EP1745527A1 - Antennenanordnung zur induktiven energieübertragung und verwendung der antennenanordnung - Google Patents
Antennenanordnung zur induktiven energieübertragung und verwendung der antennenanordnungInfo
- Publication number
- EP1745527A1 EP1745527A1 EP05741826A EP05741826A EP1745527A1 EP 1745527 A1 EP1745527 A1 EP 1745527A1 EP 05741826 A EP05741826 A EP 05741826A EP 05741826 A EP05741826 A EP 05741826A EP 1745527 A1 EP1745527 A1 EP 1745527A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna arrangement
- arrangement according
- magnetic
- magnetic core
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 18
- 230000001939 inductive effect Effects 0.000 title claims abstract description 15
- 239000002131 composite material Substances 0.000 claims abstract description 8
- 238000004804 winding Methods 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 12
- 230000004907 flux Effects 0.000 claims description 11
- 239000004033 plastic Substances 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 9
- 230000035699 permeability Effects 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 2
- 239000002707 nanocrystalline material Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 239000002344 surface layer Substances 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- 229920001187 thermosetting polymer Polymers 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- 238000004146 energy storage Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 5
- 239000002991 molded plastic Substances 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- -1 Iron-aluminum-silicon Chemical compound 0.000 description 2
- 229910001035 Soft ferrite Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000006223 plastic coating Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
- H01Q7/06—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
Definitions
- the invention relates to an antenna arrangement with an open magnetic core and a winding.
- the invention is in the field of magnetic field antennas used for inductive energy transmission. Basically, it is possible to transmit energy and information using electrical or magnetic dipoles. Depending on the control circuit, electromagnetic waves or only predominantly electrical or magnetic fields are generated. It may be desirable not to emit electromagnetic waves, but to limit the generation of magnetic fields, in order to avoid, for example, the effect on organic tissue in the vicinity of the antenna. In particular, the radiation of magnetic fields or the inductive coupling to a magnetic antenna can transmit relatively high energies without galvanic coupling. The effect of such a coupling is limited to a narrow spatial area smaller than about Im. Nevertheless, there are many possible applications for such a transmission.
- soft magnetic powder composites can be used as pressed magnetic cores.
- these can consist of iron powder.
- effective permeabilities between approximately 10 and 30 can be achieved.
- saturation induction is around 1.0 to 1.4 T.
- powder composites made of soft magnetic crystalline Iron-aluminum-silicon alloys and iron-nickel alloys are known, with which application frequencies up to over 100 kHz can be achieved.
- AI magnetic cores are known, which are produced by injection molding from an injection-moldable plastic and a nanocrystalline alloy.
- Nanocrystalline alloys are known, for example, from EP 0271657 A2 and EP 0455113 A2. Alloys of this type are produced, for example, by means of rapid starter technology in the form of thin alloy strips which are initially amorphous and which are subjected to a heat treatment to form a nanocrystalline structure. Such alloys can be ground to alloy powders with particle sizes smaller than 2mm. So-called flakes with thicknesses between 0.01 and 0.04 mm and widths or lengths of 0.04 to preferably arise
- the present invention is based on the object of providing an antenna arrangement for use in the inductive transmission of energy.
- the present invention aims at the effective energy transmission in the near field and the reliable functioning independently of a precise positioning of the antenna arrangement in relation to a receiver to which the energy is to be transmitted inductively.
- the setting of very specific magnetic properties, in particular a sufficient flux with suitable radiation characteristics, is necessary in the antenna arrangement.
- powers between approximately 1 W and 100 W are to be transmitted from a transmitter to a receiver over a distance between approximately 0.5 and 50 cm. Examples of this are all devices that have to be supplied with energy temporarily or permanently. Because of the exclusively inductive coupling, a frequency range from 10 kHz to 150 kHz is particularly suitable due to the availability of this frequency band and the boundary conditions. In addition, a magnetic flux of at least 20 ⁇ Wb must be achieved in the magnetic core. Since such antennas, as are used in the present antenna arrangement, mostly represent the inductive part of a resonance circuit, a high antenna quality of at least 50, preferably even 100, in the range of the operating frequency is desirable for optimizing the energy radiation.
- a temperature-independent permeability is required, which is between 30 and 200 for optimal flow control. If the permeability is higher, the flux bundling in the core is so good that too little flux portion emerges from the side of the core and the field strength along the core, i.e. in the receiver area, becomes very inhomogeneous.
- the magnetic core contains as a composite material a soft magnetic component made of finely divided particles and a plastic component, the magnetic core having an initial permeability between 20 and 200 and a saturation induction> 0.6 T.
- the soft magnetic component advantageously consists of the already mentioned flakes made of a nanocrystalline material. This has a saturation magnetization of approx. 1 to 1.6T and permeabilities> 30,000.
- the magnetic circuit is through the microscopic gaps between the flakes are interrupted and lower effective permeabilities from 30 to 100 can be set with high quality and constant temperature. Nevertheless, there is a high achievable flux density greater than 0.6 T, typically also greater than 0.9 T.
- the soft magnetic component of the magnetic core also advantageously has the property that the particles are individually electrically insulated by a surface layer. This can be achieved, for example, by means of surface oxidation or plastic coating.
- the particle size can advantageously be less than 2 mm, the particle thicknesses being less than 0.5 mm. This configuration of the particles results in particularly low magnetic reversal losses and thus a particularly high quality of the antenna.
- the mechanical properties can be adjusted depending on the type and proportion of the plastic used with regard to fracture toughness and flexibility as well as its temperature dependence.
- plastic components can be used as plastic components
- thermoplastics or thermosets such as polyamide, polyacrylate, polyacetate, polyimide or epoxy resin can be selected depending on the desired mechanical and thermal properties.
- the antenna arrangement as a magnetic core has a rod or a plate which is provided with a winding. Certain core cross sections are necessary in order to make the arrangement usable for the effective transmission of energy. Should be a middle one at heart
- the coil length of the winding should be greater than its diameter, preferably large compared to the diameter.
- An essential property of the material used according to the invention is the mechanical insensitivity to shock or vibrations and the free shaping in the context of the manufacture or a subsequent flexibility. Because of its magnetic properties, the material used according to the invention also allows a small size, which is desirable in many fields of application for reasons of cost, space and design.
- a plurality of windings can be arranged on the same magnetic core, the longitudinal axes of the windings being at an angle> 0 °, for example 90 ° to one another.
- the windings can be controlled simultaneously, out of phase or alternately, in order to reach receivers for inductive energy transmission in different positions. This makes energy transmission more reliable and less sensitive to the relative positioning of the transmitter and receiver.
- the invention also relates to various operating methods of the antenna arrangement according to the invention with intermittent operation of the different windings or the phase-shifted simultaneous activation of the different windings.
- the antenna arrangement according to the invention is also designed to be space-saving, it can additionally be useful to provide a recess within a magnetic core in which electronic components, for example the control circuit of the antenna arrangement, can be accommodated.
- the flow guidance within the magnetic core is hardly negatively influenced by such recesses if they are not too large.
- the antenna arrangement can advantageously be prefabricated with the control circuit and simply inserted as an integral structural unit in a device.
- FIG. 1 shows a plate-shaped rectangular design of a magnetic core with a winding
- FIG. 2 shows a corresponding magnetic core with two windings
- FIG. 3 shows a rod-shaped magnetic core with a winding
- FIG. 4 shows a rod-shaped magnetic core with an integrated winding and pole pieces
- Figure 5 shows a magnetic core with a recess
- Figure 6 shows an application of the antenna arrangement with two magnetic cores.
- Figure 1 shows a flat magnetic core 1 with a winding 2, wherein the dimensions of the magnetic core can be, for example, 20 x 10 x 0.2 cm.
- the base area of the core is preferably as large as the target area of a receiver to be covered.
- the configuration of the winding for example a compression of the windings towards the winding ends, produces a flux density that is as homogeneous as possible over the core surface.
- FIG. 2 shows a combination of two windings 3, 4 which are perpendicular to one another on a magnetic core 5 which is designed almost as a square plate.
- the entire arrangement according to FIG. 1 or 2 can be flexible. In any case, however, it is less sensitive to breakage than, for example, an antenna with a ferrite core or a core made of another conventional material.
- FIG. 3 shows a rod-shaped magnetic core which is particularly suitable for the transmission of energy to a moving receiver, the direction of movement and the antenna of the receiver being directed parallel to the longitudinal axis 6 of the winding 7.
- FIG. 6 shows two different magnetic cores 8, 9, each of which has a separate winding and whose longitudinal axes are perpendicular to one another in order to enable different flux densities and radiation characteristics.
- This is an alternative embodiment to that shown in FIG. 2 with multiple windings on a single magnetic core.
- FIG. 4 shows an arrangement in which the winding 10 is integrated in a magnetic body 11 insofar as it is the
- Magnetic core 11 passes through itself, so that a lower part of the magnetic core 11 in FIG. 4 forms a yoke that short-circuits the magnetic flux on the underside.
- a shielding effect in one direction (downward) with good radiation upward is achieved.
- the casting method shown in WO 0191141 A1 is particularly suitable for producing such an arrangement, in which the winding can also be cast in during the production of the magnetic core.
- FIG. 5 shows a recess 15 in the magnetic core 14, which allows components of an electronic circuit to be accommodated there, for example for controlling the winding 16.
- FIG. 6 shows an application example of the antenna arrangement according to the invention with a mobile communication terminal, for example a cell phone or a cordless telephone 17, which has a receiving device (not shown in more detail) for inductive coupling to the antenna arrangement 18.
- the antenna arrangement 18 has a housing 19, the two magnetic cores 8, 9, each of which is provided with a winding and can inductively transmit energy to the receiver in the terminal 17.
- a capacitor or rechargeable battery is provided in the terminal 17 for storing the transmitted energy.
- the same arrangement can also be used for the retransmission of information, or a signal, which is either also transmitted inductively, switching between sending and receiving, or by evaluating the energy consumption of the receiver ,
Landscapes
- Soft Magnetic Materials (AREA)
- Near-Field Transmission Systems (AREA)
- Details Of Aerials (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102004023815A DE102004023815A1 (de) | 2004-05-13 | 2004-05-13 | Antennenanordnung und Verwendung der Antennenanordnung |
| PCT/EP2005/005271 WO2005112192A1 (de) | 2004-05-13 | 2005-05-13 | Antennenanordnung zur induktiven energieübertragung und verwendung der antennenanordnung |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1745527A1 true EP1745527A1 (de) | 2007-01-24 |
| EP1745527B1 EP1745527B1 (de) | 2013-04-17 |
Family
ID=34967320
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP05741826.1A Expired - Lifetime EP1745527B1 (de) | 2004-05-13 | 2005-05-13 | Antennenanordnung zur induktiven energieübertragung und verwendung der antennenanordnung |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US7545337B2 (de) |
| EP (1) | EP1745527B1 (de) |
| JP (1) | JP2007537637A (de) |
| DE (1) | DE102004023815A1 (de) |
| WO (1) | WO2005112192A1 (de) |
Families Citing this family (101)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102004023815A1 (de) | 2004-05-13 | 2005-12-08 | Vacuumschmelze Gmbh & Co. Kg | Antennenanordnung und Verwendung der Antennenanordnung |
| EP2306616B2 (de) | 2005-07-12 | 2023-06-21 | Massachusetts Institute of Technology (MIT) | Drahtlose strahlungslose Energieübertragung |
| US7825543B2 (en) | 2005-07-12 | 2010-11-02 | Massachusetts Institute Of Technology | Wireless energy transfer |
| US20070115192A1 (en) * | 2005-11-18 | 2007-05-24 | Omron Automotive Electronics, Inc. | Key fob having LF single dimension tranceive antenna and two-dimension receive antenna |
| US8447234B2 (en) | 2006-01-18 | 2013-05-21 | Qualcomm Incorporated | Method and system for powering an electronic device via a wireless link |
| US9130602B2 (en) | 2006-01-18 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for delivering energy to an electrical or electronic device via a wireless link |
| GB2440571A (en) * | 2006-08-01 | 2008-02-06 | Splashpower Ltd | Drive for an inductive coupling with a changing magnetic field direction |
| US9774086B2 (en) | 2007-03-02 | 2017-09-26 | Qualcomm Incorporated | Wireless power apparatus and methods |
| US8378523B2 (en) | 2007-03-02 | 2013-02-19 | Qualcomm Incorporated | Transmitters and receivers for wireless energy transfer |
| US8805530B2 (en) | 2007-06-01 | 2014-08-12 | Witricity Corporation | Power generation for implantable devices |
| US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
| US9124120B2 (en) | 2007-06-11 | 2015-09-01 | Qualcomm Incorporated | Wireless power system and proximity effects |
| US7825869B2 (en) * | 2007-07-03 | 2010-11-02 | Masin Joseph V | Miniature transponders |
| JP5697979B2 (ja) | 2007-08-09 | 2015-04-08 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | ワイヤレスに電力供給および充電するためのシステムおよび方法 |
| JP2010539821A (ja) | 2007-09-13 | 2010-12-16 | クゥアルコム・インコーポレイテッド | ワイヤレス電力磁気共振器から生じた電力を最大にすること |
| CN103904787B (zh) | 2007-10-11 | 2017-06-06 | 高通股份有限公司 | 使用磁机械系统的无线功率转移 |
| US8629576B2 (en) | 2008-03-28 | 2014-01-14 | Qualcomm Incorporated | Tuning and gain control in electro-magnetic power systems |
| CN114744975B (zh) * | 2008-09-27 | 2025-07-29 | 韦特里西提公司 | 无线能量转移系统 |
| US8643326B2 (en) | 2008-09-27 | 2014-02-04 | Witricity Corporation | Tunable wireless energy transfer systems |
| US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
| US8692412B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
| US8669676B2 (en) | 2008-09-27 | 2014-03-11 | Witricity Corporation | Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor |
| US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
| US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
| US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
| US8723366B2 (en) | 2008-09-27 | 2014-05-13 | Witricity Corporation | Wireless energy transfer resonator enclosures |
| US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
| US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
| US20100259110A1 (en) * | 2008-09-27 | 2010-10-14 | Kurs Andre B | Resonator optimizations for wireless energy transfer |
| US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
| US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
| US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
| US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
| US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
| US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
| US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
| US8497601B2 (en) | 2008-09-27 | 2013-07-30 | Witricity Corporation | Wireless energy transfer converters |
| US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
| US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
| US20120091949A1 (en) * | 2008-09-27 | 2012-04-19 | Campanella Andrew J | Wireless energy transfer for energizing power tools |
| US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
| US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
| US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
| US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
| US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
| US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
| US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
| US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
| US8598743B2 (en) | 2008-09-27 | 2013-12-03 | Witricity Corporation | Resonator arrays for wireless energy transfer |
| US9601261B2 (en) * | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
| US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
| US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
| US8482158B2 (en) | 2008-09-27 | 2013-07-09 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
| US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
| US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
| US8772973B2 (en) | 2008-09-27 | 2014-07-08 | Witricity Corporation | Integrated resonator-shield structures |
| US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
| EP2345100B1 (de) | 2008-10-01 | 2018-12-05 | Massachusetts Institute of Technology | Effiziente nahfeld-drahtlosenergieübertragung anhand adiabatischer systemveränderungen |
| US9008574B2 (en) * | 2009-09-14 | 2015-04-14 | Qualcomm Incorporated | Focused antenna, multi-purpose antenna, and methods related thereto |
| US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
| US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
| EP3435389A1 (de) | 2011-08-04 | 2019-01-30 | WiTricity Corporation | Abstimmbare drahtlosleistungsarchitekturen |
| WO2013036947A2 (en) | 2011-09-09 | 2013-03-14 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| US20130062966A1 (en) | 2011-09-12 | 2013-03-14 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
| US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
| US8667452B2 (en) | 2011-11-04 | 2014-03-04 | Witricity Corporation | Wireless energy transfer modeling tool |
| EP2807720A4 (de) | 2012-01-26 | 2015-12-02 | Witricity Corp | Drahtlose energieübertragung mit reduzierten feldern |
| JP5639606B2 (ja) * | 2012-02-27 | 2014-12-10 | 三智商事株式会社 | 無線icタグ |
| US8929810B2 (en) | 2012-04-23 | 2015-01-06 | Qualcomm Incorporated | Methods and apparatus for improving NFC connection through device positioning |
| US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
| US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
| US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
| JP6397417B2 (ja) | 2012-10-19 | 2018-09-26 | ワイトリシティ コーポレーションWitricity Corporation | 無線エネルギー伝送システムにおける異物検出 |
| US9449757B2 (en) | 2012-11-16 | 2016-09-20 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
| DE102013104059B8 (de) * | 2013-04-22 | 2024-09-19 | Infineon Technologies Ag | Antennen-Anordnung und Kommunikationsgerät |
| US9601267B2 (en) | 2013-07-03 | 2017-03-21 | Qualcomm Incorporated | Wireless power transmitter with a plurality of magnetic oscillators |
| JP2016534698A (ja) | 2013-08-14 | 2016-11-04 | ワイトリシティ コーポレーションWitricity Corporation | インピーダンス同調 |
| DE102013113244A1 (de) * | 2013-11-29 | 2015-06-03 | Paul Vahle Gmbh & Co. Kg | Spule für ein induktives Energieübertragungssystem |
| US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
| US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
| US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
| US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
| US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
| WO2015171910A1 (en) | 2014-05-07 | 2015-11-12 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| WO2015196123A2 (en) | 2014-06-20 | 2015-12-23 | Witricity Corporation | Wireless power transfer systems for surfaces |
| US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
| US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
| US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
| US10074888B2 (en) * | 2015-04-03 | 2018-09-11 | NXT-ID, Inc. | Accordion antenna structure |
| DE102015111038B4 (de) * | 2015-07-08 | 2021-05-06 | Infineon Technologies Ag | Eine vertikale Ferritantenne mit vorgefertigten Verbindungsbauteilen |
| US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
| CN108700620B (zh) | 2015-10-14 | 2021-03-05 | 无线电力公司 | 无线能量传输系统中的相位和振幅检测 |
| WO2017070227A1 (en) | 2015-10-19 | 2017-04-27 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
| EP3365958B1 (de) | 2015-10-22 | 2020-05-27 | WiTricity Corporation | Dynamische abstimmung in system zum drahtlosen energietransfer |
| US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
| AU2017214479A1 (en) | 2016-02-02 | 2018-08-09 | Witricity Corporation | Controlling wireless power transfer systems |
| AU2017218337A1 (en) | 2016-02-08 | 2018-08-09 | Witricity Corporation | PWM capacitor control |
| CN114597658A (zh) | 2016-02-11 | 2022-06-07 | 三星电子株式会社 | 具有环形天线的电子设备 |
| US20180123227A1 (en) * | 2016-10-31 | 2018-05-03 | Hoi Luen Electrical Manufacturer Company Limited | Power Transmitting Antenna and Method of Production |
| US11043848B2 (en) | 2017-06-29 | 2021-06-22 | Witricity Corporation | Protection and control of wireless power systems |
| US12009672B2 (en) | 2018-06-29 | 2024-06-11 | Brusa Elektronik Ag | Devices for the contactless inductive charging of an electrical energy store |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3949388A (en) * | 1972-11-13 | 1976-04-06 | Monitron Industries, Inc. | Physiological sensor and transmitter |
| US4881989A (en) * | 1986-12-15 | 1989-11-21 | Hitachi Metals, Ltd. | Fe-base soft magnetic alloy and method of producing same |
| CA2040741C (en) * | 1990-04-24 | 2000-02-08 | Kiyonori Suzuki | Fe based soft magnetic alloy, magnetic materials containing same, and magnetic apparatus using the magnetic materials |
| KR100459839B1 (ko) * | 1995-08-22 | 2005-02-07 | 미쓰비시 마테리알 가부시키가이샤 | 트랜스폰더용안테나및트랜스폰더 |
| DE19718423A1 (de) * | 1997-04-30 | 1998-11-05 | Siemens Ag | Tragbarer Signalempfänger |
| DE19846781C2 (de) * | 1998-10-10 | 2000-07-20 | Ald Vacuum Techn Ag | Verfahren und Vorrichtung zum Herstellen von Präzisionsgußteilen durch Schleudergießen |
| JP3975627B2 (ja) * | 1998-12-31 | 2007-09-12 | カシオ計算機株式会社 | データ通信装置 |
| DE10024824A1 (de) * | 2000-05-19 | 2001-11-29 | Vacuumschmelze Gmbh | Induktives Bauelement und Verfahren zu seiner Herstellung |
| AU2001288726A1 (en) * | 2000-09-02 | 2002-03-22 | Em-Tech Llc | Measurements of electrical properties through non magnetically permeable metals using directed magnetic beams and magnetic lenses |
| JP2002280224A (ja) * | 2001-01-05 | 2002-09-27 | Humanelecs Co Ltd | アモルファス合金粉末コア及びナノクリスタル合金粉末コア並びにそれらの製造方法 |
| DE10128004A1 (de) | 2001-06-08 | 2002-12-19 | Vacuumschmelze Gmbh | Induktives Bauelement und Verfahren zu seiner Herstellung |
| US6654698B2 (en) | 2001-06-12 | 2003-11-25 | Applied Materials, Inc. | Systems and methods for calibrating integrated inspection tools |
| US6906495B2 (en) * | 2002-05-13 | 2005-06-14 | Splashpower Limited | Contact-less power transfer |
| EP1496568A1 (de) * | 2003-07-05 | 2005-01-12 | Kaschke KG GmbH & Co. | Transponderspule, insbesondere für drahtlose elektronische Fahrzeugschliessysteme |
| DE102004023815A1 (de) | 2004-05-13 | 2005-12-08 | Vacuumschmelze Gmbh & Co. Kg | Antennenanordnung und Verwendung der Antennenanordnung |
-
2004
- 2004-05-13 DE DE102004023815A patent/DE102004023815A1/de not_active Ceased
-
2005
- 2005-05-13 WO PCT/EP2005/005271 patent/WO2005112192A1/de not_active Ceased
- 2005-05-13 JP JP2007512117A patent/JP2007537637A/ja active Pending
- 2005-05-13 EP EP05741826.1A patent/EP1745527B1/de not_active Expired - Lifetime
-
2006
- 2006-11-13 US US11/559,171 patent/US7545337B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2005112192A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2005112192A1 (de) | 2005-11-24 |
| JP2007537637A (ja) | 2007-12-20 |
| WO2005112192A9 (de) | 2006-02-09 |
| US20070126650A1 (en) | 2007-06-07 |
| EP1745527B1 (de) | 2013-04-17 |
| DE102004023815A1 (de) | 2005-12-08 |
| US7545337B2 (en) | 2009-06-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1745527B1 (de) | Antennenanordnung zur induktiven energieübertragung und verwendung der antennenanordnung | |
| EP3427339B1 (de) | Antenne | |
| DE60303407T2 (de) | Mehrachsige Schleifenantenne in Chip-Form | |
| DE69618252T2 (de) | Magnetischer Kompositartikel zur Unterdrückung von elektromagnetischen Interferenzen | |
| EP0850426A1 (de) | Transponderanordnung | |
| EP2190681A2 (de) | Sensoranordnung und verfahren zum betrieb einer sensoranordnung | |
| DE102006057369A1 (de) | RFID-Etikett, sowie dessen Verwendung und ein damit gekennzeichnetes Objekt | |
| DE102006030863A1 (de) | Antenne sowie Funkuhr, schlüsselloses Zugangssystem und RFID-System mit einer solchen Antenne | |
| DE102018209189A1 (de) | Antenne sowie Gerät mit einer solchen Antenne | |
| EP2936514A1 (de) | Induktivladespulenvorrichtung | |
| DE102020118348B4 (de) | Formteil für ein mobiles Endgerät mit Sende und/oder Empfangsvorrichtung aus kohlenstofffaserverstärktem Kunststoff | |
| DE102006024247A1 (de) | Drahtlose Kartentyp-Vorrichtung, Antennenspule und Verfahren zum Herstellen eines Kommunikationsmoduls | |
| DE102021201095A1 (de) | Platzsparende Antenne für ein Hörinstrument | |
| DE102007008575B4 (de) | Antennenvorrichtung mit ionenimplantierter Resonanzstruktur | |
| EP3036793B1 (de) | Vorrichtung und verfahren zur kombinierten signalübertragung oder zur kombinierten signal- und energieübertragung | |
| EP2529338A1 (de) | Tragbarer datenträger mit funkbasierter datenkommunikationseinrichtung | |
| WO2019224057A1 (de) | Vorrichtung und verfahren zum senden und empfangen von daten eines passiven rfid-tags | |
| EP1983467B1 (de) | Datenträger-/Sendevorrichtung und Verfahren zu ihrer Herstellung | |
| WO2012019694A1 (de) | Tragbarer datenträger mit über spulenkopplung arbeitender datenkommunikationseinrichtung | |
| DE102012105647A1 (de) | Aus einer Spule und einem daran angeschlossenen Piezoelement kombiniertes elektrisches Element | |
| DE202019103465U1 (de) | NF-Emitterantenne | |
| DE102009019546A1 (de) | Magnetisch koppelnde Nahfeld-RFID-Antenne | |
| DE102009023374A1 (de) | Antennenvorrichtung | |
| DE102009023745A1 (de) | Planare Antenne auf elektrisch leitender Grundfläche mit weichmagnetischer Antennenstruktur | |
| JP2008022056A (ja) | 送信用アンテナ及びキーレスエントリシステム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20060922 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
| 17Q | First examination report despatched |
Effective date: 20070315 |
|
| DAX | Request for extension of the european patent (deleted) | ||
| RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005013634 Country of ref document: DE Effective date: 20130613 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20140120 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005013634 Country of ref document: DE Effective date: 20140120 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140520 Year of fee payment: 10 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140516 Year of fee payment: 10 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150513 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160129 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150513 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150601 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200728 Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005013634 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211201 |