle möglichen Verbindungen in Betracht, die elementare Konstituenten chemisch gebunden enthalten.
Nachteilig an einer solchermaßen durchgeführten hydrothermalen Herstellweise ist jedoch, dass ihre Reproduzierbarkeit, insbesondere bei einer Herstellung in großtechnischen Mengen, nicht in vollem Umfang zu befriedigen vermag. D.h., der im Rahmen einer solchen Herstellung resultierende i-Phase-Anteil fluktuiert bei wiederholter Herstellung in einem vergleichsweise großen Rahmen um einen Mittelwert. Häufig liegt dieser Mittelwert darüber hinaus bei einem vergleichsweise geringen i-Phase-Anteil. Außerdem vermag die katalytische Performance des hydrothermal unmittelbar erhältlichen Produkts häufig nicht zu befriedigen und erfordert in der Regel zwingend eine sich anschließende thermische Behandlung zur Verbesserung derselben.
Die Aufgabe der vorliegenden Erfindung bestand daher darin, ein bezüglich der ge- nannten Nachteile verbessertes hydrothermales Verfahren zur Herstellung von Multimetalloxidmassen M der allgemeinen Stöchiometrie I zur Verfügung zu stellen.
Demgemäß wurde ein Verfahren zur Herstellung einer Multimetalloxidmasse M der allgemeinen Stöchiometrie I,
MO VaMWoMVβOn (I),
mit M1 = wenigstens eines der Elemente aus der Gruppe umfassend AI(+3), Ga(+3), ln(+3), Ge(+4), Sn(+4), Pb(+4), As(+5), Bi(+5), Se(+6), Te(+6) und Sb(+5);
M2 = wenigstens eines der Elemente aus der Gruppe umfassend Sc(+3), Y(+3), La(+3), Ti(+4), Zr(+4), Hf(+4), Nb(+5), Ta(+5+), Cr(+5), W(+6), Mn(+7), Fe(+3), Co(+3), Ni(+3), Zn(+2), Cd(+2) und die Lanthaniden (Ce(+4), Pr(+3), Nd(+3), Pm (+3), Sm(+3), Eu(+3), Gd(+3), Tb(+4), Dy(+3), Ho(+3), Er(+3), Tm(+3), Yb(+3) und Lu(+3));
M3 = wenigstens eines der Elemente aus der Gruppe umfassendRe(+7), Ru(+8), Rh(+8), Pd(+8), Os(+8) lr(+8+), Pt(+8), Cu(+2), Ag(+1) und Au(+1);
M4 = wenigstens eines der Elemente aus der Gruppe umfassend Li(+1), Na(+1), K(+1), Rb(+1), Cs(+1), Be(+2), Mg(+2), Ca(+2), lr(+2), Ba(+2), NH4(+1) und Tl(+1);
a = 0,01 bis 1 (vorzugsweise 0,01 bis 0,5); b = > 0 bis 1 (vorzugsweise > 0 bis 0,5); c = > 0 bis 1 (vorzugsweise > 0 bis 0,5); d = > 0 bis 0,5 (vorzugsweise > 0 bis 0,1); e = > 0 bis 0,5 (vorzugsweise > 0 bis 0,1 oder 0) und n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (I) bestimmt wird,
bei dem man ein Gemisch G aus Quellen der elementaren Konstituenten der Multimetalloxidmasse M einer hydrothermalen Behandlung unterwirft und den sich dabei neu bildenden Feststoff abtrennt, gefunden, das dadurch gekennzeichnet ist, dass als Quellen der elementaren Konstituenten der Multimetalloxidmasse M ausschließlich Quellen aus der Gruppe umfassend Verbindungen, die nur aus den elementaren Kon- stituenten der Multimetalloxidmasse M und aus elementaren Konstituenten des Wassers (O, H, OH) bestehen, die elementaren Konstituenten der Multimetalloxidmasse M selbst in ihrer elementaren Form und elementare Konstituenten der Multimetalloxidmasse M enthaltende Ammoniumsalze (d.h. z.B. Quellen aus der Gruppe umfassend Oxide, Oxidhydrate, Sauerstoffsäuren, Hydroxide, Oxidhydroxide der elementaren Konstituenten, die Metallelemente der elementaren Konstituenten und Verbindungen wie Ammoniummetavanadat oder Ammoniumheptamolybodat) mit der Maßgabe verwendet werden, dass das molare Verhältnis MV NH^Mo aus im Gemisch G enthaltenem NH und im Gemisch G enthaltenem Mo < 0,5 beträgt und wenigstens eine Teilmenge der. Quellen der elementaren Konstituenten die in diesen Quellen enthaltenen elementaren Konstituenten mit einer Oxidationszahl aufweist, die unterhalb der maximalen Oxidationszahl des jeweiligen elementaren Konstituenten (das ist die hinter den individuell aufgelisteten Elementen M1, M2, M3 und M4 in Klammern befindliche mit positivem Vorzeichen behaftete Zahl) liegt.
Erfindungsgemäß bevorzugt enthält wenigstens eine Teilmenge der (im Gemisch G befindlichen) Quellen des elementaren Konstituenten V das Vanadin mit einer Oxidationszahl <+5 (z.B. +4, oder +3, oder+2, oder 0).
Die hydrothermale Herstellung von Multimetalloxidaktivmassen ist dem Fachmann vertraut (vgl. auch z.B. Applied Catalysis A: 194 bis 195 (2000) 479-485; Kinetics and Ca- talysis; Vol. 40, No. 3, 1999, pp 401 bis 404; Chem. Commun., 1999, 517 bis 518; JP-A 6/227 819 und JP-A 2000/26123).
Im besonderen wird in dieser Schrift bezüglich der erfindungsgemäßen Verfahrensweise darunter die thermische Behandlung eines, vorzugsweise innigen, Gemisches G von Quellen der elementaren Konstituenten der gewünschten Multimetalloxidmasse M in einem Überdruckgefäß (Autoklav) im Beisein von überatmosphärischen Druck aufweisendem Wasserdampf, üblicherweise bei Temperaturen von >100°C bis 600°C, verstanden. Der Druckbereich erstreckt sich dabei in typischer Weise auf (>1 bar) bis zu 500 bar, vorzugsweise auf bis zu 250 bar. Selbstverständlich können erfindungs- gemäß auch Temperaturen oberhalb von 600°C und Wasserdampfdrücke oberhalb von 500 bar angewendet werden, was anwendungstechnisch jedoch weniger zweckmäßig ist.
Mit besonderem Vorteil erfolgt die erfindungsgemäße hydrothermale Behandlung unter solchen Bedingungen, unter denen Wasserdampf und flüssige wässrige Phase koexistieren. Dies ist im Temperaturbereich von >100 bis 374,15°C (kritische Temperatur des Wassers) unter Anwendung der entsprechenden Drücke möglich. Die Mengen an Wasser werden dabei zweckmäßig so bemessen, dass die flüssige wässrige Phase die Gesamtmenge der Ausgangsverbindungen der elementaren Konstituenten in Suspen- sion und/oder Lösung aufzunehmen vermag.
Erfindungsgemäß möglich ist aber auch eine solche hydrothermale Verfahrensweise, bei der das, vorzugsweise innige, Gemisch G der Ausgangsverbindungen der elementaren Konstituenten die mit dem Wasserdampf im Gleichgewicht befindliche flüssige Wassermenge vollständig absorbiert.
Erfindungsgemäß vorteilhaft erfolgt die erfindungsgemäße hydrothermale Behandlung bei Temperaturen >100°C bis 300°C, vorzugsweise bei Temperaturen von 120°C bzw. von 150°C bis 250°C (z.B. 160°C bis 180°C).
Bezogen auf die Summe gebildet aus Wasser und dem Gemisch G (bzw. den darin enthaltenerrQuelien der elementaren Konstituenten der Multimetalloxidmasse M) be- trägt der Gewichtsanteil des letzteren im Autoklaven erfindungsgemäß in der Regel wenigstens 1 Gew.-%. Üblicherweise liegt der vorgenannte Gewichtsanteil nicht oberhalb von 90 Gew.-%. Bevorzugt sind Gewichtsanteile von 5 bis 60, bzw. von 10 bis 50 Gew.-%, besonders bevorzugt von 20 oder von 30 bis 50 Gew.-%.
Neben den erfindungsgemäßen Quellen der elementaren Konstituenten der Multimetalloxidmasse M und Wasser, sind bei der erfindungsgemäßen hydrothermalen Verfahrensweise bevorzugt keine weiteren Substanzen beteiligt. Bezogen auf das Gemisch G sollte der Gewichtsanteil solcher weiterer Substanzen im Normalfall <10 Gew.-%, mit Vorteil <5 Gew.-% und noch besser <3 Gew.-% betragen. Als solche möglichen
Fremdsubstanzen kommen z.B. alle in der DE-A 100 29 338 und in der EP-A 1 407 819 aufgeführten Substanzen aber auch H2O2 (unter Beachtung der bevorzugten Re- doxbedingungen) in Betracht.
Während der erfindungsgemäßen hydrothermalen Behandlung kann sowohl gerührt (bevorzugt) als auch nicht gerührt werden.
Mit Vorteil beträgt beim erfindungsgemäßen Verfahren das molare Verhältnis MV < 0,3, besonders bevorzugt < 0,1 und ganz besonders bevorzugt ist es 0.
Bezogen auf die Gesamtmenge der im Gemisch G enthaltenen Quellen des elementaren Konstituenten V und die in diesen Quellen insgesamt enthaltene molare Menge an V, sind beim erfindungsgemäßen Verfahren vorzugsweise wenigstens 5 mol-%, oder wenigstens 10 mol-%, bevorzugt wenigstens 20 mol-% oder wenigstens 30 mol-%, ganz besonders bevorzugt wenigstens 40 mol-% oder wenigstens 50 mol-% und am besten wenigstens 60 mol-% oder wenigstens 70 mol-% bzw. wenigstens 80 mol-% oder wenigstens 90 mol-% oder mehr (mit besonderem Vorteil die Gesamtmenge) des in diesen Quellen enthaltenen V als Vanadin enthalten, dessen Oxidationszahl <+5 beträgt.
Die arithmetisch mittlere Oxidationszahl des V gemittelt über die molare Gesamtmenge an V der im Gemisch G enthaltenen Vanadin-Quellen beträgt vorzugsweise +3,5 bis +4,5, besonders bevorzugt +3,8 bis +4,2 und ganz besonders bevorzugt +4.
Ganz generell (insbesondere dann, wenn das V in wenigstens einer Teilmenge seiner Quellen in seiner maximalen Oxidationszahl enthalten ist) wird die Zusammensetzung des Gemischs G beim erfindungsgemäßen Verfahren hinsichtlich der Oxidationszahlen der in den Quellen für das Gemisch G enthaltenen elementaren Konstituenten bevorzugt so gewählt, das bei einem Wechsel aller von V (+5) verschiedenen elementaren Konstituenten, die in den Quellen des Gemischs G nicht in ihrer maximalen Oxidationszahl enthalten sind (einschließlich V(<+5)), in ihre jeweils maximale (beim V in sei- ne zweithöchste Oxidationszahl +4) Oxidationszahl das dadurch verfügbare Reduktf- onspotential gerade ausreichend ist, um die mittlere Oxidationszahl des in den Quellen des Gemischs G insgesamt enthaltenen V auf einen Wert von 3,5 bis 4,5, besonders bevorzugt von 3,8 bis 4,2 und ganz besonders bevorzugt von 4 einzustellen.
Erfolgt die erfindungsgemäße hydrothermale Behandlung unter oxidativer, molekularen Sauerstoff enthaltender, Atmosphäre (z.B. unter stehender, abgeschlossener Luft), kann das vorgenannte Reduktionspotential entsprechend höher sein.
Insgesamt werden die Bedingungen der erfindungsgemäßen hydrothermalen Behand- lung vorzugsweise so gewählt, dass das vorstehende Reduktionspotential in der beschriebenen Weise während der hydrothermalen Behandlung tatsächlich umgesetzt wird.
Dabei gelten zur Bestimmung der Oxidationszahl des V bzw. eines anderen elementa- ren Konstituenten innerhalb einer Quelle die an sich bekannten Regeln, gemäß derer die Oxidationszahl eines bestimmten Elementes in einer chemischen Verbindung wie folgt erhältlich ist:
1. Die Oxidationszahl eines Atoms in einem freien Element ist Null. 2. Die Oxidationszahl eines einatomigen Ions ist gleich seiner Ladung.
3. In einer kovalenten Verbindung bekannter Struktur entspricht die Oxidationszahl der Ladung, welche jedes Atom enthält, wenn die bindenden Elektronenpaare vollständig dem mehr eiektronegativen Atom zugeteilt werden. Bei Elektronenpaaren zwischen zwei gleichen Atomen erhält jedes Atom ein Elektron.
(vgl. Grundlagen der allgemeinen und organischen Chemie, Verlag Sauerländer, Aa- rau, Diesterweg Salle, Frankfurt am Main, 4. Auflage, 1973).
Als Quellen für das Element V kommen für das erfindungsgemäße Verfahren demnach vor allem in Betracht: Vanadinoxide wie VO2, V2O3, V6O13, V3O7, V4O9 und VO, elementares Vanadin, und, unter Beachtung der erfindungsgemäßen Mengengrenzen, auch Verbindungen wie V2O5 und Ammoniummetavanadat.
Erfindungsgemäß geeignete Quellen für das Element Mo sind z.B. Molybdänoxide wie MoO3 und MoO2, elementares Mo aber, unter Beachtung der erfindungsgemäßen
Mengengrenzen, auch Verbindungen wie Ammoniumheptamolybdat und dessen Hydrate.
Ais Quellen für das Element Tellur eignen sich erfindungsgemäß z.B. Telluroxide wie TeO2, metallisches Tellur, aber auch Tellursäuren wie Orthotellursäure H6TeO6. Erfindungsgemäß vorteilhafte Antimonausgangsverbindungen sind z.B. Antimonoxide wie Sb2O3, elementares Sb, aber auch Antimonsäuren wie HSb(OH)6.
Erfindungsgemäß geeignete Niobquellen sind z.B. Nioboxide wie Nb2O5 oder auch elementares Nb.
Eine erfindungsgemäß günstige Wismutquelle ist das Bi2O3. Eine vorteilhafte Goldquelle ist Goldhydroxid. Weitere für das erfindungsgemäße Verfahren vorteilhafte Ausgangsverbindungen sind beispielsweise Silberoxid, Kupferhydroxid, Kupferoxid, Alkali- und Erdalkalioxid bzw. -hydroxid, Scandiumoxid, Iridiumoxid, Zinkoxid, Ga2O, Ga2O3 usw.. Selbstverständlich kommen als Quellen der elementaren Konstituenten auch Mischoxide in Betracht, die mehr als einen elementaren Konstituenten enthalten und gegebenenfalls auf hydrothermalem Wege, z.B. auf dem erfindungsgemäßen hydrothermalen Weg, gewonnen wurden. Weitere erfindungsgemäß geeignete Quellen der elementaren Konstituenten können den Schriften des zitierten Standes der Technik entnommen werden.
Die erfindungsgemäße hydrothermale Behandlung selbst nimmt in der Regel eine Zeitdauer von wenigen Minuten bzw. Stunden bis zu einigen Tagen in Anspruch. Typisch ist ein Zeitraum von 48 h. Anwendungstechnisch zweckmäßig ist der für die hydrothermale Behandlung zu verwendende Autoklav innenseitig mit Teflon beschichtet. Vorab der hydrothermalen Behandlung kann der Autoklav, gegebenenfalls einschließlich des enthaltenen wässrigen Gemisches, vorteilhaft evakuiert werden. Anschließend kann vor der Temperaturerhöhung vorzugsweise mit Inertgas (N2, Edelgas wie He, Ne und/oder Argon) gefüllt werden. Beide Maßnahmen können in weniger vorteilhafter Weise auch unterlassen werden. Selbstredend kann das wässrige Gemisch zur vorteilhaften Inertisierung vorab der erfindungsgemäßen hydrothermalen Behandlung zusätzlich oder alternativ mit Inertgas gespült werden. Die vorgenannten Inertgase können anwendungstechnisch zweckmäßig auch dazu benutzt werden, bereits vorab der hyd- rothermalen Behandlung im Autoklaven überatmosphärischen Druck einzustellen.
Nach Beendigung der hydrothermalen Behandlung kann der Autoklav entweder auf Raumtemperatur abgeschreckt oder langsam, d.h. über einen längeren Zeitraum (z.B. durch sich selbst überlassen) auf Raumtemperatur gebracht werden.
Erfindungsgemäß wesentlich ist, dass es sich bei dem im Verlauf der erfindungsgemäßen hydrothermalen Behandlung neu gebildeten und nach Beendigung der hydrothermalen Behandlung abgetrennten Feststoff normalerweise um ein Multimetalloxid M mit erhöhtem oder ausschließlichem i-Phase-Anteil handelt und dass dieser erfindungs- gemäß in verbesserter Reproduzierbarkeit anfällt. Erfindungsgemäß wesentlich ist auch, dass die nach dem erfindungsgemäßen Verfahren erhältlichen Multimetalloxide M bereits ohne eine sich an die hydrothermale Behandlung anschließende thermische Behandlung die gewünschte katalytische Aktivität entfalten.
Selbstredend können die erfindungsgemäß erhältlichen Multimetalloxide M zusätzlich vorteilhaft thermisch nachbehandelt werden, bevor sie als Aktivmassen für die eingangs erwähnten heterogen katalysierten Verfahren Anwendung finden. Diese thermische Nachbehandlung kann bei Temperaturen von 200 bis 1200°C, vorzugsweise 350 bis 700°C, häufig 400 bis 650°C und vielfach 400 bis 600°C durchgeführt werden.
Sie kann prinzipiell sowohl unter oxidierender, reduzierender als auch unter inerter (ist erfindungsgemäß bevorzugt) Atmosphäre erfolgen. Als oxidierende Atmosphäre kommt z.B. Luft, mit molekularem Sauerstoff angereicherte Luft oder an Sauerstoff entreicherte Luft in Betracht.
Vorzugsweise wird die thermische Behandlung unter inerter Atmosphäre, d.h. z.B. unter molekularem Stickstoff und/oder Edelgas (He, Ar und/oder Ne) durchgeführt (inerte Atmosphäre heißt in dieser Schrift stets, dass der Gehalt an molekularem Sauerstoff dann normalerweise <5 Vol.-%, vorzugsweise <3 Vol.-%, besonders bevorzugt <1 Vol.- % oder <0,1 Vol.-% und am besten 0 Vol.-% beträgt). Selbstverständlich kann die thermische Nachbehandlung auch unter Vakuum erfolgen.
Insgesamt kann die thermische Nachbehandlung bis zu 24 h oder mehr in Anspruch nehmen. Bevorzugt erfolgt eine thermische Nachbehandlung zunächst unter oxidierender (Sauerstoff enthaltender) Atmosphäre (z.B. unter Luft) bei einer Temperatur von 150°C bis 400°C bzw. 250°C bis 350°C. Im Anschluss daran wird die thermische Nachbehandlung zweckmäßig unter Inertgas bei Temperaturen von 350°C bis 700°C bzw. 400°C bis 650°C oder 400°C bis 600°C fortgesetzt. Selbstredend kann die thermische Nachbehandlung des hydrothermal erzeugten Multimetalloxids M auch so erfolgen, dass das hydrothermal erzeugte Multimetalloxid M zunächst tablettiert, dann thermisch nachbehandelt und nachfolgende versplittet wird.
Anwendungstechnisch zweckmäßig wird das im Rahmen des erfindungsgemäßen hyd- rothermalen Verfahrens erhältliche Multimetalloxid M zum Zweck seiner thermischen Nachbehandlung jedoch versplittet.
Weiterhin können sowohl die erfindungsgemäß auf hydrothermalem Weg erhältlichen Multimetalloxidmassen M als auch deren wie beschrieben thermisch nachbehandelte Nachläufer- oder auch Nachfolgermultimetalloxidmassen dadurch ih vorteilhafter Weise weiterbehandelt werden, dass man sie, wie z.B. in der DE-A 102 54 279 sowie der EP- A 1 :4Q7 819 beBciTilβben," mit geeigneten Flüssigkeiten wäscht. Als solche Flüssigkei- ten kommen z.B. organische Säuren oder deren wässrige Lösungen (z.B. Oxalsäure, Ameisensäure, Essigsäure, Zitronensäure und Weinsäure) sowie anorganische Säuren und deren wässrige Lösungen (z.B. Schwefelsäure, Perchlorsäure, Salzsäure, Salpetersäure, Borsäure und/oder Tellursäure) aber auch Akohole, alkoholische Lösungen der vorgenannten Säuren oder Wasserstoffperoxid und deren wässrige Lösungen in Betracht. Selbstverständlich können zum Waschen auch Mischungen der vorgenannten Waschflüssigkeiten eingesetzt werden. Des weiteren offenbart auch die JP-A 7-232 071 bzw. die DE-A 103 21 398 ein geeignetes Waschverfahren. Im Rahmen einer solchen Waschung verbleibt in der Regel reine i-Phase (bzw. ein erhöhter i-Phase-Anteil), die im gewaschenen Zustand normalerweise auch eine zusätzlich verbesserte Katalysatorperformance aufweist.
Das innige Vermischen der Ausgangsverbindungen der elementaren Konstituenten unter Erhalt des hydrothermal zu behandelnden Gemischs G kann in trockener oder in nasser Form erfolgen. Erfolgt es in trockener Form, werden die Ausgangsverbindungen zweckmäßigerweise als feinteilige Pulver eingesetzt. Vorzugsweise erfolgt das innige Vermischen jedoch in nasser, wässriger Form. Vorzugsweise werden die Ausgangsverbindungen in Form einer wässrigen Lösung (gegebenenfalls unter Mitverwendung geringer Mengen komplexbildender Mittel) und/oder feinteiligen Suspension miteinan- der vermischt.
Über die eingangs bereits aufgeführten Beugungsreflexlagen hinaus, weist das Rönt- genbeugungsmuster RMi der erfindungsgemäß hydrothermal erhältlichen Multimetalloxidmassen M bzw. ihrer durch thermische Nachbehandlung und/oder durch wie be- schrieben durchzuführendes Waschen erhältlichen Nachläufermassen (oder auch Nachfolgemassen) vielfach (in Abhängigkeit von den enthaltenen Elementen und der Kristallgeometrie (z.B. Nadelform oder Plättchenform)) zusätzliche charakteristische Beugungsreflexintensitäten auf.
Bezogen auf die Intensität des den Netzebenenabstand d[A] = 3,99 + 0,2 repräsentierenden Beugungsreflexes sind diese (relativen) Beugungsreflexintensitäten I (%) wie folgt: d[A] I (%) 3,06 + 0,2 (bevorzugt + 0,1) 5 bis 65 3,17 + 0,2 (bevorzugt + 0,1) 5 bis 65 3,28 + 0,2 (bevorzugt + 0,1) 15 bis130, häufig 15 bis 95 3,99 + 0,2 (bevorzugt + 0,1) 100 9,82 + 0,4 (bevorzugt + 0,2) 1 bis 50, häufig 1 bis 30 11 ,24 + 0,4 (bevorzugt + 0,2) 1 bis 45, häufig 1 bis 30 13,28 + 0,5 (bevorzugt + 0,3) 1 bis 35, häufig 1 bis 15. Neben den bereits genannten, besonders charakteristischen, Beugungsreflexen sind im vorgenannten Röntgenbeugungsmuster RMi vielfach noch die folgenden Beugungsreflexe, ebenfalls wiedergegeben in Gestalt von von der Wellenlänge der verwendeten Röntgenstrahlung unabhängigen Netzebenenabständen d [A], erkenntlich: d [A] 8,19 + 0,3 (bevorzugt + 0,15) 3,51 + 0,2 (bevorzugt + 0,1) 3,42 + 0,2 (bevorzugt + 0,1) 3,34 + 0,2 (bevorzugt + 0,1) 2,94 + 0,2 (bevorzugt + 0,1) 2,86 + 0,2 (bevorzugt + 0,1 ).
Bezogen auf die Intensität des den Netzebenenabstand d [A] = 3,99 + 0,2 repräsentierenden Beugungsreflex sind die (relativen) Intensitäten I (%) der vorstehenden Beugungsreflexe häufig wie folgt: d[A] I (%) 8,19 + 0,3 (bzw. + 0,15) 0 bis 25 3,51 +_0,2 (bzw. + 0,1) 2 bis 50 3,42 + 0,2 (bzw. + 0,1) 5 bis 75 3,34 + 0,2 (bzw. + 0,1) 5 bis 80 2,94 + 0,2 (bzw. + 0,1) 5 bis 55 2,86 + 0,2 (bzw. + 0,1) 5 bis 60.
Vielfach ergänzen noch folgende Beugungsreflexe das vorgenannte Röntgenbeugungsmuster RMi: d [A] 2,54 + 0,2 (bevorzugt + 0,1) 2,01 + 0,2 (bevorzugt + 0,1).
Die in gleicher Weise wie oben stehend bezogenen (relativen) Beugungsreflexintensitäten lauten bei diesen Beugungsreflexen vielfach wie folgt: d[A] I (%) 2,54 + 0,2 (bzw. + 0,1) 0,5 bis 40 2,01 + 0,2 (bzw. + 0,1) 5 bis 60.
Erfindungsgemäß bevorzugt sind unter den vorgenannten Röntgenbeugungsmuster RMi (bzw. die zu diesen gehörigen Multimetalloxidmassen bzw. ihre Nachfolgemassen), diejenigen bei den rruei den Netzebenenabstand d-[A] = 3,99 + 0,2 (bzw. + 0,1) oder der den Netzebenenabstand d [A] = 3,28 + 0,2 (bzw. + 0,1) repräsentierende Beugungsreflex der intensivste (intensitätsstärkste) Beugungsreflex ist.
Ferner sind diejenigen Röntgenbeugungsmuster RMi (bzw. die zu diesen gehörigen Multimetalloxidmassen bzw. deren Nachfolgemassen) bevorzugt, bei denen die 2Θ- Halbwertsbreite des Beugungsreflexes d [A] = 3,99 + 0,2 (bzw. + 0,1) < 1 °, vorzugsweise < 0,5° beträgt. Die 2Θ-Halbwertsbreite der anderen angeführten Beugungsreflexe beträgt normalerweise < 3°, vorzugsweise < 1 ,5°, besonders bevorzugt < 1 °.
Alle in dieser Schrift auf ein Röntgendiffraktogramm bezogenen Angaben gehen zurück auf ein unter Anwendung von Cu-Kα-Strahlung (λ = 1,54178 A) als Röntgenstrahlung erzeugtes Röntgendiffraktogramm (Siemens-Diffraktometer Theta-Theta D-5000, Röhrenspannung: 40kV, Röhrenstrom: 40mA, AperturblendeV20 (variabel), Streustrahlblende V20 (variabel), Sekundärmonochromatorblende (0,1 mm), Deterktorblende (0,6 mm), Messintervall (2Θ): 0,02°, Messzeit je Schritt: 2,4 s, Detektor: Scintillations- zählrohr; die Definition der Intensität eines Beugungsreflexes im Röntgendiffraktogramm bezieht sich in dieser Schrift auf die in der DE-A 198 35 247, der DE-A 101 22 027, sowie die in der DE-A 100 51 419 und DE-A 100 46 672 niedergelegte Definition, die hiermit integraler Bestandteil dieser Anmeldung sind; das gleiche gilt für die Definition der 2Θ-Halbwertsbreite).
Die Wellenlänge λ der zur Beugung verwendeten Röntgenstrahlung und der Beugungswinkel Θ (als Beugungsreflexlage wird in dieser Schrift der Scheitelpunkt eines Reflexes in der 2Θ-Auftraguhg verwendet) sind über die Bragg'sche Beziehung wie folgt miteinander verknüpft:
2 sin Θ = λ/d,
wobei d der zum jeweiligen Beugungsreflex gehörige Netzebenenabstand der atoma- ren Raumanordnung ist.
Erfindungsgemäß erhältliche bevorzugte Multimetalloxidmassen M der allgemeinen Stöchiometrie I (und die zu diesen gehörigen Nachfolgemassen) sind jene, für die gilt:
M1 = wenigstens eines der Elemente aus der Gruppe umfassend Sb, Bi, Se und Te;
M2 = wenigstens eines der Elemente aus der Gruppe umfassend Ti, Zr, Nb, Cr, W, Fe, Co, Ni und Zn;
M3 = wenigstens eines der Elemente aus der Gruppe umfassend Re, Pd und Pt; M4 = wenigstens eines der Elemente aus der Gruppe umfassend Rb, Cs, Sr, und Ba;
a = 0,01 bis 1 (vorzugsweise 0,01 bis 0,5); b = > 0 bis 1 (vorzugsweise > 0 bis 0,5); c = > 0 bis 1 (vorzugsweise > 0 bis 0,5); d = > 0 bis 0,5 (vorzugsweise > 0 bis 0,1); e = > 0 bis 0,5 (vorzugsweise ≥ 0 bis 0,1 oder 0) und n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (I) bestimmt wird.
Erfindungsgemäß bevorzugt beträgt der stöchiometrische Koeffizient a der erfindungsgemäß erhältlichen Multimetalloxidmassen M (und der zu diesen gehörigen Nachfolgemassen), unabhängig von den Vorzugsbereichen für die anderen stöchiometrischen Koeffizienten der Multimetalloxidmassen M und der gewählten Elementzusamennset- zung, 0,05 bis 0,5, besonders bevorzugt 0,1 bis 0,5.
Unabhängig von den Vorzugsbereichen für die anderen stöchiometrischen Koeffizienten der Multimetalloxidmassen M und der gewählten Elementzusammensetzung beträgt der stöchiometrische Koeffizient b bevorzugt > 0 bzw. 0,01 bis 0,5, und besonders bevorzugt 0,1 bis 0,5 oder bis 0,4.
Der stöchiometrische Koeffizient c der erfindungsgemäß erhältlichen Multimetalloxidmassen M beträgt, unabhängig von den Vorzugsbereichen für die anderen stöchiometrischen Koeffizienten der Multimetalloxidmassen M und der gewählten Elementzu- sammensetzung, vorteilhaft 0,01 bis 0,5 und besonders bevorzugt 0,1 bis 0,5 oder bis 0,4. Ein ganz besonders bevorzugter Bereich für den stöchiometrischen Koeffizienten c, der, unabhängig von den Vorzugsbereichen für die anderen stöchiometrischen Koeffizienten der erfindungsgemäß erhältlichen Multimetalloxidmassen M, mit allen anderen Vorzugsbereichen in dieser Schrift und allen gewählten Elementzusammensetzungen kombinierbar ist, ist der Bereich 0,05 bis 0,2.
Bevorzugt beträgt der stöchiometrische Koeffizient d der erfindungsgemäß erhältlichen Multimetalloxidmassen M, unabhängig von den Vorzugsbereichen für die anderen stöchiometrischen Koeffizienten der Multimetalloxidmassen M und der gewählten Ele- mentzusammensetzung, > 0 bzw. 0,00005 bzw. 0,0005 bis 0,5, besonders bevorzugt 0,001 bis 0,5, häufig 0,002 bis 0,3 und oft 0,005 bzw. 0,01 bis 0,1.
Unabhängig von den Vorzugsbereichen für die anderen stöchiometrischen Koeffizienten der Multimetalloxidmassen M und der gewählten Elementzusammensetzung, kann der Koeffizient e auch > 0 bis 0,1 und vorteilhaft auch 0 betragen. Besonders günstig sind erfindungsgemäß erhältliche Multimetalloxidmassen M, deren stöchiometrische Koeffizienten a, b, c und d gleichzeitig im nachfolgenden Raster liegen:
a = 0,05 bis 0,5; b = 0,01 bis 1 (bzw. 0,01 bis 0,5); c = 0,01 bis 1 (bzw. 0,01 bis 0,5); d = 0,0005 bis 0,5 ; und e = > 0 bis 0,5.
Ganz besonders günstig sind erfindungsgemäß erhältliche Multimetalloxidmassen M, deren stöchiometrische Koeffizienten a, b, c und d gleichzeitig im nachfolgenden Raster liegen:
a = 0,1 bis 0,5 b = 0,1 bis 0,5; c = 0,1 bis 0,5; d = 0,001 bis 0,5, bzw. 0,001 bis 0,3, bzw. 0,001 bis 0,1; und e = > 0 bis 0,2 oder bis 0,1. fl1 ist bevorzugt Bi, Se, Te und/oder Sb und ganz besonders bevorzugt Te.
Alles Vorgenannte gilt vor allem dann, wenn M2 wenigstens zu 50 mol-% seiner Gesamtmenge Nb, Ti, Zr, Cr, W, Fe.Co, Ni, Zn und/oder Ta und ganz besonders bevor- zugt dann, wenn M2 zu wenigstens 50 mol-% oder zu wenigstens 75 mol-% seiner Gesamtmenge, bzw. zu 100 mol-% seiner Gesamtmenge Nb und wenigstens eines der Elemente Ti, Zr, Cr, Ta, W, Fe, Co, Ni und Zn bzw. Nb und/oder Ta ist.
Es gilt vor allem aber auch, unabhängig von der Bedeutung von M2, dann, wenn M3 wenigstens ein Element aus der Gruppe umfassend Re, Pd, und Pt ist.
Alles Vorgenannte gilt vor allem aber auch dann, wenn M2 wenigstens zu 50 mol-% seiner Gesamtmenge, oder zu wenigstens 75 mol-%, oder zu 100 mol-% Nb und M3 wenigstens ein Element aus der Gruppe umfassend Re, Pd und Pt ist.
Alles Vorgenannte gilt vor allem aber auch dann, wenn M2 wenigstens zu 50 mol-%, oder zu wenigstens 75 mol-%, oder zu 100 mol-% seiner Gesamtmenge Nb und wenigstens eines der Elemente Co, Ni, Ta, W, Fe und M3 wenigstens ein Element aus der Gruppe umfassend Re, Pd und Pt ist. Ganz besonders bevorzugt gelten alle Aussagen hinsichtlich der stöchiometrischen Koeffizienten dann, wenn M1 = Te, M2 = Nb und wenigstens eines der Elemente Ni, Co, Fe und M3 = wenigstens ein Element aus der Gruppe umfassend Pd, Re und Pt ist.
Günstige erfindungsgemäß erhältliche Multimetalloxidmassen M sind jene (insbesondere alle Vorgenannten) mit e = 0. Ist e > 0, ist M4 vorzugsweise Cs.
Weitere erfindungsgemäß geeignete Stöchiometrien I sind jene in dieser Schrift, die für die Multimetalloxidmassen der Stöchiometrie (I) im zitierten Stand der Technik offen- bart sind.
Die wie beschrieben erfindungsgemäß auf hydrothermalem Weg erhältlichen Multimetalloxidmassen M der allgemeinen Stöchiometrie I bzw. die Nachläufermassen dieser Multimetalloxidmassen (sie weisen in der Regel ebenfalls die Stöchiometrie I auf) kön- nen als solche (d.h., als Pulver oder als Splitt) oder auch zu Formkörpern geformt als katalytische Aktivmassen für alle eingangs dieser Schrift beschriebenen partiellen Gasphasenoxidationen und/oder -ammoxidationen von z.B. gesättigten und ungesättigten Kohlenwasserstoffen bzw. niederen Aldehyden und/oder Alkoholen eingesetzt werden. Dabei kann das Katalysatorbett ein Festbett, ein Wanderbett oder ein Wirbel- bett sein. Die Formgebung kann z.B. durch Extrudieren oder Tablettieren im Fall von Vollkatalysatoren oder durch Aufbringen auf einen Trägerkörper (Herstellung von Schalenkatalysatoren) erfolgen, wie es in der DE-A 10118814 bzw. PCT/EP/02/04073 bzw. DE-A 10051419 beschrieben wird.
Die im Fall von Schalenkatalysatoren für die erfindungsgemäß erhältlichen Multimetalloxidmassen M und deren Nachfolgemassen zu verwendenden Trägerkörper sind vorzugsweise chemisch inert. D.h., sie greifen in den Ablauf der partiellen katalytischen Gasphasenoxidation bzw. -ammoxidation des Kohlenwasserstoffs (z.B. Propan und/oder Propen zu Acrylsäure), Alkohols oder Aldehyds, die durch die erfindungsge- maß erhältlichen Multimetalloxidmassen M und deren Nachfolgemassen katalysiert wird, im wesentlichen nicht ein.
Als Material für die Trägerkörper kommen erfindungsgemäß insbesondere Aluminiumoxid, Siliciumdioxid, Silicate wie Ton, Kaolin, Steatit (vorzugsweise Steatit der Fa. Ce- ramTec (DE) vom Typ C-220, bzw. bevorzugt mit geringem in Wasser löslichem Alkaligehalt), Bims, Aluminiumsilicat und Magnesiumsilicat, Siliciumcarbid, Zirkondioxid und Thoriumdioxid in Betracht.
Die Oberfläche des Trägerkörpers kann sowohl glatt als auch rau sein. Mit Vorteil ist die Oberfläche des Trägerkörpers rau, da eine erhöhte Oberflächenrauhigkeit in der Regel eine erhöhte Haftfestigkeit der aufgebrachten Aktivmassenschale bedingt. Häufig liegt die Oberflächenrauhigkeit Rz des Trägerkörpers im Bereich von 5 bis 200 μm, oft im Bereich von 20 bis 100 μm (bestimmt gemäß DIN 4768 Blatt 1 mit einem "Hommel Tester für DIN-ISO Oberflächenmessgrößen" der Fa. Hommelwerke, DE).
Ferner kann das Trägermaterial porös oder unporös sein. Zweckmäßigerweise ist das Trägermaterial unporös (Gesamtvolumen der Poren auf das Volumen des Trägerkörpers bezogen <_1 Vol.-%).
Die Dicke der in den erfindungsgemäßen Schalenkatalysatoren befindlichen aktiven Oxidmassenschale liegt üblicherweise bei 10 bis 1000 μm. Sie kann aber auch 50 bis 700 μm, 100 bis 600 μm oder 150 bis 400 μm betragen. Mögliche Schalendicken sind auch 10 bis 500 μm, 100 bis 500 μm oder 150 bis 300 μm.
Prinzipiell kommen für das erfindungsgemäße Verfahren beliebige Geometrien der Trägerkörper in Betracht. Ihre Längstausdehnung beträgt in der Regel 1 bis 10 mm. Vorzugsweise werden jedoch Kugeln oder Zylinder, insbesondere Hohlzylinder, als Trägerkörper angewendet. Günstige Durchmesser für Trägerkugeln betragen 1 ,5 bis 4 mm. Werden Zylinder als Trägerkörper verwendet, so beträgt deren Länge vorzugs- weise 2 bis 10 mm und ihr Außendurchmesser bevorzugt 4 bis 10 mm. Im Fall von Ringen liegt die Wanddicke darüber hinaus üblicherweise bei 1 bis 4 mm. Erfindungsgemäß geeignete ringförmige Trägerkörper können auch eine Länge von 3 bis 6 mm, einen Außendurchmesser von 4 bis 8 mm und eine Wanddicke von 1 bis 2 mm aufweisen. Möglich ist aber auch eine Trägerringgeometrie von 7 mm x 3 mm x 4 mm oder von 5 mm x 3 mm x 2 mm (Außendurchmesser x Länge x Innendurchmesser).
Die Herstellung der Schalenkatalysatoren kann in einfachsterweise so erfolgen, dass man auf erfindungsgemäße Weise Multimetalloxidmassen M oder deren Nachläufermasse vorbildet, sie in eine feinteilige Form überführt und abschließend mit Hilfe eines flüssigen Bindemittels auf die Oberfläche des Trägerkörpers aufbringt. Dazu wird die Oberfläche des Trägerkörpers in einfachster Weise mit dem flüssigen Bindemittel befeuchtet und durch Inkontaktbringen mit feinteiliger aktiver erfindungsgemäß erhaltener Multimetalloxidmasse M oder feinteiliger Nachläufermasse eine Schicht der Aktivmasse auf der befeuchteten Oberfläche angeheftet. Abschließend wird der beschichtete Trägerkörper getrocknet. Selbstredend kann man zur Erzielung einer erhöhten
Schichtdicke den Vorgang periodisch wiederholen. In diesem Fall wird der beschichtete Grundkörper zum neuen "Trägerkörper" etc..
Die Feinheit der auf die Oberfläche des Trägerkörpers aufzubringenden katalytisch aktiven Multimetalloxidmasse M der allgemeinen Formel (I) bzw. deren Nachfolgemasse wird selbstredend an die gewünschte Schalendicke angepasst. Für den Schalendi- ckenbereich von 100 bis 500" μm eignen sich £ B.' solche Aktϊvmassenpulver, von de- nen wenigstens 50 % der Gesamtzahl der Pulverpartikel ein Sieb der Maschenweite 1 bis 20 μm passieren und deren numerischer Anteil an Partikeln mit einer Längstausdehnung oberhalb von 50 μm weniger als 10 % beträgt. In der Regel entspricht die Verteilung der Längstausdehnungen der Pulverpartikel herstellungsbedingt einer Gaußverteilung. Häufig ist die Partikelgrößenverteilung wie folgt beschaffen:
Dabei sind:
D = Durchmesser des Partikels, x = der prozentuale Anteil der Partikel, deren Durchmesser > D ist; und y = der prozentuale Anteil der Partikel, deren Durchmesser < D ist.
Für eine Durchführung des beschriebenen Beschichtungsverfahrens im technischen Maßstab empfiehlt sich z. B. die Anwendung des in der DE-A 2909671 , sowie des in der DE-A 10051419 offenbarten Verfahrensprinzips. D.h., die zu beschichtenden Trägerkörper werden in einem vorzugsweise geneigten (der Neigungswinkel beträgt in der Regel > 0° und < 90°, meist > 30° und < 90°; der Neigungswinkel ist der Winkel der Drehbehältermittelachse gegen die Horizontale) rotierenden Drehbehälter (z. B. Drehteller oder Dragiertrommel) vorgelegt. Der rotierende Drehbehälter führt die z. B. kugelförmigen oder zylindrischen Trägerkörper unter zwei in bestimmtem Abstand aufeinanderfolgend angeordneten Dosiervorrichtungen hindurch. Die erste der beiden Dosiervorrichtungen entspricht zweckmäßig einer Düse (z.B. eine mit Druckluft betriebene Zerstäuberdüse), durch die die im rotierenden Drehteller rollenden Trägerkörper mit dem flüssigen Bindemittel besprüht und kontrolliert befeuchtet werden. Die zweite Dosiervorrichtung befindet sich außerhalb des Zerstäubungskegels des eingesprühten flüssigen Bindemittels und dient dazu, die feinteilige oxidische Aktivmasse zuzuführen (z.B. über eine Schüttelrinne oder eine Pulverschnecke). Die kontrolliert befeuchteten Trägerkugeln nehmen das zugeführte Aktivmassenpulver auf, das sich durch die rol- lende Bewegung auf der äußeren Oberfläche des z. B. zylinder- oder kugelförmigen Trägerkörpers zu einer zusammenhängenden Schale verdichtet.
Bei Bedarf durchläuft der so grundbeschichtete Trägerkörper im Verlauf der darauffolgenden Umdrehung wiederum die Sprühdüsen, wird dabei kontrolliert befeuchtet, um im Verlauf der Weiterbewegung eine weitere Schicht feinteiliger oxidischer Aktivmasse aufnehmen zu können usw. (eine Zwischentrocknung ist in der Regel nicht erforderlich). Feinteilige oxidische Aktivmasse und flüssiges Bindemittel werden dabei in der Regel kontinuierlich und simultan zugeführt.
Die Entfernung des flüssigen Bindemittels kann nach beendeter Beschichtung z. B. durch Einwirkung von heißen Gasen, wie N2 oder Luft, erfolgen. Bemerkenswerterweise bewirkt das beschriebene Beschichtungsverfahren sowohl eine voll befriedigende Haftung der aufeinanderfolgenden Schichten aneinander, als auch der Grundschicht auf der Oberfläche des Trägerkörpers.
Wesentlich für die vorstehend beschriebene Beschichtungsweise ist, dass die Befeuchtung der zu beschichtenden Oberfläche des Trägerkörpers in kontrollierter Weise vorgenommen wird. Kurz ausgedrückt heißt dies, dass man die Trägeroberfläche zweck- mäßig so befeuchtet, dass diese zwar flüssiges Bindemittel adsorbiert aufweist, aber auf der Trägeroberfläche keine Flüssigphase als solche visuell in Erscheinung tritt. Ist die Trägerkörperoberfläche zu feucht, agglomeriert die feinteilige katalytisch aktive Oxidmasse zu getrennten Aggiomeraten, anstatt auf die Oberfläche aufzuziehen. Detaillierte Angaben hierzu finden sich in der DE-A 2909671 und in der DE-A 10051419.
Die vorerwähnte abschließende Entfernung des verwendeten flüssigen Bindemittels kann in kontrollierter Weise z. B. durch Verdampfen und/oder Sublimieren vorgenommen werden. Im einfachsten Fall kann dies durch Einwirkung heißer Gase entsprechender Temperatur (häufig 50 bis 300, häufig 150°C) erfolgen. Durch Einwirkung hei- ßer Gase kann aber auch nur eine Vortrocknung bewirkt werden. Die Endtrocknung kann dann beispielsweise in einem Trockenofen beliebiger Art (z. B. Bandtrockner) oder im Reaktor erfolgen. Die einwirkende Temperatur sollte dabei nicht oberhalb der zur Herstellung der oxidischen Aktivmasse angewendeten Calcinationstemperatur liegen. Selbstverständlich kann die Trocknung auch ausschließlich in einem Trockenofen durchgeführt werden.
Als Bindemittel für den Beschichtungsprozess können unabhängig von der Art und der Geometrie des Trägerkörpers verwendet werden: Wasser, einwertige Alkohole wie Ethanol, Methanol, Propanol und Butanol, mehrwertige Alkohole wie Ethylenglykol, 1 ,4-Butandiol, 1 ,6-Hexandiol oder Glycerin, ein- oder mehrwertige organische Carbonsäuren wie Propionsäure, Oxalsäure, Malonsäure, Glutarsäure oder Maleinsäure, Aminoalkohole wie Ethanolamin oderDifethänαiarnirrsOWie ein- oder mehrwertige or- ganische Amide wie Formamid. Günstige Bindemittel sind auch Lösungen, bestehend aus 20 bis 90 Gew.-% Wasser und 10 bis 80 Gew.-% einer in Wasser gelösten organischen Verbindung, deren Siedepunkt oder Sublimationstemperatur bei Normaldruck (1 atm) > 100°C, vorzugsweise > 150°C, beträgt. Mit Vorteil wird die organische Verbindung aus der vorstehenden Auflistung möglicher organischer Bindemittel ausgewählt. Vorzugsweise beträgt der organische Anteil an vorgenannten wässrigen Bindemittellösungen 10 bis 50 und besonders bevorzugt 20 bis 30 Gew.-%. Als organische Komponenten kommen dabei auch Monosaccharide und Oligosaccharide wie Glucose, Fruc- tose, Saccharose oder Lactose sowie Polyethylenoxide und Polyacrylate in Betracht.
Als Geometrien (sowohl für Vollkatalysatoren als auch für Schalenkatalysatoren) kommen dabei sowohl Kugeln, Vollzylinder und Hohlzylinder (Ringe) in Betracht. Die Längstausdehnung der vorgenannten Geometrien beträgt dabei in der Regel 1 bis 10 mm. Im Fall von Zylindern beträgt deren Länge vorzugsweise 2 bis 10 mm und ihr Außendurchmesser bevorzugt 4 bis 10 mm. Im Fall von Ringen liegt die Wanddichte darüber hinaus üblicherweise bei 1 bis 4 mm. Geeignete ringförmige Vollkatalysatoren können auch eine Länge von 3 bis 6 mm, einen Außendurchmesser von 4 bis 8 mm und eine Wanddicke von 1 bis 2 mm aufweisen. Möglich ist aber auch eine Vollkatalysatorringgeometrie von 7 mm x 3 mm x 4 mm oder von 5 mm x 3 mm x 2 mm (Außen- durchmesser x Länge x Innendurchmesser). Selbstredend kommen für die Geometrie der erfindungsgemäß erhältlichen Multimetalloxidaktivmassen M und ihrer Nachfolgemassen auch all jene der DE-A 101 01 695 in Betracht.
Die spezifische Oberfläche von erfindungsgemäß erhältlichen Multimetalloxidmassen M (und ihrer Nachfolgemassen) beträgt vielfach 1 bis 80 m2/g zw. bis 40 m2/g, oft 11 bzw. 12 bis 40 m2/g und häufig 15 bzw. 20 bis 40 bzw. 30 m2/g (bestimmt nach der BET Methode, Stickstoff).
Im übrigen gilt für die erfindungsgemäß erhältlichen Multimetalloxidmassen M und ihre Nachfolgemassen das in der DE-A 103 03 526 Gesagte.
D.h., selbstredend können die erfindungsgemäß erhältlichen Multimetalloxidmassen M und ihre Nachfolgemassen auch in mit feinteiligen, z.B. kolloidalen, im wesentlichen nur verdünnend wirkenden Materialien, wie Siliciumdioxid, Titandioxid, Aluminiumoxid, Zirkonoxid und Nioboxid verdünnter Form als katalytische Aktivmassen eingesetzt werden.
Das Verdünnungsmassenverhältnis kann dabei bis zu 9 (Verdünner) : 1 (Aktivmasse) betragen. D.h., mögliche Verdünnungsmassenverhältnis betragen z.B. 6 (Verdünner) : 1 (Aktivmasse) und 3 (Verdünner) : 1 (Aktivmasse). Die Einarbeitung der Verdünner kann vor und/oder nach einer thermischen Nachbehandlung erfolgen. Die erfindungsgemäß erhältlichen Multimetalloxidmassen M sowie ihre Nachfolgemassen eignen sich als solche oder in wie eben beschrieben verdünnter Form (wie bereits gesagt) als Aktivmassen für heterogen katalysierte partielle Gasphasenoxidationen (einschließlich Oxidehydrierungen) und/oder -ammoxidationen von gesättigten und/oder ungesättigten Kohlenwasserstoffen sowie von Alkoholen und Aldehyden (z.B. in einem Verfahren gemäß der DE-A 103 16465).
Solche gesättigten und/oder ungesättigten Kohlenwasserstoffe sind insbesondere E- than, Ethylen, Propan, Propylen, n-Butan, iso-Butan und iso-Buten. Zielprodukte sind dabei vor allem Acrolein, Acrylsäure, Methacroiein, Methacrylsäure, Acrylnitril und Me- thacrylnitril. Sie eignen sich aber auch für die heterogen katalysierte partielle Gasphasenoxidation und/oder -ammoxidation von Verbindungen wie Acrolein und Methacroiein.
Aber auch Ethylen, Propylen und Essigsäure können Zielprodukt sein.
Unter einer vollständigen Oxidation eines Kohlenwasserstoffs, Alkohols und/oder Aldehyds wird in dieser Schrift verstanden, dass der im Kohlenwasserstoff, Alkohol und/oder Aldehyd insgesamt enthaltene Kohlenstoff in Oxide des Kohlenstoffs (CO, CO2) umgewandelt wird.
Alle davon verschiedenen Umsetzungen des Kohlenwasserstoffs unter reaktiver Einwirkung von molekularem Sauerstoff werden in dieser Schrift mit dem Begriff der Parti- aloxidation subsummiert. Die zusätzliche reaktive Einwirkung von Ammoniak kennzeichnet die partielle Ammoxidation.
Bevorzugt eignen sich die gemäß dieser Schrift erhältlichen Multimetalloxidmassen M und ihre Nachfolgemassen, als katalytische Aktivmassen für die Umsetzung von Propan zu Acrolein und/oder Acrylsäure, von Propan zu Acrylsäure und/oder Acrylnitril, von Propylen zu Acrolein und/oder Acrylsäure, von Propylen zu Acrylnitril, von iso- Butan zu Methacroiein und/oder Methacrylsäure, von iso-Butan zu Methacrylsäure und/oder Methacrylnitril, von Ethan zu Ethylen, von Ethan zu Essigsäure und von Ethylen zu Essigsäure.
Die Durchführung solcher partiellen Oxidationen und/oder Ammoxidationen (durch in an sich bekannter Weise zu steuernde Wahl des Gehaltes an Ammoniak im Reaktionsgasgemisch kann die Reaktion im wesentlichen ausschließlich als partielle Oxidation, oder ausschließlich als partielle Ammoxidation, oder als Überlagerung beider Reaktionen gestaltet werden; vgl. z.B. WO 98/22421) ist von den Multimetalloxidmassen der allgemeinen Stöchiometrie I des Standes der Technik an sich bekannt und kann in völ- lig entsprechender Weise durchgeführt werden. Wird als Kohlenwasserstoff Roh-Propan oder Roh-Propylen eingesetzt, ist dieses bevorzugt wie in der DE-A 102 46 119 bzw. DE-A 101 18 814 bzw. PCT/EP/02/04073 beschrieben zusammengesetzt. Ebenso wird bevorzugt wie dort beschrieben verfahren.
Eine mit Multimetalloxid M-Aktivmasse- (bzw. Nachfolgeaktivmasse)-Katalysatoren durchzuführende partielle Oxidation von Propan zu Acrylsäure kann z.B. wie in der EP-A 608 838, der EP-A 1 407 819, der WO 00/29106, der JP-A 10-36311 und der EP-A 1 192 987 beschrieben durchgeführt werden. .
Als Quelle für den benötigten molekularen Sauerstoff kann z.B. Luft, mit Sauerstoff angereicherte oder an Sauerstoff entreicherte Luft oder reiner Sauerstoff verwendet werden. Ein solches Verfahren ist auch dann vorteilhaft, wenn das Reaktionsgasausgangsge- misch kein Edelgas, insbesondere kein Helium, als inertes Verdünnungsgas enthält. Im übrigen kann das Reaktionsgasausgangsgemisch neben Propan und molekularem Sauerstoff selbstredend inerte Verdünnungsgase wie z.B. N2, CO und CO2 umfassen. Wasserdampf als Reaktionsgasgemischbestandteil ist erfindungsgemäß vorteilhaft.
D.h., das Reaktionsgasausgangsgemisch, mit dem die erfindungsgemäß erhältliche Multimetalloxidaktivmasse M oder deren Nachfolgemasse bei Reaktionstemperaturen von z.B. 200 bis 550°C oder von 230 bis 480°C bzw. 300 bis 440°C und Drücken von 1 bis 10 bar, bzw. 2 bis 5 bar zu belasten ist, kann z.B. nachfolgende Zusammensetzung aufweisen:
1 bis 15, vorzugsweise 1 bis 7 Vol.-% Propan, 44 bis 99 Vol.-% Luft und 0 bis 55 Vol.-% Wasserdampf.
Bevorzugt sind Wasserdampf enthaltende Reaktionsgasausgangsgemische.
Als andere mögliche Zusammensetzungen des Reaktionsgasausgangsgemisches kommen in Betracht:
70 bis 95 Vol.-% Propan, 5 bis 30 Vol.-% molekularer Sauerstoff und 0 bis 25 Vol.-% Wasserdampf. Selbstredend wird bei einem solchen Verfahren ein Produktgasgemisch erhalten, das nicht ausschließlich aus Acrylsäure besteht. Vielmehr enthält das Produktgasgemisch neben nicht umgesetztem Propan Nebenkompöneπter wie Prop-ervAcroiein, C02, CO, H2O, Essigsäure, Propionsäure etc., von denen die Acrylsäure abgetrennt werden muss.
Dies kann so erfolgen, wie es von der heterogen katalysierten Gasphasenoxidation von Propen zu Acrylsäure bekannt ist.
D.h., aus dem Produktgasgemisch kann die enthaltene Acrylsäure durch Absorption mit Wasser oder durch die Absorption mit einem hochsiedenden inerten hydrophoben organischen Lösungsmittel (z.B. einem Gemisch aus Diphenylether und Diphyl das gegebenenfalls noch Zusätze wie Dimethylphthalat enthalten kann) aufgenommen werden. Das dabei resultierende Gemisch aus Absorbens und Acrylsäure kann anschließend in an sich bekannter Weise, rektifikativ, extraktiv und/oder kristallisativ bis zur Reinacrylsäure aufgearbeitet werden. Alternativ kann die Grundabtrennung der Acrylsäure aus dem Produktgasgemisch auch durch fraktionierte Kondensation erfol- gen, wie es z.B. in der DE-A 19 924 532 beschrieben ist.
Das dabei resultierende wässrige Acrylsäurekondensat kann dann z.B. durch fraktionierte Kristallisation (z.B. Suspensionskristallisation und/oder Schichtkristallisation) weitergereinigt werden.
Das bei der Grundabtrennung der Acrylsäure verbleibende Restgasgemisch enthält insbesondere nicht umgesetztes Propan, welches vorzugsweise in die Gasphasenoxidation rückgeführt wird. Es kann dazu aus dem Restgasgemisch z.B. durch fraktionierte Druckrektifikation teil- oder vollabgetrennt und anschließend in die Gasphasenoxi- dation rückgeführt werden. Günstiger ist es jedoch, das Restgas in einer Extraktionsvorrichtung mit einem hydrophoben organischen Lösungsmittel in Kontakt zu bringen (z.B. durch selbiges durchleiten), das das Propan bevorzugt zu absorbieren vermag.
Durch nachfolgende Desorption und/oder Strippung mit Luft kann das absorbierte Pro- pan wieder freigesetzt und in das erfindungsgemäße Verfahren rückgeführt werden. Auf diese Weise sind wirtschaftliche Gesamtpropanumsätze erzielbar. Als Nebenkomponente gebildetes Propen wird dabei, ebenso wie bei anderen Abtrennverfahren, in der Regel vom Propan nicht oder nicht vollständig abgetrennt und mit diesem im Kreis geführt. Dies gilt so auch im Fall von anderen homologen gesättigten und olefinischen Kohlenwasserstoffen. Vor allem gilt es ganz generell für erfindungsgemäße heterogen katalysierte partielle Oxidationen und/oder -ammoxidationen von gesättigten Kohlenwasserstoffen.
Dabei macht es sich vorteilhaft bemerkbar, dass die erfindungsgemäß erhältlichen Mul- timetalloxidmassen M und ihre Nachfolgemassen auch die partielle Oxidation und/oder -ammoxidation des homologen olefinischen Kohlenwasserstoffs zum selben Zielprodukt heterogen zu katalysieren vermögen. So kann mit den erfindungsgemäß erhältlichen Multimetalloxidmassen M und ihren Nachfolgemassen als Aktivmassen Acrylsäure durch heterogen katalysierte partielle Gasphasenoxidation von Propen mit molekularem Sauerstoff wie in der DE-A 101 18 814 bzw. PCT/EP/02/04073 oder der JP-A 7-53448 beschrieben hergestellt werden.
D.h., eine einzige Reäktionszone A ist für die Durchführung des Verfahrens ausreichend. In dieser Reaktionszone befinden sich als katalytisch aktive Massen ausschließlich erfindungsgemäß erhältliche Multimetalloxidmasse M- bzw. Nachfolgemasse-Katalysatoren.
Dies ist ungewöhnlich, verläuft die heterogen katalysierte Gasphasenoxidation von Propen zu Acrylsäure doch ganz allgemein in zwei zeitlich aufeinanderfolgenden Schritten. Im ersten Schritt wird üblicherweise Propen im wesentlichen zu Acrolein oxi- diert und im zweiten Schritt wird üblicherweise im ersten Schritt gebildetes Acrolein zu Acrylsäure oxidiert.
Konventionelle Verfahren der heterogen katalysierten Gasphasenoxidation von Propen zu Acrylsäure setzen daher üblicherweise für jeden der beiden vorgenannten Oxidati- onsschritte einen speziellen, auf den Oxidationsschritt maßgeschneiderten, Katalysa- tortyp ein.
D.h., die konventionellen Verfahren der heterogen katalysierten Gasphasenoxidation von Propen zu Acrylsäure arbeiten im Unterschied zum erfindungsgemäßen Verfahren mit zwei Reaktionszonen.
Selbstredend kann sich beim Verfahren der Propenpartialoxidation in der einen Reaktionszone A nur ein oder aber auch mehr als ein erfindungsgemäß erhältlicher Multimetalloxidmasse M- bzw. Nachfolgemasse-Katalysator befinden. Natürlich können die einzusetzenden Katalysatoren mit Inertmaterial verdünnt sein, wie es in dieser Schrift beispielsweise auch als Trägermaterial empfohlen wurde.
Längs der einen Reaktionszone A kann beim Verfahren der Propenpartialoxidation nur eine oder aber auch eine sich längs der Reaktionszone A ändernde Temperatur eines Wärmeträgers zur Temperierung der Reaktionszone A herrschen. Diese Temperatur- änderung kann zunehmend oder abnehmend sein.
Wird das erfindungsgemäße Verfahren der Propenpartialoxidation als Festbettoxidation ausgeführt, erfolgt die Durchführung in zweckmäßiger Weise in einem Rohrbündelreak- tor, dessen Kontaktrohre mit dem Katalysator beschickt sind. Um die Kontaktrohre wird im Normalfall als Wärmeträger eine Flüssigkeit, in der Regel ein Salzbad geführt. Mehrere Temperaturzonen längs der Reaktionszone A können dann in einfacher Weise dadurch realisiert werden, dass längs der Kontaktrohre abschnittsweise mehr als ein Salzbad um die Kontaktrohre geführt wird.
Das Reaktionsgasgemisch wird in den Kontaktrohren über den Reaktor betrachtet entweder im Gleichstrom oder im Gegenstrom zum Salzbad geführt. Das Salzbad selbst kann relativ zu den Kontaktrohren eine reine Pärallelströmung ausführen. Selbstverständlich kann dieser aber auch eine Querströmung überlagert sein. Insgesamt kann das Salzbad um die Kontaktrohre auch eine mäanderförmige Strömung ausführen, die nur über den Reaktor betrachtet im Gleich- oder im Gegenstrom zum Reaktionsgasgemisch geführt ist.
Die Reaktionstemperatur kann beim Verfahren der Propenpartialoxidation längs der gesamten Reaktionszone A 200° bis 500°C betragen. Üblicherweise wird sie 250 bis 450°C betragen. Bevorzugt wird die Reaktionstemperatur 330 bis 420°C, besonders bevorzugt 350 bis 400°C betragen.
Der Arbeitsdruck kann beim Verfahren der Propenpartialoxidation sowohl 1 bar, weniger als 1 bar oder mehr als 1 bar betragen. Erfindungsgemäß typische Arbeitsdrücke sind 1 ,5 bis 10 bar, häufig 1 ,5 bis 5 bar.
An das für das Verfahren der Propenpartialoxidation zu verwendende Propen werden keine besonders hohen Ansprüche im Bezug auf seine Reinheit gestellt.
Als Propen kann für ein solches Verfahren, wie bereits gesagt und wie für alle ein- oder zweistufigen Verfahren der heterogen katalysierten Gasphasenoxidation von Propen zu Acrolein und/oder Acrylsäure ganz generell, z.B. Propen (auch Roh-Propen genannt) der nachfolgenden beiden Spezifikationen völlig problemlos verwendet werden:
a) Polymer grade Propylen:
Selbstverständlich können alle vorstehend genannten möglichen Begleiter des Propens jeweils aber auch in der zwei- bis zehnfachen der genannten individuellen Menge im Roh-Propen enthalten sein, ohne die Verwendbarkeit des Roh-Propens für das Verfahren bzw. für die bekannten Verfahren der ein- oder zweistufigen heterogen katalysierten Gasphasenoxidation von Propen zu Acrolein und/oder Acrylsäure ganz generell, zu beeinträchtigen.
Dies gilt insbesondere dann, wenn es sich wie bei den gesättigten Kohlenwasserstoffen, dem Wasserdampf, den Kohlenoxiden oder dem molekularen Sauerstoff sowieso um Verbindungen handelt, die entweder als inerte Verdünnungsgase oder als Reakti- onspartner in erhöhten Mengeη bei den vorgenannten Verfahre ι..a£3r &al i€>rS$fe schehen teilnehmen. Normalerweise wird das Roh-Propen als solches mit Kreisgas, Luft und/oder molekularem Sauerstoff und/oder verdünnter Luft und/oder Inertgas vermischt für das Verfahren der heterogen katalysierten Gasphasenoxidation von Propen zu Acrolein und/oder Acrylsäure eingesetzt.
Als Propenquelle kommt für das erfindungsgemäße Verfahren aber auch Propen in Betracht, das im Rahmen eines vom erfindungsgemäßen Verfahren verschiedenen Verfahrens als Nebenprodukt gebildet wird und z.B. bis zu 40 % seines Gewichts Propan enthält. Dabei kann dieses Propen zusätzlich noch von anderen, das erfindungsgemäße Verfahren im wesentlichen nicht störenden, Begleitkomponenten begleitet werden.
Als Sauerstoffquelle kann für das Verfahren der Propenpartialoxidation sowohl reiner Sauerstoff als auch Luft oder mit Sauerstoff angereicherte bzw. abgereicherte Luft verwendet werden.
Neben molekularem Sauerstoff und Propen enthält ein für das Verfahren der Propenpartialoxidation zu verwendendes Reaktionsgasausgangsgemisch üblicherweise noch wenigstens ein Verdünnungsgas. Als solches kommen Stickstoff, Kohlenoxide, Edelgase und niedere Kohlenwasserstoffe wie Methan, Ethan und Propan in Betracht (hö- here, z.B. C4-Kohlenwasserstoffe sollten gemieden werden). Häufig wird auch Wasserdampf als Verdünnungsgas verwendet. Vielfach bilden Mischungen aus vorgenannten Gasen das Verdünnungsgas für das Verfahren der partiellen Propenoxidation.
Vorteilhaft erfolgt die heterogen katalysierte Partialoxidation des Propens im Beisein von Propan.
In typischer Weise ist das Reaktionsgasausgangsgemisch für das Propenoxidations- Verfahren wie folgt zusammengesetzt (molare Verhältnisse):
Propen : Sauerstoff : H2O : sonstige Verdünnungsgase = 1 : (0,1 - 10) : (0 - 70) : (0 : 20).
Vorzugsweise beträgt das vorgenannte Verhältnis 1 : (1 - 5) : (1 - 40) : (0 - 10).
Wird Propan als Verdünnungsgas verwendet, kann dieses, wie beschrieben, vorteilhaft teilweise ebenfalls zu Acrylsäure oxidiert werden.
Erfindungsgemäß vorteilhaft enthält das Reaktionsgasausgangsgemisch molekularen Stickstoff, CO, CO2, Wasserdampf und Propan als Verdünnungsgas. Das molare Verhältnis von Propan : Propen kann beim Propenoxidations-Verfahren folgende Werte annehmen: 0 bis 15, häufig 0 bis 10, vielfach 0 bis 5, zweckmäßig 0,01 bis 3.
Die Belastung der Katalysatorbeschickung mit Propen kann beim Verfahren der partiellen Propenoxidation z.B. 40 bis 250 Nl/I»h oder mehr betragen. Die Belastung mit Reaktionsgasausgangsgemisch liegt häufig im Bereich von 500 bis 15000 Nl/I»h, vielfach im Bereich 600 bis 10000 Nl/l-h, häufig 700 bis 5000 Nl/I*h.
Selbstredend wird beim Verfahren der Propenpartialoxidation zu Acrylsäure ein Produktgasgemisch erhalten, das nicht ausschließlich aus Acrylsäure besteht. Vielmehr enthält das Produktgasgemisch neben nicht umgesetztem Propen Nebenkomponenten wie Propan, Acrolein, CO2, CO, H2O, Essigsäure, Propionsäure etc., von denen die Acrylsäure abgetrennt werden muss.
Dies kann so erfolgen, wie es von der heterogen katalysierten zweistufigen (in zwei Reaktionszonen durchgeführten) Gasphasenoxidation von Propen zu Acrylsäure allgemein bekannt ist.
D.h., aus dem Produktgasgemisch kann die enthaltene Acrylsäure durch Absorption mit Wasser oder durch die Absorption mit einem hochsiedenden inerten hydrophoben organischen Lösungsmittel (z.B. einem Gemisch aus Diphenylether und Diphyl das gegebenenfalls noch Zusätze wie Dimethylphthaiat enthalten kann) aufgenommen werden. Das dabei resultierende Gemisch aus Absorbens und Acrylsäure kann an- schließend in an sich bekannter Weise rektifikativ, extraktiv und/oder kristaliisativ bis zur Reinacrylsäure aufgearbeitet werden. Alternativ kann die Grundabtrennung der Acrylsäure aus dem Produktgasgemisch auch durch fraktionierte Kondensation erfolgen, wie es z.B. in der DE-A 199 24 532 beschrieben ist.
Das dabei resultierende wässrige Acrylsäurekondensat kann dann z.B. durch fraktionierte Kristallisation (z.B. Suspensionskristallisation und/oder Schichtkristallisation) weitergereinigt werden.
Das bei der Grundabtrennung der Acrylsäure verbleibende Restgasgemisch enthält insbesondere nicht umgesetztes Propen (und gegebenenfalls Propan). Dieses kann aus dem Restgasgemisch z.B. durch fraktionierte Druckrektifikation abgetrennt und anschließend in die erfindungsgemäße Gasphasenoxidation rückgeführt werden. Günstiger ist es jedoch, das Restgas in einer Extraktionsvorrichtung mit einem hydrophoben organischen Lösungsmittel in Kontakt zu bringen (z.B. durch selbiges durchlei- ten), das das Propen (und gegebenenfalls Propan) bevorzugt zu absorbieren vermag. Durch nachfolgende Desorption und/oder Strippung mit Luft kann das absorbierte Propen (und gegebenenfalls Propan) wieder freigesetzt und in das erfindungsgemäße Verfahren rückgeführt werden. Auf diese Weise sind wirtschaftliche Gesamtpropenumsätze erzielbar. Wird Propen im Beisein von Propan partialoxidiert, werden Propen und Propan bevorzugt gemeinsam abgetrennt und rückgeführt.
In völlig entsprechender weise lassen sich die erfindungsgemäß erhältlichen Multimetalloxide M und ihre Nachfolgemassen als Katalysatoren für die Partialoxidation von iso-Butan und/oder iso-Buten zu Methacrylsäure einsetzen.
Ihre Verwendung für die Ammoxidation von Propan und/oder Propen kann z.B. wie in der EP-A 529 853, der DE-A 23 51 151 , der JP-A 6-166668 und der JP-A 7-232071 beschrieben erfolgen.
Ihre Verwendung für die Ammoxidation von n-Butan und/oder n-Buten kann wie in der JP-A 6-211767 beschrieben erfolgen.
Ihre Verwendung für die Oxidehydrierung von Ethan zu Ethylen, bzw. die Weiterreaktion zu Essigsäure, kann wie in der US-A 4,250,346 oder wie in der EP-B 261 264 be- schrieben erfolgen.
Ihre Verwendung für die Partialoxidation von Acrolein zu Acrylsäure kann wie in der DE-A 102 61 186 beschrieben erfolgen.
Die erfindungsgemäß erhältlichen Multimetalloxidmassen M und ihre Nachfolgemassen können aber auch in andere Multimetalloxidmassen integriert werden (z.B. ihre feintei- ligen Massen vermengen, gegebenenfalls verpressen und calcinieren, oder als Schlämmen (vorzugsweise wässrig) vermengen, trocknen und calcinieren (z.B. wie es die EP-A 529 853 beschreibt)). Bevorzugt wird wieder unter Inertgas calciniert.
Die dabei resultierenden Multimetalloxidmassen (nachfolgend Gesamtmassen genannt) enthalten bevorzugt > 50 Gew.-%, besonders bevorzugt > 75 Gew.-%, und ganz besonders bevorzugt > 90 Gew.-% bzw. > 95 Gew.-% an erfindungsgemäß erhältlichen Multimetalloxidmassen M bzw. an deren Nachfolgemassen und sind für die in dieser Schrift besprochenen Partialoxidationen und/oder -ammoxidationen ebenfalls geeignet.
Die geometrische Formgebung erfolgt bei den Gesamtmassen in zweckmäßiger Weise wie für die erfindungsgemäß erhältlichen Multimetalloxidmassen M und deren Nachfol- gemassen beschrieben. Zum Zweck der heterogen katalysierten partiellen Gasphasenoxidation von Propan zu Acrylsäure werden die erfindungsgemäß erhältlichen Multimetalloxidmassen M, deren Nachfolgemassen und solche Massen enthaltende Multimetalloxidmassen bzw. Katalysatoren bevorzugt wie in der DE-A 101 22 027 beschrieben in Betrieb genommen.
Abschließend sei festgehalten, dass die ausgezeichnete Reproduzierbarkeit bei Anwendung der erfindungsgemäßen Verfahrensweise darauf zurückgeführt wird, dass das gewünschte Multimetalloxid M in einer Umgebung anfällt, die im wesentlichen nur Wasser und dessen Konstituenten H, O, OH enthält. Auf diese Weise fällt das Multime- talloxid M quasi unter seinem natürlichen Eigen-pH-Wert an, was der Verfahrensweise offensichtlich eine besondere Robustheit verleiht.
Beispiele und Vergleichsbeispiele
A) Herstellung von Multimetalloxidmassen
Beispiel 1 : Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie
In einen Autoklaven mit eingebautem Rührer und einem Innenvolumen von 2,5 I wurden in feinteiliger Form eingefüllt:
123,27 g MoO3 (Fa. Riedel-de-Haen Brand, 30926 Seelze; MoO3-Gehalt >99,9 %; 0,86 Mol Mo);
23,06 g VO2 (Fa. Alfa Aesar, 76057 Karlsruhe; VO2-Gehalt = 99,5 %; 0,28 Mol VO2, V-Oxidationsstufe = 4,03);
3,69 g TeO2 (Fa. Sigma Aldrich, 82018 Taufkirchen; >99 % TeO2; 0,023 Mol TeO2);
und 1500 ml Wasser.
Der Deckel des Autoklaven wurde verschlossen und der über der wässrigen Phase befindliche Anteil an Luft im Autoklaven durch Spülen mit Stickstoff gegen Stickstoff ausgetauscht. Anschließend wurde der Autoklav unter fortlaufendem Rühren (700 Upm) innerhalb von 10 h unter Eigendruck befindlich kontinuierlich (linear) auf 175°C aufgeheizt und bei dieser Temperatur unter weiterem Rühren während 48 h gehalten. Anschließend wurde auf Raumtemperatur (25°C) abgekühlt. Der Autoklav -wurde geöffnet und das gebildete schwarze Pulver abfiltriert, dreimal' mitje'2ü0 ml Wasser der Temperatur 25°C gewaschen und anschließend bei 80°C während 12 h im Vakuumtrockenschrank getrocknet.
Der wie beschrieben durchgeführte Versuch wurde zehnmal wiederholt. In allen Fällen wurde das gleiche, nachfolgend beschriebene Ergebnis erhalten.
Wie das in Figur 1 abgebildete Pulverröntgendiffraktogramm (XRD) ausweist, wird ausschließlich i-Phase erhalten. Die zugehörige rasterelektronenmikroskopische Aufnahme (SEM) (Figur 2, drei unterschiedliche Vergrößerungen) zeigt nadeiförmige Kristalle mit einem hohen Längen-zu-Dicken-Verhältnis von ca. 50 bis 100.
Ein Vorteil der „Nadel-,, bzw. „Faserform" dürfte darin liegen, dass andere (zusätzliche) kristallographische Oberflächen der Katalyse im Vergleich mit einem isotroperen Material vermehrt zugänglich sind.
Titrimetrische Analyse weist aus, dass das V in der gebildeten i-Phase die Oxidations- stufe 4,02 bis 4,05 aufweist. Die spezifische Oberfläche lag bei 45 m2/g. Chemische Analyse ergab befriedigende Übereinstimmung mit der Einwaagestöchiometrie.
Vergleichsbeispiel 1: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie
In den Autoklaven aus Beispiel 1 wurden in feinteiliger Form eingefüllt:
151 ,87 g (NH4)6Mo7O244 H2O (Fa. H.C. Starck, 38642 Goslar; MoO3-Gehalt 81,5 %; 0,86 Mol Mo);
66,64 g Vanadylsulfat-Hydrat VOSO4 (H2O)x (Fa. Alfa Aesar, 76057 Karlsruhe; V- Gehalt = 21,4 Gew.-%; 0,28 Mol V);
3,69 g TeO2 (wie in Beispiel 1);
und 1500 ml Wasser.
Anschließend wurde wie in Beispiel 1 (hydrothermal) verfahren. Der wie beschrieben durchgeführte Versuch wurde zehnmal wiederholt. In zwei Fällen trat dabei ein erhöhter Anteil an i-Phase im gebildeten Multimetalloxidpulver auf. In den acht anderen Versuchen wurde dagegen ein Phasengemenge erhalten, das lediglich einen geringen i-Phase-Anteil enthielt.
Unter den anderen Phasen wurden identifiziert: die Phase 81-2414 (c) der JPDS- arterK o.^Moo.ββJO^-hexagonalj.'die Phase 05-0508 der JPDS-Kartei [MoO3,""öτ- thorhombisch], die Phase 47-0872 der JPDS-Kartei [HMo5l35θi5l75(OH)1,β-1,7 H2O] und die Phase 77-0649 (c) der JPDS-Kartei triklin].
Beispiel 2: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie Mo VG,32Bioι027Ox
In den Autoklaven aus Beispiel 1 wurden in feinteiliger Form eingefüllt:
123,27 g MoO3 (wie in Beispiel 1 );
23,06 g VO2 (wie in Beispiel 1 );
5,36 g Bi2O3 (Fa. Riedel-de Haen Brand, 30926 Seelze; > 99,5 % Bi2O3; 0,023 Mol Bi);
und 1500 ml Wasser.
Anschließend wurde wie in Beispiel 1 (hydrothermal) verfahren.
Der wie beschrieben durchgeführte Versuch wurde zehnmal wiederholt. In allen Fällen wurde das gleiche nachfolgend beschriebene Resultat erzielt.
Das Pulverröntgendiffraktogramm (vgl. Fig. 3) wies für das erhaltene schwarze Pulver in allen Fällen ausschließlich i-Phase aus. Die zugehörige rasterelektronenmikrosko- pische Aufnahme (Fig. 4, drei verschiedene Vergrößerungen) zeigt nadeiförmige Kristalle mit einem hohen Längen-zu-Dicken-Verhältnis von ca. 30 bis 150.
Die chemische Analyse ergab befriedigende Übereinstimmung mit der Einwaagestöchiometrie. Gemäß titrimetrischer Analyse wies das V in der gebildeten i-Phase die Oxidationsstufe 4,02 bis 4,07 auf. Die spezifische Oberfläche lag bei 38 m2/g.
Vergleichsbeispiel 2: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie Mo1V0ι32Bio,o27θχ
Es wurde wie in Beispiel 2 verfahren. Anstelle von MoO3 wurde jedoch 151 ,87 g (NH )6Mo7O2 -4H2O (wie in Vergleichsbeispiel 1) und anstelle von VO2 wurde 66,64 g Vanadylsulfat-Hydrat (VOSO4 (H2O)x) (wie in Vergleichsbeispiel 1) eingesetzt. Der Versuch wurde zehn mal wiederholt. In zwei Fällen wurde ein erhöhter Anteil an i- Phase im hergestellten schwarzen Pulver erhalten.
In den acht anderen Reproduktionen wurde dagegen ein Phasengemenge mit nur ge- rigönri- 'πüse-Anteil erhalten. Die restlichen Phasen konnten identifiziert werden ai≤' Phase 05-0508 der JPDS-Kartei [MoO3, orthorhombisch], als Phase 47-0872 der JPDS-Kartei [HMo^O^OH e-I J H2O], als Phase 48-0744 der JPDS-Kartei (Bi- VO4, tetragonal), als Phase 85-0630 der JPDS-Kartei (Bi0,88Mθo,37Vo,63O ), als Kristallstruktur der Phase 70-2321 (c) der JPDS-Kartei [Sb2Mo10O31, orthorhombisch], als Kristallstruktur der Phase 33-0104 der JPDS-Kartei (Sb4Mθι0O31, hexagonal) und/oder Phase 77-0649 (c) der JPDS-Kartei [(V0,95Mθo,97θ5, triklin]. Darüber hinaus lagen teilweise weitere Phasen vor, die anhand der XRD Beugungsreflexe nicht weiter identifiziert werden konnten.
Beispiel 3: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie
Es wurde wie in Beispiel 2 verfahren. Als Vanadinquelle wurde jedoch ein Gemisch aus 2,85 g V-Pulver (Fa. Chempur, 76204 Karlsruhe; V-Gehalt >99,5 %; 0,056 Mol V) und 20,36 g V2O5 (Fa. Gesellschaft für Elektrometallurgie (GfE), 90431 Nürnberg; V2O5-Gehalt = 99,97 %; 0,224 Mol V) eingesetzt.
Der Autoklav wurde verschlossen und der über der wässrigen Lösung befindliche Anteil an Luft im Autoklaven durch Spülen mit Stickstoff gegen Stickstoff ausgetauscht.
Anschließend wurde der Autoklav unter fortlaufendem Rühren (700 Upm) und unter Eigendruck befindlich innerhalb von 3 h kontinuierlich (linear) auf 90°C aufgeheizt und während 10 h bei dieser Temperatur gerührt.
Danach wurde innerhalb von 8 h unter fortlaufendem Rühren (700 Upm) und unter Eigendruck befindlich kontinuierlich (linear) auf 175°C erhitzt und bei dieser Temperatur unter Rühren 24 h gehalten. Anschließend wurde auf Raumtemperatur (25°C) abgekühlt und wie im Beispiel 1 das gebildete schwarze Pulver abfiltriert, mit Wasser gewaschen und getrocknet.
Der wie beschrieben durchgeführte Versuch wurde zehnmal wiederholt. In sechs der 10 Ausführungen wurde das gleiche Ergebnis wie in Beispiel 2 erhalten.
In vier der zehn Ausführungen kristallisierten Feststoffe, die jenen aus Vergleichsbei- spiel 2 entsprachen.
Beispiel 4: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie
Es wurde wie in Beispiel 1 verfahren. Anstelle der 23,06 g VO2 wurden jedoch nur 18,0 g VO2 verwendet und die Te-Verbindung wurde weggelassen. Beispiel 5: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie Mo1V0,25Nbo,o98Bio,o42θx
Es wurde wie in Beispiel 1 verfahren. D.h., es wurden wiederum 123,27 g MoO3 ein- gewogen, sowie die der diesbezüglich gemäß der geforderten Stöchiometrie benötigten Mengen an VO2, Nb2O5 sowie Bi2O3.
Beispiel 6: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie M01Vo.3Sbo.25Nbo.12Ox
Es wurde wie in Beispiel 1 verfahren. D.h., es wurden wiederum 123,27 g M0O3 eingewogen, sowie die der diesbezüglich gemäß der geforderten Stöchiometrie benötigten Mengen an VO2, Sb2O3 und Nb2O5.
Beispiel 7: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie MθιV0ι3Nbo,i3Sbo,i3θ4, 25
Es wurde wie in Beispiel 1 verfahren. D.h., es wurden wiederum 123,27 g M0O3 eingewogen, sowie die der diesbezüglich gemäß der geforderten Stöchiometrie benötigten Mengen an VO2, Nb2O5 und Sb2O3.
Beispiel 8: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie M0 Vo.3Nbo.13Nio.13Ox
Es wurde wie in Beispiel 1 verfahren. D.h., es wurden wiederum 123,27 g M0O3 ein- gewogen, sowie die der diesbezüglich gemäß der geforderten Stöchiometrie benötigten Mengen an VO2, Nb2O5 und NiO.
Beispiel 9: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie MθιVo,3Nb0,i3Cθo,ι3
Es wurde wie in Beispiel 1 verfahren. D.h., es wurden wiederum 123,27 g MoO3 eingewogen, sowie die der diesbezüglich gemäß der geforderten Stöchiometrie benötigten Mengen an VO2, Nb2O5 und CoO.
Beispiel 10: Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie Mθ V0,3Nbi3Cro,o3iOχ
Es wurde wie in Beispiel 1 verfahren. D.h., es wurden wiederum 123,27 g M0O3 eingewogen, sowie die der diesbezüglich gemäß der geforderten Stöchiometrie benötig- ten Mengen an VO2, Nb2O5 und Cr2O3. Beispiel 11 : Herstellung einer Multimetalloxidmasse der Einwaagestöchiometrie
Es wurde wie in Beispiel 2 verfahren. 100 g der gewonnenen und getrockneten Multi- metalloxidmasse wurden in 500 g einer 10 gew.-%igen wässrigen Salpetersäure gegeben. Die resultierende wässrige Suspension wurde unter Rückfluss bei 80°C während 5 h gerührt. Dann wurde auf 25°C abgekühlt. Der in der schwarzen Suspension befindliche Feststoff wurde durch Filtration von der wässrigen Phase getrennt, mit Wasser frei von Nitrat gewaschen und anschließend in einem Umlufttrockenschrank bei 120°C über Nacht getrocknet.
Beispiel 12
Es wurde wie in Beispiel 2 verfahren. 100 g der gewonnenen und getrockneten Multi- metalloxidmasse wurden in einem Drehkugelofen (Innenvolumen: 1 Liter) gemäß Figur 1 der DE-A 100 29 338 unter molekularem Stickstoffstrom (10 Nl/h) mit einer Aufheizrate von 2°C/min von Raumtemperatur auf 500°C erhitzt und dieser Temperatur unter Aufrechterhaltung des Stickstoffstromes während 6 h gehalten. Anschließend wurde unter Aufrechterhaltung des Stickstoffstromes durch sich selbst überlassen auf 25°C abgekühlt.
Beispiel 13
Wie Beispiel 5, jedoch wurde wie in Beispiel 12 thermisch nachbehandelt.
Beispiel 14
Wie Beispiel 6, jedoch wurde wie in Beispiel 12 thermisch nachbehandelt.
Beispiel 15
Wie Beispiel 7, jedoch wurde wie in Beispiel 12 thermisch nachbehandelt.
Beispiel 16
Wie Beispiel 10, jedoch wurde wie in Beispiel 12 thermisch nachbehandelt.
B) Herstellung von Schalenkatalysatoren aus den in A) hergestellten Multimetalloxidmassen Das jeweilige Aktivmassenpulver wurde in einer Retsch-Mühle (Zentrifugalmühle, Typ ZM 100, Fa. Retsch, DE) gemahlen (Korngröße < 0,12 mm). Jeweils 38 g des nach Mahlung vorliegenden Pulvers wurde auf 150 g kugelförmige Trägerkörper mit einem Durchmesser von 2,2 bis 3,2 mm (Rz = 45 μm, Trägermaterial = Steatit C 220 der Fa. Ceramtec, DE, Porengesamtvolumen des Trägers < 1 VoI.-% bezogen auf das Trägergesamtvolumen) aufgebracht. Dazu wurde der Träger in eine Dragiertrommel mit 2 I Innenvolumen (Neigungswinkel der Trommelmittelachse gegen die Horizontale = 30°) vorgelegt. Die Trommel wurde mit 25 Umdrehungen je Minute in Rotation versetzt. Über eine mit 300 Nl/h Druckluft betriebene Zerstäuberdüse wurden über 60 min. hinweg ca. 25 ml eines Gemisches aus Glycerin und Wasser (Gewichtsverhältnis Glycerin: Wasser = 1 :3) auf den Träger gesprüht. Die Düse war dabei derart installiert, dass der Sprühkegel die in der Trommel durch Mitnahmebleche an den obersten Punkt der geneigten Trommel beförderten Trägerkörper in der oberen Hälfte der Abrollstrecke benetzte. Das feinteilige Aktivmassenpulver wurde über eine Pulverschnecke in die Trommel eingetragen, wobei der Punkt der Pulverzugabe innerhalb der Abrollstrecke oder unterhalb des Sprühkegels lag. Durch die periodische Wiederholung von Benetzung und Pulveraufdosierung wurde der grundbeschichtete Trägerkörper in der darauffolgenden Periode selbst zum Trägerkörper.
Nach Abschluss der Beschichtung wurde der beschichtete Trägerkörper unter Luft während 16 h bei 150°C im Muffelofen getrocknet.
Es resultierten Schalenkatalysatoren SB1 bis SB16 sowie SVB1 und SVB2 mit jeweils 20 Gew.-% Aktivmassenanteil (B1 bedeutet dabei, dass das Multimetalloxid gemäß Beispiel 1 aus A) verwendet wurde; SVB1 bedeutet dabei entsprechend, dass das Multimetalloxid gemäß Vergleichsbeispiel 1 aus A) verwendet wurde).
C) Testung der in B) hergestellten Schalenkatalysatoren
Mit jeweils 35,0 g des jeweiligen Schalenkatalysators aus B) wurde ein aus Stahl gefertigter Rohrreaktor (Innendurchmesser: 8,5 mm, Länge: 140 cm, Wanddicke: 2,5 cm) beschickt (Katalysatorschüttlänge in allen Fällen ca. 53 cm). Vor der Katalysator- schüttung wurde eine Vorschüttung von 30 cm Steatitkugeln (Durchmesser: 2,2 bis 3,2 mm, Hersteller: Fa. Ceramtec, Steatit C 220 und nach der Katalysatorschüttung auf der Restlänge des Rohrreaktors eine Nachschüttung derselben Steatitkugeln angebracht.
Mittels elektrisch beheizter Heizmatten wurde von außen die Außentemperatur T des beschickten Reaktionsrohres auf der gesamten Länge auf. den gewünschten Wert eingestellt.
Dann wurde das Reaktionsrohr mit einem Reaktionsgasausgangsgemisch der molaren Zusammensetzung Propan: Luft: H2O = 1:15:14 beschickt (die Eintrittsseite war auf 'der Seite' er Nächst;} rüttung) Die Verweilzeit (bezogen auf das Katalysatorschüt- tungsvolumen) wurde auf 2,4 sec. eingestellt. Der Eingangsdruck betrug 2 bar absolut.
Die Reaktionsrohrbeschickung wurde zunächst jeweils bei der Außentemperatur T = 350°C des beschickten Reaktionsrohres über einen Zeitraum von 24 h eingefahren, bevor diese Außentemperatur auf ihren jeweiligen Wert eingestellt wurde.
Die nachfolgende Tabelle zeigt in Abhängigkeit vom verwendeten Schalenkatalysator und der eingestellten Außentemperatur T (°C) den resultierenden Propanumsatz (UPAN(mol-%)), die dabei resultierende Selektivität der Acrylsäurebildung (SAcs (mol- %)) und die Selektivität der Nebenproduktbildung an Propen (SPEN (mol-%)).
Tabelle
US Provisional Patent Application No. 60/577,929, eingereicht am 09.06.2004, ist in die vorliegende Anmeldung durch Literaturhinweis eingefügt. Im Hinblick auf die oben genannten Lehren sind zahlreiche Änderungen und Abweichungen von der vorliegenden Erfindung möglich. Man kann deshalb davon ausgehen, dass die Erfindung, im Rahmen der beigefügten Ansprüche, anders als hierin spezifisch beschrieben, ausgeführt werden kann.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer Multimetalloxidmasse M der allgemeinen Stöchiometrie I,
MθιVaM1 bM2 cM3 dM4 eOn (I) mit M1 = wenigstens eines der Elemente aus der Gruppe umfassend AI, Ga, In, Ge, Sn, Pb, As, Bi, Se, Te und Sb;
M2 = wenigstens eines der Elemente aus der Gruppe umfassend Sc, Y, La, Ti, Zr, Hf, Nb, Ta, Cr, W, Mn, Fe, Co, Ni, Zn, Cd und die Lanthaniden;
M3 = wenigstens eines der Elemente aus der Gruppe und umfassend Re, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au;
M4 = wenigstens eines der Elemente aus der Gruppe umfassend Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, NH4 und TI; a= 0,01 bis 1; b= > 0 bis 1; c= > 0 bis 1; d = > 0 bis 0,5; e = > 0 bis 0,5 und n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (I) bestimmt wird, bei dem man ein Gemisch G aus Quellen der elementaren Konstituenten der Multimetalloxidmasse M einer hydrothermalen Behandlung unterwirft und den sich dabei neu bildenden Feststoff abtrennt, dadurch gekennzeichnet, dass als Quellen der elementaren Konstituenten der Multimetalloxidmasse M ausschließlich Quellen aus der Gruppe umfassend Verbindungen, die nur aus den elementaren Konstituenten der Multimetalloxidmasse M und aus elementaren Konstituenten des Wassers bestehen, die elementaren Konstituenten der Multimetalloxidmasse M selbst in ihrer elementaren Form und elementare Konstituenten der Multimetalloxidmasse M enthaltende Ammoniumsalze mit der Maßgabe verwendet werden, dass das molare Verhältnis MV NH4/M0 aus im Gemisch G enthaltenem NH4 und im Gemisch G enthaltenem Mo < 0,5 beträgt und wenigstens eine Teilmenge der Quellen die in diesen Quellen enthaltenen 4 Zeichn. elementaren Konstituenten mit einer Oxidationszahl aufweist, die unterhalb der maximalen Oxidationszahl des jeweiligen elementaren Konstituenten liegt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass es bei einer Tempe- ratur von 120 bis 300°C durchgeführt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es bei einem Druck > 1 bar bis 500 bar durchgeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass wenigstens eine Teilmenge der Quellen des elementaren Konstituenten V Vanadin enthält, dessen Oxidationszahl +4, oder +3, oder +2, oder 0 beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Quelle des elementaren Konstituenten V wenigstens eine der Verbindungen aus der Gruppe umfassend VO2, V2O3, VO, V63, V3O7, V4O9 und elementares Vanadin mitverwendet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das molare Verhältnis MV < 0,3 beträgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das molare Verhältnis MV < 0,1 beträgt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass wenigstens 40 mol-% des im Gemisch G enthaltenen V als V enthalten ist, dessen Oxidationszahl < +5 beträgt.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass wenigstens 70 mol-% des im Gemisch G enthaltenen V als V enthalten ist, dessen Oxidationszahl < +5 beträgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die stöchiometrischen Koeffizienten a, b, c und d gleichzeitig im nachfolgenden Ras- ter liegen: a = 0,05 bis 0,5; b = 0,01 bis 0,5; c = 0,01 bis 0,5; d = 0,0005 bis 0,5 und e = > 0 bis 0,5.
11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die stöchiometrischen Koeffizienten a, b, c und d gleichzeitig im nachfolgenden Raster liegen: a = 0,1 bis 0,5; b = 0,1 bis 0,5; c = 0,1 bis 0,5; d = 0,001 bis 0,1 und e = > 0 bis 0,1.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass M1 wenigstens ein Element aus der Gruppe umfassend Sb, Bi, Se und Te ist.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass M2 wenigstens zu 50 mol-% seiner Gesamtmenge Nb und wenigstens eines der E- iemente aus der Gruppe umfassend Ti, Zr, Cr, Ta, W, Fe, Co, Ni und Zn ist.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass M3 wenigstens ein Element aus der Gruppe umfassend Re, Pd und Pt ist.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der stöchiometrische Koeffizient e = 0 ist.
16. Verfahren zur Herstellung einer Multimetalloxidmasse M der allgemeinen Stöchiometrie I aus Anspruch 1 , dadurch gekennzeichnet, dass man zunächst ein Ver- fahren nach einem der Ansprüche 1 bis 15 durchführt, den sich dabei neu bildenden Feststoff abtrennt und thermisch nachbehandelt sowie anschließend gegebenenfalls mit einer organischen Säure oder deren wässriger Lösung, oder mit einer anorganischen Säure oder deren wässriger Lösung, oder mit einem Alkohol oder mit Wasserstoffperoxid oder dessen wässriger Lösung wäscht.
17. Verfahren zur Herstellung einer Multimetalloxidmasse M der aligemeinen Stöchiometrie I aus Anspruch 1 , dadurch gekennzeichnet, dass man zunächst ein Verfahren nach einem der Ansprüche 1 bis 15 durchführt, den sich dabei neu bildenden Feststoff abtrennt und daran anschließend mit einer organischen Säure oder deren wässriger Lösung, oder mit einer anorganischen Säure oder deren wässriger Lösung, oder mit einem Alkohol oder mit Wasserstoffperoxid oder dessen wässriger Lösung wäscht.
18. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass es unter Inertgasatmosphäre durchgeführt wird.
19. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das thermische Nachbehandeln und das Waschen unter Inertgasatmosphäre durchgeführt wird.
20. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass, bezogen auf die Summe aus Wasser und den Quellen der elementaren Konstituenten der Multimetalloxidmasse M der Gewichtsanteil der letzteren bei der hydrothermalen Behandlung 5 bis 50 Gew.-% beträgt.
EP05745626A 2004-06-09 2005-06-03 Verfahren zur herstellung einer multimetalloxidmasse Withdrawn EP1755779A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US57792904P 2004-06-09 2004-06-09
DE102004027999A DE102004027999A1 (de) 2004-06-09 2004-06-09 Verfahren zur Herstellung einer Multimetalloxidmasse
PCT/EP2005/005962 WO2005120702A1 (de) 2004-06-09 2005-06-03 Verfahren zur herstellung einer multimetalloxidmasse

Publications (1)

Publication Number Publication Date
EP1755779A1 true EP1755779A1 (de) 2007-02-28

Family

ID=34968651

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05745626A Withdrawn EP1755779A1 (de) 2004-06-09 2005-06-03 Verfahren zur herstellung einer multimetalloxidmasse

Country Status (3)

Country Link
EP (1) EP1755779A1 (de)
JP (1) JP5517407B2 (de)
WO (1) WO2005120702A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727506B2 (ja) * 2006-06-07 2011-07-20 旭化成ケミカルズ株式会社 ブロンズ構造を有する酸化物の製造方法
EP2179793A1 (de) 2008-10-21 2010-04-28 Sued-Chemie AG Mischoxidkatalysator enthaltend Phosphor
EP2179790A1 (de) 2008-10-21 2010-04-28 Sued-Chemie AG Mischoxidkatalysator enthaltend Bismut
CN101862661B (zh) * 2010-06-04 2012-01-04 浙江大学 一种制备v,s共掺的二氧化钛光催化剂的方法
DE102012207811A1 (de) * 2012-05-10 2012-07-12 Basf Se Verfahren der heterogen katalysierten Gasphasenpartialoxidation von (Meth)acrolein zu (Meth)acrylsäure
US9409156B2 (en) * 2012-10-19 2016-08-09 Instituto Mexicano Del Petroleo Oxidative dehydrogenation of ethane to ethylene and preparation of multimetallic mixed oxide catalyst for such process
DE102013202048A1 (de) 2013-02-07 2013-04-18 Basf Se Verfahren zur Herstellung einer katalytisch aktiven Masse, die ein Gemisch aus einem die Elemente Mo und V enthaltenden Multielementoxid und wenigstens einem Oxid des Molybdäns ist
EP3219386A1 (de) * 2016-03-14 2017-09-20 Evonik Degussa GmbH Verfahren zur hydrothermalen herstellung von molybdän-bismut-cobalt-eisen-mischoxidkatalysatoren
CA2936448C (en) * 2016-07-19 2024-02-20 Nova Chemicals Corporation Controlled pressure hydrothermal treatment of odh catalyst
DE102017000865A1 (de) 2017-01-31 2018-08-02 Clariant Produkte (Deutschland) Gmbh Synthese eines MoVNbTe-Katalysators mit erhöhter spezifischer Oberfläche und höherer Aktivität für die oxidative Dehyxdrierung von Ethan zu Ethylen
DE102017000862A1 (de) 2017-01-31 2018-08-02 Clariant Produkte (Deutschland) Gmbh Synthese eines MoVNbTe-Katalysators mit reduziertem Gehalt an Niob und Tellur und höherer Aktivität für die oxidative Dehydrierung von Ethan
DE102017121709A1 (de) 2017-09-19 2019-03-21 Clariant International Ltd Synthese eines MoVNbTe-Schalenkatalysators für die oxidative Dehydrierung von Ethan zu Ehtylen
WO2020223048A1 (en) 2019-05-02 2020-11-05 Dow Global Technologies Llc Process for aldehyde byproduct reduction in acrylic acid production using highly active and selective catalysts
JP7375638B2 (ja) * 2020-03-18 2023-11-08 三菱ケミカル株式会社 不飽和カルボン酸合成用触媒の製造方法
JP7375639B2 (ja) * 2020-03-18 2023-11-08 三菱ケミカル株式会社 不飽和カルボン酸合成用触媒の製造方法
JP2023522261A (ja) 2020-04-21 2023-05-29 ベーアーエスエフ・エスエー 元素Mo、W、V及びCuを含む触媒活性多元素酸化物を生成する方法
US20240091756A1 (en) 2020-10-29 2024-03-21 Basf Se Method for producing a core-shell catalyst
WO2023028434A1 (en) * 2021-08-23 2023-03-02 Dow Global Technologies Llc Catalyst and process for the dehydrogenation of alkanes to olefins
WO2024120861A1 (de) 2022-12-07 2024-06-13 Basf Se Verfahren zur herstellung eines die elemente mo, w, v, cu und sb enthaltenden katalytisch aktiven multielementoxids

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3500682B2 (ja) * 1994-02-23 2004-02-23 三菱化学株式会社 アルカンよりニトリルを製造するための触媒
DE19542755A1 (de) * 1995-11-16 1997-05-22 Basf Ag Multimetalloxide
JP4212154B2 (ja) * 1997-12-24 2009-01-21 旭化成ケミカルズ株式会社 触媒およびこれを用いた不飽和ニトリルの製造法
DE10029338A1 (de) * 2000-06-20 2002-01-03 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenoxidation
DE10046672A1 (de) * 2000-09-20 2002-03-28 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenoxidation von Propan
DE10119933A1 (de) * 2001-04-23 2002-10-24 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenoxidation von Propan
BR0112557B1 (pt) * 2000-07-18 2012-01-24 processo para a preparação de ácido acrìlico, e, uso de um material de óxido multimetálico.
US6642173B2 (en) * 2001-04-25 2003-11-04 Rohm And Haas Company Catalyst
JP4002437B2 (ja) * 2001-12-28 2007-10-31 株式会社日本触媒 排ガス処理用触媒、および排ガス処理方法
DE10261186A1 (de) * 2002-12-20 2004-07-08 Basf Ag Verfahren der heterogen katalysierten Gasphasenpartialoxidation von Acrolein zu Acrylsäure
US7038082B2 (en) * 2002-10-17 2006-05-02 Basf Aktiengesellschaft Preparation of a multimetal oxide material
JP4155087B2 (ja) * 2003-04-16 2008-09-24 東亞合成株式会社 金属酸化物触媒の製造方法
DE10321398A1 (de) * 2003-05-12 2004-05-27 Basf Ag Mo und V enthaltende Multimetalloxidmassen
FR2855516B1 (fr) * 2003-05-27 2005-07-08 Atofina Oxydation du propane en acide acrylique par utilisation de catalyseurs en melange de phases cristallines
US20050054869A1 (en) * 2003-06-06 2005-03-10 Lugmair Claus G. Mixed metal oxide catalysts for propane and isobutane oxidation and ammoxidation, and methods of preparing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005120702A1 *

Also Published As

Publication number Publication date
JP2008501515A (ja) 2008-01-24
JP5517407B2 (ja) 2014-06-11
WO2005120702A1 (de) 2005-12-22

Similar Documents

Publication Publication Date Title
EP1558569B1 (de) Multimetalloxidmassen
EP1755779A1 (de) Verfahren zur herstellung einer multimetalloxidmasse
EP1301457B1 (de) Verfahren zur herstellung von acrylsäure durch heterogen katalysierte gasphasenoxidation von propan
EP1387823B1 (de) Verfahren zur herstellung von acrylsäure durch heterogen katalysierte partialoxidation von propan
EP1335793B1 (de) Katalysator bestehend aus einem trägerkörper und einer auf der oberfläche des trägerkörpers aufgebrachten katalytisch aktiven oxidmasse
EP2134465B1 (de) Verfahren zur herstellung eines katalysators bestehend aus einem trägerkörper und einer auf der oberfläche des trägerkörpers aufgebrachten katalytisch aktiven masse
WO2002083615A1 (de) Verfahren zur herstellung von acrylsäure durch heterogen katalysierte gasphasenoxidation von propen mit molekularem sauerstoff in einer reaktionszone
WO2013167405A1 (de) Verfahren der heterogen katalysierten gasphasenpartialoxidation von (meth)acrolein zu (meth)acrylsäure
DE112009000404T5 (de) Phasen-angereicherter MoVTeNb-Mischoxidkatalysator und Verfahren zu seiner Herstellung
EP3576875A1 (de) SYNTHESE EINES MoVTeNb-KATALYSATORS AUS PREISGUENSTIGEN METALLOXIDEN
WO2004031114A1 (de) Verfahren der heterogen katalysierten gasphasenpartialoxidation von acrolein zu acrylsäure
EP1137596A1 (de) Silber- und vanadiumoxid enthaltendes multimetalloxid und dessen verwendung
EP3684505A1 (de) Synthese eines movnbte-schalenkatalysators fuer die oxidative dehydrierung von ethan zu ethylen
DE10248584A1 (de) Multimetalloxidmassen
WO2010034480A2 (de) Katalysator zur oxidation von methanol zu formaldehyd
DE10119933A1 (de) Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenoxidation von Propan
WO2004099081A1 (de) In reiner i-phase vorliegende, mo, v und alkalimetall enthaltende multimetalloxidmassen
DE102004027999A1 (de) Verfahren zur Herstellung einer Multimetalloxidmasse
DE10254279A1 (de) Multimetalloxidmassen
DE10254278A1 (de) Verfahren zur Herstellung einer Multimetalloxidmasse
DE112004000501B3 (de) Mo und V enthaltende Multimetalloxidmassen
DE10261186A1 (de) Verfahren der heterogen katalysierten Gasphasenpartialoxidation von Acrolein zu Acrylsäure
DE10344265A1 (de) Verfahren zur Herstellung von (Meth)acrylsäure
DE10359027A1 (de) Verfahren zur Herstellung einer Multimetalloxidmasse
DE10338529A1 (de) Verfahren zur Herstellung von (Meth)acrylsäure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20090511

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180103