EP1369466A1 - Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB - Google Patents
Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB Download PDFInfo
- Publication number
- EP1369466A1 EP1369466A1 EP03291115A EP03291115A EP1369466A1 EP 1369466 A1 EP1369466 A1 EP 1369466A1 EP 03291115 A EP03291115 A EP 03291115A EP 03291115 A EP03291115 A EP 03291115A EP 1369466 A1 EP1369466 A1 EP 1369466A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- support
- catalyst
- elements
- group vib
- hydrodesulfurization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
Definitions
- the present invention relates to a catalyst comprising at least one support, at least one element from group VIB and at least one element from group VIII and allowing the hydrodesulfurization of hydrocarbon feedstocks, preferably of the catalytic cracking gasoline type (FCC, Fluid Catalytic Cracking). or catalytic cracking in a fluidized bed).
- FCC Fluid Catalytic Cracking
- VCC Fluid Catalytic Cracking
- the invention relates more particularly to a process for hydrodesulfurization of gasoline cuts in the presence of a catalyst comprising at least one element from group VIII, at least one element from group VIB, and a support with a specific surface of less than about 200 m 2 / g, in which the density of elements of group VIB per unit area of the support is between 4.10 -4 and 36.10 -4 g of oxides of elements of group VIB per m 2 of support.
- Essence cuts and more particularly essences from FCC contain approximately 20 to 40% of olefinic compounds, 30 to 60% of aromatics and 20 to 50% of saturated compounds of paraffin or naphthene type.
- olefinic compounds branched olefins are predominant compared to linear and cyclic olefins.
- These essences also contain traces of highly unsaturated compounds of the diolefin type which are capable of deactivating the catalysts by the formation of gums.
- patent EP 685 552 B1 proposes to selectively hydrogenate the diolefins, that is to say without transforming the olefins, before carrying out the hydrotreatment for the elimination of sulfur.
- the sulfur compounds content of these gasolines is very variable depending on the type of gasoline (steam cracker, catalytic cracking, coking ...) or in the case of catalytic cracking of the severity applied to the process. It can fluctuate between 200 and 5000 ppm of S, preferably between 500 and 2000 ppm relative to the mass of filler.
- the families of thiophenic and benzothiophenic compounds are in the majority, the mercaptans being present only at very low levels generally between 10 and 100 ppm.
- FCC gasolines also contain nitrogen compounds in proportions generally not exceeding 100 ppm.
- Desulfurization (hydrodesulfurization) of gasolines and mainly FCC gasolines is therefore of obvious importance for compliance with the specifications.
- Hydrotreating (or hydrodesulfurization) of catalytic cracking gasolines when carried out under conventional conditions known to those skilled in the art, makes it possible to reduce the sulfur content of the cut.
- this process has the major drawback of causing a very significant drop in the octane number of the cut, due to the saturation of all the olefins during the hydrotreatment.
- Methods have therefore been proposed which make it possible to deeply desulfurize FCC gasolines while maintaining the octane number at a high level.
- US Pat. No. 5,318,690 proposes a process consisting of fractionating the gasoline, softening the light fraction and hydrotreating the heavy fraction on a conventional catalyst and then treating it on a ZSM5 zeolite to approximately find the initial octane number.
- Patent application WO 01/40409 claims the treatment of an FCC gasoline under conditions of high temperature, low pressure and high hydrogen / charge ratio. Under these particular conditions, the recombination reactions leading to the formation of mercaptans, involving the H 2 S formed by the desulfurization reaction and the olefins are minimized.
- 5,968,346 proposes a scheme making it possible to achieve very low residual sulfur contents by a process in several stages: hydrodesulfurization on a first catalyst, separation of the liquid and gaseous fractions, and second hydrotreatment on a second catalyst.
- the liquid / gas separation makes it possible to eliminate the H 2 S formed in the first reactor, in order to achieve a better compromise between hydrodesulfurization and octane loss.
- the catalysts used for this type of application are sulfide type catalysts containing an element of group VIB (Cr, Mo, W) and an element of group VIII (Fe, Ru, Os, Co, Rh , Ir, Pd, Ni, Pt).
- group VIB Cr, Mo, W
- group VIII Fe, Ru, Os, Co, Rh , Ir, Pd, Ni, Pt.
- a catalyst has been found which can be used in a process. gasoline hydrodesulfurization and making it possible to reduce the total sulfur contents and in mercaptans of hydrocarbon cuts and preferably of gasoline cuts FCC, without significant loss of gasoline and minimizing the decrease in the index octane.
- the invention relates more precisely to a process for hydrodesulfurization of gasoline cuts in the presence of a catalyst comprising at least one element from group VIII, at least one element from group VIB, and a support with a specific surface of less than about 200 m 2 / g, in which the density of elements of group VIB per unit area of the support is between 4.10 -4 and 36.10 -4 g of oxides of elements of group VIB per m 2 of support.
- the feed to be hydrotreated (or hydrodesulfurized) by means of the process according to the invention is generally a gasoline cut containing sulfur; such as for example a section from a coking unit (coking according to Anglo-Saxon terminology), visbreaking (visbreaking according to Anglo-Saxon terminology), steam cracking (steam cracking according to Anglo-Saxon terminology) or catalytic cracking (FCC, Fluid Catalytic Cracking according to Anglo-Saxon terminology).
- the said charge is preferably made of a petrol cut from a cracking unit catalytic whose range of boiling points typically extends from points boiling of hydrocarbons with 5 carbon atoms up to about 250 ° C.
- This gasoline can possibly be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline from direct distillation (or straight run gasoline according to terminology Anglo-Saxon) or conversion processes (essence of coking or steam cracking).
- the hydrodesulfurization catalysts according to the invention are catalysts comprising at least one element from group VIB and at least one element from group VIII on a suitable support.
- the element or elements of group VIB are preferably chosen from molybdenum and / or tungsten and the element or elements of group VIII are of preferably chosen from nickel and / or cobalt.
- the catalyst support is usually a porous solid chosen from the group consisting of: aluminas, silica, alumina silicas or titanium or magnesium oxides used alone or mixed with alumina or silica alumina.
- the support is essentially constituted by at minus a transition alumina, that is to say it comprises at least 51% by weight, of preferably at least 60% by weight very preferably at least 80% by weight, or even at least 90% by weight of transition alumina. It can possibly be constituted only a transition alumina.
- the specific surface of the support according to the invention is generally less than approximately 200 m 2 / g, preferably less than 170 m 2 / g and even more preferably less than 150 m 2 / g, or even less than 135 m 2 / g.
- the support can be prepared using any precursor, any preparation method and any shaping tool known to those skilled in the art.
- the catalyst according to the invention can be prepared using any known technique skilled in the art, and in particular by impregnating the elements of groups VIII and VIB on the selected medium.
- This impregnation can for example be carried out according to the method known to those skilled in the art under the terminology of dry impregnation, in which we just introduce the quantity of elements desired in the form of salts soluble in the chosen solvent, for example demineralized water, so as to fill as accurately as possible the porosity of the support.
- the support thus filled by the solution is preferably dried.
- the latter After introduction of the elements of groups VIII and VIB, and possibly shaping of the catalyst, the latter undergoes an activation treatment.
- This treatment generally aims to transform the molecular precursors of the elements in the oxide phase (for example MoO 3 ). In this case it is an oxidizing treatment but a direct reduction can also be carried out.
- an oxidizing treatment also called calcination, this is generally carried out in air or under dilute oxygen, and the treatment temperature is generally between 200 ° C and 550 ° C, preferably between 300 ° C and 500 ° C.
- a reducing treatment this is generally carried out under pure or preferably diluted hydrogen, and the treatment temperature is generally between 200 ° C and 600 ° C, preferably between 300 ° C and 500 ° C.
- Metal salts of groups VIB and VIII which can be used in the process according to the invention are, for example, cobalt nitrate, aluminum nitrate, ammonium heptamolybdate or ammonium metatungstate. Any other salt known to a person skilled in the art having sufficient solubility and which can be broken down during the activation treatment can also be used.
- the catalyst is usually used in a sulfurized form obtained after temperature treatment in contact with a decomposable sulfur-containing organic compound and generator of H 2 S or directly in contact with a gaseous flow of H 2 S diluted in H 2 .
- This step can be carried out in situ or ex situ (inside or outside the reactor) of the hydrodesulfurization reactor at temperatures between 200 and 600 ° C and more preferably between 300 and 500 ° C.
- the catalysts according to the invention have a density of elements of group VIB (chromium, molybdenum, tungsten) of between 4.10 -4 g and 36.10 -4 g of oxide of the element of group VIB per m 2 of support, preferably between 4.10 -4 g and 16.10 -4 g of oxide of the element of group VIB per m 2 of support, and very preferably between 7.10 -4 g and 15.10 -4 g of oxide of the element of group VIB per m 2 of support.
- group VIB chromium, molybdenum, tungsten
- the specific surface of the support must generally not exceed approximately 200 m 2 / g, and must preferably be less than 170 m 2 / g and even more preferably be less than 150 m 2 / g, or even less than 135 m 2 / g.
- the two criteria must generally be fulfilled simultaneously since there is a synergy between these two parameters.
- the element of group VIB and its distribution on the surface intervene in the activation and reactivity of molecules. It should be noted that the two criteria must generally be fulfilled simultaneously since there is a synergy between these two parameters in the activation and reactivity of the 5 molecules.
- the surface of the support can play an important role in the mechanism of activation and surface migration of molecules, in particular olefins, as has been recently proposed [R Prins Studies in Surface Science and Catalysis 138 p. 1-2].
- the content of group VIII elements in the catalyst according to the invention is preferably between 1 and 20% by weight of oxides of elements of group VIII, preferably between 2 and 10% by weight of oxides of elements of group VIII and more preferred between 2 and 8% by weight of group VIII element oxides.
- the element of group VIII is cobalt or nickel or a mixture of these two elements, and more preferably the element of group VIII consists only cobalt and / or nickel.
- the content of elements of group VIB is preferably between 1.5 and 60% weight of oxides of elements of group VIB, more preferably between 3 and 50% weight of oxides of elements of group VIB.
- the element of group VIB is molybdenum or tungsten or a mixture of these two elements, and so more preferred the element of group VIB consists solely of molybdenum or tungsten.
- the catalyst according to the invention can be used in any process known to man of the trade, making it possible to desulfurize hydrocarbon cuts of the gasoline type catalytic cracking (FCC) for example by keeping the octane number at values high. It can be used in any type of reactor operated in a fixed bed or in a bed mobile or in a bubbling bed, it is however preferably used in a reactor operated on a fixed bed.
- FCC gasoline type catalytic cracking
- the operating conditions allowing selective hydrodesulfurization catalytic cracked gasolines are a temperature between about 200 and about 400 ° C, preferably between about 250 and about 350 ° C, a total pressure between 1 MPa and 3 MPa and more preferably between approximately 1 MPa and approximately 2.5 MPa with a ratio: volume of hydrogen per volume of charge hydrocarbon, between approximately 100 and approximately 600 liters per liter or more preferably between about 200 and about 400 liters per liter.
- VVH Speed Hourly Volume
- She is defined by the ratio of the volume flow rate of liquid hydrocarbon feedstock by the volume of catalyst loaded into the reactor.
- All molybdenum-based catalysts are prepared according to the same method which consists in carrying out a dry impregnation of a solution of ammonium heptamolybdate and of cobalt nitrate, the volume of the solution containing the metal precursors being strictly equal the pore volume of the support mass.
- the supports used are transition aluminas having variable surface area and pore volume couples: 130 m 2 / g and 1.04 cm 3 / g; 170 m 2 / g and 0.87 cm 3 / g; 220 m 2 / g and 0.6 cm 3 / g; 60 m 2 / g and 0.59 cm 3 / g.
- the concentrations of precursors of the aqueous solution are adjusted so as to deposit the desired weight contents on the support.
- the catalyst is then dried for 12 hours at 120 ° C and then calcined in air at 500 ° C for 2 hours.
- All tungsten catalysts are prepared using the same method which consists in carrying out a dry impregnation of a metatungstate solution ammonium and cobalt nitrate, the volume of the solution containing the precursors metals being strictly equal to the pore volume of the support mass.
- the supports used are the same as before.
- the concentrations in precursors of the aqueous solution are adjusted so as to deposit on the support the desired weight contents.
- the catalyst is then dried for 12 hours at 120 ° C then calcined in air at 500 ° C for 2 hours.
- a catalytic cracking gasoline (FCC), the characteristics of which are collated in Table 1, is treated by the various catalysts.
- the VVH is variable in order to compare the selectivities obtained (k HDS / k HDO ratio) with iso conversion to HDS, ie for a conversion into hydrodesulfurization equal to approximately 90% for all the catalysts.
- the catalysts are previously treated at 350 ° C.
- DMDS dimethyldisulfide
- the reaction takes place in an updraft in an adiabatic tubular reactor.
- the analysis of the residual organic sulfur compounds is carried out after elimination of the H 2 S resulting from the decomposition.
- the effluents are analyzed by gas chromatography for the determination of hydrocarbon concentrations and by the method described by standard NF M 07075 for the determination of total sulfur.
- Example 1 (according to the invention):
- the molybdenum-based catalysts according to the invention are prepared according to the procedure described above and their characteristics (density in grams of molybdenum oxide per square meter of support, contents of cobalt and molybdenum oxides of the calcined catalyst, BET surface of the support) are collated in Table 2.
- the selectivities K HDS / K HDO obtained for a conversion into HDS close to 90% at the mentioned VVH are also reported in this table. Characteristics and performances of the molybdenum catalysts according to the invention.
- the density of molybdenum has been modified in order to leave the range of densities according to the invention.
- the VVH of the test is also selected in order to operate with a conversion to HDS substantially equal to 90%.
- Table 3 summarizes the characteristics of the catalysts and the selectivities obtained. Characteristics and performance of comparative molybdenum catalysts tested on catalytic cracking gasoline.
- the specific surface of the support has been modified to be greater than 200 m 2 / g.
- the test VVH is also selected in order to operate with a conversion to HDS substantially equal to 90%.
- Table 4 summarizes the characteristics of the catalysts and the selectivities obtained. Characteristics and performance of comparative molybdenum catalysts tested on catalytic cracking gasoline.
- the tungsten catalysts according to the invention are prepared according to the procedure described above and their characteristics (density in grams of tungsten oxide per square meter of support, contents of cobalt and tungsten oxides of the calcined catalyst, BET surface of the support) are collated in table 5.
- the selectivities k HDS / k HDO obtained for a conversion into HDS close to 90% at the mentioned VVH are also reported in this table. Characteristics and performances of the tungsten catalysts according to the invention.
- the density of tungsten oxide has been modified in order to leave the range of densities according to the invention.
- the VVH of the test is also selected in order to operate with a conversion to HDS substantially equal to 90%.
- Table 6 summarizes the characteristics of the catalysts and the selectivities obtained. Characteristics and performance of comparative tungsten catalysts tested on catalytic cracked gasoline.
- the specific surface of the support used is greater than 200 m 2 / g.
- the test VVH is selected in order to operate with a conversion to HDS substantially equal to 90%.
- Table 7 summarizes the characteristics of the catalysts and the selectivities obtained. Characteristics and performance of comparative tungsten catalysts tested on catalytic cracked gasoline.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
L'invention concerne plus particulièrement un procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un élément du groupe VIII, au moins un élément du groupe VIB, et un support de surface spécifique inférieure à environ 200 m2/g, dans lequel la densité en éléments du groupe VIB par unité de surface du support est comprise entre 4.10-4 et 36.10-4 g d'oxydes d'éléments du groupe VIB par m2 de support.
La production d'essences reformulées répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue le moins possible leur concentration en oléfines afin de conserver un indice d'octane élevé, mais que l'on diminue de façon importante leur teneur en soufre. Ainsi, les normes environnementales en vigueur et futures contraignent les raffineurs à diminuer la teneur en soufre dans les essences à des valeurs inférieures ou au plus égales à 50 ppm en 2003 et 10 ppm au-delà de 2005. Ces normes concernent la teneur totale en soufre mais également la nature des composés soufrés tels que les mercaptans. Les essences de craquage catalytique, qui peuvent représenter 30 à 50 % du pool essence, présentent des teneurs en oléfines et en soufre élevées. Le soufre présent dans les essences reformulées est imputable, à près de 90 %, à l'essence de FCC. La désulfuration (l'hydrodésulfuration) des essences et principalement des essences de FCC est donc d'une importance évidente pour le respect des spécifications. L'hydrotraitement (ou hydrodésulfuration) des essences de craquage catalytique, lorsqu'il est réalisé dans des conditions classiques connues de l'homme du métier permet de réduire la teneur en soufre de la coupe. Cependant, ce procédé présente l'inconvénient majeur d'entraíner une chute très importante de l'indice d'octane de la coupe, en raison de la saturation de l'ensemble des oléfines au cours de l'hydrotraitement. Il a donc été proposé des procédés permettant de désulfurer profondément les essences de FCC tout en maintenant l'indice d'octane à un niveau élevé.
La demande de brevet WO 01/40409 revendique le traitement d'une essence de FCC dans des conditions de haute température, faible pression et fort ratio hydrogène/charge. Dans ces conditions particulières, les réactions de recombinaison conduisant à la formation des mercaptans, mettant en jeu l'H2S formé par la réaction de désulfuration et les oléfines sont minimisées.
Enfin, le brevet US 5 968 346 propose un schéma permettant d'atteindre de teneurs résiduelles en soufre très faibles par un procédé en plusieurs étapes: hydrodésulfuration sur un premier catalyseur, séparation des fractions liquides et gazeuses, et second hydrotraitement sur un deuxième catalyseur. La séparation liquide/gaz permet d'éliminer l'H2S formé dans le premier réacteur, afin d'aboutir à un meilleur compromis entre hydrodésulfuration et perte octane.
Des sels de métaux des groupes VIB et VIII utilisables dans le procédé selon l'invention sont par exemple le nitrate de cobalt, le nitrate d'aluminium, l'heptamolybdate d'ammonium ou le métatungstate d'ammonium. Tout autre sel connu de l'homme du métier présentant une solubilité suffisante et décomposable lors du traitement d'activation peut également être utilisé.
Le catalyseur est habituellement utilisé sous une forme sulfurée obtenue après traitement en température au contact d'un composé organique soufré décomposable et générateur d'H2S ou directement au contact d'un flux gazeux d'H2S dilué dans H2. Cette étape peut être réalisée in situ ou ex situ (en dedans ou dehors du réacteur) du réacteur d'hydrodésulfuration à des températures comprises entre 200 et 600°C et plus préférentiellement entre 300 et 500°C.
Sans être lié par une quelconque théorie, l'élément du groupe VIB et sa répartition à la surface interviennent dans l'activation et la réactivité des molécules. Il convient de noter que les deux critères doivent être généralement remplis simultanément car il existe une synergie entre ces deux paramètres dans l'activation et la réactivité des 5 molécules. Par ailleurs, en présence des éléments (également appelés métaux) des groupes VIII et VIB, la surface du support peut jouer un rôle important dans le mécanisme d'activation et de migration de surface des molécules, notamment les oléfines, comme cela a été récemment proposé [R Prins Studies in Surface Science and Catalysis 138 p. 1-2]. La minimisation de ce processus d'activation pourrait éventuellement permettre de limiter les réactions mettant en jeu des composés oléfiniques : l'hydrogénation par addition d'hydrogène (pénalisante pour le maintien de l'indice d'octane) et la recombinaison avec l'H2S (pénalisante pour la désulfuration). D'autre part, l'utilisation de support de surface spécifique importante est problématique dans le cas de charge fortement oléfiniques. En effet, l'acidité de surface augmentant avec la surface spécifique des supports, les réactions acido catalysées seront favorisées pour les supports de surface spécifique importante. Ainsi, les réactions de polymérisation ou de cokage conduisant à la formation de gommes ou de coke et finalement à la désactivation prématurée du catalyseur seront plus importantes sur des supports de surface spécifique élevée. Une meilleure stabilité des catalyseurs sera obtenue pour des supports de surface spécifique peu importante.
caractéristiques de la coupe essence de FCC. | |
S ppm | 732 |
Aromatiques %pds | 31,4 |
Paraffines % pds | 30,4 |
Naphténiques % pds | 6,7 |
Oléfines %pds | 31,5 |
PI °C | 70,5 |
PF°C | 215,4 |
Caractéristiques et performances des catalyseurs à base de molybdène selon l'invention. | |||||||
Catalyseur Catalyseur | Densité 2 g MoO3/m2 | % pds CoO | % pds MoO3 | S BET m2/g | VVH h-1 VVH h-1 | kHDS / kHDO t=96h | KHDS / kHDO t=200h |
1 | 4,3. 10-4 | 1,8 | 5,2 | 130 | 3,8 | 0,94 | 0,85 |
2 | 7,7.10-4 | 3,1 | 8,8 | 130 | 4,0 | 1 | 0,94 |
3 | 14,8. 10-4 | 5,3 | 15,3 | 130 | 5,3 | 1,32 | 1,21 |
4 | 35,8. 10-4 | 5,8 | 16,7 | 60 | 3,4 | 0,85 | 0,81 |
5 | 7,6 .10-4 | 3,8 | 11,0 | 170 | 3,1 | 0,78 | 0,71 |
6 | 16,5.10- 4 | 5,8 | 16,6 | 130 | 3,3 | 0,82 | 0,74 |
Caractéristiques et performances des catalyseurs comparatifs à base de molybdène testés sur une essence de craquage catalytique. | |||||||
Catalyseur Catalyseur | Densité g MoO3/m2 | % pds CoO | % pds MoO3 m2/g | S BET | VVH h-1 VVH h-1 | KHDS / KHDO t=48h | kHDS/kHDO t=200h |
7 | 2,8.10-4 | 1,2 | 3,5 | 130 | 2,4 | 0,59 | 0,56 |
8 | 37,1.10-4 | 10,2 | 29,2 | 130 | 7,0 | 0,65 | 0,61 |
Caractéristiques et performances des catalyseurs comparatifs à base de molybdène testés sur une essence de craquage catalytique. | |||||||
Catalyseur | Densité 2 g MoO3/m2 | % pds CoO | % pds MoO3 m2/g | S BET | VVH h-1 VVH h-1 | kHDS / kHDO t=96h | kHDS / kHDO t=200h |
9 | 7,9.10-4 | 4,9 | 14,1 | 220 | 3,5 | 0,67 | 0,63 |
10 | 4,3.10-4 | 2,9 | 8,4 | 220 | 1,6 | 0,40 | 0,33 |
Caractéristiques et performances des catalyseurs à base de tungstène selon l'invention. | |||||||
Catalyseur Catalyseur | Densité g WO3/m2 | % pds CoO | % pds WO3 | S BET m2/g | VVH h-1 VVH h-1 | kHDS / kHDO t=96h | kHDS / kHDO t=200h |
11 | 4,5. 10-4 | 1,2 | 5,5 | 130 | 1,5 | 0,93 | 0,88 |
12 | 8,0. 10-4 | 2,0 | 9,2 | 130 | 3,0 | 1,00 | 0,95 |
13 | 14,5.10-4 | 3,3 | 15,3 | 130 | 3,7 | 1,18 | 1,10 |
14 | 35,5. 10-4 | 3,6 | 16,9 | 60 | 3,5 | 0,80 | 0,74 |
15 | 8,2.10-4 | 2,6 | 11,9 | 170 | 3,2 | 0,88 | 0,82 |
16 | 16,2.10-4 | 3,6 | 16,8 | 130 | 4,0 | 0,86 | 0,81 |
Caractéristiques et performances des catalyseurs comparatifs à base de tungstène testés sur une essence de craquage catalytique. | |||||||
Catalyseur Catalyseur | Densité gWO3/m2 | % pds CoO | % pds WO3 | S BET m2/g | VVH h-1 VVH h-1 | kHDS / kHDO t=96h | kHDS / kHDO t=200h |
17 | 3,1.10-4 | 0,8 | 3,8 | 130 | 1,2 | 0,64 | 0,59 |
18 | 38,0 10-4 | 6,6 | 30,9 | 130 | 6,5 | 0,60 | 0,55 |
Caractéristiques et performances des catalyseurs comparatifs à base de tungstène testés sur une essence de craquage catalytique. | |||||||
Catalyseur Catalyseur | Densité gWO3/m2 | % pds CoO | % pds WO3 | S BET m2/g | VVH h-1 | kHDS / kHDO t=96h | kHDS / kHDO t=200h |
19 | 8,4.10-4 | 3,2 | 15,1 | 220 | 3,6 | 0,76 | 0,69 |
20 | 4,3.10-4 | 1,8 | 8,5 | 220 | 2,7 | 0,70 | 0,64 |
Claims (10)
- Procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un élément du groupe VIII, au moins un élément du groupe VIB, et un support de surface spécifique inférieure à environ 200 m2/g, dans lequel la densité en éléments du groupe VIB par unité de surface du support est comprise entre 4.10-4 et 36.10-4 g d'oxydes d'éléments du groupe VIB par m2 de support.
- Procédé d'hydrodésulfuration selon la revendication 1 dans lequel la densité en éléments du groupe VIB par unité de surface du support est comprise entre 4.10-4 g et 16.10-4 g d'oxydes d'éléments du groupe VIB par m2 de support.
- Procédé d'hydrodésulfuration selon l'une des revendications 1 ou 2 dans lequel la teneur en éléments du groupe VIII du catalyseur est comprise entre 1 et 20 % poids d'oxydes d'éléments du groupe VIII et la teneur en éléments du groupe VIB est comprise entre 1,5 et 60 % poids d'oxydes d'éléments du groupe VIB.
- Procédé selon l'une des revendications 1 à 3 dans lequel le catalyseur comprend au moins un élément du groupe VIII choisi parmi le nickel et le cobalt.
- Procédé selon l'une des revendications 1 à 4 dans lequel le catalyseur comprend au moins un élément du groupe VIB choisi parmi le molybdène et le tungstène.
- Procédé selon l'une des revendications 1 à 5 dans lequel le support du catalyseur est un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l'alumine ou la silice alumine.
- Procédé selon l'une des revendications 1 à 6 dans lequel le support du catalyseur comprend au moins 90 % poids d'alumine de transition.
- Procédé selon l'une des revendications 1 à 7 dans lequel la charge à hydrodésulfurer est une coupe essence contenant du soufre issue d'une unité de cokéfaction, de viscoréduction, de vapocraquage, ou de craquage catalytique.
- Procédé selon l'une des revendications 1 à 8 dans lequel la charge à hydrodésulfurer est une coupe essence issue d'une unité de craquage catalytique dont la gamme de points d'ébullition s'étend typiquement des points d'ébullition des hydrocarbures à 5 atomes de carbone jusqu'à environ 250°C.
- Procédé selon la revendication 9 dans lequel les conditions opératoires d'hydrodésulfuration sont une température comprise entre environ 200 et environ 400°C, une pression totale comprise entre 1 MPa et 3 MPa, et un ratio : volume d'hydrogène par volume de charge hydrocarbonée, compris entre environ 100 et environ 600 litres par litre.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0206815 | 2002-06-03 | ||
FR0206815A FR2840315B1 (fr) | 2002-06-03 | 2002-06-03 | Procede d'hydrodesulfuration de coupes contenant des composes soufres et des olefines en presence d'un catalyseur supporte comprenant des metaux des groupes viii et vib |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1369466A1 true EP1369466A1 (fr) | 2003-12-10 |
EP1369466B1 EP1369466B1 (fr) | 2008-09-10 |
Family
ID=29433307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03291115A Revoked EP1369466B1 (fr) | 2002-06-03 | 2003-05-14 | Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB |
Country Status (6)
Country | Link |
---|---|
US (1) | US7306714B2 (fr) |
EP (1) | EP1369466B1 (fr) |
JP (1) | JP4452911B2 (fr) |
CN (1) | CN1290975C (fr) |
DE (1) | DE60323429D1 (fr) |
FR (1) | FR2840315B1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2888583A1 (fr) * | 2005-07-18 | 2007-01-19 | Inst Francais Du Petrole | Nouveau procede de desulfuration d'essences olefiniques permettant de limiter la teneur en mercaptans |
WO2016165853A1 (fr) | 2015-04-15 | 2016-10-20 | IFP Energies Nouvelles | Procede d'adoucissement en composes du type sulfure d'une essence olefinique |
WO2017167522A1 (fr) * | 2016-03-30 | 2017-10-05 | IFP Energies Nouvelles | Catalyseur a base de catecholamine et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1993169A (zh) * | 2004-08-02 | 2007-07-04 | 国际壳牌研究有限公司 | 从包含天然气或惰性气体的气流中脱除硫醇的方法 |
FR2895414B1 (fr) * | 2005-12-22 | 2011-07-29 | Inst Francais Du Petrole | Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant une porosite controlee |
FR2895416B1 (fr) * | 2005-12-22 | 2011-08-26 | Inst Francais Du Petrole | Procede d'hydrogenation selective mettant en oeuvre un catalyseur sulfure |
FR2895415B1 (fr) * | 2005-12-22 | 2011-07-15 | Inst Francais Du Petrole | Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique |
FR2923837B1 (fr) * | 2007-11-19 | 2009-11-20 | Inst Francais Du Petrole | Procede de desulfuration en deux etapes d'essences olefiniques comprenant de l'arsenic. |
JP5207923B2 (ja) * | 2008-11-06 | 2013-06-12 | Jx日鉱日石エネルギー株式会社 | 精製炭化水素油の製造方法 |
WO2012066572A2 (fr) | 2010-11-19 | 2012-05-24 | Indian Oil Corporation Ltd. | Procédé de désulfuration profonde d'essence de craquage à perte d'octane minimale |
FR3049955B1 (fr) | 2016-04-08 | 2018-04-06 | IFP Energies Nouvelles | Procede de traitement d'une essence |
FR3057578B1 (fr) | 2016-10-19 | 2018-11-16 | IFP Energies Nouvelles | Procede d'hydrodesulfuration d'une essence olefinique. |
CN108003932B (zh) * | 2016-10-28 | 2020-04-28 | 中国石油化工股份有限公司 | 一种生产汽油产品的方法 |
MX2019005461A (es) * | 2016-11-23 | 2019-07-04 | Topsoe Haldor As | Proceso para la desulfuracion de hidrocarburos. |
FR3142487A1 (fr) | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un catalyseur à base de métaux du groupe VIB et VIII et du phosphore sur support alumine à faible surface spécifique |
FR3142362A1 (fr) | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Catalyseur d’hydrodésulfuration de finition comprenant un métal du groupe VIB, un métal du groupe VIII et du phosphore sur support alumine alpha |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6126814A (en) * | 1996-02-02 | 2000-10-03 | Exxon Research And Engineering Co | Selective hydrodesulfurization process (HEN-9601) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6174443B1 (en) * | 1997-04-14 | 2001-01-16 | The Research Foundation Of State University Of New York | Purification of wheat germ agglutinin using macroporous or microporous filtration membrane |
US6315890B1 (en) * | 1998-05-05 | 2001-11-13 | Exxonmobil Chemical Patents Inc. | Naphtha cracking and hydroprocessing process for low emissions, high octane fuels |
EP0980908A1 (fr) * | 1998-08-15 | 2000-02-23 | ENITECNOLOGIE S.p.a. | Procédé et catalyseurs pour améliorer des hydrocarbures bouillant dans le domaine de la température d'ébullition de naphtha |
US6610197B2 (en) * | 2000-11-02 | 2003-08-26 | Exxonmobil Research And Engineering Company | Low-sulfur fuel and process of making |
US6716339B2 (en) * | 2001-03-30 | 2004-04-06 | Corning Incorporated | Hydrotreating process with monolithic catalyst |
-
2002
- 2002-06-03 FR FR0206815A patent/FR2840315B1/fr not_active Expired - Lifetime
-
2003
- 2003-05-14 EP EP03291115A patent/EP1369466B1/fr not_active Revoked
- 2003-05-14 DE DE60323429T patent/DE60323429D1/de not_active Expired - Lifetime
- 2003-06-02 US US10/449,714 patent/US7306714B2/en not_active Expired - Lifetime
- 2003-06-03 CN CNB031363806A patent/CN1290975C/zh not_active Expired - Lifetime
- 2003-06-03 JP JP2003158142A patent/JP4452911B2/ja not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6126814A (en) * | 1996-02-02 | 2000-10-03 | Exxon Research And Engineering Co | Selective hydrodesulfurization process (HEN-9601) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2888583A1 (fr) * | 2005-07-18 | 2007-01-19 | Inst Francais Du Petrole | Nouveau procede de desulfuration d'essences olefiniques permettant de limiter la teneur en mercaptans |
EP1746144A1 (fr) * | 2005-07-18 | 2007-01-24 | Institut Français du Pétrole | Nouveau procédé de désulfuration d'essences oléfiniques permettant de limiter la teneur en mercaptans |
US8034233B2 (en) | 2005-07-18 | 2011-10-11 | IFP Energies Nouvelles | Process for desulphurizing olefinic gasolines to limit the mercaptans content |
WO2016165853A1 (fr) | 2015-04-15 | 2016-10-20 | IFP Energies Nouvelles | Procede d'adoucissement en composes du type sulfure d'une essence olefinique |
US10822555B2 (en) | 2015-04-15 | 2020-11-03 | IFP Energies Nouvelles | Method for sweetening an olefinic petrol of sulphide-type compounds |
WO2017167522A1 (fr) * | 2016-03-30 | 2017-10-05 | IFP Energies Nouvelles | Catalyseur a base de catecholamine et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage |
FR3049475A1 (fr) * | 2016-03-30 | 2017-10-06 | Ifp Energies Now | Catalyseur a base de catecholamine et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage |
Also Published As
Publication number | Publication date |
---|---|
US7306714B2 (en) | 2007-12-11 |
JP4452911B2 (ja) | 2010-04-21 |
US20040007503A1 (en) | 2004-01-15 |
JP2004010892A (ja) | 2004-01-15 |
FR2840315B1 (fr) | 2004-08-20 |
EP1369466B1 (fr) | 2008-09-10 |
DE60323429D1 (de) | 2008-10-23 |
CN1290975C (zh) | 2006-12-20 |
FR2840315A1 (fr) | 2003-12-05 |
CN1470611A (zh) | 2004-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1892039B1 (fr) | Procédé d'hydrodesulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des éléments des groupes VIII et VIB | |
EP1612255B1 (fr) | Procédé d'hydrosulfuration des essences mettant en oeuvre un catalyseur à porosite controlée | |
EP1174485B1 (fr) | Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S | |
EP2169032B1 (fr) | Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés | |
EP1002853B1 (fr) | Procédé de production d'essences à faible teneur en soufre | |
EP1138749B1 (fr) | Procédé de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes | |
EP3428248B1 (fr) | Catalyseurs partiellement cokes utilisables dans l'hydrotraitement des coupes contenant des composes soufres et des olefines | |
EP2161076B1 (fr) | Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré de composition spécifique | |
EP1369466B1 (fr) | Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB | |
FR2895416A1 (fr) | Procede d'hydrogenation selective mettant en oeuvre un catalyseur sulfure | |
CA2299152C (fr) | Procede de production d'essences a faible teneur en soufre | |
EP2644683B1 (fr) | Procédé d'hydrogenation selective d'une essence | |
EP1369467B1 (fr) | Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur comprenant un élément du groupe VIII et du tungstène | |
WO2016096364A1 (fr) | Procede d'adoucissement en composes du type sulfure d'une essence olefinique | |
EP3283601B1 (fr) | Procede d'adoucissement en composes du type sulfure d'une essence olefinique | |
WO2024115276A1 (fr) | Catalyseur d'hydrodesulfuration de finition comprenant un metal du groupe vib, un metal du groupe viii et du phosphore sur support alumine alpha | |
WO2024115275A1 (fr) | Procede d'hydrodesulfuration de finition des essences mettant en œuvre un enchainement de catalyseurs | |
WO2024115277A1 (fr) | Procede d'hydrodesulfuration de finition des essences mettant en œuvre un catalyseur a base de metaux du groupe vib et viii et du phosphore sur support alumine a faible surface specifique | |
EP1508370A1 (fr) | Utilisation d'un catalyseur comprenant un support en carbure de silicium beta dans un procédé d'hydrodésulfuration selective |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20040611 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT NL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 60323429 Country of ref document: DE Date of ref document: 20081023 Kind code of ref document: P |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: EXXON MOBIL RESEARCH Effective date: 20090528 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EXXON MOBIL RESEARCH |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100602 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: IFP ENERGIES NOUVELLES |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 60323429 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR Effective date: 20110331 Ref country code: DE Ref legal event code: R081 Ref document number: 60323429 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR Effective date: 20110331 |
|
27W | Patent revoked |
Effective date: 20101126 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20101126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110503 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R107 Ref document number: 60323429 Country of ref document: DE Effective date: 20110818 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110525 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20120531 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120518 Year of fee payment: 10 |