EP1745527A1 - Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne - Google Patents

Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne

Info

Publication number
EP1745527A1
EP1745527A1 EP05741826A EP05741826A EP1745527A1 EP 1745527 A1 EP1745527 A1 EP 1745527A1 EP 05741826 A EP05741826 A EP 05741826A EP 05741826 A EP05741826 A EP 05741826A EP 1745527 A1 EP1745527 A1 EP 1745527A1
Authority
EP
European Patent Office
Prior art keywords
antenna arrangement
arrangement according
magnetic
magnetic core
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05741826A
Other languages
German (de)
English (en)
Other versions
EP1745527B1 (fr
Inventor
Wulf Guenther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1745527A1 publication Critical patent/EP1745527A1/fr
Application granted granted Critical
Publication of EP1745527B1 publication Critical patent/EP1745527B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material

Definitions

  • the invention relates to an antenna arrangement with an open magnetic core and a winding.
  • the invention is in the field of magnetic field antennas used for inductive energy transmission. Basically, it is possible to transmit energy and information using electrical or magnetic dipoles. Depending on the control circuit, electromagnetic waves or only predominantly electrical or magnetic fields are generated. It may be desirable not to emit electromagnetic waves, but to limit the generation of magnetic fields, in order to avoid, for example, the effect on organic tissue in the vicinity of the antenna. In particular, the radiation of magnetic fields or the inductive coupling to a magnetic antenna can transmit relatively high energies without galvanic coupling. The effect of such a coupling is limited to a narrow spatial area smaller than about Im. Nevertheless, there are many possible applications for such a transmission.
  • soft magnetic powder composites can be used as pressed magnetic cores.
  • these can consist of iron powder.
  • effective permeabilities between approximately 10 and 30 can be achieved.
  • saturation induction is around 1.0 to 1.4 T.
  • powder composites made of soft magnetic crystalline Iron-aluminum-silicon alloys and iron-nickel alloys are known, with which application frequencies up to over 100 kHz can be achieved.
  • AI magnetic cores are known, which are produced by injection molding from an injection-moldable plastic and a nanocrystalline alloy.
  • Nanocrystalline alloys are known, for example, from EP 0271657 A2 and EP 0455113 A2. Alloys of this type are produced, for example, by means of rapid starter technology in the form of thin alloy strips which are initially amorphous and which are subjected to a heat treatment to form a nanocrystalline structure. Such alloys can be ground to alloy powders with particle sizes smaller than 2mm. So-called flakes with thicknesses between 0.01 and 0.04 mm and widths or lengths of 0.04 to preferably arise
  • the present invention is based on the object of providing an antenna arrangement for use in the inductive transmission of energy.
  • the present invention aims at the effective energy transmission in the near field and the reliable functioning independently of a precise positioning of the antenna arrangement in relation to a receiver to which the energy is to be transmitted inductively.
  • the setting of very specific magnetic properties, in particular a sufficient flux with suitable radiation characteristics, is necessary in the antenna arrangement.
  • powers between approximately 1 W and 100 W are to be transmitted from a transmitter to a receiver over a distance between approximately 0.5 and 50 cm. Examples of this are all devices that have to be supplied with energy temporarily or permanently. Because of the exclusively inductive coupling, a frequency range from 10 kHz to 150 kHz is particularly suitable due to the availability of this frequency band and the boundary conditions. In addition, a magnetic flux of at least 20 ⁇ Wb must be achieved in the magnetic core. Since such antennas, as are used in the present antenna arrangement, mostly represent the inductive part of a resonance circuit, a high antenna quality of at least 50, preferably even 100, in the range of the operating frequency is desirable for optimizing the energy radiation.
  • a temperature-independent permeability is required, which is between 30 and 200 for optimal flow control. If the permeability is higher, the flux bundling in the core is so good that too little flux portion emerges from the side of the core and the field strength along the core, i.e. in the receiver area, becomes very inhomogeneous.
  • the magnetic core contains as a composite material a soft magnetic component made of finely divided particles and a plastic component, the magnetic core having an initial permeability between 20 and 200 and a saturation induction> 0.6 T.
  • the soft magnetic component advantageously consists of the already mentioned flakes made of a nanocrystalline material. This has a saturation magnetization of approx. 1 to 1.6T and permeabilities> 30,000.
  • the magnetic circuit is through the microscopic gaps between the flakes are interrupted and lower effective permeabilities from 30 to 100 can be set with high quality and constant temperature. Nevertheless, there is a high achievable flux density greater than 0.6 T, typically also greater than 0.9 T.
  • the soft magnetic component of the magnetic core also advantageously has the property that the particles are individually electrically insulated by a surface layer. This can be achieved, for example, by means of surface oxidation or plastic coating.
  • the particle size can advantageously be less than 2 mm, the particle thicknesses being less than 0.5 mm. This configuration of the particles results in particularly low magnetic reversal losses and thus a particularly high quality of the antenna.
  • the mechanical properties can be adjusted depending on the type and proportion of the plastic used with regard to fracture toughness and flexibility as well as its temperature dependence.
  • plastic components can be used as plastic components
  • thermoplastics or thermosets such as polyamide, polyacrylate, polyacetate, polyimide or epoxy resin can be selected depending on the desired mechanical and thermal properties.
  • the antenna arrangement as a magnetic core has a rod or a plate which is provided with a winding. Certain core cross sections are necessary in order to make the arrangement usable for the effective transmission of energy. Should be a middle one at heart
  • the coil length of the winding should be greater than its diameter, preferably large compared to the diameter.
  • An essential property of the material used according to the invention is the mechanical insensitivity to shock or vibrations and the free shaping in the context of the manufacture or a subsequent flexibility. Because of its magnetic properties, the material used according to the invention also allows a small size, which is desirable in many fields of application for reasons of cost, space and design.
  • a plurality of windings can be arranged on the same magnetic core, the longitudinal axes of the windings being at an angle> 0 °, for example 90 ° to one another.
  • the windings can be controlled simultaneously, out of phase or alternately, in order to reach receivers for inductive energy transmission in different positions. This makes energy transmission more reliable and less sensitive to the relative positioning of the transmitter and receiver.
  • the invention also relates to various operating methods of the antenna arrangement according to the invention with intermittent operation of the different windings or the phase-shifted simultaneous activation of the different windings.
  • the antenna arrangement according to the invention is also designed to be space-saving, it can additionally be useful to provide a recess within a magnetic core in which electronic components, for example the control circuit of the antenna arrangement, can be accommodated.
  • the flow guidance within the magnetic core is hardly negatively influenced by such recesses if they are not too large.
  • the antenna arrangement can advantageously be prefabricated with the control circuit and simply inserted as an integral structural unit in a device.
  • FIG. 1 shows a plate-shaped rectangular design of a magnetic core with a winding
  • FIG. 2 shows a corresponding magnetic core with two windings
  • FIG. 3 shows a rod-shaped magnetic core with a winding
  • FIG. 4 shows a rod-shaped magnetic core with an integrated winding and pole pieces
  • Figure 5 shows a magnetic core with a recess
  • Figure 6 shows an application of the antenna arrangement with two magnetic cores.
  • Figure 1 shows a flat magnetic core 1 with a winding 2, wherein the dimensions of the magnetic core can be, for example, 20 x 10 x 0.2 cm.
  • the base area of the core is preferably as large as the target area of a receiver to be covered.
  • the configuration of the winding for example a compression of the windings towards the winding ends, produces a flux density that is as homogeneous as possible over the core surface.
  • FIG. 2 shows a combination of two windings 3, 4 which are perpendicular to one another on a magnetic core 5 which is designed almost as a square plate.
  • the entire arrangement according to FIG. 1 or 2 can be flexible. In any case, however, it is less sensitive to breakage than, for example, an antenna with a ferrite core or a core made of another conventional material.
  • FIG. 3 shows a rod-shaped magnetic core which is particularly suitable for the transmission of energy to a moving receiver, the direction of movement and the antenna of the receiver being directed parallel to the longitudinal axis 6 of the winding 7.
  • FIG. 6 shows two different magnetic cores 8, 9, each of which has a separate winding and whose longitudinal axes are perpendicular to one another in order to enable different flux densities and radiation characteristics.
  • This is an alternative embodiment to that shown in FIG. 2 with multiple windings on a single magnetic core.
  • FIG. 4 shows an arrangement in which the winding 10 is integrated in a magnetic body 11 insofar as it is the
  • Magnetic core 11 passes through itself, so that a lower part of the magnetic core 11 in FIG. 4 forms a yoke that short-circuits the magnetic flux on the underside.
  • a shielding effect in one direction (downward) with good radiation upward is achieved.
  • the casting method shown in WO 0191141 A1 is particularly suitable for producing such an arrangement, in which the winding can also be cast in during the production of the magnetic core.
  • FIG. 5 shows a recess 15 in the magnetic core 14, which allows components of an electronic circuit to be accommodated there, for example for controlling the winding 16.
  • FIG. 6 shows an application example of the antenna arrangement according to the invention with a mobile communication terminal, for example a cell phone or a cordless telephone 17, which has a receiving device (not shown in more detail) for inductive coupling to the antenna arrangement 18.
  • the antenna arrangement 18 has a housing 19, the two magnetic cores 8, 9, each of which is provided with a winding and can inductively transmit energy to the receiver in the terminal 17.
  • a capacitor or rechargeable battery is provided in the terminal 17 for storing the transmitted energy.
  • the same arrangement can also be used for the retransmission of information, or a signal, which is either also transmitted inductively, switching between sending and receiving, or by evaluating the energy consumption of the receiver ,

Landscapes

  • Soft Magnetic Materials (AREA)
  • Near-Field Transmission Systems (AREA)
  • Details Of Aerials (AREA)

Abstract

Ensemble antenne pour la transmission inductive d'énergie à l'aide de noyaux magnétiques constitués d'une matière composite contenant des paillettes amorphes ou nanocristallines et un plastique coulé, ce qui permet d'obtenir un ensemble antenne possédant des propriétés magnétiques adaptées pour une transmission efficace d'énergie et possédant simultanément une haute résistance à la rupture et des dimensions minimes.
EP05741826.1A 2004-05-13 2005-05-13 Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne Expired - Lifetime EP1745527B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004023815A DE102004023815A1 (de) 2004-05-13 2004-05-13 Antennenanordnung und Verwendung der Antennenanordnung
PCT/EP2005/005271 WO2005112192A1 (fr) 2004-05-13 2005-05-13 Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne

Publications (2)

Publication Number Publication Date
EP1745527A1 true EP1745527A1 (fr) 2007-01-24
EP1745527B1 EP1745527B1 (fr) 2013-04-17

Family

ID=34967320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05741826.1A Expired - Lifetime EP1745527B1 (fr) 2004-05-13 2005-05-13 Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne

Country Status (5)

Country Link
US (1) US7545337B2 (fr)
EP (1) EP1745527B1 (fr)
JP (1) JP2007537637A (fr)
DE (1) DE102004023815A1 (fr)
WO (1) WO2005112192A1 (fr)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023815A1 (de) 2004-05-13 2005-12-08 Vacuumschmelze Gmbh & Co. Kg Antennenanordnung und Verwendung der Antennenanordnung
AU2006269374C1 (en) 2005-07-12 2010-03-25 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US20070115192A1 (en) * 2005-11-18 2007-05-24 Omron Automotive Electronics, Inc. Key fob having LF single dimension tranceive antenna and two-dimension receive antenna
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US8447234B2 (en) 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
GB2440571A (en) * 2006-08-01 2008-02-06 Splashpower Ltd Drive for an inductive coupling with a changing magnetic field direction
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US7825869B2 (en) * 2007-07-03 2010-11-02 Masin Joseph V Miniature transponders
KR20100057632A (ko) 2007-08-09 2010-05-31 퀄컴 인코포레이티드 공진기의 q 팩터 증가
EP2188863A1 (fr) 2007-09-13 2010-05-26 QUALCOMM Incorporated Maximisation du rendement énergétique de résonateurs magnétiques de puissance sans fil
EP2201641A1 (fr) 2007-09-17 2010-06-30 Qualcomm Incorporated Emetteurs et récepteurs pour un transfert d'énergie sans fil
KR101606664B1 (ko) 2007-10-11 2016-03-25 퀄컴 인코포레이티드 자기 기계 시스템을 이용하는 무선 전력 전송
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US20120091949A1 (en) * 2008-09-27 2012-04-19 Campanella Andrew J Wireless energy transfer for energizing power tools
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
EP3544196B1 (fr) * 2008-09-27 2023-09-13 WiTricity Corporation Systèmes de transfert d'énergie sans fil
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US20100259110A1 (en) * 2008-09-27 2010-10-14 Kurs Andre B Resonator optimizations for wireless energy transfer
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
WO2010039967A1 (fr) 2008-10-01 2010-04-08 Massachusetts Institute Of Technology Transfert d'énergie sans fil en champ proche efficace utilisant des variations de système adiabatique
US9008574B2 (en) * 2009-09-14 2015-04-14 Qualcomm Incorporated Focused antenna, multi-purpose antenna, and methods related thereto
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
EP3435389A1 (fr) 2011-08-04 2019-01-30 WiTricity Corporation Architectures d'électricité sans fil réglables
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
WO2013067484A1 (fr) 2011-11-04 2013-05-10 Witricity Corporation Outil de modélisation de transfert d'énergie sans fil
WO2013113017A1 (fr) 2012-01-26 2013-08-01 Witricity Corporation Transfert d'énergie sans fil à champs réduits
JP5639606B2 (ja) * 2012-02-27 2014-12-10 三智商事株式会社 無線icタグ
US8929810B2 (en) 2012-04-23 2015-01-06 Qualcomm Incorporated Methods and apparatus for improving NFC connection through device positioning
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
EP4145671A1 (fr) 2012-10-19 2023-03-08 WiTricity Corporation Détection de corps étrangers dans des systèmes de transfert d'énergie sans fil
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
DE102013104059B8 (de) * 2013-04-22 2024-09-19 Infineon Technologies Ag Antennen-Anordnung und Kommunikationsgerät
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
WO2015023899A2 (fr) 2013-08-14 2015-02-19 Witricity Corporation Réglage d'impédance
DE102013113244A1 (de) * 2013-11-29 2015-06-03 Paul Vahle Gmbh & Co. Kg Spule für ein induktives Energieübertragungssystem
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
WO2015123614A2 (fr) 2014-02-14 2015-08-20 Witricity Corporation Détection d'objet pour des systèmes de transfert d'énergie sans fil
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
EP3140680B1 (fr) 2014-05-07 2021-04-21 WiTricity Corporation Détection de corps étrangers dans des systèmes de transfert de puissance sans fil
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
CN107258046B (zh) 2014-07-08 2020-07-17 无线电力公司 无线电力传送系统中的谐振器均衡
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10074888B2 (en) * 2015-04-03 2018-09-11 NXT-ID, Inc. Accordion antenna structure
DE102015111038B4 (de) * 2015-07-08 2021-05-06 Infineon Technologies Ag Eine vertikale Ferritantenne mit vorgefertigten Verbindungsbauteilen
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
KR20180101618A (ko) 2016-02-02 2018-09-12 위트리시티 코포레이션 무선 전력 전송 시스템 제어
JP6888017B2 (ja) 2016-02-08 2021-06-16 ワイトリシティ コーポレーションWitricity Corporation Pwmコンデンサの制御
EP3400628B1 (fr) 2016-02-11 2022-06-01 Samsung Electronics Co., Ltd. Dispositif électronique à antenne cadre
US20180123227A1 (en) * 2016-10-31 2018-05-03 Hoi Luen Electrical Manufacturer Company Limited Power Transmitting Antenna and Method of Production
WO2019006376A1 (fr) 2017-06-29 2019-01-03 Witricity Corporation Protection et commande de systèmes d'alimentation sans fil
DE112019003280A5 (de) 2018-06-29 2021-03-18 Brusa Elektronik Ag Vorrichtungen zum kontaktlosen induktiven Laden eines elektrischen Energiespeichers

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949388A (en) * 1972-11-13 1976-04-06 Monitron Industries, Inc. Physiological sensor and transmitter
US4881989A (en) 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
CA2040741C (fr) * 1990-04-24 2000-02-08 Kiyonori Suzuki Alliage faiblement ferromagnetique, materiaux contenant cet alliage, et appareils magnetiques produits avec ces derniers
KR100459839B1 (ko) * 1995-08-22 2005-02-07 미쓰비시 마테리알 가부시키가이샤 트랜스폰더용안테나및트랜스폰더
DE19718423A1 (de) * 1997-04-30 1998-11-05 Siemens Ag Tragbarer Signalempfänger
DE19846781C2 (de) 1998-10-10 2000-07-20 Ald Vacuum Techn Ag Verfahren und Vorrichtung zum Herstellen von Präzisionsgußteilen durch Schleudergießen
JP3975627B2 (ja) * 1998-12-31 2007-09-12 カシオ計算機株式会社 データ通信装置
DE10024824A1 (de) * 2000-05-19 2001-11-29 Vacuumschmelze Gmbh Induktives Bauelement und Verfahren zu seiner Herstellung
US6630831B2 (en) * 2000-09-02 2003-10-07 Em-Tech Sensors Llc Measurements of electrical properties through non magneticially permeable metals using directed magnetic beams and magnetic lenses
US6827557B2 (en) * 2001-01-05 2004-12-07 Humanelecs Co., Ltd. Amorphous alloy powder core and nano-crystal alloy powder core having good high frequency properties and methods of manufacturing the same
DE10128004A1 (de) 2001-06-08 2002-12-19 Vacuumschmelze Gmbh Induktives Bauelement und Verfahren zu seiner Herstellung
US6654698B2 (en) 2001-06-12 2003-11-25 Applied Materials, Inc. Systems and methods for calibrating integrated inspection tools
US6906495B2 (en) * 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
EP1496568A1 (fr) * 2003-07-05 2005-01-12 Kaschke KG GmbH & Co. Bobine de transpondeur pour système sans fil d'ouverture de véhicule
DE102004023815A1 (de) 2004-05-13 2005-12-08 Vacuumschmelze Gmbh & Co. Kg Antennenanordnung und Verwendung der Antennenanordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005112192A1 *

Also Published As

Publication number Publication date
WO2005112192A1 (fr) 2005-11-24
JP2007537637A (ja) 2007-12-20
DE102004023815A1 (de) 2005-12-08
US7545337B2 (en) 2009-06-09
WO2005112192A9 (fr) 2006-02-09
US20070126650A1 (en) 2007-06-07
EP1745527B1 (fr) 2013-04-17

Similar Documents

Publication Publication Date Title
EP1745527B1 (fr) Ensemble antenne pour la transmission inductive d'energie et utilisation dudit ensemble antenne
EP3427339B1 (fr) Antenne
DE60303407T2 (de) Mehrachsige Schleifenantenne in Chip-Form
DE69618252T2 (de) Magnetischer Kompositartikel zur Unterdrückung von elektromagnetischen Interferenzen
EP0850426A1 (fr) Systeme repondeur d'identification
EP2190681A2 (fr) Dispositif de détection et procédé pour faire fonctionner un dispositif de détection
DE102006057369A1 (de) RFID-Etikett, sowie dessen Verwendung und ein damit gekennzeichnetes Objekt
DE102006030863A1 (de) Antenne sowie Funkuhr, schlüsselloses Zugangssystem und RFID-System mit einer solchen Antenne
DE102018209189A1 (de) Antenne sowie Gerät mit einer solchen Antenne
EP2936514A1 (fr) Dispositif de bobine de charge inductive
DE102020118348B4 (de) Formteil für ein mobiles Endgerät mit Sende und/oder Empfangsvorrichtung aus kohlenstofffaserverstärktem Kunststoff
DE102006024247A1 (de) Drahtlose Kartentyp-Vorrichtung, Antennenspule und Verfahren zum Herstellen eines Kommunikationsmoduls
DE102021201095A1 (de) Platzsparende Antenne für ein Hörinstrument
DE102007008575B4 (de) Antennenvorrichtung mit ionenimplantierter Resonanzstruktur
EP3036793B1 (fr) Dispositif et procédé permettant la transmission combinée de signaux ou la transmission combinée de signaux et d'énergie
EP2529338A1 (fr) Support de données portable avec un dispositif de radiocommunication de données
WO2019224057A1 (fr) Dispositif et procédé pour émettre et recevoir des données d'une étiquette rfid passive
EP1983467B1 (fr) Dispositif de support de données/émission et procédé destiné à sa fabrication
WO2012019694A1 (fr) Support de données portatif comprenant un dispositif de communication de données fonctionnant par l'intermédiaire d'un couplage bobine
DE202019103465U1 (de) NF-Emitterantenne
DE102009019546A1 (de) Magnetisch koppelnde Nahfeld-RFID-Antenne
DE102009023374A1 (de) Antennenvorrichtung
DE102009023745A1 (de) Planare Antenne auf elektrisch leitender Grundfläche mit weichmagnetischer Antennenstruktur
JP2008022056A (ja) 送信用アンテナ及びキーレスエントリシステム
DE102011087928B4 (de) Metallischer trägerkörper mit transponder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20070315

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013634

Country of ref document: DE

Effective date: 20130613

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013634

Country of ref document: DE

Effective date: 20140120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140520

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140516

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150513

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200728

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013634

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201