EP1369466B1 - Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB - Google Patents

Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB Download PDF

Info

Publication number
EP1369466B1
EP1369466B1 EP03291115A EP03291115A EP1369466B1 EP 1369466 B1 EP1369466 B1 EP 1369466B1 EP 03291115 A EP03291115 A EP 03291115A EP 03291115 A EP03291115 A EP 03291115A EP 1369466 B1 EP1369466 B1 EP 1369466B1
Authority
EP
European Patent Office
Prior art keywords
support
elements
catalyst
process according
group vib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP03291115A
Other languages
German (de)
English (en)
Other versions
EP1369466A1 (fr
Inventor
Denis Uzio
Stéphane Cremer
Carine Petit-Clair
Nathalie Marchal
Christophe Bouchy
Florent Picard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29433307&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1369466(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1369466A1 publication Critical patent/EP1369466A1/fr
Application granted granted Critical
Publication of EP1369466B1 publication Critical patent/EP1369466B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Definitions

  • the present invention relates to a catalyst comprising at least one support, at least one group VIB element and at least one group VIII element and allowing the hydrodesulfurization of hydrocarbon feedstocks, preferably of the catalytic cracking gasoline (FCC) type. or catalytic cracking in a fluidized bed).
  • the invention more particularly relates to a process for the hydrodesulfurization of gasoline cuts in the presence of a catalyst comprising at least one element of group VIII, at least one element of group VIB, and a specific surface support of less than 200 m 2 / g , wherein the density of Group VIB elements per unit area of the support is between 4.10 -4 and 36.10 -4 g of Group VIB element oxides per m 2 of support.
  • the gasoline cuts and more particularly the gasolines from the FCC contain about 20 to 40% of olefinic compounds, 30 to 60% of aromatics and 20 to 50% of saturated paraffins or naphthenes type compounds.
  • the branched olefins are in the majority with respect to linear and cyclic olefins.
  • These gasolines also contain traces of highly unsaturated diolefinic compounds which can deactivate the catalysts by forming gums.
  • the patent EP 685 552 B1 proposes to selectively hydrogenate the diolefins, that is to say without transforming the olefins, before carrying out the hydrotreatment for the removal of sulfur.
  • the content of sulfur compounds in these species varies widely depending on the type of gasoline (steam cracker, catalytic cracking, coking, etc.) or in the case of catalytic cracking of the severity applied to the process. It can fluctuate between 200 and 5000 ppm S, preferably between 500 and 2000 ppm with respect to the mass of filler.
  • the families of thiophene and benzothiophene compounds are the majority, mercaptans being present at very low levels generally between 10 and 100 ppm.
  • FCC gasolines also contain nitrogen compounds in proportions generally not exceeding 100 ppm.
  • the desulphurisation (hydrodesulfurization) of gasolines and mainly FCC species is therefore of obvious importance for the respect of the specifications.
  • the hydrotreating (or hydrodesulphurization) of catalytic cracking gasolines when carried out under standard conditions known to those skilled in the art, makes it possible to reduce the sulfur content of the cut.
  • this method has the major disadvantage of causing a very significant drop in the octane number of the cut, due to the saturation of all the olefins during the hydrotreatment. It has therefore been proposed methods for deep desulfurization of FCC gasolines while maintaining the octane number at a high level.
  • the U.S. Patent 5,318,690 proposes a process of splitting the gasoline, softening the light fraction and hydrotraying the heavy fraction on a conventional catalyst and then treating it on a zeolite ZSM5 to find approximately the initial octane number.
  • the request for WO 01/40409 claims the treatment of an FCC gasoline under conditions of high temperature, low pressure and high hydrogen / charge ratio. Under these particular conditions, the recombination reactions leading to mercaptan formation, involving the H 2 S formed by the desulfurization reaction and the olefins are minimized.
  • Patent 5,968,346 proposes a scheme for achieving very low residual sulfur content by a multistage process: hydrodesulphurization on a first catalyst, separation of the liquid and gaseous fractions, and second hydrotreatment on a second catalyst.
  • the liquid / gas separation makes it possible to eliminate the H 2 S formed in the first reactor, in order to achieve a better compromise between hydrodesulfurization and octane loss.
  • the catalysts used for this type of application are sulphide catalysts containing a group VIB element (Cr, Mo, W) and a group VIII element (Fe, Ru, Os, Co, Rh , Ir, Pd, Ni, Pt). So in the US Patent 5,985,136 , it is claimed that a catalyst having a surface concentration of between 0.5 ⁇ 10 -4 and 3 ⁇ 10 -4 gMoO 3 / m 2 makes it possible to achieve high selectivities in hydrodesulfurization (93% hydrodesulfurization (HDS) against 33% hydrogenation of olefins (HDO)).
  • HDS hydrodesulfurization
  • HDO olefins
  • US Patent 6126814 describes a process for the hydrodesulfurization of naphtha in the presence of a catalyst containing MoO 3 and CoO on a support.
  • a catalyst that can be used in a gasoline hydrodesulphurization process and that makes it possible to reduce the total sulfur and mercaptan content of the hydrocarbon cuts, and preferably of FCC gasoline cuts, without any significant loss of carbon dioxide. gasoline and minimizing the decrease in the octane number.
  • the invention more specifically relates to a process for the hydrodesulphurisation of gasoline cuts in the presence of a catalyst comprising at least one element of group VIII, at least one element of group VIB, and a support having a specific surface area of less than about 200 m 2 / g, in which the density in Group VIB elements per unit area of the support is between 4.10 -4 and 36.10 -4 g of Group VIB element oxides per m 2 of support.
  • the charge to be hydrotreated (or hydrodesulphurized) by means of the process according to the invention is generally a petrol cut containing sulfur; such as for example a section resulting from a coking unit (coking according to the English terminology), visbreaking (visbreaking according to the English terminology), steam cracking (steam cracking according to the English terminology) or cracking catalytic (FCC, Fluid Catalytic Cracking according to the English terminology).
  • Said filler preferably consists of a gasoline cut from a catalytic cracking unit whose boiling point range typically extends from the boiling points of hydrocarbons with 5 carbon atoms to 250 ° C. .
  • This gasoline may optionally be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline derived from a straight-run distillation or straight-run gasoline according to the English terminology). conversion (coking or steam cracking gasoline).
  • the hydrodesulfurization catalysts according to the invention are catalysts comprising at least one element of group VIB and at least one element of group VIII on a suitable support.
  • the element or elements of group VIB are preferably chosen from molybdenum and / or tungsten and the group VIII element or elements are preferably chosen from nickel and / or cobalt.
  • the catalyst support is usually a porous solid selected from the group consisting of: aluminas, silica, silica alumina or even titanium or magnesium oxides used alone or in admixture with alumina or silica alumina.
  • the support consists essentially of less a transition alumina, that is to say it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80% by weight, or even at least 90% by weight of alumina of transition. It may optionally consist solely of a transition alumina.
  • the specific surface of the support according to the invention is generally less than 200 m 2 / g, preferably less than 170 m 2 / g and even more preferably less than 150 m 2 / g, or even less than 135 m 2 / g boy Wut.
  • the carrier may be prepared using any precursor, method of preparation and any shaping tool known to those skilled in the art.
  • the catalyst according to the invention can be prepared using any technique known to those skilled in the art, and in particular by impregnation of the elements of groups VIII and VIB on the selected support.
  • This impregnation may, for example, be carried out according to the method known to those skilled in the art in the dry-impregnation terminology, in which the quantity of desired elements in the form of soluble salts in the chosen solvent, for example demineralized water, so as to fill the porosity of the support as exactly as possible.
  • the support thus filled with the solution is preferably dried.
  • This treatment generally aims to convert the molecular precursors of the elements into an oxide phase (for example MoO 3 ). In this case it is an oxidizing treatment but a direct reduction can also be carried out.
  • an oxidizing treatment also known as calcination
  • this is generally carried out under air or under dilute oxygen, and the treatment temperature is generally between 200 ° C. and 550 ° C., preferably between 300 ° C. C and 500 ° C.
  • a reducing treatment this is generally carried out under pure hydrogen or preferably diluted, and the treatment temperature is generally between 200 ° C.
  • Group VIB and VIII metal salts which can be used in the process according to the invention are, for example, cobalt nitrate, aluminum nitrate, ammonium heptamolybdate or ammonium metatungstate. Any other known salt those skilled in the art having sufficient and decomposable solubility during the activation treatment may also be used.
  • the catalyst is usually used in a sulfurized form obtained after treatment in temperature in contact with a decomposable organic sulfur compound and generating H 2 S or directly in contact with a gas stream of H 2 S diluted in H 2 . This step can be carried out in situ or ex situ (inside or outside the reactor) of the hydrodesulfurization reactor at temperatures between 200 and 600 ° C and more preferably between 300 and 500 ° C.
  • the catalysts according to the invention have a density of group VIB elements (chromium, molybdenum, tungsten) of between 4.10 -4 g and 36.10 -4 g of group VIB oxide per m 2 of support, preferably between 4.10 -4 g and 16.10 g -4 oxide of the element from group VIB per m 2 of support, and very preferably between 7.10 -4 g and 15.10 g -4 oxide of element from group VIB per m 2 of support.
  • the specific surface of the support should generally not exceed 200 m 2 / g, and should preferably be less than 170 m 2 / g and even more preferably be less than 150 m 2 / g, or even less than 135 m 2 /boy Wut.
  • both criteria must be generally fulfilled simultaneously as there is a synergy between these two parameters.
  • the element of group VIB and its distribution on the surface intervene in the activation and the reactivity of the molecules. It should be noted that both criteria must generally be met simultaneously because there is a synergy between these two parameters in the activation and reactivity of the molecules.
  • the surface of the support can play an important role in the mechanism of activation and surface migration of the molecules, in particular the olefins, as was recently offers [ R Prins Studies in Surface Science and Catalysis 138 p. 1-2 ].
  • the content of group VIII elements of the catalyst according to the invention is preferably between 1 and 20% by weight of group VIII element oxides, preferably between 2 and 10% by weight of group elements oxides. VIII and more preferably between 2 and 8% by weight of Group VIII element oxides.
  • the group VIII element is cobalt or nickel or a mixture of these two elements, and more preferably the group VIII element consists solely of cobalt and / or nickel.
  • the content of Group VIB elements is preferably between 1.5 and 60% by weight of Group VIB element oxides, more preferably between 3 and 50% by weight of Group VIB group oxides.
  • the group VIB element is molybdenum or tungsten or a mixture of these two elements, and more preferably the group VIB element consists solely of molybdenum or tungsten.
  • the catalyst according to the invention can be used in any process known to those skilled in the art, for desulfurizing hydrocarbon cuts of the type of catalytic cracking gasoline (FCC) for example by maintaining the octane number at high values. . It can be used in any type of reactor operated in fixed bed or mobile bed or bubbling bed, it is however preferably used in a reactor operated in fixed bed.
  • FCC catalytic cracking gasoline
  • the operating conditions allowing selective hydrodesulphurization of catalytic cracking gasolines are a temperature of between 200 and 400 ° C., preferably between 250 and 350 ° C., a total pressure of between 1 MPa and 3 MPa and more preferably between 1 and 3 MPa.
  • VVH Hourly Volumetric Velocity
  • VVH is the inverse of the contact time expressed in hours. It is defined by the ratio of the volume flow rate of liquid hydrocarbon feedstock by the volume of catalyst charged to the reactor.
  • All molybdenum catalysts are prepared according to the same method which consists in carrying out a dry impregnation of a solution of ammonium heptamolybdate and cobalt nitrate, the volume of the solution containing the precursors of the metals being rigorously equal to the pore volume of the support mass.
  • the supports used are transition aluminas having specific surface area and variable pore volume pairs: 130 m 2 / g and 1.04 cm 3 / g; 170 m 2 / g and 0.87 cm 3 / g; 220 m 2 / g and 0.6 cm 3 / g; 60 m 2 / g and 0.59 cm 3 / g.
  • the precursor concentrations of the aqueous solution are adjusted so as to deposit on the support the desired weight contents.
  • the catalyst is then dried for 12 hours at 120 ° C. and then calcined under air at 500 ° C. for 2 hours.
  • All tungsten catalysts are prepared by the same method which consists in carrying out a dry impregnation of a solution of ammonium metatungstate and cobalt nitrate, the volume of the solution containing the precursors of metals being strictly equal to porous volume of the support mass.
  • the supports used are the same as before.
  • the precursor concentrations of the aqueous solution are adjusted so as to deposit on the support the desired weight contents.
  • the catalyst is then dried for 12 hours at 120 ° C. and then calcined under air at 500 ° C. for 2 hours.
  • a catalytic cracking gasoline (FCC) whose characteristics are summarized in Table 1 is treated by the various catalysts.
  • the VVH is variable in order to compare the selectivities obtained (ratio k HDS / k HDO ) to iso conversion to HDS, ie for a hydrodesulphurization conversion equal to about 90% for all the catalysts.
  • the catalysts are pretreated at 350 ° C.
  • HDS / k HDO speed constant ratio assuming an order 1 with respect to the sulfur compounds for the hydrodesulphurization reaction (HDS) and an order 0 with respect to the olefins for the olefin hydrogenation reaction. (HDO).
  • HDS hydrodesulphurization reaction
  • HDO olefin hydrogenation reaction.
  • Table 1 Characteristics of the FCC gasoline cut. S ppm 732 Aromatic% wt 31.4 Paraffins% wt 30.4 Naphthalic% wt 6.7 Olefins% wt 31.5 PI ° C 70.5 Mp ° C 215.4
  • Example 1 (according to the invention):
  • the molybdenum catalysts according to the invention are prepared according to the procedure described above and their characteristics (density in gram of molybdenum oxide per square meter of support, contents of cobalt and molybdenum oxides of the calcined catalyst, BET surface area). support) are shown in Table 2.
  • the K HDS / K HDO selectivities obtained for conversion to HDS close to 90% at the VVH mentioned are also reported in this table.
  • Table 2 Characteristics and performances of the molybdenum catalysts according to the invention.
  • the density of molybdenum has been modified in order to leave the density range according to the invention.
  • the VVH of the test is also selected in order to operate with a conversion to HDS substantially equal to 90%.
  • Table 3 summarizes the characteristics of the catalysts and the selectivities obtained. Table 3: Characteristics and performances of comparative molybdenum catalysts tested on a catalytic cracking gasoline.
  • the surface area of the support has been modified to be greater than 200 m 2 / g.
  • the VVH test is also selected to operate with a conversion to HDS substantially equal to 90%.
  • Table 4 summarizes the characteristics of the catalysts and the selectivities obtained. Table 4: Characteristics and performances of the molybdenum-based comparative catalysts tested on a catalytic cracking gasoline.
  • the tungsten catalysts according to the invention are prepared according to the procedure described above and their characteristics (density in grams of tungsten oxide per square meter of support, cobalt and tungsten oxide contents of the calcined catalyst, BET surface area of support) are collated in Table 5.
  • the k HDS / k HDO selectivities obtained for an HDS conversion close to 90% at the mentioned VVH are also reported in this table.
  • Table 5 Characteristics and performances of tungsten catalysts according to the invention.
  • the density of tungsten oxide has been modified in order to leave the density range according to the invention.
  • the VVH of the test is also selected in order to operate with a conversion to HDS substantially equal to 90%.
  • Table 6 summarizes the characteristics of the catalysts and the selectivities obtained. Table 6: Characteristics and performances of the comparative catalysts based on tungsten tested on a catalytic cracking gasoline.
  • the specific surface of the support used is greater than 200 m 2 / g.
  • the VVH test is selected to operate with a conversion to HDS substantially equal to 90%.
  • Table 7 summarizes the characteristics of the catalysts and the selectivities obtained. Table 7: Characteristics and performances of the comparative catalysts based on tungsten tested on a catalytic cracking gasoline.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • La présente invention concerne un catalyseur comprenant au moins un support, au moins un élément du groupe VIB et au moins un élément du groupe VIII et permettant l'hydrodésulfuration de charges hydrocarbonées, de préférence de type essences de craquage catalytique (FCC, Fluid Catalytic Cracking ou craquage catalytique en lit fluidisé).
    L'invention concerne plus particulièrement un procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un élément du groupe VIII, au moins un élément du groupe VIB, et un support de surface spécifique inférieure à 200 m2/g, dans lequel la densité en éléments du groupe VIB par unité de surface du support est comprise entre 4.10-4 et 36.10-4 g d'oxydes d'éléments du groupe VIB par m2 de support.
  • ART ANTERIEUR
  • Les coupes essences et plus particulièrement les essences issues du FCC contiennent environ 20 à 40 % de composés oléfiniques, 30 à 60 % d'aromatiques et 20 à 50 % de composés saturés de type paraffines ou naphtènes. Parmi les composés oléfiniques, les oléfines ramifiées sont majoritaires par rapport aux oléfines linéaires et cycliques. Ces essences contiennent également des traces de composés hautement insaturés de type dioléfiniques et qui sont susceptibles de désactiver les catalyseurs par formation de gommes. Ainsi, le brevet EP 685 552 B1 propose d'hydrogéner sélectivement les dioléfines, c'est à dire sans transformer les oléfines, avant d'effectuer l'hydrotraitement pour l'élimination du soufre. La teneur en composés soufrés de ces essences est très variable en fonction du type d'essence (vapocraqueur, craquage catalytique, cokéfaction...) ou dans le cas du craquage catalytique de la sévérité appliquée au procédé. Elle peut fluctuer entre 200 et 5000 ppm de S, de préférence entre 500 et 2000 ppm par rapport à la masse de charge. Les familles des composés thiophéniques et benzothiophéniques sont majoritaires, les mercaptans n'étant présents qu'à des niveaux très faibles généralement compris entre 10 et 100 ppm. Les essences de FCC contiennent également des composés azotés dans des proportions n'excédant généralement pas 100 ppm.
    La production d'essences reformulées répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue le moins possible leur concentration en oléfines afin de conserver un indice d'octane élevé, mais que l'on diminue de façon importante leur teneur en soufre. Ainsi, les normes environnementales en vigueur et futures contraignent les raffineurs à diminuer la teneur en soufre dans les essences à des valeurs inférieures ou au plus égales à 50 ppm en 2003 et 10 ppm au-delà de 2005. Ces normes concernent la teneur totale en soufre mais également la nature des composés soufrés tels que les mercaptans. Les essences de craquage catalytique, qui peuvent représenter 30 à 50 % du pool essence, présentent des teneurs en oléfines et en soufre élevées. Le soufre présent dans les essences reformulées est imputable, à près de 90 %, à l'essence de FCC. La désulfuration (l'hydrodésulfuration) des essences et principalement des essences de FCC est donc d'une importance évidente pour le respect des spécifications. L'hydrotraitement (ou hydrodésulfuration) des essences de craquage catalytique, lorsqu'il est réalisé dans des conditions classiques connues de l'homme du métier permet de réduire la teneur en soufre de la coupe. Cependant, ce procédé présente l'inconvénient majeur d'entraîner une chute très importante de l'indice d'octane de la coupe, en raison de la saturation de l'ensemble des oléfines au cours de l'hydrotraitement. Il a donc été proposé des procédés permettant de désulfurer profondément les essences de FCC tout en maintenant l'indice d'octane à un niveau élevé.
  • Ainsi, le brevet US 5 318 690 propose un procédé consistant à fractionner l'essence, adoucir la fraction légère et à hydrotraiter la fraction lourde sur un catalyseur conventionnel puis à la traiter sur une zéolithe ZSM5 pour retrouver approximativement l'indice d'octane initial.
    La demande de brevet WO 01/40409 revendique le traitement d'une essence de FCC dans des conditions de haute température, faible pression et fort ratio hydrogène/charge. Dans ces conditions particulières, les réactions de recombinaison conduisant à la formation des mercaptans, mettant en jeu l'H2S formé par la réaction de désulfuration et les oléfines sont minimisées.
    Enfin, le brevet US 5 968 346 propose un schéma permettant d'atteindre de teneurs résiduelles en soufre très faibles par un procédé en plusieurs étapes: hydrodésulfuration sur un premier catalyseur, séparation des fractions liquides et gazeuses, et second hydrotraitement sur un deuxième catalyseur. La séparation liquide/gaz permet d'éliminer l'H2S formé dans le premier réacteur, afin d'aboutir à un meilleur compromis entre hydrodésulfuration et perte octane.
  • L'obtention de la sélectivité de réaction recherchée (ratio entre hydrodésulfuration et hydrogénation des oléfines) peut donc être en partie due au choix du procédé mais dans tous les cas l'utilisation d'un système catalytique intrinsèquement sélectif est très souvent un facteur clé.
  • D'une façon générale, les catalyseurs utilisés pour ce type d'application sont des catalyseurs de type sulfure contenant un élément du groupe VIB (Cr, Mo, W) et un élément du groupe VIII (Fe, Ru, Os, Co, Rh, Ir, Pd, Ni, Pt). Ainsi dans le brevet US 5 985 136 , il est revendiqué qu'un catalyseur présentant une concentration de surface comprise entre 0,5.10-4 et 3.10-4 gMoO3/m2 permet d'atteindre des sélectivités élevées en hydrodésulfuration (93 % d'hydrodésulfuration (HDS) contre 33 % d'hydrogénation des oléfines (HDO)). Par ailleurs, selon les brevets US 4140626 et US 4 774 220 , il peut être avantageux d'ajouter un dopant (alcalin, alcalino-terreux) à la phase sulfure conventionnelle (CoMoS) dans le but de limiter l'hydrogénation des oléfines.
  • Une autre voie permettant d'améliorer la sélectivité intrinsèque des catalyseurs est de tirer bénéfice de la présence de dépôts carbonés à la surface du catalyseur. Ainsi, le brevet US 4 149 965 propose de prétraiter un catalyseur conventionnel d'hydrotraitement de naphta pour le désactiver partiellement avant son utilisation pour l'hydrotraitement des essences. De même, la demande de brevet EP 0 745 660 A1 indique que le prétraitement d'un catalyseur afin de déposer entre 3 et 10 % poids de coke améliore les performances catalytiques. Dans ce cas, il est précisé que le ratio C/H ne doit pas être supérieur à 0,7.
  • US-A-6126814 décrit un procédé d'hydrodésulfuration de naphta en présence d'un catalysateur contenant MoO3 et CoO sur un support.
  • RESUME DE L'INVENTION
  • Dans la présente invention, il a été trouvé un catalyseur utilisable dans un procédé d'hydrodésulfuration d'essence et permettant de réduire les teneurs en soufre total et en mercaptans des coupes hydrocarbonées et de préférence de coupes essences de FCC, sans perte importante d'essence et en minimisant la diminution de l'indice d'octane.
  • L'invention concerne plus précisément un procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un élément du groupe VIII, au moins un élément du groupe VIB, et un support de surface spécifique inférieure à environ 200 m2/g, dans lequel la densité en éléments du groupe VIB par unité de surface du support est comprise entre 4.10-4 et 36.10-4 g d'oxydes d'éléments du groupe VIB par m2 de support.
  • DESCRIPTION DETAILLEE DE L'INVENTION
  • La charge à hydrotraiter (ou hydrodésulfurer) au moyen du procédé selon l'invention est généralement une coupe essence contenant du soufre; telle que par exemple une coupe issue d'une unité de cokéfaction (coking selon la terminologie anglo-saxonne ), de viscoréduction (visbreaking selon la terminologie anglo-saxonne), de vapocraquage (steam cracking selon la terminologie anglo-saxonne) ou de craquage catalytique (FCC, Fluid Catalytic Cracking selon la terminologie anglo-saxonne). La dite charge est de préférence constituée d'une coupe essence issue d'une unité de craquage catalytique dont la gamme de points d'ébullition s'étend typiquement des points d'ébullition des hydrocarbures à 5 atomes de carbone jusqu'à 250°C. Cette essence peut éventuellement être composée d'une fraction significative d'essence provenant d'autres procédés de production telle que la distillation atmosphérique (essence issue d'une distillation directe (ou essence straight run selon la terminologie anglo-saxonne) ou de procédés de conversion (essence de cokéfaction ou de vapocraquage).
  • Les catalyseurs d'hydrodésulfuration selon l'invention sont des catalyseurs comprenant au moins un élément du groupe VIB et au moins un élément du groupe VIII sur un support approprié. Le ou les éléments du groupe VIB sont de préférence choisis parmi le molybdène et/ou le tungstène et le ou les éléments du groupe VIII sont de préférence choisis parmi le nickel et/ou le cobalt. Le support du catalyseur est habituellement un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l'alumine ou la silice alumine. Il est de préférence choisi dans le groupe constitué par: la silice, la famille des alumines de transition et les silices alumine, de manière très préférée, le support est essentiellement constitué par au moins une alumine de transition, c'est-à-dire qu'il comprend au moins 51 % poids, de préférence au moins 60 % poids de manière très préféré au moins 80 % poids, voire au moins 90 % poids d'alumine de transition. Il peut éventuellement être constitué uniquement d'une alumine de transition.
  • La surface spécifique du support selon l'invention est généralement inférieure à 200 m2/g, de manière préférée inférieure à 170 m2/g et de manière encore plus préférée inférieure à 150 m2/g, voire inférieure à 135 m2/g. Le support peut être préparé en utilisant tout précurseur, toute méthode de préparation et tout outil de mise en forme connus de l'homme de métier.
  • Le catalyseur selon l'invention peut être préparé au moyen de toute technique connu de l'homme du métier, et notamment par imprégnation des éléments des groupes VIII et VIB sur le support sélectionné. Cette imprégnation peut par exemple être réalisée selon le mode connu de l'homme du métier sous la terminologie d'imprégnation à sec, dans lequel on introduit juste la quantité d'éléments désirés sous forme de sels solubles dans le solvant choisi, par exemple de l'eau déminéralisée, de façon à remplir aussi exactement que possible la porosité du support. Le support ainsi rempli par la solution est de préférence séché.
  • Après introduction des éléments des groupes VIII et VIB, et éventuellement une mise en forme du catalyseur, celui-ci subi un traitement d'activation. Ce traitement a généralement pour but de transformer les précurseurs moléculaires des éléments en phase oxyde (par exemple MoO3). Il s'agit dans ce cas d'un traitement oxydant mais une réduction directe peut également être effectuée. Dans le cas d'un traitement oxydant, également appelé calcination, celui-ci est généralement mis en oeuvre sous air ou sous oxygène dilué, et la température de traitement est généralement comprise entre 200°C et 550°C, de préférence entre 300°C et 500°C. Dans le cas d'un traitement réducteur, celui-ci est généralement mis en oeuvre sous hydrogène pur ou de préférence dilué, et la température de traitement est généralement comprise entre 200°C et 600°C, de préférence entre 300°C et 500°C.
    Des sels de métaux des groupes VIB et VIII utilisables dans le procédé selon l'invention sont par exemple le nitrate de cobalt, le nitrate d'aluminium, l'heptamolybdate d'ammonium ou le métatungstate d'ammonium. Tout autre sel connu de l'homme du métier présentant une solubilité suffisante et décomposable lors du traitement d'activation peut également être utilisé.
    Le catalyseur est habituellement utilisé sous une forme sulfurée obtenue après traitement en température au contact d'un composé organique soufré décomposable et générateur d'H2S ou directement au contact d'un flux gazeux d'H2S dilué dans H2. Cette étape peut être réalisée in situ ou ex situ (en dedans ou dehors du réacteur) du réacteur d'hydrodésulfuration à des températures comprises entre 200 et 600°C et plus préférentiellement entre 300 et 500°C.
  • Les catalyseurs selon l'invention présentent une densité d'éléments du groupe VIB (chrome, molybdène, tungstène) comprise entre 4.10-4 g et 36.10-4 g d'oxyde du élément du groupe VIB par m2 de support, de préférence entre 4.10-4 g et 16.10-4 g d'oxyde du élément du groupe VIB par m2 de support, et de manière très préférée entre 7.10-4 g et 15.10-4 g d'oxyde du élément du groupe VIB par m2 de support. La surface spécifique du support ne doit généralement pas excéder 200 m2/g, et doit de manière préférée être inférieure à 170 m2/g et de manière encore plus préférée être inférieure à 150 m2/g, voire inférieure à 135 m2/g.
  • Il convient de noter que les deux critères doivent être généralement remplis simultanément car il existe une synergie entre ces deux paramètres.
    Sans être lié par une quelconque théorie, l'élément du groupe VIB et sa répartition à la surface interviennent dans l'activation et la réactivité des molécules. Il convient de noter que les deux critères doivent être généralement remplis simultanément car il existe une synergie entre ces deux paramètres dans l'activation et la réactivité des 5 molécules. Par ailleurs, en présence des éléments (également appelés métaux) des groupes VIII et VIB, la surface du support peut jouer un rôle important dans le mécanisme d'activation et de migration de surface des molécules, notamment les oléfines, comme cela a été récemment proposé [R Prins Studies in Surface Science and Catalysis 138 p. 1-2]. La minimisation de ce processus d'activation pourrait éventuellement permettre de limiter les réactions mettant en jeu des composés oléfiniques : l'hydrogénation par addition d'hydrogène (pénalisante pour le maintien de l'indice d'octane) et la recombinaison avec l'H2S (pénalisante pour la désulfuration). D'autre part, l'utilisation de support de surface spécifique importante est problématique dans le cas de charge fortement oléfiniques. En effet, l'acidité de surface augmentant avec la surface spécifique des supports, les réactions acido catalysées seront favorisées pour les supports de surface spécifique importante. Ainsi, les réactions de polymérisation ou de cokage conduisant à la formation de gommes ou de coke et finalement à la désactivation prématurée du catalyseur seront plus importantes sur des supports de surface spécifique élevée. Une meilleure stabilité des catalyseurs sera obtenue pour des supports de surface spécifique peu importante.
  • La teneur en éléments du groupe VIII du catalyseur selon l'invention est de préférence comprise entre 1 et 20 % poids d'oxydes d'éléments du groupe VIII, de préférence comprise entre 2 et 10 % poids d'oxydes d'éléments du groupe VIII et de manière plus préférée comprise entre 2 et 8 % poids d'oxydes d'éléments du groupe VIII. De préférence l'élément du groupe VIII est le cobalt ou le nickel ou un mélange de ces deux éléments, et de manière plus préféré l'élément du groupe VIII est constitué uniquement de cobalt et/ou de nickel.
  • La teneur en éléments du groupe VIB est de préférence comprise entre 1,5 et 60 % poids d'oxydes d'éléments du groupe VIB, de manière plus préférée entre 3 et 50 % poids d'oxydes d'éléments du groupe VIB. De préférence l'élément du groupe VIB est le molybdène ou le tungstène ou un mélange de ces deux éléments, et de manière plus préféré l'élément du groupe VIB est constitué uniquement de molybdène ou de tungstène.
  • Le catalyseur selon l'invention peut être utilisé dans tout procédé, connu de l'homme du métier, permettant de désulfurer des coupes hydrocarbonées de type essences de craquage catalytique (FCC) par exemple en maintenant l'indice d'octane à des valeurs élevées. Il peut être mis en oeuvre dans tout type de réacteur opéré en lit fixe ou en lit mobile ou en lit bouillonnant, il est toutefois de préférence utilisé dans un réacteur opéré en lit fixe.
  • A titre indicatif, les conditions opératoires permettant une hydrodésulfuration sélective des essences de craquage catalytique sont une température comprise entre 200 et 400°C, préférentiellement entre 250 et 350°C, une pression totale comprise entre 1 MPa et 3 MPa et plus préférentiellement entre 1 MPa et 2,5 MPa avec un ratio : volume d'hydrogène par volume de charge hydrocarbonée, compris entre 100 et 600 litres par litre et plus préférentiellement entre 200 et 400 litres par litre. Enfin, la Vitesse Volumique Horaire (VVH) est l'inverse du temps de contact exprimée en heure. Elle est définie par le rapport du débit volumique de charge hydrocarbonée liquide par le volume de catalyseur chargé dans le réacteur.
  • EXEMPLES Préparation des catalyseurs :
  • Tous les catalyseurs à base de molybdène sont préparés selon la même méthode qui consiste à réaliser une imprégnation à sec d'une solution d'heptamolybdate d'ammonium et de nitrate de cobalt, le volume de la solution contenant les précurseurs des métaux étant rigoureusement égal au volume poreux de la masse de support. Les supports utilisés sont des alumines de transition présentant des couples surface spécifique et volume poreux variables: 130 m2/g et 1,04 cm3/g ; 170 m2/g et 0,87 cm3/g; 220 m2/g et 0,6 cm3/g; 60 m2/g et 0,59 cm3/g. Les concentrations en précurseurs de la solution aqueuse sont ajustées de manière à déposer sur le support les teneurs pondérales souhaitées. Le catalyseur est ensuite séché pendant 12 heures à 120°C puis calciné sous air à 500°C pendant 2 heures.
  • Tous les catalyseurs à base de tungstène sont préparés selon la même méthode qui consiste à réaliser une imprégnation à sec d'une solution de métatungstate d'ammonium et de nitrate de cobalt, le volume de la solution contenant les précurseurs des métaux étant rigoureusement égal au volume poreux de la masse de support. Les supports utilisés sont les mêmes que précédemment. Les concentrations en précurseurs de la solution aqueuse sont ajustées de manière à déposer sur le support les teneurs pondérales souhaitées. Le catalyseur est ensuite séché pendant 12 heures à 120°C puis calciné sous air à 500°C pendant 2 heures.
  • Evaluation des performances catalytiques :
  • Une essence de craquage catalytique (FCC) dont les caractéristiques sont rassemblées dans le tableau 1, est traitée par les différents catalyseurs La réaction est effectuée en faisant varier la température en réacteur de type lit traversé dans les conditions suivantes : P=2 MPa, H2/HC=300 litres/litres de charge hydrocarbonée, la température étant fixée à 280°C pour les catalyseurs à base de molybdène, et à 300°C pour les catalyseurs à base de tungstène. La VVH est variable afin de comparer les sélectivités obtenues (rapport kHDS/kHDO) à iso conversion en HDS, soit pour une conversion en hydrodésulfuration égale à environ 90 % pour tous les catalyseurs. Les catalyseurs sont préalablement traités à 350°C par une charge contenant 4 % poids de soufre sous forme de DMDS (diméthyldisulfure) pour assurer la sulfuration des phases oxydes. La réaction se déroule en courant ascendant dans un réacteur tubulaire adiabatique. Dans tous les cas, l'analyse des composés soufrés organiques résiduels se fait après élimination de l'H2S issu de la décomposition. Les effluents sont analysés par chromatographie en phase gazeuse pour la détermination des concentrations en hydrocarbures et par la méthode décrite par la norme NF M 07075 pour la détermination du soufre total. Les résultats sont exprimés en rapport de constante de vitesse kHDS/kHDO en supposant un ordre 1 par rapport aux composés soufrés pour la réaction d'hydrodésulfuration (HDS) et un ordre 0 par rapport aux oléfines pour la réaction d'hydrogénation des oléfines (HDO). Pour les catalyseurs à base de molybdène ou de tungstène, les valeurs sont normalisées en prenant respectivement le catalyseur 2 ou le catalyseur 12 comme référence. Ces valeurs sont données après 96 heures et 200 heures de fonctionnement afin de rendre compte respectivement de l'activité initiale et de la désactivation. Tableau 1 : caractéristiques de la coupe essence de FCC.
    S ppm 732
    Aromatiques %pds 31,4
    Paraffines % pds 30,4
    Naphténiques % pds 6,7
    Oléfines %pds 31,5
    PI °C 70,5
    PF°C 215,4
  • Exemple 1 (selon l'invention) :
  • Les catalyseurs à base de molybdène selon l'invention sont préparés selon la procédure décrite précédemment et leurs caractéristiques (densité en gramme d'oxyde de molybdène par mètre carré de support, teneurs en oxydes de cobalt et de molybdène du catalyseur calciné, surface BET du support) sont rassemblées dans le tableau 2. Les sélectivités KHDS/KHDO obtenues pour une conversion en HDS voisine de 90% à la VVH mentionnée sont également reportées dans ce tableau. Tableau 2 : Caractéristiques et performances des catalyseurs à base de molybdène selon l'invention.
    Catalyseur Densité 2 g MoO3/m2 % pds CoO % pds MoO3 S BET m2/g VVH h-1 kHDS / kHDO t=96h KHDS / kHDO t=200h
    1 4,3. 10-4 1,8 5,2 130 3,8 0,94 0,85
    2 7,7.10-4 3,1 8,8 130 4,0 1 0,94
    3 14,8. 10-4 5,3 15,3 130 5,3 1,32 1,21
    4 35,8. 10-4 5,8 16,7 60 3,4 0,85 0,81
    5 7,6 .10-4 3,8 11,0 170 3,1 0,78 0,71
    6 16,5.10- 4 5,8 16,6 130 3,3 0,82 0,74
  • Exemple 2 (comparatif) :
  • Dans cet exemple, la densité de molybdène a été modifiée afin de sortir de la gamme de densités selon l'invention. La VVH du test est également sélectionnée afin d'opérer avec une conversion en HDS sensiblement égale à 90 %. Le tableau 3 résume les caractéristiques des catalyseurs et les sélectivités obtenues. Tableau 3 : Caractéristiques et performances des catalyseurs comparatifs à base de molybdène testés sur une essence de craquage catalytique.
    Catalyseur Densité g MoO3/m2 % pds CoO % pds MoO3 S BET m2/g VVH h-1 KHDS / KHDO t=48h kHDS/kHDO t=200h
    7 2,8.10-4 1,2 3,5 130 2,4 0,59 0,56
    8 37,1.10-4 10,2 29,2 130 7,0 0,65 0,61
  • Exemple 3 (comparatif)
  • Dans cet exemple, la surface spécifique du support a été modifiée afin d'être supérieure à 200 m2/g. La VVH de test est également sélectionnée afin d'opérer avec une conversion en HDS sensiblement égale à 90%. Le tableau 4 résume les caractéristiques des catalyseurs et les sélectivités obtenues. Tableau 4 : Caractéristiques et performances des catalyseurs comparatifs à base de molybdène testés sur une essence de craquage catalytique.
    Catalyseur Densité g MoO3/m2 % pds CoO % pds MoO3 S BET m2/g VVH h-1 kHDS / kHDO t=96h kHDS / kHDO t=200h
    9 7,9.10-4 4,9 14,1 220 3,5 0,67 0,63
    10 4,3.10-4 2,9 8,4 220 1,6 0,40 0,33
  • Exemple 4 (selon l'invention):
  • Les catalyseurs à base de tungstène selon l'invention sont préparés selon la procédure décrite précédemment et leurs caractéristiques (densité en gramme d'oxyde de tungstène par mètre carré de support, teneurs en oxydes de cobalt et de tungstène du catalyseur calciné, surface BET du support) sont rassemblées dans le tableau 5. Les sélectivités kHDS/kHDO obtenues pour une conversion en HDS voisine de 90 % à la VVH mentionnée sont également reportées dans ce tableau. Tableau 5 : Caractéristiques et performances des catalyseurs à base de tungstène selon l'invention.
    Catalyseur Densité g WO3/m2 % pds CoO % pds WO3 S BET m2/g VVH h-1 kHDS / kHDO t=96h kHDS / kHDO t=200h
    11 4,5. 10-4 1,2 5,5 130 1,5 0,93 0,88
    12 8,0. 10-4 2,0 9,2 130 3,0 1,00 0,95
    13 14,5.10-4 3,3 15,3 130 3,7 1,18 1,10
    14 35,5. 10-4 3,6 16,9 60 3,5 0,80 0,74
    15 8,2.10-4 2,6 11,9 170 3,2 0,88 0,82
    16 16,2.10-4 3,6 16,8 130 4,0 0,86 0,81
  • Exemple 5 (comparatif) :
  • Dans cet exemple, la densité d'oxyde de tungstène a été modifiée afin de sortir de la gamme de densités selon l'invention. La VVH du test est également sélectionnée afin d'opérer avec une conversion en HDS sensiblement égale à 90%. Le tableau 6 résume les caractéristiques des catalyseurs et les sélectivités obtenues. Tableau 6 : Caractéristiques et performances des catalyseurs comparatifs à base de tungstène testés sur une essence de craquage catalytique.
    Catalyseur Densité gWO3/m2 % pds CoO % pds WO3 S BET m2/g VVH h-1 kHDS / kHDO t=96h kHDS / kHDO t=200h
    17 3,1.10-4 0,8 3,8 130 1,2 0,64 0,59
    18 38,0 10-4 6,6 30,9 130 6,5 0,60 0,55
  • Exemple 6 (comparatif)
  • Dans cet exemple, la surface spécifique du support utilisé est supérieure à 200 m2/g. La VVH de test est sélectionnée afin d'opérer avec une conversion en HDS sensiblement égale à 90 %. Le tableau 7 résume les caractéristiques des catalyseurs et les sélectivités obtenues. Tableau 7 : Caractéristiques et performances des catalyseurs comparatifs à base de tungstène testés sur une essence de craquage catalytique.
    Catalyseur Densité gWO3/m2 % pds CoO % pds WO3 S BET m2/g VVH h-1 kHDS / kHDO t=96h kHDS / kHDO t=200h
    19 8,4.10-4 3,2 15,1 220 3,6 0,76 0,69
    20 4,3.10-4 1,8 8,5 220 2,7 0,70 0,64

Claims (10)

  1. Procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un élément du groupe VIII, au moins un élément du groupe VIB, et un support de surface spécifique inférieure à 200 m2/g, dans lequel la densité en éléments du groupe VIB par unité de surface du support est comprise entre 4.10-4 et 36.10-4 g d'oxydes d'éléments du groupe VIB par m2 de support.
  2. Procédé d'hydrodésulfuration selon la revendication 1 dans lequel la densité en éléments du groupe VIB par unité de surface du support est comprise entre 4.10-4 g et 16.10-4 g d'oxydes d'éléments du groupe VIB par m2 de support.
  3. Procédé d'hydrodésulfuration selon l'une des revendications 1 ou 2 dans lequel la teneur en éléments du groupe VIII du catalyseur est comprise entre 1 et 20 % poids d'oxydes d'éléments du groupe VIII et la teneur en éléments du groupe VIB est comprise entre 1,5 et 60 % poids d'oxydes d'éléments du groupe VIB.
  4. Procédé selon l'une des revendications 1 à 3 dans lequel le catalyseur comprend au moins un élément du groupe VIII choisi parmi le nickel et le cobalt.
  5. Procédé selon l'une des revendications 1 à 4 dans lequel le catalyseur comprend au moins un élément du groupe VIB choisi parmi le molybdène et le tungstène.
  6. Procédé selon l'une des revendications 1 à 5 dans lequel le support du catalyseur est un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l'alumine ou la silice alumine.
  7. Procédé selon l'une des revendications 1 à 6 dans lequel le support du catalyseur comprend au moins 90 % poids d'alumine de transition.
  8. Procédé selon l'une des revendications 1 à 7 dans lequel la charge à hydrodésulfurer est une coupe essence contenant du soufre issue d'une unité de cokéfaction, de viscoréduction, de vapocraquage, ou de craquage catalytique.
  9. Procédé selon l'une des revendications 1 à 8 dans lequel la charge à hydrodésulfurer est une coupe essence issue d'une unité de craquage catalytique dont la gamme de points d'ébullition s'étend typiquement des points d'ébullition des hydrocarbures à 5 atomes de carbone jusqu'à 250°C.
  10. Procédé selon la revendication 9 dans lequel les conditions opératoires d'hydrodésulfuration sont une température comprise entre 200 et 400°C, une pression totale comprise entre 1 MPa et 3 MPa, et un ratio : volume d'hydrogène par volume de charge hydrocarbonée, compris entre 100 et 600 litres par litre.
EP03291115A 2002-06-03 2003-05-14 Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB Revoked EP1369466B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0206815A FR2840315B1 (fr) 2002-06-03 2002-06-03 Procede d'hydrodesulfuration de coupes contenant des composes soufres et des olefines en presence d'un catalyseur supporte comprenant des metaux des groupes viii et vib
FR0206815 2002-06-03

Publications (2)

Publication Number Publication Date
EP1369466A1 EP1369466A1 (fr) 2003-12-10
EP1369466B1 true EP1369466B1 (fr) 2008-09-10

Family

ID=29433307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03291115A Revoked EP1369466B1 (fr) 2002-06-03 2003-05-14 Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB

Country Status (6)

Country Link
US (1) US7306714B2 (fr)
EP (1) EP1369466B1 (fr)
JP (1) JP4452911B2 (fr)
CN (1) CN1290975C (fr)
DE (1) DE60323429D1 (fr)
FR (1) FR2840315B1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048489B2 (ja) * 2004-08-02 2012-10-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 天然ガス又は不活性ガスを含むガス流からメルカプタンを除去する方法
FR2888583B1 (fr) 2005-07-18 2007-09-28 Inst Francais Du Petrole Nouveau procede de desulfuration d'essences olefiniques permettant de limiter la teneur en mercaptans
FR2895414B1 (fr) * 2005-12-22 2011-07-29 Inst Francais Du Petrole Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant une porosite controlee
FR2895415B1 (fr) * 2005-12-22 2011-07-15 Inst Francais Du Petrole Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique
FR2895416B1 (fr) * 2005-12-22 2011-08-26 Inst Francais Du Petrole Procede d'hydrogenation selective mettant en oeuvre un catalyseur sulfure
FR2923837B1 (fr) * 2007-11-19 2009-11-20 Inst Francais Du Petrole Procede de desulfuration en deux etapes d'essences olefiniques comprenant de l'arsenic.
JP5207923B2 (ja) * 2008-11-06 2013-06-12 Jx日鉱日石エネルギー株式会社 精製炭化水素油の製造方法
US9260672B2 (en) 2010-11-19 2016-02-16 Indian Oil Corporation Limited Process for deep desulfurization of cracked gasoline with minimum octane loss
FR3035117B1 (fr) 2015-04-15 2019-04-19 IFP Energies Nouvelles Procede d'adoucissement en composes du type sulfure d'une essence olefinique
FR3049475B1 (fr) * 2016-03-30 2018-04-06 IFP Energies Nouvelles Catalyseur a base de catecholamine et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR3049955B1 (fr) 2016-04-08 2018-04-06 IFP Energies Nouvelles Procede de traitement d'une essence
FR3057578B1 (fr) 2016-10-19 2018-11-16 IFP Energies Nouvelles Procede d'hydrodesulfuration d'une essence olefinique.
CN108003932B (zh) * 2016-10-28 2020-04-28 中国石油化工股份有限公司 一种生产汽油产品的方法
BR112019010168A2 (pt) * 2016-11-23 2019-09-17 Haldor Topsøe A/S processo para dessulfurização de hidrocarbonetos
FR3142362A1 (fr) 2022-11-30 2024-05-31 IFP Energies Nouvelles Catalyseur d’hydrodésulfuration de finition comprenant un métal du groupe VIB, un métal du groupe VIII et du phosphore sur support alumine alpha
FR3142487A1 (fr) 2022-11-30 2024-05-31 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un catalyseur à base de métaux du groupe VIB et VIII et du phosphore sur support alumine à faible surface spécifique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126814A (en) * 1996-02-02 2000-10-03 Exxon Research And Engineering Co Selective hydrodesulfurization process (HEN-9601)
US6174443B1 (en) * 1997-04-14 2001-01-16 The Research Foundation Of State University Of New York Purification of wheat germ agglutinin using macroporous or microporous filtration membrane
US6315890B1 (en) * 1998-05-05 2001-11-13 Exxonmobil Chemical Patents Inc. Naphtha cracking and hydroprocessing process for low emissions, high octane fuels
EP0980908A1 (fr) * 1998-08-15 2000-02-23 ENITECNOLOGIE S.p.a. Procédé et catalyseurs pour améliorer des hydrocarbures bouillant dans le domaine de la température d'ébullition de naphtha
US6610197B2 (en) * 2000-11-02 2003-08-26 Exxonmobil Research And Engineering Company Low-sulfur fuel and process of making
US6716339B2 (en) * 2001-03-30 2004-04-06 Corning Incorporated Hydrotreating process with monolithic catalyst

Also Published As

Publication number Publication date
FR2840315A1 (fr) 2003-12-05
US7306714B2 (en) 2007-12-11
FR2840315B1 (fr) 2004-08-20
US20040007503A1 (en) 2004-01-15
CN1470611A (zh) 2004-01-28
JP4452911B2 (ja) 2010-04-21
EP1369466A1 (fr) 2003-12-10
JP2004010892A (ja) 2004-01-15
DE60323429D1 (de) 2008-10-23
CN1290975C (zh) 2006-12-20

Similar Documents

Publication Publication Date Title
EP1892039B1 (fr) Procédé d'hydrodesulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des éléments des groupes VIII et VIB
EP1612255B1 (fr) Procédé d'hydrosulfuration des essences mettant en oeuvre un catalyseur à porosite controlée
EP2169032B1 (fr) Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés
EP1174485B1 (fr) Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
EP1800748B1 (fr) Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré
EP1002853B1 (fr) Procédé de production d'essences à faible teneur en soufre
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane
EP2161076B1 (fr) Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré de composition spécifique
EP1369466B1 (fr) Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB
EP3428248B1 (fr) Catalyseurs partiellement cokes utilisables dans l'hydrotraitement des coupes contenant des composes soufres et des olefines
CA2299152C (fr) Procede de production d'essences a faible teneur en soufre
EP2644683B1 (fr) Procédé d'hydrogenation selective d'une essence
EP2816094A1 (fr) Procédé de production d'une essence à basse teneur en soufre et en mercaptans
EP1369467B1 (fr) Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur comprenant un élément du groupe VIII et du tungstène
EP1354930A1 (fr) Procédé de production d'hydocarbures à faible teneur en soufre et en mercaptans
WO2014068209A1 (fr) Procédé de production d'une essence a basse teneur en soufre
WO2016096364A1 (fr) Procede d'adoucissement en composes du type sulfure d'une essence olefinique
EP2796196B1 (fr) Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des essences
WO2021185658A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
EP4004157A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
WO2014037644A1 (fr) Procédé de sulfuration d'un catalyseur d'hydrodésulfuration
EP3283601B1 (fr) Procede d'adoucissement en composes du type sulfure d'une essence olefinique
WO2024115275A1 (fr) Procede d'hydrodesulfuration de finition des essences mettant en œuvre un enchainement de catalyseurs
WO2024115276A1 (fr) Catalyseur d'hydrodesulfuration de finition comprenant un metal du groupe vib, un metal du groupe viii et du phosphore sur support alumine alpha

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040611

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60323429

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: EXXON MOBIL RESEARCH

Effective date: 20090528

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

NLR1 Nl: opposition has been filed with the epo

Opponent name: EXXON MOBIL RESEARCH

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100602

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IFP ENERGIES NOUVELLES

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60323429

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

Effective date: 20110331

Ref country code: DE

Ref legal event code: R081

Ref document number: 60323429

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

27W Patent revoked

Effective date: 20101126

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20101126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110503

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 60323429

Country of ref document: DE

Effective date: 20110818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110525

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120531

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120518

Year of fee payment: 10