EP1752549B1 - Process for manufacturing grain-oriented magnetic steel spring - Google Patents
Process for manufacturing grain-oriented magnetic steel spring Download PDFInfo
- Publication number
- EP1752549B1 EP1752549B1 EP05016835.0A EP05016835A EP1752549B1 EP 1752549 B1 EP1752549 B1 EP 1752549B1 EP 05016835 A EP05016835 A EP 05016835A EP 1752549 B1 EP1752549 B1 EP 1752549B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- hot
- strand
- annealing
- anyone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 26
- 229910000831 Steel Inorganic materials 0.000 title claims description 25
- 239000010959 steel Substances 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 230000008569 process Effects 0.000 title claims description 7
- 238000005098 hot rolling Methods 0.000 claims description 34
- 238000000137 annealing Methods 0.000 claims description 22
- 238000005266 casting Methods 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 19
- 238000009847 ladle furnace Methods 0.000 claims description 16
- 238000005096 rolling process Methods 0.000 claims description 16
- 230000009467 reduction Effects 0.000 claims description 15
- 238000009749 continuous casting Methods 0.000 claims description 14
- 238000011282 treatment Methods 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 238000005097 cold rolling Methods 0.000 claims description 9
- 238000005261 decarburization Methods 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052711 selenium Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 238000001953 recrystallisation Methods 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims 6
- 229910052751 metal Inorganic materials 0.000 claims 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 2
- 229910021529 ammonia Inorganic materials 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000011221 initial treatment Methods 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 13
- 239000000155 melt Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 206010003402 Arthropod sting Diseases 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 6
- 239000002893 slag Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910000976 Electrical steel Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 230000003750 conditioning effect Effects 0.000 description 3
- 230000001934 delay Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000161 steel melt Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000283153 Cetacea Species 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- RRZKHZBOZDIQJG-UHFFFAOYSA-N azane;manganese Chemical compound N.[Mn] RRZKHZBOZDIQJG-UHFFFAOYSA-N 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1261—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
Definitions
- the invention relates to a process for the production of high-quality grain-oriented electrical steel, in particular for the production of so-called HGO material ( Highly G rain O riented - material) based on thin slab continuous casting.
- HGO material Highly G rain O riented - material
- thin-slab continuous casting plants are particularly suitable for the production of electrical steel sheets due to the favorable temperature control made possible by the in-line processing of thin slabs.
- JP 2002212639 A describes a process for the production of grain-oriented electrical steel in which from a melt containing (in mass%) in addition to 2.5 - 4.0% Si and 0.02 - 0.20% Mn as essential inhibitor components 0.0010 - 0.0050% C, 0.002 - 0.010% Al and contents of S and Se and other optional alloying constituents, such as Cu, Sn, Sb, P, Cr, Ni, Mo and Cd, remainder iron and unavoidable impurities, having thin slabs with a thickness of 30 mm to 140 mm are produced.
- the thin slabs are annealed before hot rolling at a temperature of 1000 ° C to 1250 ° C in order to achieve optimum magnetic properties on the finished electrical steel sheet.
- the known method provides that the 1.0 mm to 4.5 mm thick hot strip after hot rolling at temperatures of 950 ° C to 1150 ° C for 30 sec to 600 sec is annealed, before it at degrees of deformation of 50% to 85% is rolled to cold strip.
- CGO material C onventional G rain O Riented - material
- JP 56-158816 A JP 56-158816 A known.
- the hot rolling of these thin slabs is started before their temperature drops below 700 ° C.
- the thin slabs are rolled to a hot strip with a thickness of 1.5 - 3 mm.
- the thin slabs are rolled to hot strip with a thickness of 1.5 - 3.5 mm.
- This hot strip thickness has the disadvantage here that the commercial for grain-oriented electrical sheet standard end thicknesses below 0.35 mm only by Kaltwalzgrade above 76% in single-stage cold rolling or conventional multi-stage cold rolling can be produced with intermediate annealing, which is disadvantageous in this operation that the high degree of cold work is not matched to the relatively weak inhibition by MnS and MnSe. This leads to unstable and unsatisfactory magnetic properties of the finished product.
- a complex and expensive multi-stage cold rolling process with intermediate annealing must be accepted.
- the hot rolling parameters are chosen so that the material always remains sufficiently ductile.
- the ductility is greatest when the strand is cooled after solidification up to about 800 ° C, then only relatively briefly to equilibrium temperature, z. B. 1150 ° C, dwells while being thoroughly heated through.
- An optimal hot rollability of such a material is therefore given when the first forming pass takes place at temperatures below 1150 ° C and with a degree of deformation of at least 20% and the rolling stock from an intermediate thickness of 40 mm to 8 mm by means of high-pressure inter-frame cooling devices within of not more than two successive Umststichen is brought to rolling temperatures of below 1000 ° C. This avoids that the rolling stock is converted by 1000 ° C in the temperature range critical for ductility.
- the hot strip thus obtained is then cold rolled one or more stages with recrystallizing intermediate annealing to a final thickness in the range of 0.15 to 0.50 mm.
- This cold strip is finally recrystallized and decarburizing annealed, provided with a predominantly Mg0 containing Glühseparator and then finally annealed to the expression of a Gosstextur.
- the tape is coated with electrical insulation and annealed stress-free.
- the ladle furnace In this unit, the molten steel for the thin slab caster is provided and set by heating the desired dispensing temperature for potting. In addition, in the ladle furnace, the final adjustment of the chemical composition of the steel in question can be made by adding alloying elements. In addition, the slag is usually conditioned in the ladle furnace. In the processing of aluminum-killed steels, additional small amounts of Ca are added to the molten steel in the ladle furnace in order to ensure the castability of these steels.
- the invention therefore an object of the invention to provide a method that allows the economical production of high-quality grain-oriented electrical steel sheet (especially HGO) using thin slab continuous casting plants.
- the predetermined by the invention sequence of operations is tuned so that, using conventional aggregates, an electrical sheet can be produced which has optimized electro-magnetic properties.
- a molten steel is melted with known composition in the first step.
- This melt is then treated by secondary metallurgy.
- This treatment is preferably first carried out in a vacuum plant to adjust the chemical composition of the steel to the required narrow analytical margins and to achieve low hydrogen contents of at most 10 ppm in order to minimize the risk of strand breakage during casting of molten steel.
- the use of a ladle furnace for slag conditioning would also first be followed by treatment in a vacuum system for adjusting the chemical composition of the molten steel within narrow analytical limits.
- this combination has the disadvantage that, in the case of casting delays, the temperature of the melt drops to such an extent that the molten steel can no longer be cast.
- the invention further, only use the vacuum system. On the one hand, however, this involves the risk that, in the case of casting delays, the temperature of the melt drops to such an extent that the molten steel can no longer be cast. On the other hand, there is a risk that the immersion spouts clog in the sequence and thus the sequence must be canceled.
- both systems are thus used in combination with the availability of ladle furnace and vacuum system depending on the respective melting metallurgical and casting requirements.
- a strand is then poured, which preferably has a thickness of 25 mm to 150 mm.
- the molten steel is poured in a continuous casting mold, which is equipped with an electromagnetic brake, such errors can be largely avoided.
- a brake causes a calming and homogenization of the flow in the mold, especially in the bathroom mirror area by generating a magnetic field, which reduces in interaction with the pouring jets entering the mold their speed due to the effect of the so-called "Lorenzkraft".
- the formation of a microstructure of the cast steel strand which is favorable with regard to the electromagnetic properties can also be assisted by casting at a low superheating temperature.
- the latter are preferably at most 25 K above the liquidus temperature of the cast melt. If this advantageous variant of the invention is taken into account, a freezing of the molten steel cast at low superheat at the bath level and hence casting disturbances up to the casting break can likewise be avoided by using an electromagnetic brake on the casting mold.
- the force exerted by the electromagnetic brake directs the hot melt to the bath level and there causes a temperature increase sufficient to ensure a smooth casting process.
- the homogeneous and fine-grained solidification structure of the cast strand achieved in this way has a favorable effect on the magnetic properties of the grain-oriented electrical steel produced according to the invention.
- the aim is to avoid the formation of nitridic precipitates prior to hot rolling and during hot rolling as much as possible in order to make extensive use of the possibility of a controlled production of such precipitates during the cooling of the hot strip.
- it is provided according to an advantageous embodiment of the invention to make an inline thickness reduction of cast from the melt, but still core liquid strand.
- LCR Liquid Core Reduction
- SR Soft Reduction
- the strand thickness is reduced at the core liquid inside the strand just below the mold.
- LCR is used in the prior art in thin slab continuous casters primarily to achieve lower hot strip thicknesses, especially for higher strength steels.
- the reduction in the number of stitches and the rolling forces in the rolling mills of the hot strip mill can be reduced with the result that the work roll wear of the rolling mills and the slumpiness of the hot strip can be reduced and the strip run can be improved.
- the thickness reduction achieved by LCR according to the invention is preferably in the range of 5 mm to 30 mm.
- SR Under SR is meant the targeted reduction in thickness of the strand in the swamp tip near Enderstarrung.
- the SR aims to reduce mitigation and core porosity. This method has hitherto been used predominantly in billet and slab continuous casting plants.
- the usually emerging from the casting mold strand is bent at lower points and guided in a horizontal direction.
- the strand cast from the melt is bent and straightened at a temperature of 700 ° C. to 1000 ° C. (preferably 850 to 950 ° C.), cracks may be formed on the surface of the thin slabs separated from the strand avoided, which may otherwise occur, in particular, as a result of edge cracks of the strand.
- the steel used according to the invention has a good ductility at the strand surface or in the edge region, so that it can follow well the deformations occurring during bending and straightening.
- the cast strand thin slabs are divided in a conventional manner, which are then heated in an oven to the appropriate hot rolling start temperature and then fed to hot rolling.
- the temperature at which the thin slabs enter the furnace is preferably above 650 ° C.
- the residence time in the oven should be less than 60 minutes in order to avoid adhesive scale.
- An aspect of the invention which is essential in view of the desired production of HGO material is that the hot rolling is carried out following the first forming pass in the two-phase region ( ⁇ / ⁇ ). Also, this measure has the goal of reducing the formation of nitridic precipitates in the course of hot rolling as far as possible in order to be able to control these precipitates specifically via the cooling conditions on the outlet roller table behind the last mill stand of the hot strip mill.
- hot rolled at temperatures where mixed in the structure of the hot strip austenitic and ferritic shares are above approximately 800 ° C., in particular in the range from 850 ° C. to 1150 ° C.
- the AIN In the ⁇ phase, the AIN is kept in solution at these temperatures.
- Another positive aspect of hot rolling in the two-phase mixed area is the grain refining effect.
- the use of high reduction rates (degrees of deformation) in the first two stands causes the required conversion of the coarse-grained solidification microstructure into a fine rolling structure, which is the prerequisite for good magnetic properties of the final product to be produced. Accordingly, the reduction should be in last frame to a maximum of 30%, preferably less than 20%, are limited, and it is also favorable for an optimal in terms of the desired properties warm rolling result, if the reduction in the penultimate framework of the finishing mill is less than 25%.
- a pass plan tested in practice on a seven-stand finish hot rolling mill which has led to optimum properties of the finished electrical sheet, provides that with a pre-strip thickness of 63 mm and a hot strip thickness of 2 mm, the degree of deformation achieved on the first stand is 62%, that on the second stand achieved 54%, the third scaffold 47%, the fourth scaffold 35%, the fifth scaffold 28%, the sixth scaffold 17% and the seventh scaffold 11%.
- an early onset of cooling of the hot strip behind the last rolling stand of the finishing train is advantageous. According to a practical embodiment of the invention, it is therefore intended to start within a maximum of five seconds after leaving the last mill stand with the water cooling.
- the aim is to have the shortest possible break times, for example, of one second and less.
- the cooling of the hot strip can also be controlled so that it is cooled in two stages with water. For this purpose, first after the last rolling mill to a temperature close to the alpha / gamma transformation temperature can be cooled to then, preferably after to equalize the temperature over the tape thickness inserted cooling pause of one to five seconds, a further cooling by water until to perform the required reel temperature.
- the first phase of the cooling can take place as a so-called "compact cooling", in which the hot strip is cooled rapidly over a short conveyor line with high intensity and cooling rate (at least 200 K / s) while discharging large amounts of water, while in the second phase of the Water cooling is cooled over a longer conveyor line with reduced intensity in order to achieve the most uniform possible cooling over the belt cross-section.
- the reel temperature should preferably be in the temperature range of 500-780 ° C. Overlying temperatures would on the one hand lead to undesirably coarse precipitates and on the other hand worsen the treatability.
- a so-called short distance reel is used, which is located directly after the compact cooling zone.
- the inventive method in the production of the hot strip is preferably carried out so that the hot strip obtained sulfide and / or nitridic precipitates having a mean particle diameter less than 150 nm and a mean density of at least 0.05 .mu.m -2 is reached.
- This type of hot strip has optimal conditions for the effective control of grain growth during the subsequent process steps.
- the hot strip thus produced can optionally be annealed after reeling or before cold rolling.
- the strip obtained is annealed recrystallizing and decarburizing.
- the cold rolled strip may be annealed during or after decarburization annealing in an NH 3 -containing atmosphere.
- N-containing adhesive protection additives such as manganese nitride or chromium nitride to the cold strip after the decarburization annealing with the Indiffusion of the nitrogen into the strip during the heating phase of the final annealing until secondary recrystallization.
- the cooling was identical for both hot rolling variants with the use of water spraying within 7 s after leaving the last stand and a coiler temperature of 650 ° C.
- samples for metallographic examinations were also produced by hot rolling after the second pass was stopped by rapid cooling.
- Hot rolling conditions Decarburizing variant magnetic result variant ⁇ 2 [%] ⁇ 3 [%] ⁇ 6 [%] ⁇ 7 [%] J 800 [T] P 1.7 [W / kg] comment "WW1" 25 20 14 12 E1 (without embroidery) 1.89 1.10 inventively “WW1” E2 (with embroidery) 1.93 0.98 “WW2" 20 15 8th 7 E1 (without embroidery) 1.50 1.90 not according to the invention "WW2" E2 (with embroidery) 1.74 1.68
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Metal Rolling (AREA)
- Continuous Casting (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von hochwertigem kornorientierten Elektroband, insbesondere zur Herstellung von so genanntem HGO-Material (Highly Grain Oriented - Material) auf Basis von Dünnbrammen-Strangguss.The invention relates to a process for the production of high-quality grain-oriented electrical steel, in particular for the production of so-called HGO material ( Highly G rain O riented - material) based on thin slab continuous casting.
Grundsätzlich ist es bekannt, dass sich Dünnbrammen-Stranggießanlagen aufgrund der durch die Inline-Verarbeitung von Dünnbrammen ermöglichten günstigen Temperaturführung in besonderer Weise für die Erzeugung von Elektroblechen eignen. So ist in der
Ein anderes Verfahren zur Herstellung von kornorientiertem Elektroblech, das allerdings nur die Herstellung von Standardgüten, so genanntem CGO-Material (Conventional Grain Oriented - Material), betrifft, ist aus der
Weitere Möglichkeiten der Erzeugung von kornorientiertem Elektroblech mittels einer Dünnbrammen-Stranggussanlage sind in der
Dünnbrammen durchlaufen dann einen in Linie stehenden Ausgleichsofen und werden dabei auf eine Temperatur <= 1170 °C erwärmt. Die derart erwärmten Dünnbrammen werden anschließend in einer mehrgerüstigen Warmwalzstraße kontinuierlich zu Warmband mit einer Dicke < = 3,0 mm gewalzt, wobei der erste Umformstich des Warmwalzens bei einer Temperatur im Walzgut von bis zu 1150 °C mit einer Dickenverminderung von mindestens 20 % durchgeführt wird.Thin slabs then pass through an equilibration furnace in line and are heated to a temperature <= 1170 ° C. The thus heated thin slabs are then rolled in a multi-stand hot rolling mill continuously to hot strip with a thickness <= 3.0 mm, the first hot rolling forming pass is carried out at a temperature in the rolling stock of up to 1150 ° C with a reduction in thickness of at least 20% ,
Um die sich aus der Verwendung von Dünnbrammen als Vorprodukt ergebenden Vorteile des Gieß-Walz-Prozesses für die Erzeugung von kornorientiertem Elektroblech nutzen zu können, müssen gemäß den in der
Gemäß der
Trotz der im Stand der Technik dokumentierten umfangreichen Vorschläge für eine praktische Nutzung ist der Einsatz von Gießanlagen, bei denen typischerweise ein Strang mit einer Dicke von in der Regel 40 mm bis 100 mm gegossen und anschließend zu Dünnbrammen zerteilt wird, für die Herstellung von kornorientiertem Elektroblech aufgrund der besonderen Anforderungen, die sich bei der Erzeugung von Elektroblechen an die Schmelzenzusammensetzung und die Prozessführung ergeben, die Ausnahme geblieben.Despite the extensive proposals for practical use documented in the prior art, the use of casting machines, in which a strand is typically cast with a thickness of usually 40 mm to 100 mm and then cut into thin slabs, for the production of grain-oriented electrical steel The exception has remained due to the special requirements of the production of electrical steel sheets to the melt composition and the process control.
Praktische Untersuchungen zeigen, dass eine zentrale Bedeutung beim Einsatz von Dünnbrammen-Stranggussanlagen dem Pfannenofen zukommt. In diesem Aggregat wird die Stahlschmelze für die Dünnbrammen-Stranggießanlage bereitgestellt und durch Beheizen die gewünschte Abgabetemperatur für das Vergießen eingestellt. Zudem kann im Pfannenofen die Endeinstellung der chemischen Zusammensetzung des betreffenden Stahls durch Zugabe von Legierungselementen vorgenommen werden. Darüber hinaus wird im Pfannenofen üblicherweise die Schlacke konditioniert. Bei der Verarbeitung von aluminiumberuhigten Stählen wird im Pfannenofen zusätzlich Ca in geringen Mengen in die Stahlschmelze gegeben, um die Vergießbarkeit dieser Stähle sicherzustellen.Practical investigations show that central importance in the use of thin slab continuous casting plants belongs to the ladle furnace. In this unit, the molten steel for the thin slab caster is provided and set by heating the desired dispensing temperature for potting. In addition, in the ladle furnace, the final adjustment of the chemical composition of the steel in question can be made by adding alloying elements. In addition, the slag is usually conditioned in the ladle furnace. In the processing of aluminum-killed steels, additional small amounts of Ca are added to the molten steel in the ladle furnace in order to ensure the castability of these steels.
Bei den für kornorientiertes Elektroblech benötigten Silizium-Aluminium-beruhigten Stählen ist zur Sicherstellung der Vergießbarkeit zwar keine Ca-Zugabe erforderlich. Allerdings muss eine Reduktion der Sauerstoffaktivität in der Pfannenschlacke vorgenommen werden.In the case of the silicon-aluminum-tempered steels required for grain-oriented electrical steel, no Ca addition is necessary to ensure castability. However, a reduction of the oxygen activity in the ladle slag must be made.
Die Herstellung von kornorientiertem Elektroblech erfordert zudem eine hochgenaue Einstellung der chemischen Soll-Analyse, d.h. die Einstellung der Gehalte der einzelnen Elemente muss sehr genau aufeinander abgestimmt werden, so dass je nach dem gewählten absoluten Gehalt, die Grenzen einiger Elemente sehr eng werden. Hier stößt die Behandlung im Pfannenofen an ihre Grenzen.The production of grain-oriented electrical steel also requires a highly accurate setting of the chemical target analysis, ie the adjustment of the contents of the individual elements must be very closely matched, so that depending on the selected absolute content, the limits of some elements are very narrow. Here the treatment in the ladle furnace reaches its limits.
Wesentlich bessere Bedingungen lassen sich diesbezüglich durch Einsatz einer Vakuumanlage erreichen. Im Gegensatz zu einer Pfannenstandentgasung ist eine RH- oder DH-Vakuumanlage jedoch für die Schlackenkonditionierung nicht geeignet. Diese ist notwendig, um die Vergießbarkeit von für die Erzeugung von kornorientiertem Elektroblech eingesetzten Stahlschmelzen zu gewährleisten.Much better conditions can be achieved in this regard by using a vacuum system. However, in contrast to ladle degassing, an RH or DH vacuum system is not suitable for slag conditioning. This is necessary in order to ensure the castability of steel melts used for the production of grain-oriented electrical steel sheet.
Aus der
Ausgehend von dem voranstehend erläuterten Stand der Technik lag der Erfindung daher die Aufgabe zu Grunde, ein Verfahren zu schaffen, das die wirtschaftliche Herstellung von hochwertigem kornorientierten Elektroblech (insbesondere HGO) unter Einsatz von Dünnbrammen-Stranggussanlagen ermöglicht.Based on the above-described prior art, the invention therefore an object of the invention to provide a method that allows the economical production of high-quality grain-oriented electrical steel sheet (especially HGO) using thin slab continuous casting plants.
Diese Aufgabe ist durch ein Verfahren zur Erzeugung von kornorientiertem Elektroband gelöst worden, das erfindungsgemäß folgende Arbeitsschritte umfasst:
- a) Erschmelzen eines Stahls, der neben Eisen und unvermeidbaren Verunreinigungen (in Masse-%)
Si: 2,5 - 4,0 %,
C: 0,02 - 0,10 %,
Al: 0,01 - 0,065 %
N: 0,003 - 0,015 %
wahlweise- bis zu 0,30 % Mn,
- bis zu 0,05 % Ti,
- bis zu 0,3 % P,
- eines oder mehrere Elemente aus der Gruppe S, Se in Gehalten, deren Summe höchstens 0,04 % beträgt,
- eines oder mehrere Elemente aus der Gruppe As, Sn, Sb, Te, Bi mit Gehalten von jeweils bis zu 0,2 %,
- eines oder mehrere Elemente aus der Gruppe Cu, Ni, Cr, Co, Mo mit Gehalten von jeweils bis zu 0, 5 %,
- eines oder mehrere Elemente aus der Gruppe B, V, Nb mit Gehalten von jeweils bis zu 0,012 %,
- b) sekundärmetallurgisches Behandeln der Schmelze in einem Pfannenofen und einer Vakuumanlage,
- c) kontinuierliches Abgießen der Schmelze zu einem Strang,
- d) Zerteilen des Strangs in Dünnbrammen,
- e) Aufheizen der Dünnbrammen in einem in Linie stehenden Ofen auf eine Temperatur zwischen 1050 °C und 1300 °C,
- wobei die Verweilzeit im Ofen höchstens 60 min beträgt,
- f) kontinuierliches Warmwalzen der Dünnbrammen in einer in Linie stehenden mehrgerüstigen Warmwalzstraße zu einem Warmband mit einer Dicke von 0,5 - 4,0 mm,
- wobei während dieses Warmwalzens der erste Umformstich bei einer Temperatur von 900 - 1200 °C mit einem Umformgrad von mehr als 40 % durchgeführt wird,
- wobei zumindest die anschließenden 2 Umformstiche des Warmwalzens im Zweiphasenmischgebiet (α-γ) gewalzt werden
- wobei die Stichabnahme im letzten Umformstich des Warmwalzens höchstens 30 % beträgt,
- g) Abkühlen des Warmbands,
- h) Haspeln des Warmbands zu einem Coil,
- i) wahlweise: Glühen des Warmbands nach dem Haspeln bzw. vor dem Kaltwalzen
- j) Kaltwalzen des Warmbandes zu einem Kaltband mit einer Enddicke von 0,15 mm bis 0,50 mm
- k) rekristallisierendes und entkohlendes Glühen des Kaltbands, optional auch mit einem Nitrieren während oder nach der Entkohlung,
- l) Schlussglühen des rekristallisierend und entkohlend geglühten Kaltbands zur Ausprägung einer Gosstextur,
- m) wahlweise: Beschichten des schlussgeglühten Kaltbands mit einer elektrischen Isolierung und anschließendes Spannungsfreiglühen des beschichteten Kaltbands.
- a) Melting of a steel, in addition to iron and unavoidable impurities (in mass%)
Si: 2.5-4.0%,
C: 0.02-0.10%,
Al: 0.01-0.065%
N: 0.003-0.015%
optionally- up to 0.30% Mn,
- up to 0.05% Ti,
- up to 0.3% P,
- one or more elements of the group S, Se in contents of which the sum is not more than 0.04%,
- one or more elements from the group As, Sn, Sb, Te, Bi with contents of up to 0.2% each,
- one or more elements from the group Cu, Ni, Cr, Co, Mo with contents of in each case up to 0, 5%,
- one or more elements from group B, V, Nb, each containing up to 0.012%,
- b) secondary metallurgical treatment of the melt in a ladle furnace and a vacuum plant,
- c) continuous pouring of the melt into a strand,
- d) dividing the strand into thin slabs,
- e) heating the thin slabs in a furnace in line to a temperature between 1050 ° C and 1300 ° C,
- the residence time in the furnace is at most 60 minutes,
- (f) continuous hot rolling of the thin slabs in a multi-stand hot bar mill in-line to a hot strip of thickness 0.5 - 4.0 mm;
- wherein during this hot rolling the first forming pass is carried out at a temperature of 900 - 1200 ° C with a degree of deformation of more than 40%,
- wherein at least the subsequent 2 forming passes of the hot rolling are rolled in the two-phase mixing region (α-γ)
- the number of passes in the last forming pass of hot rolling is at most 30%,
- g) cooling the hot strip,
- h) coiling the hot strip into a coil,
- i) optionally: annealing of the hot strip after reeling or before cold rolling
- j) cold rolling the hot strip into a cold strip having a final thickness of 0.15 mm to 0.50 mm
- k) recrystallizing and decarburizing annealing of the cold strip, optionally also with nitriding during or after decarburization,
- l) final annealing of the recrystallizing and decarburization annealed cold strip to form a Gosstextur,
- m) optionally: coating the final annealed cold-rolled strip with electrical insulation and then stress-relieving the coated cold-rolled strip.
Die durch die Erfindung vorgegebene Arbeitsfolge ist so abgestimmt, dass unter Verwendung von konventionellen Aggregaten ein Elektroblech erzeugt werden kann, das optimierte elektro-magnetische Eigenschaften besitzt.The predetermined by the invention sequence of operations is tuned so that, using conventional aggregates, an electrical sheet can be produced which has optimized electro-magnetic properties.
Hierzu wird im ersten Schritt eine Stahlschmelze mit an sich bekannter Zusammensetzung erschmolzen. Diese Schmelze wird dann sekundärmetallurgisch behandelt. Diese Behandlung findet zunächst bevorzugt in einer Vakuumanlage statt, um die chemische Zusammensetzung des Stahls in den gefordert engen Analysenspannen einzustellen und niedrige Wasserstoffgehalte von maximal 10 ppm zu erreichen, um das Risiko des Auftretens von Strangdurchbrüchen beim Vergießen der Stahlschmelze auf ein Minimum zu reduzieren.For this purpose, a molten steel is melted with known composition in the first step. This melt is then treated by secondary metallurgy. This treatment is preferably first carried out in a vacuum plant to adjust the chemical composition of the steel to the required narrow analytical margins and to achieve low hydrogen contents of at most 10 ppm in order to minimize the risk of strand breakage during casting of molten steel.
Im Anschluss an die Behandlung in der Vakuumanlage ist ein Einsatz in einem Pfannenofen zweckmäßig, um im Fall von Angießverzögerungen die für das Gießen erforderliche Temperatur sicherstellen zu können und um durch dortige Schlacken-Konditionierung das Zusetzen der Tauchrohrausgüsse in der Kokille beim Dünnbrammen-Stranggießen und damit einen Gießabbruch zu vermeiden.Following treatment in the vacuum system, use in a ladle furnace is useful to ensure the casting temperature required in the case of casting delays, and by adding slag conditioning to clogging Submersible tube pouring in the mold during thin slab continuous casting and thus to avoid a casting break.
Erfindungsgemäß wäre auch zunächst der Einsatz eines Pfannenofens zur Schlackenkonditionierung, gefolgt von der Behandlung in einer Vakuumanlage zur Einstellung der chemischen Zusammensetzung der Stahlschmelze in engen Analysengrenzen. Diese Kombination ist allerdings mit dem Nachteil verbunden, dass im Fall von Angießverzögerungen die Temperatur der Schmelze so weit absinkt, dass die Stahlschmelze nicht mehr vergossen werden kann.According to the invention, the use of a ladle furnace for slag conditioning would also first be followed by treatment in a vacuum system for adjusting the chemical composition of the molten steel within narrow analytical limits. However, this combination has the disadvantage that, in the case of casting delays, the temperature of the melt drops to such an extent that the molten steel can no longer be cast.
Es ist auch erfindungsgemäß, nur den Pfannenofen einzusetzen. Dies ist allerdings mit. dem Nachteil verbunden, dass die Analysentreffsicherheit nicht so gut ist wie bei der Behandlung in einer Vakuumanlage und zudem hohe Wasserstoffgehalte in der Gießschmelze auftreten können mit der Gefahr von Strangdurchbrüchen.It is also according to the invention to use only the ladle furnace. This is however with. associated with the disadvantage that the analysis accuracy is not as good as in the treatment in a vacuum system and also high levels of hydrogen in the casting melt can occur with the risk of strand breakthroughs.
Erfindungsgemäß ist weiterhin, nur die Vakuumanlage einzusetzen. Dies beinhaltet jedoch zum einen die Gefahr, dass im Fall von Angießverzögerungen die Temperatur der Schmelze so weit absinkt, dass die Stahlschmelze nicht mehr vergossen werden kann. Zum anderen besteht die Gefahr, dass sich die Tauchausgüsse im Sequenzverlauf zusetzen und damit die Sequenz abgebrochen werden muss.According to the invention further, only use the vacuum system. On the one hand, however, this involves the risk that, in the case of casting delays, the temperature of the melt drops to such an extent that the molten steel can no longer be cast. On the other hand, there is a risk that the immersion spouts clog in the sequence and thus the sequence must be canceled.
Gemäß der Erfindung werden somit bei Verfügbarkeit von Pfannenofen und Vakuumanlage abhängig von den jeweiligen schmelzmetallurgischen und gießtechnischen Anforderungen beide Anlagen in Kombination eingesetzt.According to the invention, both systems are thus used in combination with the availability of ladle furnace and vacuum system depending on the respective melting metallurgical and casting requirements.
Aus der so behandelten Schmelze wird anschließend ein Strang gegossen, der bevorzugt eine Dicke von 25 mm bis 150 mm aufweist.From the thus treated melt, a strand is then poured, which preferably has a thickness of 25 mm to 150 mm.
Beim Gießen des Strangs in der engvolumigen Kokille von Dünnbrammen-Stranggießanlagen treten hohe Strömungsgeschwindigkeiten. Strömungsturbulenzen und ungleichmäßige Strömungsverteilung über die Strangbreite im Badspiegelbereich auf. Dies führt einerseits dazu, dass die Erstarrung ungleichmäßig wird, so dass am gegossenen Strang Oberflächen-Längsrisse auftreten können. Andererseits wird durch die unruhig strömende Schmelze Gießschlacke bzw. Gießpulver in den Strang eingespült. Diese Einschlüsse verschlechtern die Oberflächenbeschaffenheit und den inneren Reinheitsgrad der vom gegossenen Strang nach dessen Erstarrung abgeteilten Dünnbrammen.When pouring the strand in the narrow-volume mold of thin slab continuous casting high flow rates occur. Flow turbulences and uneven flow distribution over the strand width in the bath level range on. On the one hand, this causes the solidification to become uneven, so that surface longitudinal cracks can occur on the cast strand. On the other hand, by the unquiet flowing melt casting slag or casting powder is flushed into the strand. These inclusions degrade the surface finish and the internal degree of purity of the thin slabs separated from the cast strand after solidification.
Indem gemäß einer vorteilhaften Ausgestaltung der Erfindung die Stahlschmelze in einer Stranggusskokille, die mit einer elektromagnetischen Bremse ausgerüstet ist, vergossen wird, können derartige Fehler weitgehend vermieden werden. Bei erfindungsgemäßem Einsatz bewirkt eine solche Bremse eine Beruhigung und Vergleichmäßigung der Strömung in der Kokille, insbesondere im Badspiegelbereich, indem sie ein Magnetfeld erzeugt, das in Wechselwirkung mit den in die Kokille eintretenden Gießstrahlen deren Geschwindigkeit aufgrund der Wirkung der so genannten "Lorenzkraft" reduziert.By according to an advantageous embodiment of the invention, the molten steel is poured in a continuous casting mold, which is equipped with an electromagnetic brake, such errors can be largely avoided. When used according to the invention such a brake causes a calming and homogenization of the flow in the mold, especially in the bathroom mirror area by generating a magnetic field, which reduces in interaction with the pouring jets entering the mold their speed due to the effect of the so-called "Lorenzkraft".
Die Entstehung eines im Hinblick auf die elektromagnetischen Eigenschaften günstigen Gefüges des gegossenen Stahlstrangs kann auch dadurch unterstützt werden, dass mit niedriger Überhitzungstemperatur gegossen wird. Letztere liegen vorzugsweise maximal 25 K über der Liquidustemperatur der vergossenen Schmelze. Wird diese vorteilhafte Variante der Erfindung berücksichtigt, so können ein Einfrieren der mit niedriger Überhitzung vergossenen Stahlschmelze am Badspiegel und damit Gießstörungen bis hin zum Gießabbruch ebenfalls durch den Einsatz einer elektromagnetischen Bremse an der Gießkokille vermieden werden. Die von der elektromagnetischen Bremse ausgeübte Kraft leitet die heiße Schmelze zum Badspiegel und bewirkt dort eine Temperaturerhöhung, die ausreicht, um einen störungsfreien Gießverlauf zu gewährleisten.The formation of a microstructure of the cast steel strand which is favorable with regard to the electromagnetic properties can also be assisted by casting at a low superheating temperature. The latter are preferably at most 25 K above the liquidus temperature of the cast melt. If this advantageous variant of the invention is taken into account, a freezing of the molten steel cast at low superheat at the bath level and hence casting disturbances up to the casting break can likewise be avoided by using an electromagnetic brake on the casting mold. The force exerted by the electromagnetic brake directs the hot melt to the bath level and there causes a temperature increase sufficient to ensure a smooth casting process.
Das auf diese Weise erzielte homogene und feinkörnige Erstarrungsgefüge des gegossenen Strangs wirkt sich günstig auf die magnetischen Eigenschaften des erfindungsgemäß hergestellten kornorientierten Elektroblechs aus.The homogeneous and fine-grained solidification structure of the cast strand achieved in this way has a favorable effect on the magnetic properties of the grain-oriented electrical steel produced according to the invention.
Erfindungsgemäß wird angestrebt, die Bildung von nitridischen Ausscheidungen vor dem Warmwalzen und während des Warmwalzens möglichst zu vermeiden, um die Möglichkeit einer kontrollierten Erzeugung solcher Ausscheidungen bei der Abkühlung des Warmbandes in großem Umfang nutzen zu können. Um dies zu unterstützen, ist es gemäß einer vorteilhaften Ausgestaltung der Erfindung vorgesehen, eine Inline-Dickenreduzierung des aus der Schmelze gegossenen, jedoch noch kernflüssigen Strangs vorzunehmen.According to the invention, the aim is to avoid the formation of nitridic precipitates prior to hot rolling and during hot rolling as much as possible in order to make extensive use of the possibility of a controlled production of such precipitates during the cooling of the hot strip. To support this, it is provided according to an advantageous embodiment of the invention to make an inline thickness reduction of cast from the melt, but still core liquid strand.
Als an sich bekannte Verfahren zur Dickenreduzierung bieten sich die so genannte "Liquid Core Reduction" - nachfolgend "LCR" - und die so genannte "Soft Reduction" - nachfolgend "SR" - an. Diese Möglichkeiten der Dickenreduktion eines gegossenen Strangs können alleine oder in Kombination eingesetzt werden.As known per se known methods for reducing the thickness offer the so-called "Liquid Core Reduction" - hereinafter "LCR" - and the so-called "Soft Reduction" - hereinafter "SR" - to. These ways of reducing the thickness of a cast strand can be used alone or in combination.
Bei der LCR wird die Strangdicke bei kernflüssigem Inneren des Strangs dicht unter der Kokille reduziert. LCR wird beim Stand der Technik in Dünnbrammen-Stranggießanlagen in erster Linie eingesetzt, um geringere Warmband-Enddicken insbesondere bei höherfesten Stählen zu erreichen. Daneben können durch LCR die Stichabnahmen bzw. die Walzkräfte in den Walzgerüsten der Warmbandstraße mit dem Erfolg gemindert werden, dass der Arbeitswalzenverschleiß der Walzgerüste und die Zunderporigkeit des Warmbands vermindert und der Bandlauf verbessert werden kann. Die durch LCR erzielte Dickenreduktion liegt erfindungsgemäß bevorzugt im Bereich von 5 mm bis 30 mm.In the LCR, the strand thickness is reduced at the core liquid inside the strand just below the mold. LCR is used in the prior art in thin slab continuous casters primarily to achieve lower hot strip thicknesses, especially for higher strength steels. In addition, by LCR, the reduction in the number of stitches and the rolling forces in the rolling mills of the hot strip mill can be reduced with the result that the work roll wear of the rolling mills and the slumpiness of the hot strip can be reduced and the strip run can be improved. The thickness reduction achieved by LCR according to the invention is preferably in the range of 5 mm to 30 mm.
Unter SR wird die gezielte Dickenreduktion des Stranges in der Sumpfspitze nahe der Enderstarrung verstanden. Die SR hat zum Ziel, Mittenseigerungen und Kernporosität zu verringern. Dieses Verfahren wird bislang vorwiegend in Vorblock- und Brammen-Stranggießanlagen eingesetzt.Under SR is meant the targeted reduction in thickness of the strand in the swamp tip near Enderstarrung. The SR aims to reduce mitigation and core porosity. This method has hitherto been used predominantly in billet and slab continuous casting plants.
Die Erfindung schlägt nun vor, die SR auch bei der Erzeugung von kornorientiertem Elektroblech über Dünnbrammen-Stranggießanlagen bzw. Gießwalzanlagen anzuwenden. Durch die auf diese Weise erzielbare Verringerung insbesondere der Silizium-Mittenseigerung in den anschließend warmgewalzten Vorprodukten lässt sich eine Vergleichmäßigung der chemischen Zusammensetzung über die Banddicke erreichen, was für die magnetischen Werte von Vorteil ist. Gute Ergebnisse der SR werden erhalten, wenn die bei der Anwendung von SR erzielte Dickenabnahme 0,5 - 5 mm beträgt. Als Anhalt für den Zeitpunkt, zu dem die SR im Zusammenhang mit dem erfindungsgemäß durchgeführten Stranggießen angewendet wird, kann folgende Vorgabe dienen:
- Beginn der SR-Zone bei einem Erstarrungsgrad fs von 0,2,
- Ende der SR-Zone bei fs = 0,7 - 0,8.
- Beginning of the SR zone at a solidification rate f s of 0.2,
- End of SR zone at f s = 0.7 - 0.8.
Bei Dünnbrammen-Stranggießanlagen wird der aus der Gießkokille üblicherweise vertikal austretende Strang an tiefer gelegenen Stellen gebogen und in eine horizontale Richtung geführt. Indem gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung der aus der Schmelze gegossene Strang bei einer 700 °C bis 1000 °C betragenden Temperatur (vorzugsweise bei 850 bis 950 °C) gebogen und gerichtet wird, können Risse an der Oberfläche der von dem Strang abgetrennten Dünnbrammen vermieden werden, zu denen es andernfalls insbesondere in Folge von Kantenrissen des Strangs kommen kann. Im genannten Temperaturbereich weist der erfindungsgemäß verwendete Stahl eine gute Duktilität an der Strangoberfläche bzw. im Kantenbereich auf, so dass er den beim Biegen und Richten auftretenden Verformungen gut folgen kann.In thin slab continuous casting the usually emerging from the casting mold strand is bent at lower points and guided in a horizontal direction. According to a further advantageous embodiment of the invention, the strand cast from the melt is bent and straightened at a temperature of 700 ° C. to 1000 ° C. (preferably 850 to 950 ° C.), cracks may be formed on the surface of the thin slabs separated from the strand avoided, which may otherwise occur, in particular, as a result of edge cracks of the strand. In the temperature range mentioned, the steel used according to the invention has a good ductility at the strand surface or in the edge region, so that it can follow well the deformations occurring during bending and straightening.
Von dem gegossenen Strang werden in an sich bekannter Weise Dünnbrammen abgeteilt, die anschließend in einem Ofen auf die geeignete Warmwalzanfangstemperatur erwärmt werden und dann dem Warmwalzen zugeführt werden. Die Temperatur, mit der die Dünnbrammen in den Ofen einlaufen, liegt bevorzugt oberhalb von 650 °C. Die Verweilzeit im Ofen sollte unter 60 min betragen, um Klebzunder zu vermeiden.From the cast strand thin slabs are divided in a conventional manner, which are then heated in an oven to the appropriate hot rolling start temperature and then fed to hot rolling. The temperature at which the thin slabs enter the furnace is preferably above 650 ° C. The residence time in the oven should be less than 60 minutes in order to avoid adhesive scale.
Ein im Hinblick auf die angestrebte Erzeugung von HGO-Material wesentlicher Aspekt der Erfindung ist, dass das Warmwalzen im Anschluss an den ersten Umformstich im Zweiphasengebiet (α/γ) durchgeführt wird. Auch diese Maßnahme hat zum Ziel, die Entstehung von nitridischen Ausscheidungen im Zuge des Warmwalzens weitestgehend zu reduzieren, um diese Ausscheidungen gezielt über die Kühlbedingungen auf dem Auslaufrollgang hinter dem letzten Walzgerüst der Warmbandstraße steuern zu können. Um dies sicherzustellen, wird erfindungsgemäß bei Temperaturen warmgewalzt, bei denen im Gefüge des Warmbands austenitische und ferritische Anteile gemischt vorliegen. Typische Temperaturen, bei denen dies für die erfindungsgemäß verwendeten Stahllegierungen gegeben ist, liegen über rund 800 °C, insbesondere im Bereich von 850 °C bis 1150 °C. In der γ-Phase wird bei diesen Temperaturen das AIN in Lösung gehalten. Als weiterer positiver Aspekt des Warmwalzens im Zweiphasenmischgebiet ist der Kornfeinungseffekt zu nennen. Durch die Umwandlung des Austenits in Ferrit im Anschluss an die Warmwalstiche, wird ein feinkörnigeres und homogeneres Warmbandgefüge erzielt, welches sich positiv auf die magnetischen Eigenschaften des Endproduktes auswirkt.An aspect of the invention which is essential in view of the desired production of HGO material is that the hot rolling is carried out following the first forming pass in the two-phase region (α / γ). Also, this measure has the goal of reducing the formation of nitridic precipitates in the course of hot rolling as far as possible in order to be able to control these precipitates specifically via the cooling conditions on the outlet roller table behind the last mill stand of the hot strip mill. To ensure this, according to the invention hot rolled at temperatures where mixed in the structure of the hot strip austenitic and ferritic shares. Typical temperatures, for which this is given for the steel alloys used according to the invention, are above approximately 800 ° C., in particular in the range from 850 ° C. to 1150 ° C. In the γ phase, the AIN is kept in solution at these temperatures. Another positive aspect of hot rolling in the two-phase mixed area is the grain refining effect. By converting the austenite into ferrite following the hot whale passes, a finer-grained and more homogeneous hot-band structure is achieved, which has a positive effect on the magnetic properties of the end product.
Weiter unterstützt wird die Vermeidung von nitridischen Ausscheidungen während des Warmwalzens erfindungsgemäß dadurch, dass schon im ersten Umformstich ein Umformgrad von mindestens 40 % erreicht wird, um nur relativ geringe Stichabnahmen in den letzten Gerüsten für die Erzielung der gewünschten Endbanddicke nötig zu haben. In dieser Hinsicht bevorzugt liegt daher der über die ersten beiden Umformstiche in der Fertigstraße erzielte Gesamtumformgrad über 60 %, wobei in weiterer vorteilhafter Ausgestaltung der Erfindung im ersten Gerüst der Fertigstraße ein Umformgrad von mehr als 40 % erzielt wird und im zweiten Gerüst der Fertigstraße die Stichabnahme mehr als 30 % beträgt.Furthermore, the prevention of nitridic precipitations during hot rolling is further supported by the fact that already in the first forming pass a degree of deformation of at least 40% is achieved in order to have only relatively small Stichabnahmen in the last frameworks for achieving the desired Endbanddicke necessary. In this regard, therefore, preferably over the first two Umststiche achieved in the finishing train Gesamtumformgrad over 60%, wherein in a further advantageous embodiment of the invention in the first frame of the finishing train a degree of deformation of more than 40% is achieved and in the second frame of the finishing line the Stichabnahme more than 30%.
Die Anwendung hoher Stichabnahmen (Umformgrade) in den ersten beiden Gerüsten bewirkt die erforderliche Umwandlung des grobkörnigen Erstarrungsgefüges in ein feines Walzgefüge, was die Voraussetzung für gute magnetische Eigenschaften des herzustellenden Endprodukts ist. Dementsprechend sollte die Stichabnahme im letzten Gerüst auf maximal 30 %, vorzugsweise weniger als 20 %, beschränkt werden, wobei es für ein im Hinblick auf die angestrebten Eigenschaften optimales Warmwalzergebnis zudem günstig ist, wenn die Stichabnahme im vorletzten Gerüst der Fertigstraße weniger als 25 % beträgt. Ein in der Praxis auf einer siebengerüstigen Fertigwarmwalzstraße erprobter Stichplan, der zu optimalen Eigenschaften des fertigen Elektroblechs geführt hat, sieht vor, dass bei einer Vorbanddicke von 63 mm und einer Warmbandenddicke von 2 mm der am ersten Gerüst erzielte Umformgrad 62 %, der am zweiten Gerüst erzielte 54 %, der am dritten Gerüst erzielte 47 %, der am vierten Gerüst erzielte 35 %, der am fünften Gerüst erzielte 28 %, der am sechsten Gerüst erzielte 17 % und der am siebten Gerüst erzielte Umformgrad 11 % beträgt.The use of high reduction rates (degrees of deformation) in the first two stands causes the required conversion of the coarse-grained solidification microstructure into a fine rolling structure, which is the prerequisite for good magnetic properties of the final product to be produced. Accordingly, the reduction should be in last frame to a maximum of 30%, preferably less than 20%, are limited, and it is also favorable for an optimal in terms of the desired properties warm rolling result, if the reduction in the penultimate framework of the finishing mill is less than 25%. A pass plan tested in practice on a seven-stand finish hot rolling mill, which has led to optimum properties of the finished electrical sheet, provides that with a pre-strip thickness of 63 mm and a hot strip thickness of 2 mm, the degree of deformation achieved on the first stand is 62%, that on the second stand achieved 54%, the third scaffold 47%, the fourth scaffold 35%, the fifth scaffold 28%, the sixth scaffold 17% and the seventh scaffold 11%.
Zur Vermeidung eines groben ungleichmäßigen Gefüges bzw. grober Ausscheidungen am Warmband, die sich ungünstig auf die magnetischen Eigenschaften des Endprodukts auswirken würden, ist eine früh einsetzende Abkühlung des Warmbands hinter dem letzten Walzgerüst der Fertigstraße vorteilhaft. Gemäß einer praxisgerechten Ausgestaltung der Erfindung ist es daher vorgesehen, innerhalb von maximal fünf Sekunden nach Verlassen des letzten Walzgerüstes mit der Wasserkühlung zu beginnen. Angestrebt werden dabei möglichst kurze Pausenzeiten, beispielsweise von einer Sekunde und weniger.In order to avoid a coarse non-uniform microstructure or coarse precipitations on the hot strip, which would adversely affect the magnetic properties of the final product, an early onset of cooling of the hot strip behind the last rolling stand of the finishing train is advantageous. According to a practical embodiment of the invention, it is therefore intended to start within a maximum of five seconds after leaving the last mill stand with the water cooling. The aim is to have the shortest possible break times, for example, of one second and less.
Die Abkühlung des Warmbands kann auch so gesteuert werden, dass zweistufig mit Wasser gekühlt wird. Dazu kann zunächst im Anschluss an das letzte Walzgerüst auf eine Temperatur dicht unterhalb der Alpha-/Gamma-Umwandlungstemperatur abgekühlt werden, um dann, bevorzugt nach zur Vergleichmäßigung der Temperatur über die Banddicke eingelegten Kühlpause von ein bis fünf Sekunden, eine weitere Abkühlung mittels Wasser bis auf die erforderliche Haspeltemperatur durchzuführen. Die erste Phase der Kühlung kann dabei als so genannte "Kompaktkühlung" erfolgen, bei der das Warmband über eine kurze Förderstrecke mit hoher Intensität und Abkühlrate (mindestens 200 K/s) unter Aufgabe großer Wassermengen schnell abgekühlt wird, während es in der zweiten Phase der Wasserkühlung über eine längere Förderstrecke mit verminderter Intensität gekühlt wird, um ein möglichst gleichmäßiges Kühlergebnis über den Bandquerschnitt zu erreichen.The cooling of the hot strip can also be controlled so that it is cooled in two stages with water. For this purpose, first after the last rolling mill to a temperature close to the alpha / gamma transformation temperature can be cooled to then, preferably after to equalize the temperature over the tape thickness inserted cooling pause of one to five seconds, a further cooling by water until to perform the required reel temperature. The first phase of the cooling can take place as a so-called "compact cooling", in which the hot strip is cooled rapidly over a short conveyor line with high intensity and cooling rate (at least 200 K / s) while discharging large amounts of water, while in the second phase of the Water cooling is cooled over a longer conveyor line with reduced intensity in order to achieve the most uniform possible cooling over the belt cross-section.
Die Haspel-Temperatur sollte bevorzugt im Temperaturbereich von 500 - 780 °C liegen. Darüberliegende Temperaturen würden einerseits zu unerwünscht groben Ausscheidungen führen und andererseits die Beizbarkeit verschlechtern. Für die Einstellung höherer Haspeltemperaturen (> 700 °C) wird ein so genannter Kurzdistanzhaspel eingesetzt, der direkt im Anschluss an die Kompaktkühlzone angeordnet ist.The reel temperature should preferably be in the temperature range of 500-780 ° C. Overlying temperatures would on the one hand lead to undesirably coarse precipitates and on the other hand worsen the treatability. For setting higher reel temperatures (> 700 ° C) a so-called short distance reel is used, which is located directly after the compact cooling zone.
Innerhalb der durch die Erfindung vorgegebenen Grenzen wird das erfindungsgemäße Verfahren bei der Herstellung des Warmbandes bevorzugt so durchgeführt, dass das erhaltene Warmband sulfidische und / oder nitridische Ausscheidungen mit einem mittleren Teilchendurchmesser unter 150 nm u,nd einer mittleren Dichte von mindestens 0,05 µm-2 erreicht wird. Derart beschaffenes Warmband weist optimale Voraussetzungen für die effektive Steuerung des Kornwachstums während der nachfolgenden Prozessschritte auf.Within the limits specified by the invention, the inventive method in the production of the hot strip is preferably carried out so that the hot strip obtained sulfide and / or nitridic precipitates having a mean particle diameter less than 150 nm and a mean density of at least 0.05 .mu.m -2 is reached. This type of hot strip has optimal conditions for the effective control of grain growth during the subsequent process steps.
Zur weiteren Optimierung des Gefüges kann das so erzeugte Warmband optional noch nach dem Haspeln bzw. vor dem Kaltwalzen geglüht werden.To further optimize the microstructure, the hot strip thus produced can optionally be annealed after reeling or before cold rolling.
Nach dem Kaltwalzen wird das erhaltene Band rekristallisierend und entkohlend geglüht. Zur Bildung weiterer Nitrid-Ausscheidungen, die zur Steuerung des Kornwachstums verwendet werden, kann das kaltgewalzte Band während oder nach dem Entkohlungsglühen in einer NH3-haltigen Atmosphäre aufstickend geglüht werden.After cold rolling, the strip obtained is annealed recrystallizing and decarburizing. To form further nitride precipitates used to control grain growth, the cold rolled strip may be annealed during or after decarburization annealing in an NH 3 -containing atmosphere.
Eine weitere Möglichkeit zur Bildung der Nitridausscheidungen ist die Aufbringung von N-haltigen Klebschutzzusätzen wie beispielsweise Mangannitrid oder Chromnitrid auf das Kaltband im Anschluss an die Entkohlungsglühung mit der Eindiffusion des Stickstoffs in das Band während der Aufheizphase der Schlussglühung bis zur Sekundärrekristallisation.Another possibility for the formation of the nitride precipitates is the application of N-containing adhesive protection additives such as manganese nitride or chromium nitride to the cold strip after the decarburization annealing with the Indiffusion of the nitrogen into the strip during the heating phase of the final annealing until secondary recrystallization.
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert.The invention will be explained in more detail with reference to an embodiment.
Beispiel 1:Example 1:
Eine Stahlschmelze der Zusammensetzung 3,15 % Si, 0,047 % C, 0,154 % Mn, 0,006 % S, 0,030 % Al, 0,0080 % N, 0,22 % Cu und 0,06 % Cr wurde nach der sekundärmetallurgischen Behandlung in einem Pfannenofen und einer Vakuumanlage kontinuierlich zu einem 63 mm dicken Strang abgegossen. Vor dem Einlauf in den in Linie stehenden Ausgleichsofen wurde der Strang; in Dünnbrammen zerteilt. Nach einer Verweilzeit von 20 min im Ausgleichsofen bei 1150 °C wurden die Dünnbrammen dann entzundert und auf verschiedene Weisen warmgewalzt:
- Variante "WW1": Bei dieser erfindungsgemäßen Variante erfolgte der erste Stich bei 1090 °C mit einem Umformgrad von 61 % und der zweite Stich bei 1050 °C mit einem Umformgrad von 50 %. Die Walztemperaturen in den Stichen 3 bis 7 betrugen 1010 °C, 980 °C, 950 °C, 930 °C und 900 °C. Bei den beiden letzten Stichen betrugen die Umformgrade 17 % bzw. 11 %. Mit dieser Warmwalzvariante wurden in den Stichen 1 bis 7 folgende Austenitanteile erreicht: 30 % / 25 % / 20 % / 18 % / 15 % / 14 % und 12 %.
- Variante "WW2": Diese nicht erfindungsgemäße Variante zeichnete sich durch eine Stichabnahme von 28 % im ersten Stich und 28 % im zweiten Stich aus, wobei die beiden letzten Stiche einen Umformgrad von 28 % bzw. 20 % aufwiesen. Die Walztemperatur im ersten Stich betrug 1090 °C und im 2. Stich 1000 °C. Die Stiche 3 bis 7 erfolgten bei 950 °C / 920 °C / 890 °C / 860 °C bzw. 830 °C. Dadurch lagen bei dieser Warmwalzvariante in den Stichen 1 bis 7 folgende Austenitanteile vor: 30 % / 20 % / 15 % / 12 % / 10 % / 8 % und 7 %.
- Variant "WW1": In this variant of the invention, the first pass was made at 1090 ° C with a degree of deformation of 61% and the second pass at 1050 ° C with a degree of deformation of 50%. The rolling temperatures in Stitches 3 to 7 were 1010 ° C, 980 ° C, 950 ° C, 930 ° C and 900 ° C. For the last two stitches, the degrees of deformation were 17% and 11%, respectively. With this hot rolling variant, the following austenite proportions were obtained in Stitches 1 to 7: 30% / 25% / 20% / 18% / 15% / 14% and 12%.
- Variant "WW2": This variant not according to the invention was characterized by a reduction of 28% in the first stitch and 28% in the second stitch, the last two stitches having a degree of deformation of 28% and 20%, respectively. The rolling temperature in the first pass was 1090 ° C and in the second pass 1000 ° C. Stitches 3 to 7 were carried out at 950 ° C / 920 ° C / 890 ° C / 860 ° C or 830 ° C. As a result, in this hot rolling variant in Stitches 1 to 7 the following austenite contents were present: 30% / 20% / 15% / 12% / 10% / 8% and 7%.
Die Abkühlung war für beide Warmwalzvarianten mit einem Einsatz der Wasserabspritzung innerhalb von 7 s nach dem Verlassen des letzten Walzgerüstes und einer Haspeltemperatur von 650 °C identisch. Neben dem so hergestellten Warmband der Dicke 2,0 mm, wurden auch noch Proben für metallographische Untersuchungen erzeugt, indem das Warmwalzen nach dem 2. Stich mittels Schnellabkühlung abgebrochen wurde.The cooling was identical for both hot rolling variants with the use of water spraying within 7 s after leaving the last stand and a coiler temperature of 650 ° C. In addition to the hot rolled strip of thickness 2.0 mm thus produced, samples for metallographic examinations were also produced by hot rolling after the second pass was stopped by rapid cooling.
Im nachfolgenden Elektrobandprozessing wurden die Bänder zunächst im Durchlaufofen geglüht und anschließend 1-stufig ohne Zwischenglühung auf 0,30 mm Enddicke kaltgewalzt. Für die darauf folgende Glühung wurden 2 unterschiedliche Varianten gewählt:
- Variante "E1": Es erfolgte lediglich die Standardentkohlungsglühung bei 860 °C, bei der die Bänder rekristallisiert und entkohlt wurden.
- Variante "E2": Hier wurden die Bänder im Anschluss an die Standardentkohlungsglühung inline für 30 s bei 860 °C in einer NH3-haltigen Atmosphäre aufgestickt.
- Variant "E1": All that was done was standard decarburization annealing at 860 ° C at which the ribbons were recrystallized and decarburized.
- Variant "E2": Here, after the standard decarburization annealing, the strips were inline-embroidered for 30 s at 860 ° C. in an NH 3 -containing atmosphere.
Danach wurden alle Bänder zur Ausprägung der Gosstextur schlussgeglüht, mit einer elektrischen Isolierung beschichtet und spannungsfreigeglüht.Thereafter, all bands were final annealing to the expression of the Gosstextur, coated with an electrical insulation and stress-release annealed.
Die folgende Tabelle stellt die magnetischen Ergebnisse der einzelnen Bänder in Abhängigkeit von ihren unterschiedlichen Prozessbedingungen dar (γ2/γ3/γ6/γ7: Austenitanteile in den jeweiligen Warmwalzstichen):
Die unterschiedlichen magnetischen Ergebnisse in Abhängigkeit von den gewählten Warmwalzbedingungen lassen sich anhand der unterschiedlichen Gefügeausbildungen erklären. Im Falle der erfindungsgemäßen Variante "WW1" bildet sich durch die hohen Austenitgehalte in den einzelnen Umformstichen ein feineres und vor allen Dingen deutlich homogeneres Gefüge (Bild 1) aus. The different magnetic results depending on the selected hot rolling conditions can be explained by the different microstructures. In the case of variant "WW1" according to the invention, the high austenite contents in the individual forming passes form a finer and, above all, significantly more homogeneous structure (FIG. 1).
Demgegenüber führt das Warmwalzen mit nicht erfindungsgemäßen Bedingungen (Variante "WW2") nach dem 2. Stich durch die deutlich niedrigeren Austenitgehalte zu einem deutlich inhomogeneren und auch gröberen Gefüge (Bild 2). In contrast, hot rolling with conditions not according to the invention (variant "WW2") after the second pass leads to a clearly more inhomogeneous and also coarser microstructure due to the significantly lower austenite contents ( Fig. 2) .
Claims (11)
- Method for producing grain oriented magnetic steel strip using the thin slab continuous casting process, comprising the following steps:a) Melting of a steel, which beside iron and unavoidable impurities consist of (in wt %)
Si: 2.5 - 4.0 %,
C: 0.02 - 0.10 %,
Al: 0.01 - 0.065 %
N: 0.003 - 0.015 %,
alternatively- up to 0.30 % Mn,- up to 0.05 % Ti,- up to 0.3 % P,- one or more elements from the group of S, Se with contents whose total amounts to 0.04 % maximum,- one or more elements from the group of As, Sn, Sb, Te, Bi with contents up to 0.2 % in each case,- one or more elements from the group of Cu, Ni, Cr, Co, Mo with contents up to 0. 5 % in each case,- one or more elements from the group of B, V, Nb with contents up to 0.012 % in each case,b) secondary metallurgical treatment of the molten metal in a vacuum facility and in a ladle furnace ,c) continuous casting of the molten metal into a strand,d) dividing of the strand into thin slabs,e) heating of the thin slabs in a furnace standing inline to a temperature ranging between 1050 and 1300 °C,- the dwell time in the furnace being 60 minutes maximum,f) continuous hot rolling of the thin slabs in a multi-stand hot rolling mill standing inline into hot strip having a thickness of 0.5 - 4.0 mm,- during this hot rolling stage the first forming run being carried out at a temperature of 900 - 1200 °C with a deformation strain of more than 40 %,- at lease the subsequent two hot rolling passes being rolled with the two phases (α-γ) being present in the mixed state,- the reduction per pass in the final hot rolling run being 30 % maximum,g) cooling of the hot strip,h) reeling of the hot strip into a coil,i) alternatively: annealing of the hot strip after coiling or before cold rollingj) cold rolling of the hot strip into cold strip having a final thickness of 0.15 - 0.50 mm,k) recrystallization and decarburization annealing of the cold strip,l) application of an annealing separator onto the strip surfacem) final annealing of the recrystallization and decarburization annealed cold strip in order to form a Goss texture,n) alternatively: coating of the finish annealed cold strip with an electric insulation and subsequent annealing of the coated cold strip for relieving stresses.o) alternatively: domain refinement of the coated cold strip - Method according to claim 1, characterized in that the molten steel in the course of its secondary metallurgical treatment (step b) is initially treated in the vacuum facility and then in the ladle furnace. Alternatively the sequence of initial treatment in the ladle furnace and then in the vacuum facility can also be selected, as well as secondary metallurgical treatment exclusively only in the vacuum facility or only in the ladle furnace.
- Method according to claim 1, characterized in that the molten metal in the course of its secondary metallurgical treatment (step b) is treated alternatingly in the ladle furnace and in the vacuum facility.
- Method according to anyone of the above claims, characterized in that the secondary metallurgical treatment (step b) of the molten metal is continued for such a time until its hydrogen content is 10 ppm maximum during the casting (step c).
- Method according to anyone of the above claims, characterized in that the molten steel is cast into the strand (step c) in a continuous moulding shell, which is equipped with an electromagnetic brake.
- Method according to anyone of the above claims, characterized in that inline thickness reduction of the strand, cast from the molten metal but still liquid at the core, takes place in the course of step c).
- Method according to anyone of the above claims, characterized in that the strand cast from the molten metal is bended into the horizontal direction and straightened in the course of step c) at a temperature of between 700 and 1000 °C (preferably 850 - 950 °C).
- Method according to anyone of the above claims, characterized in that the strip enters the equalizing furnace at a temperature of above 650 °C.
- Method according to anyone of the above claims, characterized in that the accelerated cooling of the hot strip begins at the latest five seconds after leaving the final rolling stand.
- Method according to anyone of the above claims, characterized in that the cold strip is nitrogenized during or after decarburization by annealing in an ammonia-containing atmosphere.
- Method according to anyone of the above claims, characterized in that one or several chemical compounds are added to the annealing separator, which results in nitrogenization of the cold strip during the heat-up phase of final annealing before secondary recrystallization.
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL05016835T PL1752549T3 (en) | 2005-08-03 | 2005-08-03 | Process for manufacturing grain-oriented magnetic steel spring |
SI200532056A SI1752549T1 (en) | 2005-08-03 | 2005-08-03 | Process for manufacturing grain-oriented magnetic steel spring |
EP05016835.0A EP1752549B1 (en) | 2005-08-03 | 2005-08-03 | Process for manufacturing grain-oriented magnetic steel spring |
BRPI0614379-2A BRPI0614379B1 (en) | 2005-08-03 | 2006-07-20 | METHOD FOR PRODUCTION OF MAGNETIC STEEL STRIP OF ORIENTED GRAIN |
AU2006274901A AU2006274901B2 (en) | 2005-08-03 | 2006-07-20 | Method for producing a grain-oriented electrical steel strip |
CA2615586A CA2615586C (en) | 2005-08-03 | 2006-07-20 | Method for producing grain oriented magnetic steel strip |
US11/997,670 US8088229B2 (en) | 2005-08-03 | 2006-07-20 | Method for producing grain oriented magnetic steel strip |
RU2008107938/02A RU2407807C2 (en) | 2005-08-03 | 2006-07-20 | Procedure for production of structural-oriented steel magnetic strip |
PCT/EP2006/064480 WO2007014868A1 (en) | 2005-08-03 | 2006-07-20 | Method for producing a grain-oriented electrical steel strip |
KR1020087005312A KR101365653B1 (en) | 2005-08-03 | 2006-07-20 | Method for producing a grain-oriented electrical steel strip |
CN2006800288008A CN101238227B (en) | 2005-08-03 | 2006-07-20 | Method for producing a grain-oriented electrical steel strip |
JP2008524481A JP2009503265A (en) | 2005-08-03 | 2006-07-20 | Method for producing directional electromagnetic steel strip |
MX2008001475A MX2008001475A (en) | 2005-08-03 | 2006-07-20 | Method for producing a grain-oriented electrical steel strip. |
TW095127715A TWI402353B (en) | 2005-08-03 | 2006-07-28 | Method for producing a grain oriented magnetic steel strip |
ZA200800663A ZA200800663B (en) | 2005-08-03 | 2008-01-22 | Method for producing a grain-oriented electrical steel strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05016835.0A EP1752549B1 (en) | 2005-08-03 | 2005-08-03 | Process for manufacturing grain-oriented magnetic steel spring |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1752549A1 EP1752549A1 (en) | 2007-02-14 |
EP1752549B1 true EP1752549B1 (en) | 2016-01-20 |
Family
ID=35520090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05016835.0A Active EP1752549B1 (en) | 2005-08-03 | 2005-08-03 | Process for manufacturing grain-oriented magnetic steel spring |
Country Status (15)
Country | Link |
---|---|
US (1) | US8088229B2 (en) |
EP (1) | EP1752549B1 (en) |
JP (1) | JP2009503265A (en) |
KR (1) | KR101365653B1 (en) |
CN (1) | CN101238227B (en) |
AU (1) | AU2006274901B2 (en) |
BR (1) | BRPI0614379B1 (en) |
CA (1) | CA2615586C (en) |
MX (1) | MX2008001475A (en) |
PL (1) | PL1752549T3 (en) |
RU (1) | RU2407807C2 (en) |
SI (1) | SI1752549T1 (en) |
TW (1) | TWI402353B (en) |
WO (1) | WO2007014868A1 (en) |
ZA (1) | ZA200800663B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020193717A1 (en) | 2019-03-26 | 2020-10-01 | Thyssenkrupp Electrical Steel Gmbh | Iron-silicon material suitable for medium frequency applications |
WO2020193634A1 (en) | 2019-03-26 | 2020-10-01 | Thyssenkrupp Electrical Steel Gmbh | Lean method for secondary recrystallization of grain oriented electrical steel in a continuous processing line |
RU2818560C1 (en) * | 2020-07-23 | 2024-05-02 | Смс Груп Гмбх | Method of making steel strip |
EP4365319A1 (en) | 2022-11-03 | 2024-05-08 | Thyssenkrupp Electrical Steel Gmbh | Grain-oriented electrical steel strip and method for its production |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL1752548T3 (en) * | 2005-08-03 | 2017-08-31 | Thyssenkrupp Steel Europe Ag | Method for producing a magnetic grain oriented steel strip |
AT507475B1 (en) * | 2008-10-17 | 2010-08-15 | Siemens Vai Metals Tech Gmbh | METHOD AND DEVICE FOR PRODUCING HOT-ROLLED SILICON STEEL ROLLING MATERIAL |
RU2407809C1 (en) * | 2009-08-03 | 2010-12-27 | Открытое акционерное общество "Новолипецкий металлургический комбинат" | Procedure for production of anisotropic electro-technical steel with high magnetic properties |
RU2407808C1 (en) * | 2009-08-03 | 2010-12-27 | Открытое акционерное общество "Новолипецкий металлургический комбинат" | Procedure for production of anisotropic electro-technical steel with low specific losses for re-magnetisation |
BR112012012674A2 (en) * | 2009-11-25 | 2020-08-11 | Tata Steel Ijmuiden Bv | process for producing electrical steel strip with oriented grain and electrical steel with oriented grain thus produced |
IT1402624B1 (en) | 2009-12-23 | 2013-09-13 | Ct Sviluppo Materiali Spa | PROCEDURE FOR THE PRODUCTION OF MAGNETIC SIDES WITH ORIENTED GRAIN. |
CN101963446B (en) * | 2010-11-04 | 2012-05-23 | 四川展祥特种合金科技有限公司 | Vanadium and nitrogen alloy full-automatic vertical medium frequency induction heating furnace |
KR101286209B1 (en) * | 2010-12-24 | 2013-07-15 | 주식회사 포스코 | Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same |
KR101286208B1 (en) * | 2010-12-24 | 2013-07-15 | 주식회사 포스코 | Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same |
WO2012089696A1 (en) * | 2011-01-01 | 2012-07-05 | Tata Steel Nederland Technology Bv | Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby |
US10208372B2 (en) * | 2011-01-12 | 2019-02-19 | Nippon Steel & Sumitomo Metal Corporation | Grain-oriented electrical steel sheet and manufacturing method thereof |
DE102011119395A1 (en) | 2011-06-06 | 2012-12-06 | Thyssenkrupp Electrical Steel Gmbh | Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications |
DE102011107304A1 (en) | 2011-07-06 | 2013-01-10 | Thyssenkrupp Electrical Steel Gmbh | Method for producing a grain-oriented electrical steel flat product intended for electrotechnical applications |
KR101351955B1 (en) * | 2011-08-01 | 2014-01-16 | 주식회사 포스코 | Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same |
KR101351956B1 (en) * | 2011-08-01 | 2014-01-16 | 주식회사 포스코 | Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same |
DE102011054004A1 (en) | 2011-09-28 | 2013-03-28 | Thyssenkrupp Electrical Steel Gmbh | Method for producing a grain-oriented electrical tape or sheet intended for electrical applications |
ITRM20110528A1 (en) | 2011-10-05 | 2013-04-06 | Ct Sviluppo Materiali Spa | PROCEDURE FOR THE PRODUCTION OF MAGNETIC SHEET WITH ORIENTED GRAIN AND HIGH DEGREE OF COLD REDUCTION. |
US9761360B2 (en) * | 2012-03-29 | 2017-09-12 | Jfe Steel Corporation | Method of manufacturing grain oriented electrical steel sheet |
CN102787276B (en) * | 2012-08-30 | 2014-04-30 | 宝山钢铁股份有限公司 | High magnetic induction oriented silicon steel and manufacturing method thereof |
EP2940159B1 (en) * | 2012-12-28 | 2019-03-20 | JFE Steel Corporation | Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet |
CN103071677B (en) * | 2012-12-29 | 2015-09-09 | 东北大学 | A kind of Differential speed rolling technology prepares the method for orientation silicon steel |
CN103525999A (en) * | 2013-09-13 | 2014-01-22 | 任振州 | Preparation method of high-magnetic-induction oriented silicon steel sheet |
CN103667602B (en) * | 2013-11-26 | 2015-04-08 | 山西太钢不锈钢股份有限公司 | Method for increasing nitrogen for RH refined molten steel of grain-oriented electrical steel |
CN103668005B (en) * | 2013-12-12 | 2015-10-14 | 武汉钢铁(集团)公司 | The HiB steel that in a kind of use, warm slab heating temperature is produced and production method thereof |
CN104726796A (en) * | 2013-12-23 | 2015-06-24 | Posco公司 | Oriented electrical steel sheets and method for manufacturing the same |
CN104726670B (en) * | 2013-12-23 | 2017-07-21 | 鞍钢股份有限公司 | Method for preparing high-magnetic-induction oriented silicon steel from short-process medium and thin slabs |
DE102014104106A1 (en) | 2014-03-25 | 2015-10-01 | Thyssenkrupp Electrical Steel Gmbh | Process for producing high-permeability grain-oriented electrical steel |
WO2016035530A1 (en) | 2014-09-01 | 2016-03-10 | 新日鐵住金株式会社 | Grain-oriented electromagnetic steel sheet |
JP6260513B2 (en) * | 2014-10-30 | 2018-01-17 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
CN104805353A (en) * | 2015-05-07 | 2015-07-29 | 马钢(集团)控股有限公司 | Electrical steel with excellent longitudinal magnetic property and production method thereof |
JP6350398B2 (en) * | 2015-06-09 | 2018-07-04 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
DE102015114358B4 (en) * | 2015-08-28 | 2017-04-13 | Thyssenkrupp Electrical Steel Gmbh | Method for producing a grain-oriented electrical strip and grain-oriented electrical strip |
KR101676630B1 (en) * | 2015-11-10 | 2016-11-16 | 주식회사 포스코 | Oriented electrical steel sheet and method for manufacturing the same |
KR102466499B1 (en) * | 2015-12-22 | 2022-11-10 | 주식회사 포스코 | Grain oriented electrical steel sheet and manufacturing method for the same |
RU2716053C1 (en) * | 2016-11-01 | 2020-03-05 | ДжФЕ СТИЛ КОРПОРЕЙШН | Method for production of textured electrical steel plate |
EP3536813B1 (en) * | 2016-11-01 | 2020-12-23 | JFE Steel Corporation | Method for producing grain-oriented electrical steel sheet |
DE102017220718A1 (en) | 2017-11-20 | 2019-05-23 | Thyssenkrupp Ag | Optimization of nitrogen levels during bell annealing II |
DE102017220714B3 (en) | 2017-11-20 | 2019-01-24 | Thyssenkrupp Ag | Optimization of the nitrogen level during the hood annealing |
DE102017220721A1 (en) | 2017-11-20 | 2019-05-23 | Thyssenkrupp Ag | Optimization of nitrogen levels during bell annealing III |
KR102012319B1 (en) * | 2017-12-26 | 2019-08-20 | 주식회사 포스코 | Oriented electrical steel sheet and manufacturing method of the same |
CN108456829A (en) * | 2018-02-26 | 2018-08-28 | 合肥尚强电气科技有限公司 | Transformer silicon steel sheet and preparation method thereof |
CN110899644A (en) * | 2018-09-14 | 2020-03-24 | 宝山钢铁股份有限公司 | Production method of ultrathin hot rolled strip steel |
WO2020064632A1 (en) | 2018-09-26 | 2020-04-02 | Thyssenkrupp Electrical Steel Gmbh | Process for producing a grain-oriented magnetic steel strip provided with an insulating layer and grain-oriented magnetic steel strip |
KR102142511B1 (en) * | 2018-11-30 | 2020-08-07 | 주식회사 포스코 | Grain oriented electrical steel sheet and manufacturing method of the same |
CN111411265B (en) * | 2020-03-21 | 2021-11-26 | 交大材料科技(江苏)研究院有限公司 | Nickel-based alloy ultrathin sheet |
DE102020209299A1 (en) * | 2020-07-23 | 2022-01-27 | Sms Group Gmbh | Method of manufacturing steel strip |
CN113042532B (en) * | 2021-03-12 | 2022-08-26 | 武汉钢铁有限公司 | Bi-containing high magnetic induction oriented silicon steel hot-rolled strip steel edge quality control method |
CN113684387B (en) * | 2021-08-25 | 2022-11-01 | 中航上大高温合金材料股份有限公司 | GH6159 alloy ingot for fastener and preparation method thereof |
EP4273280A1 (en) | 2022-05-04 | 2023-11-08 | Thyssenkrupp Electrical Steel Gmbh | Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4942208B1 (en) * | 1971-05-20 | 1974-11-13 | ||
BE783693A (en) * | 1971-05-20 | 1972-09-18 | Nippon Steel Corp | PROCESS FOR THE MANUFACTURING OF STEEL SLABS CONTAINING SILICON FOR ELECTRIC STEEL BALLS AND STRIPS |
JPS56158816A (en) | 1980-05-13 | 1981-12-07 | Kawasaki Steel Corp | Manufacture of anisotropic electrical steel strip |
JPS58100627A (en) * | 1981-12-11 | 1983-06-15 | Nippon Steel Corp | Manufacture of directional electrical sheet |
JP2787776B2 (en) * | 1989-04-14 | 1998-08-20 | 新日本製鐵株式会社 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties |
JP2784687B2 (en) * | 1990-10-12 | 1998-08-06 | 新日本製鐵株式会社 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties |
JPH07122096B2 (en) | 1990-11-07 | 1995-12-25 | 新日本製鐵株式会社 | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties |
JPH086139B2 (en) * | 1991-06-10 | 1996-01-24 | 新日本製鐵株式会社 | Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties |
JPH05230534A (en) * | 1992-02-21 | 1993-09-07 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet excellent in magnetic property |
JPH06136448A (en) * | 1992-10-26 | 1994-05-17 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet |
JP3061491B2 (en) * | 1992-12-08 | 2000-07-10 | 新日本製鐵株式会社 | Method for producing unidirectional electrical steel sheet with excellent magnetic properties |
US5472479A (en) * | 1994-01-26 | 1995-12-05 | Ltv Steel Company, Inc. | Method of making ultra-low carbon and sulfur steel |
FR2744135B1 (en) * | 1996-01-25 | 1998-02-27 | Usinor Sacilor | PROCESS FOR PRODUCING MAGNETIC STEEL SHEET WITH NON-ORIENTED GRAINS AND SHEET OBTAINED BY THE PROCESS |
DE19745445C1 (en) * | 1997-10-15 | 1999-07-08 | Thyssenkrupp Stahl Ag | Process for the production of grain-oriented electrical sheet with low magnetic loss and high polarization |
JP2000301320A (en) * | 1999-04-19 | 2000-10-31 | Sanyo Special Steel Co Ltd | Method for dissolving clogging of porous plug in ladle refining furnace |
JP4562244B2 (en) * | 2000-06-05 | 2010-10-13 | 山陽特殊製鋼株式会社 | Manufacturing method of high cleanliness steel |
IT1316030B1 (en) | 2000-12-18 | 2003-03-26 | Acciai Speciali Terni Spa | PROCEDURE FOR THE MANUFACTURE OF ORIENTED GRAIN SHEETS. |
JP2002212639A (en) | 2001-01-12 | 2002-07-31 | Nippon Steel Corp | Method for producing grain oriented silicon steel sheet having excellent magnetic property |
US6676771B2 (en) * | 2001-08-02 | 2004-01-13 | Jfe Steel Corporation | Method of manufacturing grain-oriented electrical steel sheet |
JP2003266152A (en) * | 2002-03-12 | 2003-09-24 | Nippon Steel Corp | Electromagnetic brake-device in mold |
PL1752548T3 (en) * | 2005-08-03 | 2017-08-31 | Thyssenkrupp Steel Europe Ag | Method for producing a magnetic grain oriented steel strip |
-
2005
- 2005-08-03 SI SI200532056A patent/SI1752549T1/en unknown
- 2005-08-03 EP EP05016835.0A patent/EP1752549B1/en active Active
- 2005-08-03 PL PL05016835T patent/PL1752549T3/en unknown
-
2006
- 2006-07-20 RU RU2008107938/02A patent/RU2407807C2/en active
- 2006-07-20 CA CA2615586A patent/CA2615586C/en not_active Expired - Fee Related
- 2006-07-20 MX MX2008001475A patent/MX2008001475A/en active IP Right Grant
- 2006-07-20 AU AU2006274901A patent/AU2006274901B2/en not_active Ceased
- 2006-07-20 KR KR1020087005312A patent/KR101365653B1/en active IP Right Grant
- 2006-07-20 JP JP2008524481A patent/JP2009503265A/en active Pending
- 2006-07-20 CN CN2006800288008A patent/CN101238227B/en not_active Expired - Fee Related
- 2006-07-20 US US11/997,670 patent/US8088229B2/en not_active Expired - Fee Related
- 2006-07-20 BR BRPI0614379-2A patent/BRPI0614379B1/en not_active IP Right Cessation
- 2006-07-20 WO PCT/EP2006/064480 patent/WO2007014868A1/en active Application Filing
- 2006-07-28 TW TW095127715A patent/TWI402353B/en not_active IP Right Cessation
-
2008
- 2008-01-22 ZA ZA200800663A patent/ZA200800663B/en unknown
Non-Patent Citations (2)
Title |
---|
"Grain-oriented Silicon Electrical Steel From Italy and Japan", US INTERNATIONAL TRADE COMMISSION, 1 May 1994 (1994-05-01), us, pages ii-3 - ii-8 * |
"I materiali magnetici impiegati nelle macchine electriche: proprietà dei prodotti attuali e tendenze di sviluppo", LA METALLURGICA ITALIANA, 19 September 1991 (1991-09-19), IT, pages 905 - 914 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020193717A1 (en) | 2019-03-26 | 2020-10-01 | Thyssenkrupp Electrical Steel Gmbh | Iron-silicon material suitable for medium frequency applications |
WO2020193634A1 (en) | 2019-03-26 | 2020-10-01 | Thyssenkrupp Electrical Steel Gmbh | Lean method for secondary recrystallization of grain oriented electrical steel in a continuous processing line |
RU2818560C1 (en) * | 2020-07-23 | 2024-05-02 | Смс Груп Гмбх | Method of making steel strip |
EP4365319A1 (en) | 2022-11-03 | 2024-05-08 | Thyssenkrupp Electrical Steel Gmbh | Grain-oriented electrical steel strip and method for its production |
Also Published As
Publication number | Publication date |
---|---|
TW200710226A (en) | 2007-03-16 |
AU2006274901A1 (en) | 2007-02-08 |
AU2006274901B2 (en) | 2011-07-28 |
PL1752549T3 (en) | 2017-08-31 |
RU2407807C2 (en) | 2010-12-27 |
US8088229B2 (en) | 2012-01-03 |
EP1752549A1 (en) | 2007-02-14 |
JP2009503265A (en) | 2009-01-29 |
SI1752549T1 (en) | 2016-09-30 |
MX2008001475A (en) | 2008-04-02 |
BRPI0614379B1 (en) | 2014-04-29 |
CN101238227A (en) | 2008-08-06 |
TWI402353B (en) | 2013-07-21 |
CA2615586A1 (en) | 2007-02-08 |
CA2615586C (en) | 2015-04-21 |
KR101365653B1 (en) | 2014-02-19 |
KR20080042859A (en) | 2008-05-15 |
BRPI0614379A2 (en) | 2011-03-22 |
RU2008107938A (en) | 2009-09-10 |
ZA200800663B (en) | 2009-04-29 |
WO2007014868A1 (en) | 2007-02-08 |
US20080216985A1 (en) | 2008-09-11 |
CN101238227B (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1752549B1 (en) | Process for manufacturing grain-oriented magnetic steel spring | |
EP1752548B1 (en) | Method for producing a magnetic grain oriented steel strip | |
EP2690183B1 (en) | Hot-rolled steel flat product and method for its production | |
EP2663411B1 (en) | Method for producing a hot-rolled flat steel product | |
EP1918406B1 (en) | Process for manufacturing steel flat products from boron microalloyed multi phase steel | |
DE19745445C1 (en) | Process for the production of grain-oriented electrical sheet with low magnetic loss and high polarization | |
EP1918402B1 (en) | Process for manufacturing steel flat products from a steel forming a complex phase structure | |
EP2761041B1 (en) | Method for producing a grain-oriented electrical steel strip or sheet intended for electrotechnical applications | |
EP1918403A1 (en) | Process for manufacturing steel flat products from a steel forming martensitic structure | |
EP1918405B1 (en) | Process for manufacturing steel flat products from silicon alloyed multi phase steel | |
WO2020201352A1 (en) | Hot-rolled flat steel product and method for the production thereof | |
EP1444372B1 (en) | Method for the production of electrical sheet with non-oriented grains | |
EP1918404B1 (en) | Process for manufacturing steel flat products from aluminium alloyed multi phase steel | |
DE10062919A1 (en) | Process for producing hot strip or sheet from a microalloyed steel | |
DE19913498C1 (en) | Process for producing a hot strip and hot strip line for carrying out the method | |
DE102005063058B3 (en) | Producing cold rolled strip of ferritic stainless steel comprises controlled cooling before cold rolling | |
EP1396549A1 (en) | Process for manufacturing hot rolled pearlite-free steel strip and hot strip obtained thereby | |
WO2001029273A1 (en) | Method for production of a hot rolled strip | |
EP3714072A1 (en) | Grain-oriented electrical steel strip and method for producing such an electrical steel strip | |
WO2019096734A1 (en) | Grain-oriented electrical steel strip and method for producing such an electrical steel strip | |
DE102017220721A1 (en) | Optimization of nitrogen levels during bell annealing III | |
WO2023016965A1 (en) | Method and device for producing high-strength and very high-strength multiphase steel | |
DE10060950A1 (en) | Production of a grain-orientated electric sheet comprises melting a steel melt, continuously casting into a pre-strip, cooling after solidifying, hot rolling to form a hot strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060520 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THYSSENKRUPP STEEL EUROPE AG |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150828 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LAHN, LUDGER Inventor name: PLOCH, ANDREAS Inventor name: SOWKA, EBERHARD Inventor name: GUENTHER, KLAUS |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 771765 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005015082 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160421 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160520 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160520 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 20841 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005015082 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20161021 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E028859 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160120 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200821 Year of fee payment: 16 Ref country code: DE Payment date: 20200819 Year of fee payment: 16 Ref country code: NL Payment date: 20200826 Year of fee payment: 16 Ref country code: CZ Payment date: 20200803 Year of fee payment: 16 Ref country code: RO Payment date: 20200723 Year of fee payment: 16 Ref country code: GB Payment date: 20200826 Year of fee payment: 16 Ref country code: SK Payment date: 20200731 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20200826 Year of fee payment: 16 Ref country code: SE Payment date: 20200826 Year of fee payment: 16 Ref country code: IT Payment date: 20200826 Year of fee payment: 16 Ref country code: PL Payment date: 20200727 Year of fee payment: 16 Ref country code: HU Payment date: 20200917 Year of fee payment: 16 Ref country code: AT Payment date: 20200820 Year of fee payment: 16 Ref country code: SI Payment date: 20200723 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005015082 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20210901 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 771765 Country of ref document: AT Kind code of ref document: T Effective date: 20210803 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210803 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 20841 Country of ref document: SK Effective date: 20210803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210804 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210804 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 |