EP1746144B1 - Nouveau procédé de désulfuration d'essences oléfiniques permettant de limiter la teneur en mercaptans - Google Patents

Nouveau procédé de désulfuration d'essences oléfiniques permettant de limiter la teneur en mercaptans Download PDF

Info

Publication number
EP1746144B1
EP1746144B1 EP06291025A EP06291025A EP1746144B1 EP 1746144 B1 EP1746144 B1 EP 1746144B1 EP 06291025 A EP06291025 A EP 06291025A EP 06291025 A EP06291025 A EP 06291025A EP 1746144 B1 EP1746144 B1 EP 1746144B1
Authority
EP
European Patent Office
Prior art keywords
range
weight
hydrodesulphurization
reactor
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP06291025A
Other languages
German (de)
English (en)
Other versions
EP1746144A1 (fr
Inventor
Florent Picard
Christophe Bouchy
Nathalie Marchal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36177723&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1746144(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1746144A1 publication Critical patent/EP1746144A1/fr
Application granted granted Critical
Publication of EP1746144B1 publication Critical patent/EP1746144B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline

Definitions

  • the production of reformulated species that meet the new environmental standards requires a much greater reduction in their sulfur content.
  • the environmental standards force refiners to lower the sulfur content in the gasoline pool to values of less than or equal to 50 ppm in 2005, which will have to be reduced to 10 ppm by January 1, 2009 within the community. European.
  • the desulphurized species must also meet the specifications in terms of corrosive power.
  • the corrosive power of gasolines is essentially due to the presence of acid sulfur compounds such as mercaptans.
  • Desulphurized species must therefore contain few mercaptans to limit their corrosivity.
  • the feedstock to be treated is generally a sulfur-containing gasoline cut such as, for example, a petrol cut from a coking unit, visbreaking, steam cracking or catalytic cracking unit (FCC).
  • Said feedstock is preferably composed of a gasoline cutter from a catalytic cracking unit whose distillation range is typically between 70 ° C and about 250 ° C.
  • Catalytic cracking gasolines can make up 30% to 50% by volume of the gasoline pool and generally have high olefin and sulfur contents.
  • sulfur present in the reformulated gasoline is attributable, to nearly 90%, to gasoline from catalytic cracking.
  • the desulphurisation of gasolines, and mainly of FCC species, is therefore of crucial importance for the respect of current and future standards.
  • Hydrotreating or hydrodesulfurization of catalytic cracking gasolines when carried out under conventional conditions, makes it possible to reduce the sulfur content of the cut.
  • these processes have the major disadvantage of causing a very large drop in the octane number of the cut, due to the hydrogenation of a large part, indeed of all the olefins under the usual conditions of hydrotreating.
  • the method described in the present invention makes it possible to significantly reduce the formation of recombinant mercaptans, and to limit the loss of octane during the desulphurization step, without resorting to a complementary step of treating gasoline. Indeed, it has been found by the inventors that it was possible to improve the performance of selective desulphurisation processes of gasolines, by recycling a fraction of the desulfurized gasoline.
  • the patent US 2,431,920 relates to gasoline fractions which contain more than 0.1% by weight of sulfur (ie more than 1000 ppm by weight) in order to desulphurize these fractions and to saturate at least a part of the olefins.
  • the present invention differs from the prior art in that it is intended to desulphurize in a very thorough manner gasolines which contain less than 0.1% by weight of sulfur, while precisely limiting the degree of hydrogenation of the olefins as well as the formation of mercaptans.
  • the figure 1 represents a diagram of the process according to the invention in which the optional elements of the process are shown in dotted lines.
  • the invention can be described as a process for the hydrodesulfurization of a gasoline containing less than 0.1% by weight of sulfur, from a catalytic cracking unit, or a gasoline from other conversion units, and containing preferably at least one part of catalytic cracking gasoline, comprising at least one hydrodesulfurization reactor using a bimetallic catalyst working at a VVH between 0.1 h -1 and 20 h -1 , a temperature of between 220 ° C.
  • the hydrodesulfurization reactor used in the process according to the invention will generally be a fixed bed reactor, the size of the catalyst grains being of the order of a few millimeters, and preferably between 1 and 4 mm.
  • the catalyst used in the process comprises at least one group VIII element and a group VIb element, deposited on a porous support, the group VIII element preferably being iron, cobalt or nickel, preferably cobalt and the group VIb element preferably being molybdenum or tungsten, preferably molybdenum.
  • the hydrodesulfurization catalyst consists of a porous support having a specific surface area of less than 200 m 2 / gram.
  • the process according to the invention can in certain cases use a finishing reactor located downstream of the hydrodesulfurization reactor, the said finishing reactor using either a monometallic catalyst or a bimetallic catalyst of the same type as that used in the reactor. hydrodesulfurization.
  • the process comprises a finishing reactor
  • the invention relates to a process for the desulfurization of gasolines containing less than 0.1% by weight of sulfur in the form of any type of sulfur compounds (1000 ppm by weight), preferably less than 950 ppm by weight of sulfur, more preferably less than 900 ppm of sulfur and very preferably less than 850 ppm of sulfur, and including any type of chemical compounds including olefins.
  • the present process finds particular application in the conversion of conversion gasolines, and in particular the species from catalytic cracking, fluid-bed catalytic cracking (FCC), a coking process, a visbreaking process, or a pyrolysis process.
  • FCC fluid-bed catalytic cracking
  • the process according to the invention makes it possible to produce a gasoline with a very low sulfur content and improved octane number.
  • the sulfur content of the gasoline obtained by means of the process according to the invention is thus generally less than 30 ppm by weight, preferably less than 28 ppm by weight, and very preferably less than 25 ppm by weight.
  • the mercaptan content of said gasoline is preferably less than 25 ppm by weight, more preferably less than or equal to 22 ppm by weight and very preferably less than or equal to 20 ppm by weight.
  • the process according to the invention comprises at least one step of hydrodesulfurization of the gasoline to be treated possibly followed by a step of finishing the hydrodesulfurization.
  • the hydrodesulphurization is carried out in at least one fixed-bed reactor which may comprise a plurality of catalytic beds separated by an injection zone for a cold fluid called a cooling zone, making it possible to control the rise in temperature along the reactor.
  • the finishing step is also carried out in at least one fixed-bed reactor which may comprise several catalytic beds.
  • the desulfurized gasoline can be recycled at the inlet of the hydrodesulfurization reactor, or between two consecutive beds of catalyst at the cooling zone, or between the hydrodesulfurization reactor and the finishing reactor. .
  • the total flow rate of recycled gasoline corresponds to a flow rate of between 0.2 and 2 times the flow rate of gasoline to be desulphurized, and very preferably between 0.2 and 1 time. the flow of gas to be desulphurized.
  • the recycled gasoline is characterized in that it has a sulfur content lower than the sulfur content of the gasoline to be desulphurized, and preferably, a sulfur content at least two times lower than the sulfur content of the essence to desulphurize.
  • the operating conditions of the hydrodesulphurization reactor are those typically used to selectively desulphurize olefinic species.
  • the operation will be carried out, for example, at a temperature of between 220 ° C. and 350 ° C., under a general pressure of between 0.1 and 5 MPa, preferably between 1 MPa and 3 MPa.
  • the space velocity will generally be between about 0.1 h -1 and 20 h -1 (expressed as the volume of liquid gas to be desulfurized per volume of catalyst per hour), preferably between 0.1 h -1 and 10 h - 1 , and very preferably between 0.5 h -1 and 8 h -1 .
  • the ratio of the hydrogen flow rate on the gasoline flow to be desulphurized will generally be between 50 liters / liter and 800 liters / liter, and preferably between 100 liters / liter and 400 liters / liter.
  • the hydrodesulfurization reactor contains at least one bed of hydrodesulfurization catalyst comprising at least one group VIII element, and a group VIb element, deposited on a porous support.
  • the group VIII element is preferably iron, cobalt or nickel.
  • the group VIb element is preferably molybdenum or tungsten.
  • the content of group VIII element expressed as oxide is generally between 0.5% by weight and 15% by weight, and preferably between 0.7% by weight and 10% by weight.
  • the metal content of the group VIb is generally between 1.5% by weight and 60% by weight, and preferably between 2% by weight and 50% by weight.
  • the porous support of the hydrodesulfurization catalyst is selected from the group consisting of silica, alumina, silicon carbide or any mixture of said elements of the group.
  • an alumina-based support whose specific surface area is less than 200 m 2 / g, preferably less than 150 m 2 / g, and very preferably lower at 100 m 2 / g.
  • the surface density of the metal of group VIB is preferably between 2.10 -4 and 40.10 -4 gram of oxide of said metal per m 2 of support, preferably between 4.10 -4 and 16.10 -4 g / m 2 of support.
  • the Group VIb and VIII elements being active in hydrodesulfurization in their sulfurized form the catalyst generally undergoes a sulphurization step before it comes into contact with the feedstock to be treated.
  • this sulphurization is obtained by a heat treatment of the solid during which it is brought into contact with a decomposable sulfur compound and hydrogen sulphide generator.
  • the catalyst can also be directly contacted with a gas stream comprising hydrogen sulfide.
  • This sulphurization step may be carried out ex situ or in situ, ie inside or outside the hydrodesulfurization reactor.
  • the sulfurized catalyst may also have been subjected to a carbon deposition step so as to deposit a certain carbon content, preferably less than or equal to 2.8% by weight.
  • This carbon deposition step aims at improving the selectivity of the catalyst by preferentially reducing the hydrogenating activity of the catalyst.
  • the carbon content deposited is between 0.5% and 2.6% by weight.
  • This carbon deposition step can be carried out before, after, or during the step of sulphurizing the catalyst.
  • the method may use a hydrodesulfurization finishing step using a catalyst comprising at least one element selected from group VIII elements, deposited on a porous support such as for example alumina or silica.
  • the element content of group VIII is between 1% and 60% by weight, and preferably between 2% and 20% by weight.
  • the said group VIII element is introduced in the form of a metal oxide, then it is sulphurized before use.
  • This finishing step is mainly used to decompose saturated sulfur compounds such as mercaptans or sulphides contained in the hydrodesulphurization effluent.
  • this finishing step is carried out at a temperature higher than the hydrodesulfurization step.
  • the finishing step will be carried out on a hydrodesulphurization catalyst comprising at least one group VIII element and a Group VIb element, deposited on a porous support.
  • the group VIII element is preferably iron, cobalt or nickel.
  • the group VIb element is preferably molybdenum or tungsten.
  • the content of group VIII element expressed as oxide is between 0.5% by weight and 10% by weight and preferably between 0.7% by weight and 5% by weight.
  • the metal content of group VIb is between 1.5% by weight and 50% by weight, and preferably between 2% by weight and 20% by weight.
  • the porous support is selected from the group consisting of silica, alumina, silicon carbide or any mixture of said constituent elements.
  • an alumina-based support whose specific surface area is less than 200 m 2 / g, preferably less than 150 m 2 / g, and very preferably lower at 100 m 2 / g.
  • the porosity of the catalyst used in the finishing step is such that the average pore diameter is greater than 20 nm, and preferably between 20 nm and 100 nm.
  • the surface density of the group VIb metal is preferably between 2.10 -4 and 40.10 -4 gram of oxide of said metal per m 2 of support, preferably between 4.10 -4 and 16.10 -4 g / m 2 .
  • the catalyst of the finishing step is characterized by a catalytic activity generally of between 1% and 90%, preferably between 1% and 70%, and very preferably between 1% and 50% of the catalytic activity of the catalyst.
  • main catalyst of hydrodesulfurization is characterized by a catalytic activity generally of between 1% and 90%, preferably between 1% and 70%, and very preferably between 1% and 50% of the catalytic activity of the catalyst.
  • the figure 1 shows a hydrodesulfurization reactor divided into two catalytic beds, and a finishing reactor divided into two catalytic beds.
  • the gasoline to be treated is introduced via line (1) and then mixed with hydrogen introduced via line (2) and heated by an exchanger train and / or an oven (11).
  • the hydrogen of the line (2) consists of a mixture of the hydrogen recycled by the line (10) and the additional hydrogen introduced by the line (23).
  • the mixture brought to the temperature and the pressure necessary to reach the desired desulfurization rate is generally in the vapor phase in the line (3).
  • the effluent from the reactor (12) contains hydrocarbons and sulfur compounds that have not reacted, paraffins from the hydrogenation of olefins, H 2 S from the decomposition of sulfur compounds, and recombinant mercaptans. from the addition reactions of H 2 S on olefins.
  • the effluent from the reactor (12) is sent via the line (4) into an exchange train (13) in order to condense the hydrocarbon fraction (the part of the figure 1 in the dashed rectangle is then absent from the scheme according to this variant).
  • the mixture of liquid hydrocarbons and hydrogen is then separated in a separator tank (14) which makes it possible to recover a liquid fraction in bottom by the line (6) constituted mainly of the desulfurized gasoline, and at the top, a gaseous fraction. by line (5) consisting mainly of hydrogen and H 2 S.
  • the gaseous effluent is directed by line (5) to a washing section (15) to separate H 2 S from hydrogen.
  • the liquid effluent brought by the line (6) is expanded and injected into a stripping column (17) which makes it possible to extract at the top, via the line (9), the residual H 2 S dissolved in the hydrocarbons.
  • the desulfurized gasoline is recovered at the bottom of the stripping column by the line (7).
  • a fraction of this desulfurized gasoline is withdrawn via line (8) and mixed with the feedstock introduced via line (1).
  • the hydrodesulfurization carried out in the reactor (12) is followed by a step of finishing the hydrodesulfurization carried out in the finishing reactor (19).
  • the reaction mixture recovered at the line (4) can be reheated by an exchange train or an oven (18) and then sent into the finishing reactor (19) (implementation of the part of the figure 1 located in the rectangle in broken lines).
  • the recycling of a fraction of the desulphurized gasoline can be carried out either by the line (1), at the inlet of the hydrodesulphurization reactor, or by the line (20) between two catalyst beds of the hydrodesulfurization reactor ( 12), either by the line (22) between two catalyst beds of the finishing reactor (19), or by the line (21) between the hydrodesulfurization reactor (12) and the finishing reactor (19).
  • the combination of recycling means that some of the desulfurized gasoline can be recycled at each of the various recycling points previously listed. In this case, the distribution of the recycling flow between the different recycling points can be absolutely arbitrary.
  • a continuously operating hydrodesulfurization reactor is charged with 100 ml (ml is the abbreviation of milliliter) of HR806 catalyst marketed by the company Axens.
  • This catalyst based on cobalt and molybdenum oxides is sulfided with a mixture of H 2 and DMDS under conventional sulfurization conditions, in order to convert at least 80% of the metal oxides of molybdenum and cobalt into sulfides.
  • the reaction mixture is cooled and the gasoline is separated from the hydrogen in a gas / liquid separator.
  • Recovered gasoline is stripped by a nitrogen flow to remove residual H 2 S and analyzed.
  • the gasoline produced contains 32 ppm of sulfur, of which 22 ppm in the form of mercaptans, and a bromine value of 30 mg / 100ml.
  • a test is conducted on gasoline A under conditions similar to Example 1.
  • a fraction of the liquid recipe from the stripper is returned to the charging pot using a pump.
  • the recycle rate is calculated as the recycle rate divided by the fresh charge rate.
  • the temperature is adjusted in increments of 1 ° C to obtain about 30 ppm of sulfur in the recipe.
  • the recycle rate is adjusted to obtain recycle rates in a range of 0.2 to 3. For each recycle rate, a sample of desulphurized gasoline is recovered and analyzed. Table 2 presents the analyzes performed on the different samples. Recycling rate 0.2 0.5 1 2 3 total flow l / h 0.48 0.6 0.8 1.2 1.6 Temperature, ° C 285 285 286 289 291
  • the operation of the reactor with recycling of a fraction of the recipe makes it possible, for the same sulfur content in the recipe, to produce a gasoline having a lower mercaptan content and a higher olefin content.
  • the mercaptan content of the effluent decreases, and the olefin content of the effluent measured by the bromine index (IBr) remains stationary, which preserves the value of the index of octane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

    Domaine de l'invention
  • La production d'essences reformulées répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue de façon beaucoup plus importante leur teneur en soufre. En effet, les normes environnementales contraignent les raffineurs à abaisser la teneur en soufre dans le pool essence à des valeurs inférieures ou au plus égales à 50 ppm en 2005, et qui devront être ramenées à 10 ppm au premier janvier 2009 au sein de la communauté européenne. De plus, les essences désulfurées doivent également satisfaire aux spécifications en terme de pouvoir corrosif. Le pouvoir corrosif des essences est essentiellement dû à la présence de composés soufrés acides tels que les mercaptans.
  • Les essences désulfurées doivent donc contenir peu de mercaptans pour limiter leur corrosivité.
  • La charge à traiter est généralement une coupe essence contenant du soufre telle que par exemple une coupe essence issue d'une unité de cokéfaction (coking), de viscoréduction (visbreaking), de vapocraquage ou de craquage catalytique (FCC). Ladite charge est de préférence constituée d'une coupe essence issue d'une unité de craquage catalytique dont l'intervalle de distillation est typiquement compris entre 70°C et environ 250°C.
  • Dans la suite du texte on parlera de manière générale d'essence de craquage catalytique en élargissant cette définition à des essences pouvant contenir en plus d'une majeure partie d'essence issue d'une unité de craquage catalytique, des fractions d'essence issues d'autres unités de conversion.
  • Les essences de craquage catalytique peuvent constituer 30% à 50 % en volume du pool essence et présentent généralement des teneurs en oléfines et en soufre élevés. Or, le soufre présent dans les essences reformulées est imputable, à près de 90%, à l'essence issue du craquage catalytique. La désulfuration des essences, et principalement des essences de FCC, est donc d'une importance cruciale pour le respect des normes en vigueur et à venir.
  • Examen de l'art antérieur
  • L'hydrotraitement ou l'hydrodésulfuration des essences de craquage catalytique, lorsqu'il est réalisé dans des conditions classiques, permet de réduire la teneur en soufre de la coupe. Cependant, ces procédés présentent l'inconvénient majeur d'entraîner une chute très importante de l'indice d'octane de la coupe, en raison de l'hydrogénation d'une partie importante, voire de la totalité des oléfines dans les conditions habituelles de l'hydrotraitement.
  • Il existe des procédés permettant de désulfurer profondément les essences de FCC tout en maintenant l'indice d'octane à un niveau acceptable.
  • Ces procédés sont, pour la plupart, basés sur le principe de l'hydrodésulfuration sélective visant à transformer les composes soufrés en H2S, tout en limitant l'hydrogénation des oléfines en paraffines, transformation qui induit une perte d'octane importante.
  • Toutefois, l'efficacité de ces procédés est limitée par la formation de mercaptans dits de recombinaison issus de l'addition de l'H2S formé dans le réacteur avec les oléfines résiduelles. La formation de ces mercaptans de recombinaison est en particulier décrite dans le brevet US 6,231,754 et la demande de brevet WO01/40409 qui enseignent diverses combinaisons de conditions opératoires et de catalyseurs permettant de limiter la formation de mercaptans de recombinaison.
  • D'autres solutions au problème de la formation des mercaptans de recombinaison sont basées sur un traitement des essences partiellement désulfurées pour en extraire les dits mercaptans de recombinaison. Certaines de ces solutions sont décrites dans les demandes de brevets WO 02/28988 ou WO 01/79391 .
  • Le procédé décrit dans la présente invention permet de diminuer significativement la formation de mercaptans de recombinaison, et de limiter la perte d'octane au cours de l'étape de désulfuration, sans faire appel à une étape complémentaire de traitement de l'essence. En effet, il a été trouvé par les inventeurs qu'il était possible d'améliorer les performances des procédés de désulfuration sélective des essences, en recyclant une fraction de l'essence désulfurée.
  • Il a été en effet observé qu'en mélangeant la charge à traiter avec une fraction de l'essence désulfurée, il était possible de diminuer significativement la fraction de composés soufrés présents sous forme de mercaptans dans les effluents désulfurés, tout en maintenant l'octane à des niveaux élevés.
  • La mise en oeuvre de recyclages appropriés pour désulfurer les essences est décrite dans certaines publications, mais dans des conditions et pour répondre à des problématiques différentes de l'objet de l'invention.
  • Par exemple, il est enseigné dans le brevet US 2,431,920 que les réactions de désulfuration, hydrogénation et déshydrogénation des essences sont améliorées en recyclant une fraction de l'effluent désulfurée afin de limiter la teneur en soufre de la charge à moins de 0,1% poids.
  • Le brevet US 2,431,920 concerne des fractions essences qui contiennent plus de 0,1 % poids de soufre (soit plus de 1000 ppm poids) afin de désulfurer ces fractions et de saturer un moins une partie des oléfines.
  • Les brevets EP 1 369 466 , US 5 968 346 et US 2004/0226863 décrivent également des procédés d'hydrodésulfuration.
  • La présente invention se différentie de l'art antérieur car elle est destinée à désulfurer d'une manière très poussée des essences qui contiennent moins de 0,1 % poids de soufre, tout en limitant précisément le taux d'hydrogénation des oléfines ainsi que la formation de mercaptans.
  • Description sommaire de la figure:
  • La figure 1 représente un schéma du procédé selon l'invention dans lequel on a représenté en pointillé les éléments facultatifs du procédé.
  • Description sommaire de l'invention:
  • L'invention peut être décrite comme un procédé_d'hydrodésulfuration d'une essence contenant moins de 0,1 %poids de soufre, issue d'une unité de craquage catalytique, ou d'une essence issue d'autres unités de conversion, et contenant de préférence au moins une partie d'essence de craquage catalytique, comprenant au moins un réacteur d'hydrodésulfuration utilisant un catalyseur bimétallique travaillant à une VVH comprise entre 0,1 h-1 et 20 h-1, une température comprise entre 220°C et 350°C, et une pression comprise entre 0,1 MPa et 5 MPa ( 1MPa = 106 Pascal= 10 bars), caractérisé par le recyclage d'une fraction de l'essence désulfurée à l'entrée du réacteur d'hydrodésulfuration, le taux de recyclage étant compris entre 0,2 et 2 fois le débit d'essence à désulfurer.
  • Le réacteur d'hydrodésulfuration utilisé dans le procédé selon l'invention sera généralement un réacteur en lit fixe, la taille des grains de catalyseur étant de l'ordre de quelques millimètres, et préférentiellement comprise entre 1 et 4 mm.
  • Le catalyseur utilisé dans le procédé comprend au moins un élément du groupe VIII et un élément du groupe Vlb, déposés sur un support poreux, l'élément du groupe VIII étant de préférence du fer, du cobalt ou du nickel, de préférence du cobalt et l'élément du groupe Vlb étant de préférence du molybdène ou du tungstène, de préférence du molybdène.
  • Le catalyseur d'hydrodésulfuration est constitué d'un support poreux de surface spécifique inférieure à 200 m2/gramme.
  • Le procédé selon l'invention peut dans certains cas faire appel à un réacteur de finition situé en aval du réacteur d'hydrodésulfuration, le dit réacteur de finition utilisant soit un catalyseur monométallique, soit un catalyseur bimétallique du même type que celui utilisé dans le réacteur d'hydrodésulfuration.
  • Dans le cas où le procédé comporte un réacteur de finition, il est particulièrement avantageux d'effectuer le recyclage d'une partie au moins de l'essence désulfurée en un point situé entre le réacteur d'hydrodésulfuration et le réacteur de finition.
  • Il est également particulièrement avantageux d'effectuer le recyclage d'une partie au moins de l'essence désulfurée entre deux lits catalytique du réacteur d'hydrodésulfuration (ou d'un des réacteurs d'hydrodésulfuration lorsqu'ils sont plusieurs à fonctionner en série ou en parallèle).
  • Description détaillée de l'invention :
  • L'invention concerne un procédé de désulfuration d'essences contenant moins de 0,1% poids de soufre sous la forme de tout type de composés soufrés (1000 ppm poids), de préférence moins de 950 ppm poids de soufre, de manière plus préférée moins de 900 ppm de soufre et de manière très préférée moins de 850 ppm de soufre, et comprenant tout type de composés chimique et notamment des oléfines. Le présent procédé trouve particulièrement son application dans la transformation des essences de conversion, et en particulier les essences en provenance du craquage catalytique, du craquage catalytique en lit fluide (FCC), d'un procédé de cokéfaction, d'un procédé de viscoréduction, ou d'un procédé de pyrolyse.
  • Le procédé selon l'invention permet de produire une essence à très faible teneur en soufre et à indice d'octane amélioré. La teneur en soufre de l'essence obtenue au moyen du procédé selon l'invention est ainsi généralement inférieure à 30 ppm poids, de préférence inférieure à 28 ppm poids, et de manière très préférée inférieure à 25 ppm poids. La teneur en mercaptans de ladite essence est de préférence inférieure à 25 ppm poids, de manière plus préférée inférieure ou égale à 22 ppm poids et de manière très préférée inférieure ou égale à 20 ppm poids.
  • Le procédé selon l'invention comprend au moins une étape d'hydrodésulfuration de l'essence à traiter suivie éventuellement d'une étape de finition de l'hydrodésulfuration.
  • L'hydrodésulfuration est mise en oeuvre dans au moins un réacteur à lit fixe pouvant comprendre plusieurs lits catalytiques séparés par une zone d'injection d'un fluide froid appelée zone de refroidissement, permettant de contrôler l'élévation de température le long du réacteur.
  • L'étape de finition est également mise en oeuvre dans au moins un réacteur à lit fixe pouvant comprendre plusieurs lits catalytiques.
  • Le recyclage de l'essence désulfurée pourra être réalisé, à l'entrée du réacteur d'hydrodésulfuration, ou entre deux lits consécutifs de catalyseur au niveau de la zone de refroidissement, ou bien encore entre le réacteur d'hydrodésulfuration et le réacteur de finition.
  • Quelque soit le ou les points de recyclage choisis, le débit total d'essence recyclée correspond à un débit compris entre 0,2 et 2 fois le débit d'essence à désulfurer, et de façon très préférée compris entre 0,2 et 1 fois le débit d'essence à désulfurer.
  • L'essence recyclée est caractérisée par le fait qu'elle présente une teneur en soufre inférieure à la teneur en soufre de l'essence à désulfurer, et de préférence, une teneur en soufre au moins deux fois plus faible que la teneur en soufre de l'essence à désulfurer.
  • Les conditions opératoires du réacteur d'hydrodésulfuration sont celles utilisées typiquement pour désulfurer sélectivement les essences oléfiniques. On opérera, par exemple, à une température comprise entre 220°C et 350°C, sous une pression générale comprise entre 0,1 et 5 MPa, de préférence entre 1 MPa et 3 MPa.
  • La vitesse spatiale sera généralement comprise entre environ 0,1 h-1 et 20 h-1 (exprimée en volume d'essence liquide à désulfurer par volume de catalyseur et par heure), de préférence entre 0,1 h-1 et 10h-1, et de manière très préférée entre 0,5 h-1 et 8 h-1.
  • Le rapport du débit d'hydrogène sur le débit d'essence à désulfurer sera généralement compris entre 50 litres/litre et 800 litres/litre, et de préférence entre 100 litres/litre et 400 litres/litre.
  • Le réacteur d'hydrodésulfuration contient au moins un lit de catalyseur d'hydrodésulfuration comprenant au moins un élément du groupe VIII, et un élément du groupe VIb, déposés sur un support poreux.
  • L'élément du groupe VIII est de préférence le fer, le cobalt ou le nickel.
  • L'élément du groupe Vlb est de préférence le molybdène ou le tungstène.
  • La teneur en élément du groupe VIII exprimée en oxyde est généralement comprise entre 0,5 % poids et 15 % poids, et de préférence entre 0,7 % poids et 10 % poids.
  • La teneur en métal du groupe Vlb est généralement comprise entre 1,5 % poids et 60% poids, et de préférence entre 2% poids et 50 % poids.
  • Le support poreux du catalyseur d'hydrodésulfuration est choisi dans le groupe constitué par la silice, l'alumine, le carbure de silicium ou un mélange quelconque des dits éléments du groupe.
  • Pour minimiser l'hydrogénation des oléfines, il est avantageux d'utiliser un support à base d'alumine dont la surface spécifique est inférieure à 200 m2/g, de préférence inférieure à 150 m2/g, et de façon très préférée inférieure à 100 m2/g.
  • La porosité du catalyseur d'hydrodésulfuration est telle que le diamètre moyen de pores est généralement supérieur à 20 nm, et de préférence compris entre 20 et 100 nm (1 nm= 1 nanomètre= 10-9 mètre).
  • La densité surfacique du métal du groupe Vlb est de préférence comprise entre 2.10-4 et 40.10-4 gramme d'oxyde dudit métal par m2 de support, de préférence entre 4.10-4 et 16.10-4 gramme/m2 de support.
  • Les éléments du groupe VIb et VIII étant actifs en hydrodésulfuration sous leur forme sulfurée, le catalyseur subit généralement une étape de sulfuration avant sa mise au contact de la charge à traiter.
  • Généralement, cette sulfuration est obtenue par un traitement thermique du solide durant lequel celui-ci est mis en contact avec un composé soufré décomposable et générateur de sulfure d'hydrogène. Le catalyseur peut également être directement mis en contact avec un flux gazeux comprenant du sulfure d'hydrogène.
  • Cette étape de sulfuration peut être effectuée ex situ ou in situ, c'est à dire à l'intérieur ou à l'extérieur du réacteur d'hydrodésulfuration.
  • De manière optionnelle, avant mise au contact de la charge, le catalyseur sulfuré pourra également été soumis à une étape de dépôt de carbone de façon à déposer une certaine teneur de carbone, de préférence inférieure ou égale à 2,8 % en poids.
  • Cette étape de dépôt de carbone vise à améliorer la sélectivité du catalyseur en réduisant préférentiellement l'activité hydrogénante du catalyseur.
  • De manière préférée, la teneur en carbone déposé est comprise entre 0,5% et 2,6 % poids. Cette étape de dépôt de carbone peut être effectuée avant, après, ou durant l'étape de sulfuration du catalyseur.
  • Le procédé peut faire appel à une étape de finition de l'hydrodésulfuration utilisant un catalyseur comprenant au moins un élément choisi parmi les éléments du groupe VIII, déposé sur un support poreux tel que par exemple de l'alumine ou de la silice.
  • La teneur en élément du groupe VIII est comprise entre 1% et 60 % poids, et de préférence entre 2% et 20% poids. Le dit élément du groupe VIII est introduit sous forme d'oxyde métallique, puis il est sulfuré avant son utilisation.
  • Cette étape de finition est principalement mise en oeuvre pour décomposer les composés soufrés saturés tels que les mercaptans ou sulfures contenus dans l'effluent de l'hydrodésulfuration.
  • Lorsqu'elle est présente, cette étape de finition est réalisée à une température supérieure à l'étape d'hydrodésulfuration.
  • Selon un autre mode particulier de réalisation de l'invention, l'étape de finition sera réalisée sur un catalyseur d'hydrodésulfuration comprenant au moins un élément du groupe VIII et un élément du groupe Vlb, déposés sur un support poreux.
  • L'élément du groupe VIII est de préférence le fer, le cobalt ou le nickel.
  • L'élément du groupe Vlb est de préférence le molybdène ou le tungstène.
  • La teneur en élément du groupe VIII exprimée en oxyde est comprise entre 0,5 % poids et 10 % poids et de préférence entre 0,7 % poids et 5 % poids.
  • La teneur en métal du groupe Vlb est comprise entre 1,5 % poids et 50% poids, et de préférence entre 2% poids et 20 % poids.
  • Le support poreux est choisi dans le groupe constitué par la silice, l'alumine, le carbure de silicium ou un mélange quelconque des dits éléments constitutifs.
  • Pour minimiser l'hydrogénation des oléfines, il est avantageux d'utiliser un support à base d'alumine dont la surface spécifique est inférieure à 200 m2/g, de préférence inférieure à 150 m2/g, et de façon très préférée inférieure à 100 m2/g.
  • La porosité du catalyseur utilisé dans l'étape de finition est telle que le diamètre moyen de pores est supérieur à 20 nm, et de préférence compris entre 20nm et 100 nm.
  • La densité surfacique du métal du groupe Vlb est de préférence comprise entre 2.10-4 et 40.10-4 gramme d'oxyde dudit métal par m2 de support, de préférence entre 4.10-4 et 16.10-4 g/m2.
  • Le catalyseur de l'étape de finition est caractérisé par une activité catalytique généralement comprise entre 1% et 90%, préférentiellement comprise entre 1% et 70%, et de manière très préférée comprise entre 1% et 50% de l'activité catalytique du catalyseur principal de l'hydrodésulfuration.
  • La description suivante du procédé sera mieux comprise à la lecture de la figure 1 jointe qui n'est nullement limitative des différentes configurations que peut prendre le procédé selon l'invention.
  • La figure 1 montre un réacteur d'hydrodésulfuration divisé en deux lits catalytiques, et un réacteur de finition divisé en deux lits catalytiques.
  • Plusieurs réacteurs d'hydrodésulfuration fonctionnant en parallèle ou en série, et plusieurs réacteurs de finition fonctionnant en parallèle ou en série sont parfaitement possibles et restent dans le cadre de l'invention.
  • De même, la division de chaque réacteur en plus de deux lits catalytiques reste parfaitement dans le cadre de l'invention. Le cadre en pointillé autour du réacteur de finition signifie que cette étape de finition est facultative.
  • L'essence à traiter est introduite par la ligne (1) puis mélangée à de l'hydrogène introduit par la ligne (2) et chauffée par un train d'échangeur et/ou un four (11). L'hydrogène de la ligne (2) est constitué d'un mélange de l'hydrogène recyclé par la ligne (10) et de l'hydrogène d'appoint introduit par la ligne (23).
  • Le mélange porté à la température et la pression nécessaires pour atteindre le taux de désulfuration désiré, se trouve généralement en phase vapeur dans la ligne (3).
  • Il est envoyé dans un réacteur (12) contenant au moins un lit de catalyseur d'hydrodésulfuration mis en oeuvre en lit fixe.
  • L'effluent du réacteur (12) contient les hydrocarbures et les composés soufrés qui n'ont pas réagi, les paraffines issues de l'hydrogénation des oléfines, l'H2S issu de la décomposition des composés soufrés, et des mercaptans de recombinaison issus des réactions d'addition de l'H2S sur les oléfines.
  • L'effluent du réacteur (12) est envoyé par la ligne (4) dans un train d'échange (13) afin de condenser la fraction hydrocarbonée (la partie de la figure 1 dans le rectangle en trait discontinu est alors absente du schéma de procédé selon cette variante).
  • Le mélange d'hydrocarbures liquides et d'hydrogène est alors séparé dans un ballon séparateur (14) qui permet de récupérer en fond une fraction liquide par la ligne (6) constituée majoritairement de l'essence désulfurée, et en tête, une fraction gazeuse par la ligne (5) constituée majoritairement d'hydrogène et d'H2S.
  • L'effluent gazeux est dirigé par la ligne (5) vers une section de lavage (15) afin de séparer l'H2S de l'hydrogène.
  • L'effluent liquide amené par la ligne (6) est détendu et injecté dans une colonne de stripage (17) qui permet d'extraire en tête, par la ligne (9), l'H2S résiduel dissous dans les hydrocarbures.
  • L'essence désulfurée est récupérée en fond de colonne de stripage par la ligne (7). Une fraction de cette essence désulfurée est prélevée par la ligne (8) et mélangée à la charge introduite par la ligne (1).
  • Selon un autre mode de réalisation du procédé, l'hydrodésulfuration réalisée dans le réacteur (12) est suivie d'une étape de finition de l'hydrodésulfuration réalisée dans le réacteur de finition (19). Dans ce cas, le mélange réactionnel récupéré à la ligne (4) peut être réchauffé par un train d'échange ou un four (18) puis envoyé dans le réacteur de finition (19) (mise en oeuvre de la partie de la figure 1 située dans le rectangle en trait discontinu).
  • Le recyclage d'une fraction de l'essence désulfurée peut être réalisé soit par la ligne (1), à l'entrée du réacteur d'hydrodésulfuration, soit par la ligne (20) entre deux lits de catalyseur du réacteur d'hydrodésulfuration (12), soit par la ligne (22) entre deux lits de catalyseur du réacteur de finition (19), soit par la ligne (21) entre le réacteur d'hydrodésulfuration (12) et le réacteur de finition (19).
  • Une combinaison de l'ensemble de ces recyclages est également possible et reste parfaitement dans le cadre de l'invention. On entend par combinaison de recyclages le fait qu'une partie de l'essence désulfurée peut être recyclée en chacun des différents points de recyclage précédemment énumérés. Dans ce cas la répartition du débit de recyclage entre les différents points de recyclage peut être absolument quelconque.
  • Exemple 1 (selon l'art antérieur)
  • Un réacteur d'hydrodésulfuration fonctionnant en continu est chargé de 100 ml ( ml est l'abréviation de millilitre) de catalyseur HR806 commercialisé par la société Axens. Ce catalyseur à base d'oxydes de cobalt et de molybdène est sulfuré par un mélange d'H2 et de DMDS dans des conditions classiques de sulfuration, afin de transformer au moins 80% des oxydes métalliques de molybdène et de cobalt en sulfures.
  • Les caractéristiques de l'essence A issue d'une unité de craquage catalytique sont rassemblées dans le tableau 1. Tableau 1
    Analyse essence A
    Soufre, ppm 924 ppm poids
    Indice de brome, mg/100ml 50
    Point initial distillation simulée 54°C
    Point final distillation simulée 210°C
  • Cette essence est traitée sur le catalyseur HR806 dans les conditions suivantes :
    • Température = 285 °C
    • Pression = 2,5 MPa
    • Débit de charge = 400 ml/h
    • Débit d'hydrogène = 144 l/h
  • A la sortie du réacteur d'hydrodésulfuration, le mélange réactionnel est refroidi et l'essence est séparée de l'hydrogène dans un séparateur gaz/liquide.
  • L'essence récupérée est strippée par un débit d'azote afin d'éliminer l'H2S résiduel puis analysée.
  • L'essence produite contient 32 ppm de soufre, dont 22 ppm sous forme de mercaptans, et un indice de brome de 30 mg/100ml.
  • Exemple 2 (selon l'invention).
  • Un essai est conduit sur l'essence A dans des conditions similaires à l'exemple 1. Une fraction de la recette liquide issue du stripper est renvoyée vers le pot de charge à l'aide d'une pompe. Le taux de recycle est calculé comme étant le débit de recycle divisé par le débit de charge fraîche.
  • Les conditions de l'essai sont les suivantes :
    • Pression = 2,5 MPa
    • Débit de charge à désulfurer = 400 ml/h
    • Débit d'hydrogène = 144 l/h
  • La température est ajustée par incréments de 1°C afin d'obtenir environ 30 ppm de soufre dans la recette.
  • Le débit de recycle est ajusté afin d'obtenir des taux de recycle dans une plage de 0,2 à 3. Pour chaque taux de recycle, un échantillon d'essence désulfurée est récupéré et analysé. Le tableau 2 présente les analyses réalisées sur les différents échantillons.
    Taux de recycle 0,2 0,5 1 2 3
    débit total l/h 0,48 0,6 0,8 1,2 1,6
    Température, °C 285 285 286 289 291
  • Analyse de la recette
  • S, ppm 29 29 30 29 30
    RSH, ppm 20 19 9 17 13 10
    IBr mg/100 ml 30,5 31,4 31,9 31,3 30,7
  • L'opération du réacteur avec recyclage d'une fraction de la recette permet, pour une même teneur en soufre dans la recette, de produire une essence présentant une teneur en mercaptans diminuée et une teneur en oléfines plus élevée.
  • Lorsque le taux de recyclage augmente, la teneur en mercaptans de l'effluent diminue, et la teneur en oléfines de l'effluent mesuré par l'indice de brome (IBr) reste stationnaire, ce qui préserve la valeur de l'indice d'octane.

Claims (11)

  1. Procédé d'hydrodésulfuration d'une essence contenant moins de 0,1% poids de soufre, issue d'une unité de craquage catalytique ou d'autres unités de conversion, ledit procédé comprenant au moins un réacteur d'hydrodésulfuration utilisant un catalyseur bimétallique travaillant à une VVH comprise entre 0,1 h-1 et 20 h-1, une température comprise entre 220°C et 350°C, et une pression comprise entre 0,1 MPa et 5 MPa, et comprenant le recyclage d'une fraction de l'essence désulfurée à l'entrée du réacteur d'hydrodésulfuration avec un taux de recyclage compris entre 0,2 et 2 fois le débit d'essence à désulfurer.
  2. Procédé d'hydrodésulfuration selon la revendications 1 dans lequel le réacteur d'hydrodésulfuration fonctionne à une VVH comprise entre 0,1 h-1 et 10 h-1, et préférentiellement comprise entre 2 h-1 et 8h-1, et à une pression comprise entre 1 MPa et 3 MPa avec un rapport volumique hydrogène /charge compris entre 50 litres/litre et 800 litres/litre, et préférentiellement compris entre 100 litres/litre et 400 litres/litre.
  3. Procédé d'hydrodésulfuration selon l'une quelconque des revendications 1 à 2 dans lequel le catalyseur utilisé comprend au moins un élément du groupe VIII et un élément du groupe VIb, déposés sur un support poreux, l'élément du groupe VIII étant de préférence du fer, du cobalt ou du nickel, et l'élément du groupe VIb étant de préférence du molybdène ou du tungstène.
  4. Procédé d'hydrodésulfuration selon l'une quelconque des revendications 1 à 3 dans lequel la teneur en élément du groupe VIII exprimée en oxyde est comprise entre 0,5 % poids et 15 % poids, et de préférence entre 0,7 % poids et 10 % poids, et la teneur en métal du groupe VIb est comprise entre 1,5 % poids et 60% poids, et de préférence comprise entre 2% poids et 50 % poids.
  5. Procédé d'hydrodésulfuration selon l'une quelconque des revendications 1 à 4 dans lequel le catalyseur d'hydrodésulfuration comprend un support poreux de surface spécifique inférieure à 200 m2/gramme, préférentiellement inférieure à 150 m2/g, et de manière encore préférée inférieure à 100 m2/gramme.
  6. Procédé d'hydrodésulfuration selon l'une quelconque dès revendications 1 à 5 dans lequel le catalyseur a subi, avant sa mise en contact avec la charge, une étape de dépôt de carbone, de façon que le dit dépôt de carbone représente une teneur inférieure ou égale à 2,8 % poids du dit catalyseur et préférentiellement comprise entre 0,5% et 2,6% poids.
  7. Procédé d'hydrodésulfuration selon l'une quelconque des revendications 1 à 6 dans lequel le réacteur d'hydrodésulfuration est suivi d'un réacteur de finition et dans lequel le catalyseur utilisé dans le réacteur de finition a une teneur en élément du groupe VIII, exprimée en oxydes, comprise entre 0,5% et 10 % poids, et de préférence comprise entre 0,7% et 5% poids, et a une teneur en élément du groupe VIb comprise entre 1,5% et 50 % poids, et de préférence comprise entre 2% et 20 % poids.
  8. Procédé d'hydrodésulfuration selon l'une quelconque des revendications 1 à 7 dans lequel le catalyseur utilisé dans le réacteur de finition a une activité catalytique comprise entre 1% et 70 %, et préférentiellement comprise entre 1% et 50 % de l'activité catalytique du catalyseur utilisé dans le réacteur d'hydrodésulfuration.
  9. Procédé d'hydrodésulfuration selon l'une quelconque des revendications 1 à 6 dans lequel le réacteur d'hydrodésulfuration est suivi d'un réacteur de finition et dans lequel le catalyseur utilisé dans le réacteur de finition est un catalyseur monométallique contenant un élément du groupe VIII dont la teneur exprimée en oxydes est comprise entre 1% et 60 % poids, et de préférence comprise entre 2% et 20 % poids.
  10. Procédé d'hydrodésulfuration selon l'une quelconque des revendications 1 à 9 dans lequel le recyclage d'une partie de l'essence désulfurée se fait en un point situé entre le réacteur d'hydrodésulfuration et le réacteur de finition.
  11. Procédé d'hydrodésulfuration selon l'une quelconque des revendications 1 à 9 dans lequel le recyclage d'une partie de l'essence désulfurée se fait entre deux lits catalytiques situés dans un même réacteur d'hydrodésulfuration.
EP06291025A 2005-07-18 2006-06-22 Nouveau procédé de désulfuration d'essences oléfiniques permettant de limiter la teneur en mercaptans Revoked EP1746144B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0507685A FR2888583B1 (fr) 2005-07-18 2005-07-18 Nouveau procede de desulfuration d'essences olefiniques permettant de limiter la teneur en mercaptans

Publications (2)

Publication Number Publication Date
EP1746144A1 EP1746144A1 (fr) 2007-01-24
EP1746144B1 true EP1746144B1 (fr) 2008-11-05

Family

ID=36177723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06291025A Revoked EP1746144B1 (fr) 2005-07-18 2006-06-22 Nouveau procédé de désulfuration d'essences oléfiniques permettant de limiter la teneur en mercaptans

Country Status (6)

Country Link
US (1) US8034233B2 (fr)
EP (1) EP1746144B1 (fr)
JP (1) JP5138907B2 (fr)
CN (1) CN1900230B (fr)
DE (1) DE602006003482D1 (fr)
FR (1) FR2888583B1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101343562B (zh) * 2007-07-09 2011-09-21 中国石油化工股份有限公司 一种汽油加氢脱硫、降烯烃方法
US20130056391A1 (en) * 2010-03-17 2013-03-07 Indian Oil Corporation Limited Catalytical hydrodesulfurization of kerosene in two steps on cobalt-molybdenum catalyst and intermediate stripping
CN102465025B (zh) * 2010-11-05 2014-05-21 中国石油化工股份有限公司 一种劣质汽油加工方法
CN102839021A (zh) * 2011-06-22 2012-12-26 北京金伟晖工程技术有限公司 一种低成本制造低硫高辛烷值汽油的装置及其方法
CN103102970B (zh) * 2011-11-10 2015-02-18 中国石油化工股份有限公司 劣质汽油馏分加氢处理方法
US9806164B1 (en) * 2013-03-26 2017-10-31 The Penn State Research Foundation Controlled synthesis and transfer of large area heterostructures made of bilayer and multilayer transition metal dichalocogenides
US10144883B2 (en) 2013-11-14 2018-12-04 Uop Llc Apparatuses and methods for desulfurization of naphtha
FR3035117B1 (fr) * 2015-04-15 2019-04-19 IFP Energies Nouvelles Procede d'adoucissement en composes du type sulfure d'une essence olefinique
US10597593B2 (en) 2016-10-07 2020-03-24 Haldor Topsoe A/S Process for hydrotreatment of a fuel gas stream containing more than 4% olefins
FR3116740A1 (fr) * 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé de préparation d’un catalyseur d’hydrodésulfuration d’une coupe essence comprenant un métal du groupe VIB, un métal du groupe VIII et du carbone graphitique
FR3130834A1 (fr) * 2021-12-20 2023-06-23 IFP Energies Nouvelles Procédé de traitement d'une essence contenant des composés soufrés

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2431920A (en) 1944-12-21 1947-12-02 Shell Dev Catalytic treatment of sulfurbearing hydrocarbon distillates
US2746907A (en) * 1952-01-11 1956-05-22 Union Oil Co Process for hydro-desulfurization of light hydrocarbons using a nickel oxide catalyst
US4113603A (en) * 1977-10-19 1978-09-12 The Lummus Company Two-stage hydrotreating of pyrolysis gasoline to remove mercaptan sulfur and dienes
JPH07102266A (ja) * 1993-11-17 1995-04-18 Tonen Corp 石油蒸留物の低イオウ化方法
JP3269900B2 (ja) * 1993-12-06 2002-04-02 日石三菱株式会社 分解ガソリン留分の脱硫処理方法
JP3291164B2 (ja) * 1995-06-02 2002-06-10 日石三菱株式会社 接触分解ガソリンの脱硫方法
US5968466A (en) 1995-06-07 1999-10-19 Asec Manufacturing Copper-silver zeolite catalysts in exhaust gas treatment
JP3387700B2 (ja) * 1995-07-26 2003-03-17 新日本石油株式会社 接触分解ガソリンの脱硫方法
US6409913B1 (en) 1996-02-02 2002-06-25 Exxonmobil Research And Engineering Company Naphtha desulfurization with reduced mercaptan formation
US6231754B1 (en) * 1996-02-02 2001-05-15 Exxon Research And Engineering Company High temperature naphtha desulfurization using a low metal and partially deactivated catalyst
US6126814A (en) * 1996-02-02 2000-10-03 Exxon Research And Engineering Co Selective hydrodesulfurization process (HEN-9601)
US6231753B1 (en) * 1996-02-02 2001-05-15 Exxon Research And Engineering Company Two stage deep naphtha desulfurization with reduced mercaptan formation
US5968346A (en) * 1998-09-16 1999-10-19 Exxon Research And Engineering Co. Two stage hydroprocessing with vapor-liquid interstage contacting for vapor heteroatom removal
US6824673B1 (en) * 1998-12-08 2004-11-30 Exxonmobil Research And Engineering Company Production of low sulfur/low aromatics distillates
WO2001094502A1 (fr) * 1999-12-22 2001-12-13 Exxonmobil Research And Engineering Company Depressurisation a haute temperature pour l'elimination de mercaptans de naphta
CA2407066A1 (fr) 2000-04-18 2001-10-25 Exxonmobil Research And Engineering Company Hydrocraquage et elimination selectifs de mercaptans
FR2811328B1 (fr) * 2000-07-06 2002-08-23 Inst Francais Du Petrole Procede comprenant deux etapes d'hydrodesulfuration d'essence et une elimination intermediaire de l'h2s forme au cours de la premiere etape
US6736962B1 (en) 2000-09-29 2004-05-18 Exxonmobil Research And Engineering Company Catalytic stripping for mercaptan removal (ECB-0004)
US7153415B2 (en) * 2002-02-13 2006-12-26 Catalytic Distillation Technologies Process for the treatment of light naphtha hydrocarbon streams
FR2840315B1 (fr) * 2002-06-03 2004-08-20 Inst Francais Du Petrole Procede d'hydrodesulfuration de coupes contenant des composes soufres et des olefines en presence d'un catalyseur supporte comprenant des metaux des groupes viii et vib
FR2850299B1 (fr) * 2003-01-29 2006-12-01 Inst Francais Du Petrole Catalyseurs partiellement cokes utilisables dans l'hydrotraitement des coupes contenant des composes soufres et des olefines

Also Published As

Publication number Publication date
CN1900230B (zh) 2012-10-31
US8034233B2 (en) 2011-10-11
US20070012596A1 (en) 2007-01-18
EP1746144A1 (fr) 2007-01-24
JP5138907B2 (ja) 2013-02-06
FR2888583A1 (fr) 2007-01-19
CN1900230A (zh) 2007-01-24
DE602006003482D1 (de) 2008-12-18
FR2888583B1 (fr) 2007-09-28
JP2007023285A (ja) 2007-02-01

Similar Documents

Publication Publication Date Title
EP1746144B1 (fr) Nouveau procédé de désulfuration d'essences oléfiniques permettant de limiter la teneur en mercaptans
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane
EP1174485B1 (fr) Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
EP1612255B1 (fr) Procédé d'hydrosulfuration des essences mettant en oeuvre un catalyseur à porosite controlée
EP2169032B1 (fr) Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés
EP2816094B1 (fr) Procédé de production d'une essence à basse teneur en soufre et en mercaptans
EP1849850A1 (fr) Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration
FR2993570A1 (fr) Procede de production d'une essence legere basse teneur en soufre
FR2790000A1 (fr) Procede de production d'essences a faible teneur en soufre
EP1369466B1 (fr) Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB
EP1661965B1 (fr) Procédé d'hydrotraitement d'une essence oléfinique comprenant une étape d'hydrogénation sélective
EP1369467B1 (fr) Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur comprenant un élément du groupe VIII et du tungstène
FR2993571A1 (fr) Procede de desulfuration d'une essence
EP3228683B1 (fr) Procede de traitement d'une essence
EP3312260A1 (fr) Procede d'hydrodesulfuration d'une essence olefinique
FR2997415A1 (fr) Procede de production d'une essence a basse teneur en soufre
EP1370627B1 (fr) Procede de production d'essence a faible teneur en soufre
EP2796196B1 (fr) Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des essences
WO2015165664A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
EP3283601B1 (fr) Procede d'adoucissement en composes du type sulfure d'une essence olefinique
WO2021013525A1 (fr) Procede de traitement d'une essence par separation en trois coupes
FR3007416A1 (fr) Procede de production d'une essence a basse teneur en soufre et en mercaptans

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070724

AKX Designation fees paid

Designated state(s): DE GB IT NL

17Q First examination report despatched

Effective date: 20071017

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602006003482

Country of ref document: DE

Date of ref document: 20081218

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: CATALYTIC DISTILLATION TECHNOLOGIES

Effective date: 20090805

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

NLR1 Nl: opposition has been filed with the epo

Opponent name: CATALYTIC DISTILLATION TECHNOLOGIES

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IFP ENERGIES NOUVELLES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006003482

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR

Effective date: 20110331

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130701

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 602006003482

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 602006003482

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140627

Year of fee payment: 9

27W Patent revoked

Effective date: 20140328

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20140328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140617

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 602006003482

Country of ref document: DE

Effective date: 20141002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140626

Year of fee payment: 9