EP1745527B1 - Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne - Google Patents

Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne Download PDF

Info

Publication number
EP1745527B1
EP1745527B1 EP05741826.1A EP05741826A EP1745527B1 EP 1745527 B1 EP1745527 B1 EP 1745527B1 EP 05741826 A EP05741826 A EP 05741826A EP 1745527 B1 EP1745527 B1 EP 1745527B1
Authority
EP
European Patent Office
Prior art keywords
antenna arrangement
arrangement according
magnetic
magnetic core
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05741826.1A
Other languages
German (de)
English (en)
Other versions
EP1745527A1 (fr
Inventor
Wulf Guenther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1745527A1 publication Critical patent/EP1745527A1/fr
Application granted granted Critical
Publication of EP1745527B1 publication Critical patent/EP1745527B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material

Definitions

  • the invention relates to an antenna arrangement with an open magnetic core and a winding.
  • the invention is in the field of magnetic field antennas used for inductive energy transmission.
  • it is possible to transmit energy and information by means of electric or magnetic dipoles.
  • electromagnetic waves or only predominantly electrical or magnetic fields are generated. It may be desirable not to emit electromagnetic waves but to confine itself to the generation of magnetic fields, for example to avoid exposure to organic tissue around the antenna.
  • relatively high energies can be transmitted without a galvanic coupling. The effect of such coupling is limited to a narrow spatial area less than about 1 meter. Nevertheless, there are many possible applications for such a transmission.
  • soft magnetic powder composite materials can be used as pressed magnetic cores.
  • these may consist of iron powder.
  • effective permeabilities between about 10 and 30 can be achieved.
  • saturation inductions are approximately 1.0 to 1.4 T.
  • powder composite materials of soft magnetic crystalline Iron-aluminum-silicon alloys and iron-nickel alloys are known, with which application frequencies can be achieved to over 100 kHz.
  • Magnetic cores are known, which are produced by injection molding of an injection-moldable plastic and a nanocrystalline alloy.
  • Corresponding nanocrystalline alloys are for example from EP 0271657 A2 and the EP 0455113 A2 known.
  • Such alloys are produced, for example, by means of rapid solidification technology in the form of thin alloy strips which are initially amorphous and which are subjected to a heat treatment to form a nanocrystalline structure.
  • Such alloys can be ground to alloy powders having particle sizes less than 2mm.
  • so-called flakes with thicknesses between 0.01 and 0.04 mm and widths or lengths of 0.04 to 1 mm per particle arise.
  • These flakes can be processed into composite materials using synthetic resins, in which saturation magnetizations greater than 0.5 Tesla and permeabilities between 10 and 200 can be realized.
  • a manufacturing method for such magnetic cores is for example in the WO 0191141 A1 shown.
  • transponders which also consist of soft magnetic powder composite materials, such as amorphous alloys. Such antennas are used there for the exchange of information.
  • the present invention is based on the object of providing an antenna arrangement for use in the inductive transmission of energy, regardless of a precise positioning of the antenna arrangement relative to a receiver.
  • the present invention aims at the effective transmission of energy in the near field region and the reliable functioning independently of a precise positioning of the antenna arrangement relative to a receiver, to which the energy is to be transmitted by inductive means.
  • the setting of very specific magnetic properties, in particular a sufficient flow with a suitable radiation characteristic in the antenna arrangement is necessary.
  • antennas as used in the present antenna arrangement, usually represent the inductive part of a resonant circuit, a high antenna quality of at least 50, preferably even 100 in the range of the operating frequency is desirable for optimizing the energy dissipation.
  • a temperature-independent permeability is required, which is for optimal flow control between 30 and 200. With higher permeability, the flux bundling in the core is so good that laterally too low a flow component emerges from the core and the field strength along the core, ie in the receiver region, becomes highly inhomogeneous.
  • the object underlying the present invention can not be solved satisfactorily with the known magnet arrangements, magnetic cores and materials.
  • the magnetic core contains as a composite material a soft magnetic component of finely divided particles and a plastic component, wherein the magnetic core has an initial permeability between 20 and 200 and a saturation induction> 0.6 T.
  • the soft magnetic component advantageously consists of the already mentioned flakes of a nanocrystalline material. This has a saturation magnetization of about 1 to 1.6T and permeabilities> 30,000.
  • a plastic component of the magnetic circuit By mixing with a plastic component of the magnetic circuit is through the microscopic gaps between the flakes are interrupted and it is possible to set lower effective permeabilities of 30 to 100 with high quality and temperature stability. Nevertheless, a high achievable flux density greater than 0.6 T, typically greater than 0.9 T.
  • the soft magnetic component of the magnetic core also has the advantageous advantage that the particles are each electrically isolated by a surface layer. This can be realized for example by surface oxidation or plastic coating.
  • the particle size may advantageously be less than 2 mm, wherein the particle thicknesses may be smaller than 0.5 mm. As a result of this configuration of the particles, particularly low loss of magnetization losses and thus a particularly high quality of the antenna are achieved.
  • the mechanical properties can be adjusted with regard to the type and proportion of the plastic used with regard to fracture toughness and flexibility
  • thermosets or thermosets such as polyamide, polyacrylate, polyacetate, polyimide or epoxy resin depending on the desired mechanical and thermal properties.
  • the antenna arrangement as a magnetic core on a rod or a plate, which are provided with a winding. Certain core cross-sections are necessary to make the arrangement usable for the effective transmission of energy. If an average flux of at least 20 ⁇ Wb is to be achieved in the core, this results in an induction of 400 mT with a cross section of 0.5 cm 2 . This corresponds to about half of the cross section, which would be necessary when using a soft ferrite.
  • the coil length of the winding should be greater than its diameter, preferably large compared to the diameter.
  • An essential feature of the material used according to the invention is the mechanical insensitivity to shock or vibration and the free shaping during the production or a subsequent flexibility.
  • the inventively used material also allows because of its magnetic properties also a small size, as it is desirable for cost, space and design reasons in many applications.
  • a plurality of windings may be arranged on the same magnetic core, wherein the longitudinal axes of the windings are at an angle> 0 °, for example 90 ° to each other.
  • the windings may be driven simultaneously, out of phase or alternately to reach inductive energy transfer receivers in different positions. This makes the transmission of energy more reliable and less sensitive to the relative positioning of transmitter and receiver.
  • the invention also relates to various operating methods of the antenna arrangement according to the invention with intermittent operation of the various windings or the mentioned phase-shifted simultaneous driving of the different windings.
  • the antenna arrangement according to the invention is also designed to save space, it may additionally be useful to provide a recess within a magnetic core in which electronic components, for example the drive circuit of the antenna arrangement, can be accommodated.
  • the flow guidance within the magnetic core is hardly negatively influenced by such recesses, if they are not too large.
  • the antenna arrangement can advantageously be prefabricated with the drive circuit and simply used as an integral unit in a device.
  • FIG. 1 shows a flat magnetic core 1 with a winding 2, wherein the dimensions of the magnetic core may be, for example 20 x 10 x 0.2 cm.
  • the base area of the core is preferably as large as the target area of a receiver to be covered. Due to the design of the winding, for example, a compression of the windings to the winding ends, a strong as possible homogeneous flux density over the core surface is generated.
  • the special design of the flow orientation and the radiation characteristic shows the FIG. 2 a combination of two mutually perpendicular windings 3,4 on a running almost as a square plate magnetic core 5. The two windings can be alternately sequentially or simultaneously out of phase controlled against each other.
  • the entire arrangement according to FIG. 1 or 2 be flexible. In any case, however, it is more resistant to breakage than, for example, an antenna with a ferrite core or a core made of another conventional material.
  • FIG. 3 Particularly suitable for the transmission of energy to a moving receiver is the in FIG. 3 shown arrangement with a rod-shaped magnetic core, wherein the direction of movement, as well as the antenna of the receiver is directed parallel to the longitudinal axis 6 of the winding 7.
  • FIG. 6 are two different magnetic cores 8, 9 shown, each having a separate winding and the longitudinal axes are perpendicular to each other to allow different flux densities and radiation characteristics.
  • This is an alternative embodiment to that in the FIG. 2 shown with multiple windings on a single magnetic core.
  • FIG. 4 shows an arrangement in which the winding 10 is integrated into a magnetic body 11 in so far as it passes through the magnetic core 11 itself, so that a lower part of the magnetic core 11 in the FIG. 4 forms a yoke that shorts the magnetic flux on the bottom.
  • a shielding effect in one direction (down) is achieved with good radiation upwards.
  • FIG. 5 shows in the magnetic core 14 has a recess 15, which allows there components of an electronic circuit, for example, to drive the winding 16 to accommodate.
  • FIG. 6 shows an application example of the invention- ⁇ en antenna arrangement with a mobile communication terminal, such as a mobile phone or a cordless telephone 17, which has a non-illustrated receiving device for inductive coupling with the antenna assembly 18.
  • the antenna arrangement 18 has in a housing 19, the two magnetic cores 8, 9, which are each provided with a winding and inductively can transmit energy to the receiver in the terminal 17.
  • a capacitor or battery for storing the transmitted energy is provided in addition to the receiver.
  • the same arrangement can also be used for retransmission of information, or a signal which is either also transmitted inductively, which would have to be switched between sending and receiving, or by evaluating the energy extraction of the receiver.

Landscapes

  • Soft Magnetic Materials (AREA)
  • Details Of Aerials (AREA)
  • Near-Field Transmission Systems (AREA)

Claims (11)

  1. Ensemble antenne comprenant un noyau magnétique (1, 5, 14) et au moins un enroulement (2, 3, 4, 7, 10, 16), par le moyen duquel l'énergie inductive est transmise d'un émetteur à un récepteur sur une distance comprise entre environ 0,5 et 50 cm,
    caractérisé en ce que
    le noyau magnétique (1, 5, 14) contient un matériau composite, qui comprend un composant faiblement magnétique mélangé avec un composant en plastique, dans lequel le composant faiblement magnétique comprend des particules finement distribuées faites de matériau nanocristallin ayant une magnétisation de saturation de 1 à 1,6 Tesla et une perméabilité supérieure à 30 000, de manière que le noyau magnétique (1, 5, 14) ait une perméabilité initiale efficace comprise entre 20 et 200 et une induction de saturation supérieure à 0,6 Tesla, et que le noyau magnétique (1, 5, 14) ait une capacité de chargement de flux magnétique jusqu'à au moins 20 µWb.
  2. Ensemble antenne selon la revendication 1, dans lequel le composant faiblement magnétique consiste en particules qui sont isolées électriquement individuellement par une couche de surface.
  3. Ensemble antenne selon la revendication 1 ou 2, dans lequel la taille des particules est de moins de 2 mm.
  4. Ensemble antenne selon la revendication 1, 2 ou 3, dans lequel les épaisseurs des particules sont de moins de 0,5 mm.
  5. Ensemble antenne selon l'une des revendications 2 à 4, dans lequel les particules sont oxydées en surface ou revêtues de plastique.
  6. Ensemble antenne selon l'une des revendications 1 à 5, dans lequel le composant en plastique contient un thermoplastique ou un thermodurcissable, qui peut être traité dans le cadre de techniques utilisant des résines de coulée.
  7. Ensemble antenne selon l'une des revendications 1 à 6, dans lequel l'antenne formée par le noyau magnétique (1, 5, 14) et le ou les enroulements (2, 3, 4, 7, 10, 16) a une qualité de plus de 50 dans la plage de fréquence comprise entre 20 kHz et 150 kHz.
  8. Ensemble antenne selon l'une des revendications 1 à 7, comprenant une pluralité d'enroulements (2, 3, 4, 7, 10, 16) sur le même noyau magnétique (1, 5, 14), dans lequel les axes longitudinaux (20, 21) des enroulements sont disposés les uns par rapport aux autres selon un angle de plus 0°.
  9. Ensemble antenne selon la revendication 8, dans lequel une pluralité de noyaux magnétiques (1, 5, 14) supportent les enroulements (2, 3, 4, 7, 10, 16).
  10. Ensemble antenne selon l'une des revendications 1 à 9, dans lequel un évidement (15) destiné à recevoir des composants électroniques est prévu dans au moins un des noyaux magnétiques (1, 5, 14).
  11. Procédé d'utilisation d'un ensemble antenne selon les revendications 1 à 10,
    caractérisé en que
    dans l'ensemble antenne, les différents enroulements (2, 3, 4, 7, 10, 16) sont actionnés simultanément avec déphasage ou d'une manière alternée chronologiquement.
EP05741826.1A 2004-05-13 2005-05-13 Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne Expired - Fee Related EP1745527B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004023815A DE102004023815A1 (de) 2004-05-13 2004-05-13 Antennenanordnung und Verwendung der Antennenanordnung
PCT/EP2005/005271 WO2005112192A1 (fr) 2004-05-13 2005-05-13 Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne

Publications (2)

Publication Number Publication Date
EP1745527A1 EP1745527A1 (fr) 2007-01-24
EP1745527B1 true EP1745527B1 (fr) 2013-04-17

Family

ID=34967320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05741826.1A Expired - Fee Related EP1745527B1 (fr) 2004-05-13 2005-05-13 Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne

Country Status (5)

Country Link
US (1) US7545337B2 (fr)
EP (1) EP1745527B1 (fr)
JP (1) JP2007537637A (fr)
DE (1) DE102004023815A1 (fr)
WO (1) WO2005112192A1 (fr)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023815A1 (de) 2004-05-13 2005-12-08 Vacuumschmelze Gmbh & Co. Kg Antennenanordnung und Verwendung der Antennenanordnung
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
CN101860089B (zh) 2005-07-12 2013-02-06 麻省理工学院 无线非辐射能量传递
US20070115192A1 (en) * 2005-11-18 2007-05-24 Omron Automotive Electronics, Inc. Key fob having LF single dimension tranceive antenna and two-dimension receive antenna
US8447234B2 (en) 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
GB2440571A (en) * 2006-08-01 2008-02-06 Splashpower Ltd Drive for an inductive coupling with a changing magnetic field direction
US8482157B2 (en) 2007-03-02 2013-07-09 Qualcomm Incorporated Increasing the Q factor of a resonator
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US7825869B2 (en) * 2007-07-03 2010-11-02 Masin Joseph V Miniature transponders
EP2188863A1 (fr) 2007-09-13 2010-05-26 QUALCOMM Incorporated Maximisation du rendement énergétique de résonateurs magnétiques de puissance sans fil
CN101828300A (zh) 2007-09-17 2010-09-08 高通股份有限公司 用于无线能量转移的发射器和接收器
US8373514B2 (en) 2007-10-11 2013-02-12 Qualcomm Incorporated Wireless power transfer using magneto mechanical systems
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US20100259110A1 (en) * 2008-09-27 2010-10-14 Kurs Andre B Resonator optimizations for wireless energy transfer
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
CN114744975A (zh) * 2008-09-27 2022-07-12 韦特里西提公司 无线能量转移系统
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US20120091949A1 (en) * 2008-09-27 2012-04-19 Campanella Andrew J Wireless energy transfer for energizing power tools
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
WO2010039967A1 (fr) 2008-10-01 2010-04-08 Massachusetts Institute Of Technology Transfert d'énergie sans fil en champ proche efficace utilisant des variations de système adiabatique
US9008574B2 (en) * 2009-09-14 2015-04-14 Qualcomm Incorporated Focused antenna, multi-purpose antenna, and methods related thereto
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
EP2764604B1 (fr) 2011-08-04 2018-07-04 WiTricity Corporation Architectures d'électricité sans fil réglables
KR101880258B1 (ko) 2011-09-09 2018-07-19 위트리시티 코포레이션 무선 에너지 전송 시스템에서의 이물질 검출
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
JP2015502729A (ja) 2011-11-04 2015-01-22 ワイトリシティ コーポレーションWitricity Corporation 無線エネルギー伝送モデリングツール
EP2807720A4 (fr) 2012-01-26 2015-12-02 Witricity Corp Transfert d'énergie sans fil à champs réduits
JP5639606B2 (ja) * 2012-02-27 2014-12-10 三智商事株式会社 無線icタグ
US8929810B2 (en) 2012-04-23 2015-01-06 Qualcomm Incorporated Methods and apparatus for improving NFC connection through device positioning
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
CN109969007A (zh) 2012-10-19 2019-07-05 韦特里西提公司 无线能量传输系统中的外来物检测
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
DE102013104059B4 (de) * 2013-04-22 2024-05-29 Infineon Technologies Ag Antennen-Anordnung und Kommunikationsgerät
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
JP2016534698A (ja) 2013-08-14 2016-11-04 ワイトリシティ コーポレーションWitricity Corporation インピーダンス同調
DE102013113244A1 (de) * 2013-11-29 2015-06-03 Paul Vahle Gmbh & Co. Kg Spule für ein induktives Energieübertragungssystem
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
WO2015161035A1 (fr) 2014-04-17 2015-10-22 Witricity Corporation Systèmes de transfert d'énergie sans fil à ouvertures dans un blindage
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
WO2015171910A1 (fr) 2014-05-07 2015-11-12 Witricity Corporation Détection de corps étrangers dans des systèmes de transfert de puissance sans fil
WO2015196123A2 (fr) 2014-06-20 2015-12-23 Witricity Corporation Systèmes de transfert d'énergie sans fil pour des surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
WO2016007674A1 (fr) 2014-07-08 2016-01-14 Witricity Corporation Équilibrage de résonateurs dans des systèmes de transfert d'énergie sans fil
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10074888B2 (en) * 2015-04-03 2018-09-11 NXT-ID, Inc. Accordion antenna structure
DE102015111038B4 (de) * 2015-07-08 2021-05-06 Infineon Technologies Ag Eine vertikale Ferritantenne mit vorgefertigten Verbindungsbauteilen
WO2017062647A1 (fr) 2015-10-06 2017-04-13 Witricity Corporation Détection d'étiquette d'identification par radiofréquence (rfid) et de transpondeur dans des systèmes de transfert d'énergie sans fil
WO2017066322A2 (fr) 2015-10-14 2017-04-20 Witricity Corporation Détection de phase et d'amplitude dans des systèmes de transfert d'énergie sans fil
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
CN108781002B (zh) 2015-10-22 2021-07-06 韦特里西提公司 无线能量传输系统中的动态调谐
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
CA3012325A1 (fr) 2016-02-02 2017-08-10 Witricity Corporation Commande de systemes de transfert de puissance sans fil
EP3203634A1 (fr) 2016-02-08 2017-08-09 WiTricity Corporation Commande de condensateur pwm
CN114597658A (zh) 2016-02-11 2022-06-07 三星电子株式会社 具有环形天线的电子设备
US20180123227A1 (en) * 2016-10-31 2018-05-03 Hoi Luen Electrical Manufacturer Company Limited Power Transmitting Antenna and Method of Production
CN111108662B (zh) 2017-06-29 2023-12-12 韦特里西提公司 无线电力系统的保护和控制

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718423A1 (de) * 1997-04-30 1998-11-05 Siemens Ag Tragbarer Signalempfänger

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949388A (en) * 1972-11-13 1976-04-06 Monitron Industries, Inc. Physiological sensor and transmitter
US4881989A (en) 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
CA2040741C (fr) * 1990-04-24 2000-02-08 Kiyonori Suzuki Alliage faiblement ferromagnetique, materiaux contenant cet alliage, et appareils magnetiques produits avec ces derniers
KR100459839B1 (ko) * 1995-08-22 2005-02-07 미쓰비시 마테리알 가부시키가이샤 트랜스폰더용안테나및트랜스폰더
DE19846781C2 (de) * 1998-10-10 2000-07-20 Ald Vacuum Techn Ag Verfahren und Vorrichtung zum Herstellen von Präzisionsgußteilen durch Schleudergießen
JP3975627B2 (ja) * 1998-12-31 2007-09-12 カシオ計算機株式会社 データ通信装置
DE10024824A1 (de) * 2000-05-19 2001-11-29 Vacuumschmelze Gmbh Induktives Bauelement und Verfahren zu seiner Herstellung
WO2002021163A2 (fr) * 2000-09-02 2002-03-14 Em-Tech Llc Appareil de diagraphie destine a la mesure de la resistivite dans un tubage au moyen de transparences metalliques et de stratification lenticulaire magnetique
US6827557B2 (en) * 2001-01-05 2004-12-07 Humanelecs Co., Ltd. Amorphous alloy powder core and nano-crystal alloy powder core having good high frequency properties and methods of manufacturing the same
DE10128004A1 (de) * 2001-06-08 2002-12-19 Vacuumschmelze Gmbh Induktives Bauelement und Verfahren zu seiner Herstellung
US6654698B2 (en) 2001-06-12 2003-11-25 Applied Materials, Inc. Systems and methods for calibrating integrated inspection tools
US6906495B2 (en) * 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
EP1496568A1 (fr) * 2003-07-05 2005-01-12 Kaschke KG GmbH & Co. Bobine de transpondeur pour système sans fil d'ouverture de véhicule
DE102004023815A1 (de) 2004-05-13 2005-12-08 Vacuumschmelze Gmbh & Co. Kg Antennenanordnung und Verwendung der Antennenanordnung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718423A1 (de) * 1997-04-30 1998-11-05 Siemens Ag Tragbarer Signalempfänger

Also Published As

Publication number Publication date
JP2007537637A (ja) 2007-12-20
DE102004023815A1 (de) 2005-12-08
US20070126650A1 (en) 2007-06-07
EP1745527A1 (fr) 2007-01-24
WO2005112192A1 (fr) 2005-11-24
WO2005112192A9 (fr) 2006-02-09
US7545337B2 (en) 2009-06-09

Similar Documents

Publication Publication Date Title
EP1745527B1 (fr) Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne
EP3427339B1 (fr) Antenne
KR101923570B1 (ko) 가요성 연성 자기 코어, 가요성 연성 자기 코어를 갖는 안테나, 및 가요성 연성 자기 코어를 생성하는 방법
DE102006027829A1 (de) Antennenspule, Resonanzantenne mit einer Antennenspule und drahtlose Kartentyp-Vorrichtung mit einer Resonanzantenne
DE102006024247A1 (de) Drahtlose Kartentyp-Vorrichtung, Antennenspule und Verfahren zum Herstellen eines Kommunikationsmoduls
EP2190681A2 (fr) Dispositif de détection et procédé pour faire fonctionner un dispositif de détection
DE102006022354A1 (de) Drahtlose Kartentyp-Vorrichtung, Antennenspule und Verfahren zum Herstellen eines Kommunikationsmoduls
EP3579336A1 (fr) Antenne ainsi qu'appareil doté d'une telle antenne
WO2014096039A1 (fr) Dispositif de bobine de charge inductive
EP2068330A3 (fr) Dispositif inductif comprennant un aimant permanent et procédés de fabrication associés
EP2941861B1 (fr) Paroi de boîtier
EP2529338B1 (fr) Support de données portable avec un dispositif de radiocommunication de données
EP3036793B1 (fr) Dispositif et procédé permettant la transmission combinée de signaux ou la transmission combinée de signaux et d'énergie
DE102007008575B4 (de) Antennenvorrichtung mit ionenimplantierter Resonanzstruktur
WO2012019694A1 (fr) Support de données portatif comprenant un dispositif de communication de données fonctionnant par l'intermédiaire d'un couplage bobine
DE102021201095A1 (de) Platzsparende Antenne für ein Hörinstrument
DE102009023374A1 (de) Antennenvorrichtung
DE102016121335B4 (de) Magnetantenne mit verringerten Verlusten und Verwendung derselben
DE202019103465U1 (de) NF-Emitterantenne
WO2022167596A1 (fr) Antenne à induction magnétique à encombrement réduit pour un instrument auditif
DE102011087928B4 (de) Metallischer trägerkörper mit transponder
DE102020008085A1 (de) Formteil für ein mobiles Endgerät mit Sende und/oder Empfangsvorrichtung aus kohlenstofffaserverstärktem Kunststoff
DE102009023373B4 (de) Antennenvorrichtung
PL202423B1 (pl) Magnetowód z kompozytów proszkowych i sposób wytwarzania magnetowodu z kompozytów proszkowych
DE102006004000A1 (de) Biegsame Antenne und Verfahren zum Herstellen derselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20070315

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013634

Country of ref document: DE

Effective date: 20130613

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013634

Country of ref document: DE

Effective date: 20140120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140520

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140516

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150513

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200728

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013634

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201