EP1743434A1 - Verfahren und einrichtung zur demodulation - Google Patents

Verfahren und einrichtung zur demodulation

Info

Publication number
EP1743434A1
EP1743434A1 EP05706740A EP05706740A EP1743434A1 EP 1743434 A1 EP1743434 A1 EP 1743434A1 EP 05706740 A EP05706740 A EP 05706740A EP 05706740 A EP05706740 A EP 05706740A EP 1743434 A1 EP1743434 A1 EP 1743434A1
Authority
EP
European Patent Office
Prior art keywords
signal
intermediate frequency
input
clock
comparison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05706740A
Other languages
English (en)
French (fr)
Inventor
Karl-Heinz Hahn
Jürgen DONAUBAUER
Bernhard Kufner
Karl Krammel
Frank Liesaus
Thomas Fleischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conti Temic Microelectronic GmbH
Original Assignee
Conti Temic Microelectronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conti Temic Microelectronic GmbH filed Critical Conti Temic Microelectronic GmbH
Publication of EP1743434A1 publication Critical patent/EP1743434A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/041Means for supplying power to the signal- transmitting means on the wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/041Means for supplying power to the signal- transmitting means on the wheel
    • B60C23/0413Wireless charging of active radio frequency circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0455Transmission control of wireless signals
    • B60C23/0462Structure of transmission protocol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes

Definitions

  • the invention relates to a method and a device for demodulating an input signal comprising a modulated data signal according to the preambles of claims 1 and 7, respectively.
  • the invention is therefore based on the object to provide a method of the generic type so that it can be implemented inexpensively.
  • the clock signal is used directly as a comparison signal, unnecessary further measures for deriving the comparison signal, so that a particularly inexpensive method results.
  • the variant according to claim 3 is characterized by a good suitability for the transmission of sensor data.
  • the fixed phase reference of the individual signals to each other allows a particularly simple demodulation.
  • the demodulation is particularly simple. To recover the data signal, a simple sampling of the processed intermediate frequency signal is used. Otherwise, units commonly needed for demodulation, such as a PLL circuit, are not required.
  • signal transit times can be considered and availableghchen means of the adjustable time delay.
  • the demodulation method can thus be operated particularly efficiently and error-prone.
  • the variant according to claim 6 leads to a substantially rectangular waveform of the processed intermediate frequency signal, so that a bit change due to the very steep edges in the following Kontxollmaschine can be particularly easily detected.
  • the invention continues to be based on the abe to specify a device of the generic type so that it can be realized inexpensively.
  • FIG. 1 shows a first embodiment of a device for sensor data transmission and for demodulation of a received input signal
  • FIG. 2 shows timing diagrams of signals occurring in the first embodiment according to FIG. 1,
  • FIG. 3 shows a second exemplary embodiment of a device for sensor data transmission and for demodulation of a received input signal
  • FIGS. 1 to 4 timing diagrams of occurring in the second embodiment of FIG. 3 signals. Corresponding parts are provided in FIGS. 1 to 4 with the same reference numerals.
  • FIG. 1 shows a first embodiment of a device 1 for data transmission and demodulation in the form of a sensor-transponder system.
  • the device 1 is intended for batterieose Drackabfrage in a tire, not shown in Fig. 1 of a motor vehicle.
  • the device 1 comprises a control unit 2 and a wheel module 3, between which there are wireless connections 4 and 5.
  • the controller 2 includes a
  • the control unit 6 is connected to an external clock generator 16.
  • the control unit 6 is designed in the example as a micro-processor. Alternatively, however, a design as a micro-controller or as a computer is conceivable.
  • the control unit 6 includes a plurality of sub-assemblies or functional units, some of which are shown in the illustration of FIG.
  • An internal clock unit 17 as well as a decoupler 18 and also a frequency divider 19 are connected to the input of the control unit 6, to which the external clock generator 16 is connected. With a second connection, the frequency consumer 19 is probably brought to a delay element 20 and the low-frequency output, which is connected to the signal conditioning unit 7.
  • the decoupler 18 is guided to an output of the control unit 6, which is connected by means of a connecting line 18 a to a comparison input 20 a of the mixer 12.
  • the delay gate 20 is connected to an output of the control unit 6. Between this output and a sampling clock input 21 of the Kontro unit 6, an electrical connection is provided.
  • the sampling clock input 21 leads internally to a sampling clock unit 22, which is connected to a sampling element 23 acting on the sampling input 14.
  • the wheel module 3 includes an LF receiving antenna 24, a control and KontroUappel 25, a sensor 26 and an RF transmitting antenna 27.
  • the control and KontroUappel 25 is the central element to which all other components of the wheel module 3 are connected.
  • a low-frequency signal of the frequency f 1 is generated in the frequency Teüer 19 and supplied via the signal conditioning unit 7 and the driver 8 as a transmission signal Sl of the LF transmission antenna 9.
  • the frequency fO is 13.4975 MHz and the frequency f 1 is 124.977 kHz.
  • the frequency divider 19 has a division factor of 108 in the Aus technologicalangsbeispiel.
  • the transmission signal Sl is emitted and passes via the wireless connection 4 to the LF reception antenna 24, from which it is received signal E2 Will be received.
  • the control and KontroUappel 25 wins from the received signal E2 on the one hand, the energy required for the operation of the wheel module 3 and derives on the other hand by means of frequency multiplication by a factor of 108.5 a significantly higher frequency £ 2 with a value of 13.56 MHz ,
  • the sensor 26 detects the pressure currently prevailing in the tire. This is modulated with further data as data signal D in the control and KontioUech 25 to a carrier signal to a transmission signal S2.
  • the data rate of the data signal D is also derived from the received frequency fl. It is for example 31.25 kBaud.
  • the modulation method used is a PSK (Phase Shift Keying) method.
  • the transmission signal S2 is transmitted from the RF transmission antenna 27 via the wireless connection 5 to the RF reception antenna 10 and received there as the reception signal El. It is fed via the input amplifier 11 in the mixer 12, in which a mixture with a comparison signal V to an intermediate frequency signal ZF1.
  • the comparison signal V is derived from the clock signal T provided for clock supply to the control unit 6. In particular, it is substantially equal to the clock signal T, which is looped through the control unit 6 via the decoupler 18 designed as a driver or as a buffer circuit and is present at the comparison input 20a of the mixer 12.
  • the decoupler 18 prevents unwanted feedback on the Clock generator 16.
  • the comparison signal V has the same frequency f0 as the clock signal T, ie 13.4975 MHz. A separate LokalosziUator that would otherwise be anszuschhe built to the comparison input 20a of the mixer 12, so is not needed. This results in a cost-effective implementation of the demodulation subunit.
  • the intermediate frequency signal ZF1 first passes through a narrow-band frequency filter in the signal conditioning unit 13, for example a low-pass filter or a bandpass filter. Thereafter, by means of a suitable circuit, an amphetous limitation and a conversion into a rectangular signal can take place. Here, the use of a Schmitt trigger is possible. At the output of the signal processing unit 13 there is then a conditioned intermediate frequency signal ZF2 having a substantially rectangular waveform and a main frequency f3.
  • the frequency f3 in the example has the value 62.5 kHz.
  • the control unit 6 is awakened by a corresponding signal level at the wake-up input 15. This is done, for example, by means of a standard interrupt.
  • the signal level of the pending intermediate frequency signal ZF2 as an input signal in the KontroUech 6 arrive.
  • the sampling 14 so a sampling takes place, in the DarsteUung of FIG. 1 by the Abtastglied 23 and the sampling clock unit 22 is symbohsiert.
  • this sampling results in synchronous demodulation.
  • the demodulated data signal D either directly corresponds to the supplied by the Abtastghed 23 discrete input signal or can be generated in a simple manner and with purely digital combination operations from the discrete input signal.
  • FIG. 2 illustrates a possible mode of action based on time diagrams.
  • the above-mentioned data signal D corresponds to a bit string of "1", “0", “0” and “1".
  • the associated conditioned intermediate frequency signal ZF2 is shown in the middle.
  • a sampling signal AI reproduced below is provided by the sampling clock unit 22.
  • the sampling signal AI has the same frequency f 1 as the transmission signal S 1.
  • Both signals are derived from the output signal of the frequency divider 19, ie ultimately from the clock signal T of the clock generator 16.
  • the sampling of the intermediate frequency signal ZF 2 takes place in each case at a flush edge of the sampling signal AI. This results in discrete samples with logic levels, which are marked with circles in FIG.
  • a Nutzsignalbit are assigned four samples in this choice of frequencies fO, fl, f2, f3 and the data bit rate of the data signal D.
  • a useful signal bit with the logical value "1” corresponds to the sampled level sequence "1 0 1 0" and a useful signal bit with the logical value "0” corresponds to the sampled level sequence "0 1 0 1".
  • a sampling signal A diverted from the output signal of the frequency divider 19 can be delayed by means of the delay input element 20 by an adjustable period of time. to be cleaned.
  • the delay time can be acknowledged by the control unit 6 according to the specifications of a pre-runtime measurement.
  • the required delay time can also be determined autonomously by the control unit 6 at the beginning of the operation, for example by means of a few previously transmitted synchronization bits which trigger a time measurement at each edge change of the intermediate frequency signal ZF2.
  • This variant is particularly advantageous if no closed signal circuit as in the device 1 vorhelgt, but only a unidirectional subsystem with a signal path from the sensor 26 to KontroUech 6. For example, three measurements to synchronization bits by averaging the required Zeitverzögerang for the sampling clock 22nd be determined and set.
  • a particular advantage of the device 1 is that all frequencies are derived from the clock signal T of the external clock generator 16. As a result, on the one hand eliminates the need for other clock generators and on the other hand, the various signals each have a fixed phase relationship to each other. As a result, the described, very simple and inexpensive to implement synchronous demodulation method, which makes do without the otherwise usual for a demodulation modules, allows. Due to the hardware and software technical integration of KontroUemheit 6 in the demodulation process results in a cost savings.
  • the demodulation method and the device 1 are also to be used in a very large frequency interval.
  • the frequencies f0, f1, f2 and £ 3 used, as well as the data bit rate, can be in a wide range Range can be varied.
  • the frequency f0 should only be chosen to be within the frequency range specified for the control unit 6.
  • the device 1 is also suitable for bidirectional data transmission.
  • the transmission signal Sl can nä hch except for energy transmission and data transmission from the controller 2 to the wheel module 3 are used.
  • a carrier signal of the frequency f 1 in the control unit 6 modulates a corresponding data signal. Detection takes place in the KontioUech 25 of the wheel module. 3
  • a second Aussolidangsbeispiel a device 28 for data transmission and demodulation dargesteUt dargesteUt.
  • the device 28 differs from the device 1 according to FIG. 1 only in a few aspects.
  • a control device 29 contains a slightly differently constructed control unit 30.
  • a first difference is that the delay element 20 is not guided to an output of the control unit, but is internally connected to the sampling clock unit 22 by means of a further optional frequency divider 31.
  • the frequency divider 31 causes a halving of the frequency fl of the sampling signal A, so that the scanning member 23 of the sampling clock 22, a sampling signal A2 is supplied with a frequency f4 of 62.5 kHz.
  • the clock signal T is not looped through the control unit 30. Instead, an external connection line 32 is provided between the clock generator 16 and the mixer 12. If required, the external connection line 32 can also be equipped with a decoupler or a buffer circuit.

Abstract

Das Verfahren und die Einrichtung dienen zur Demodulation eines em­pfangenen Eingangssignals (E1), das ein aufmoduliertes Datensignal (D) umfasst. Das Eingangssignal (E1) wird mit einem Vergleichssignal (V) zu einem Zwischenfrequenzsignal (ZF1) gemischt, aus welchem ein aufberei­tetes Zwischenfrequenzsignal (ZF2) erzeugt wird. In einer Kontrolleinheit (6) wird aus dem aufbereiteten Zwischenfrequenzsignal (ZF2) insbesonde­re mittels einer Abtastung das Datensignal (D) rückgewonnen. Das für die Mischung verwendete Vergleichssignal (V) und insbesondere auch ein für die Abtastung verwendetes Abtastsignal (A1) sowie ein dem Eingangssig­nal (E1) zugrundeliegendes Sendesignal (S1, S2) werden aus dem zur Takt­Versorgung der Kontrolleinheit (6) vorgesehenen Taktsignal (T) abgeleitet. Dadurch wird nur ein einziger Taktgenerator (16) benötigt.

Description

Verfahren und Einrichtung zur Demodulation
Die Erfindung betrifft ein Verfahren und eine Einrichtung zur Demodulation eines ein aufmoduliertes Datensignal umfassenden Eingangssignals nach den Oberbegriffen der Ansprüche 1 bzw. 7.
Bei der Übertragung von Sensordaten vom Ort ihrer Erfassung zu einer Auswerte- oder KontroUemheit kommen zunehmend auch drahtlose (Teil-)Übertragungsstrecken zum Einsatz. Das Datensignal des Sensors wird dabei einem hochfrequenten Trägersignal aufmoduliert und ausgesendet. Empfängerseitig erfolgt die Demodulation, also die Rückgewinnung des Datensignals, üblicherweise mittels eines an einen Lokaloszillator angeschlossenen Mischers und weiterer elektrischen Einheiten. Diese Demo- dulations-Verfahren und -Einrichtungen sind für manche Anwendungsfälle zu aufwendig. So besteht insbesondere in der Kraftfahrzeug-Branche ein Bedarf an sehr kostengünstigen Lösungen.
Der Erfindung hegt deshalb die Aufgabe zu Grunde, ein Verfahren der gat- tungsgemäßen Art so anzugeben, dass es kostengünstig umgesetzt werden kann.
Diese Auf abe wird mit einem Verfahren, das entsprechend den Merkmalen des Anspruches 1 ausgestaltet ist, gelöst. Indem das Vergleichssignal des Mischers aus dem olmehin für die KonfroUeinheit notwendigen Taktsignal abgeleitet wird, kann der ansonsten erforderliche zusätzliche Taktgenerator eingespart werden. Dadurch kann das Verfahren und auch eine das Verfahren durchführende Einrichtung kostengünstiger realisiert werden. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens ergeben sich aus den von Ansprach 1 abhängigen Ansprüchen.
Wenn gemäß Anspruch 2 das Taktsignal unmittelbar als Vergleichs signal verwendet wird, erübrigen sich weitere Maßnahmen zur Ableitung des Vergleichssignals, sodass ein besonders preiswertes Verfahren resultiert.
Die Variante nach Anspruch 3 zeichnet sich durch eine gute Eignung zur Übertragung von Sensordaten aus. Der feste Phasenbezug der einzelnen Signale zueinander ermöglicht eine besonders einfache Demodulation.
Bei der Variante gemäß Anspruch 4 gestaltet sich die Demodulation besonders einfach. Zur Rückgewinnung des Datensignals kommt eine einfa- ehe Abtastung des aufbereiteten Zwischenfrequenzsignals zum Einsatz. Ansonsten für die Demodulation üblicherweise benötigte Einheiten, wie ein PLL-Schaltkreis, sind nicht erforderlich.
Bei der Ausgestaltung nach Anspruch 5 können mittels der einstellbaren Zeitverzögerung Signal-Laufzeiten berücksichtigt und ausgeghchen werden. Das Demodulations-Verfahren lässt sich damit besonders effizient und fehlerunanfällig betreiben.
Die Variante gemäß Ansprach 6 führt zu einem im Wesentlichen rechteck- förmigen Signalverlauf des aufbereiteten Zwischenfrequenzsignals, sodass ein Bitwechsel auf Grund der sehr steilen Flanken in der nachfolgenden Kontxolleinheit besonders leicht erkannt werden kann. Der Erfindung Hegt weiterhin die Auf abe zu Grunde, eine Einrichtung der gattungsgemäßen Art so anzugeben, dass sie kostengünstig realisiert werden kann.
Diese Aufgabe wird mit einer Einrichtung entsprechend den Merkmalen des Anspruches 7 gelöst. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Einrichtung ergeben sich aus den von Ansprach 7 abhängigen Ansprüchen. Die erfindungsgemäße Einrichtung und ihre Ausgestaltungen bieten im Wesentlichen die gleichen Vorteile, die bereits im Zusammen- hang mit dem erfindungsgemäßen Verfahren und dessen Varianten beschrieben worden sind.
Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführangsbeispielen anhand der Zeichnung. Es zeigt
Fig. 1 ein erstes Äusführungsbeispiel einer Einrichtung zur Sensordaten-Übertragung und zur Demodulation eines empfangenen Eingangssignals,
Fig. 2 Zeitdiagramme von im ersten AusirJJirungsbeispiel gemäß Fig. 1 auftretenden Signalen,
Fig. 3 ein zweites Ausführungsbeispiel einer Einrichtung zur Sensor- daten-Übertragung und zur Demodulation eines empfangenen Eingangssignals, und
Fig. 4 Zeitdiagramme von im zweiten Ausführungsbeispiel gemäß Fig. 3 auftretenden Signalen. Einander entsprechende Teile sind in den Fig. 1 bis 4 mit denselben Bezugszeichen versehen.
In Fig. 1 ist ein erstes Ausführangsbeispiel einer Einrichtung 1 zur Datenübertragung und Demodulation in Form eines Sensor-Transponder- Systems gezeigt. Die Einrichtung 1 ist zur batterielosen Drackabfrage in einem in Fig. 1 nicht dargestellten Reifen eines Kraftfahrzeuges bestimmt. Die Emrichtung 1 umfasst ein Steuergerät 2 und ein Radmodul 3, zwischen denen drahtlose Verbindungen 4 und 5 bestehen.
Das Steuergerät 2 enthält als wesentliche Komponente eine Kontrolleinheit 6, die an einem Ausgang für ein niederfrequentes (= LF) Signal mittels einer Signalaufbereitungseinheit 7 und einem Treiber 8 an eine LF-Sende- antenne 9 angeschlossen ist. Außerdem enthält das Steuergerät 2 eine
HF(= Hochfrequenz)-Empfangsantenne 10, die mittels eines Eingangsverstärkers 11, eines Mischers 12 und einer Signalaufbereitungseinheit 13 an einem Abtasteingang 14 sowie an einen Weckeingang 15 der Kontrolleinheit 6 angeschlossen ist. Außerdem ist die KonlroUeinheit 6 mit einem ex- ternen Taktgenerator 16 verbunden.
Die Kontrolleinheit 6 ist im Beispiel als Mikro-Prozessor ausgebildet. Alternativ ist jedoch auch eine Ausgestaltung als Mikro-Controller oder auch als Computer denkbar. Die KontroUemheit 6 beinhaltet mehrere Un- terbaugrappen oder Funktionseinheiten, von denen einige in der Darstellung von Fig. 1 gezeigt sind. Eine interne Clock-Einheit 17 ist ebenso wie ein Entkoppler 18 und auch ein Frequenz-Teiler 19 mit dem Eingang der KontroUeinheit 6 verbunden, an den der externe Taktgenerator 16 angeschlossen ist. Mit einem zweiten Anschluss ist der Frequenz-Teüer 19 so- wohl an ein Verzögerungsglied 20 als auch an den niederfrequenten Ausgang herangeführt, der mit der Signalaufbereitungseinheit 7 verbunden ist. Der Entkoppler 18 ist an einen Ausgang der Kontrolleinheit 6 geführt, der mittels einer Verbindungsleitung 18a an einen Vergleichseingang 20a des Mischers 12 angeschlossen ist.
Das Verzögerungsghed 20 ist an einen Ausgang der KontroUeinheit 6 angeschlossen. Zwischen diesem Ausgang und einem Abtasttakteingang 21 der Kontro einheit 6 ist eine elektrische Verbindung vorgesehen. Der Ab- tasttakteingang 21 fuhrt im Inneren zur einer Abtasttakteinheit 22, die an ein auf den Abtasteingang 14 wirkendes Abtastglied 23 angeschlossen ist.
Das Radmodul 3 beinhaltet eine LF-Empfangsantenne 24, eine Steuer- und KontroUeinheit 25, einen Sensor 26 sowie eine HF-Sendeantenne 27. Die Steuer- und KontroUeinheit 25 ist das zentrale Element, an das alle anderen genannten Komponenten des Radmoduls 3 angeschlossen sind.
Im Folgenden wird die Funktionsweise der Einrichtung 1 beschrieben.
Aus einem vom externen Taktgenerator 16 zur Verfügung gestellten Taktsignal T mit der Frequenz fO wird im Frequenz-Teüer 19 ein niederfrequentes Signal der Frequenz f 1 erzeugt und über die Signalaufbereitungseinheit 7 und den Treiber 8 als Sendesignal Sl der LF-Sendeantenne 9 zugeführt. Die Frequenz fO beträgt 13,4975 MHz und die Frequenz f 1 124,977 kHz. Der Frequenz-Teiler 19 hat im Ausführangsbeispiel einen Teilungsfaktor von 108.
Das Sendesignal Sl wird abgestrahlt und gelangt über die drahtlose Verbindung 4 zur LF-Empfangsantenne 24, von der es als Empfangssignal E2 empfangen wird. Die Steuer- und KontroUeinheit 25 gewinnt aus dem Empfangssignal E2 zum einen die für den Betrieb des Radmoduls 3 benötigte Energie und leitet zum anderen mittels Frequenzvervielfachung mit einem Faktor von 108,5 eine deutlich höhere Frequenz £2 mit einem Wert von 13,56 MHz ab. Der Sensor 26 erfasst den im Reifen aktuell herrschenden Druck. Dieser wird mit weiteren Daten als Datensignal D in der Steuer- und KontioUeinheit 25 auf ein Trägersignal zu einem Sendesignal S2 aufmoduliert. Die Datenrate des Datensignals D wird ebenfaUs aus der empfangenen Frequenz fl abgeleitet. Sie beträgt beispielsweise 31,25 kBaud. Als Modulationsverfahren kommt ein PSK(=Phase Shift Keying)- Verfahren zum Einsatz. GrandsätzUch wäre jedoch ebenfalls ein ASK(=Amphtude Shift Keying)-Verfahren oder ein anderes Modulationsverfahren möglich. Da sowohl die Frequenz f2 als auch die Datenrate des Datensignals D aus der Frequenz f 1 des Empfangssignals E2 abgeleitet sind, hegt die Dateninformation im Sendesignal S2 insbesondere auch phasenstarr zur Frequenz fO des Taktgenerators 16 vor.
Das Sendesignal S2 wird von der HF-Sendeantenne 27 über die drahtlose Verbindung 5 zur HF-Empfangsantenne 10 übertragen und dort als Em- pfangssignal El empfangen. Das Empfangs signal El stellt ein Eingangssignal einer Demodulations-Untereinheit des Steuergeräts 2 dar. Es wird über den Eingangsverstärker 11 in den Mischer 12 eingespeist, in dem eine Mischung mit einem Vergleichs signal V zu einem Zwischenfrequenzsignal ZF1 erfolgt. Das Vergleichssignal V wird aus dem zur Takt- Versorgung der KontroUeinheit 6 vorgesehenen Taktsignal T abgeleitet. Insbesondere ist es im Wesentlichen gleich dem Taktsignal T, das über den als Treiber oder als Pufferschaltung ausgebildeten Entkoppler 18 durch die KontroUeinheit 6 geschleift ist und am Vergleichseingang 20a des Mischers 12 ansteht. Der Entkoppler 18 verhindert unerwünschte Rückkopplungen auf den Taktgenerator 16. Das Vergleichssignal V hat die gleiche Frequenz fO wie das Taktsignal T, also 13,4975 MHz. Ein gesonderter LokalosziUator, der ansonsten an den Vergleichseingang 20a des Mischers 12 anzuschheßen wäre, wird also nicht benötigt. Dadurch ergibt sich eine kostengünstige Realisierung der Demodulations-Untereinheit.
Das Zwischenfrequenzsignal ZF1 durchläuft in der Signalaufbereitungs- einheit 13 zunächst ein schmalbandiges Frequenzfilter, beispielsweise einen Tiefpass- oder einen Bandpass-Filter. Danach kann mittels einer ge- eigneten Schaltung eine Amphtudenbegrenzung und eine Konvertierung in ein Rechtecksignal erfolgen. Hierbei ist der Einsatz eines Schmitt-Triggers möghch. Am Ausgang der Signalaufbereitanseinheit 13 steht dann ein aufbereitetes Zwischenfrequenzsignal ZF2 mit im Wesentlichen rechteckför- migem Signalverlauf und einer Hauptfrequenz f3 an. Die Frequenz f3 hat im Beispiel den Wert 62,5 kHz.
Sobald das Zwischenfrequenzsignal ZF2 auf Grand eines anstehenden Empfangssignals El einen vom Ruhepegel verschiedenen Wert arinimmt, wird die KontroUeinheit 6 durch einen entsprechenden Signalpegel am Weckeingang 15 aufgeweckt. Dies erfolgt beispielsweise mittels eines üblichen Interrupts.
Das Zwischenfrequenzsignal ZF2 steht auch am Abtasteingang 14 an, der als SPI(=Serial Peripheral Interface)-Eingang ausgebildet ist. Dieser be- wirkt, dass nur zu bestimmten Zeitpunkten, die von der im Beispiel als
SPI-Clock ausgebildeten Abtasttakteinheit 22 vorgegeben werden, die Signalpegel des anstehenden Zwischenfrequenzsignals ZF2 als Eingangssignal in die KontroUeinheit 6 gelangen. Am Abtasteingang 14 findet also eine Abtastung statt, die in der DarsteUung gemäß Fig. 1 durch das Abtastglied 23 und die Abtasttakteinheit 22 symbohsiert wird. In Verbindung mit dem Mischer 12 und der Signdaufbereimngseinheit 13 führt diese Abtastung zur einer Synchrondemodulation. Das demodulierte Datensignal D entspricht entweder direkt dem von dem Abtastghed 23 gelieferten diskreten Eingangssignal oder kann auf einfache Weise und mit rein digitalen Kombinationsoperationen aus dem diskreten Eingangs signal erzeugt werden.
Stellvertretend für mehrere denkbare Ausfuhrungsformen wird in Fig. 2 eine mögliche Wirkungsweise an Hand von Zeitdiagrammen verdeutlicht. Das oben dargesteUte Datensignal D entspricht einer Bitfolge von „1", „0", „0" und „1". Das zugehörige aufbereitete Zwischenfrequenzsignal ZF2 ist in der Mitte dargesteUt. Zur Abtastung dient ein darunter wiedergegebenes Abtastsignal AI, das von der Abtasttakteinheit 22 zur Verfügung gestellt wird. Das Abtastsignal AI hat in diesem FaU die gleiche Frequenz f 1 wie das Sendesignal S 1. Beide Signale sind aus dem Ausgangssignal des Fre- quenz-Teüers 19 abgeleitet, also letztendhch aus dem Taktsignal T des Taktgenerators 16. Die Abtastung des Zwischenfrequenzsignals ZF2 erfolgt jeweils bei einer faUenden Flanke des Abtastsignals AI. Dadurch ergeben sich diskrete Abtastwerte mit logischen Pegeln, die in Fig. 2 im Zwi- schenfrequenzsignal ZF2 mit Kreisen markiert sind. Einem Nutzsignalbit sind bei dieser Wahl der Frequenzen fO, fl, f2, f3 und der Datenbitrate des Datensignals D vier Abtastwerte zugeordnet. Einem Nutzsignalbit mit dem logischen Wert „1" entspricht die abgetastete Pegelfolge „1 0 1 0" und einem Nutzsignalbit mit dem logischen Wert „0" die abgetastete Pegelfolge „0 1 0 1".
Um eine möglichst reibungslose Abtastung zu gewährleisten, kann ein aus dem Ausgangssignal des Frequenz-Teüers 19 abgezweigtes Abtastsignal A mittels des Verzögerangsglieds 20 um eine einstellbare Zeitspanne verzö- gert werden. Dies ermöglicht eine flexible Anpassung an die Laufzeiten der Signale Sl, E2, S2, El, ZF1 und ZF2. Die Verzögerungszeit kann von der KontroUemheit 6 nach den Vorgaben einer vorab durchgeführten Laufzeitmessung eingesteht werden. Alternativ kann die erforderliche Verzöge- rungszeit jedoch auch zu Beginn des Betriebs eigenständig von der KontroUeinheit 6 bestimmt werden, beispielsweise mittels einiger vorab gesendeter Synchronisationsbits, die bei jedem Flankenwechsel des Zwischenfrequenzsignals ZF2 eine Zeitmessung auslösen. Diese Variante ist insbesondere dann von Vorteil, wenn kein geschlossener Signalkreis wie bei der Einrichtung 1 vorhegt, sondern nur ein unidirektionales Teilsystem mit einem Signalpfad vom Sensor 26 zur KontroUeinheit 6. Nach beispielsweise drei Messungen zu Synchronisationsbits kann durch Mittelwertbildung die erforderliche Zeitverzögerang für die Abtasttakteinheit 22 ermittelt und eingestellt werden.
Ein besonderer Vorteü der Einrichtung 1 besteht darin, dass sämtliche Frequenzen aus dem Taktsignal T des externen Taktgenerators 16 abgeleitet werden. Dadurch entfällt zum einen die Notwendigkeit weiterer Taktgeneratoren und zum anderen haben die verschiedenen Signale jeweils einen festen Phasenbezug zueinander. Dadurch wird das beschriebene, sehr einfache und preiswert zu realisierende Synchrondemodulationsverfahren, das ohne die ansonsten für eine Demodulation üblichen Baugruppen auskommt, ermöglicht. Auf Grund der hard- und softwaretechnischen Einbindung der KontroUemheit 6 in das Demodulationsverfahren ergibt sich eine Kosteneinsparung.
Das Demodulationsverfahren und die Einrichtung 1 sind außerdem in einem sehr großen Frequenzintervall einzusetzen. Die verwendeten Frequenzen fO, f 1, f2 und £3 können ebenso wie die Datenbitrate in einem weiten Bereich variiert werden. Die Frequenz fO sollte lediglich so gewählt werden, dass sie innerhalb des für die KontroUeinheit 6 spezifizierten Frequenzbereiches hegt. Außerdem sind die Frequenzen so zu wählen, dass die Bedingung f0=f2±f3 erfüllt ist. Die Einhaltung dieser Bedingungen ist aber problemlos möghch. Ansonsten besteht weitgehende Wahlfreiheit für die verwendeten Frequenzen. Auch hinsichtlich des verwendeten Modula- tionsverfahrens besteht eine hohe Flexibilität.
Weiterhin ist die Einrichtung 1 auch zur bidirektionalen Datenübertragung geeignet. Das Sendesignal Sl kann nä hch außer zur Energieübertragung auch zur Datenübertragung vom Steuergerät 2 zum Radmodul 3 eingesetzt werden. Dazu wird einem Trägersignal der Frequenz f 1 in der KontroUeinheit 6 ein entsprechendes Datensignal aufmoduliert. Die Detektion erfolgt in der KontioUeinheit 25 des Radmoduls 3.
In Fig. 3 ist ein zweites Ausführangsbeispiel einer Einrichtung 28 zur Datenübertragung und Demodulation dargesteUt. Die Einrichtung 28 unterscheidet sich nur in wenigen Aspekten von der Einrichtung 1 gemäß Fig. 1. Ein Steuergerät 29 enthält eine geringfügig anders aufgebaute KontroUein- heit 30. Ein erster Unterschied besteht darin, dass das VerzögerangsgUed 20 nicht an einen Ausgang der Kontrolleinheit geführt ist, sondern intern mittels eines weiteren optionalen Frequenz-Teilers 31 an die Abtasttakteinheit 22 angeschlossen ist. Im Ausführangsbeispiel von Fig. 3 bewirkt der Frequenz-Teiler 31 eine Halbierung der Frequenz fl des Abtastsignals A, sodass dem Abtastglied 23 von der Abtasttakteinheit 22 ein Abtastsignal A2 mit einer Frequenz f4 von 62,5 kHz zugeführt wird.
Damit ergeben sich die Abtastverhältnisse, die in den Zeitdiagra men gemäß Fig. 4 dargesteUt sind. Pro Nutzsignalbit erhält man dann zwei Ab- tastwerte, die in Fig. 4 wieder durch Kreise gekennzeichnet sind. Ein Nutzsignalbit mit dem logischen Wert „1" wird dann durch die abgetastete Pegelfolge „1 1" und ein Nutzsignalbit mit dem logischen Wert „0" durch die abgetastete Pegelfolge „00" symbolisiert.
Ein weiterer Unterschied besteht darin, dass das Taktsignal T nicht durch die KontroUeinheit 30 geschleift ist. Stattdessen ist eine externe Verbindungsleitung 32 zwischen dem Taktgenerator 16 und dem Mischer 12 vorgesehen. Bei Bedarf kann die externe Verbindungsleitung 32 auch mit ei- nem Entkoppler oder einer Pufferschaltung ausgerüstet sein.
Die beschriebenen Unterschiede zwischen den Einrichtungen 1 und 28 tangieren nicht die prinzipieUen Wirkungsweisen und die genannten Vorteile.

Claims

Patentansprüche
1. Verfahren zur Demodulation eines ein aufmoduhertes Datensignal (D) umfassenden Eingangssignals (El), bei dem - aus dem Eingangssignal (El) und einem Vergleichssignal (V) mittels Mischung ein Zwischenfrequenzsignal (ZF1) erzeugt wird, aus dem Zwischenfrequenzsignal (ZF1) mittels einer Signalaufbe- reitung ein aufbereitetes Zwischenfrequenzsignal (ZF2) erzeugt wird, und - das Datensignal (D) mittels einer mit einem Taktsignal (T) versorgten KontroUeinheit (6; 30) aus dem aufbereiteten Zwischenfrequenzsignal (ZF2) rückgewonnen wird, dadurch gekennzeichnet, dass das Vergleichssignal (V) aus dem Taktsignal (T) abgeleitet wird.
2. Verfahren nach Ansprach 1, dadurch gekennzeichnet, dass das Taktsignal (T) unmittelbar als Vergleichssignal (V) verwendet wird.
3. Verfahren nach Ansprach 1, dadurch gekennzeichnet, dass das Ein- gangssignal (El) mittels Empfangs eines Sendesignals (S2) gewonnen wird und das Datensignal (D) phasenstarr zum Taktsignal (T) auf das Sendesignal (S2) aufmoduliert wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass das aufbereitete Zwischenfrequenzsignal (ZF2) zur Rückgewinnung des Datensignals (D) mit einem aus dem Taktsignal (T) abgeleiteten Abtastsignal (AI; A2) abgetastet wird.
5. Verfahren nach Ansprach 4, dadurch gekennzeichnet, dass das Abtastsignal (AI; A2) gegenüber dem Taktsignal (T) um eine einsteUbare Zeitspanne verzögert wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Zwischenfrequenzsignal (ZF1) zur Erzeugung des aufbereiteten Zwischenfrequenzsignals (ZF2) einer Tiefpass- oder Bandpass-Filterung unterzogen und danach insbesondere in der Amplitude begrenzt sowie vorzugsweise in ein Rechtecksignal konvertiert wird.
7. Einrichtung zur Demodulation eines ein aufmoduhertes Datensignal (D) umfassenden Eingangssignals (El) umfassend mindestens einen Mischer (12) zur Mischung des Eingangssignals (El) mit ei- nem an einem Vergleichseingang (20a) des Mischers (12) anstehenden Vergleichssignal (V) zu einem Zwischenfrequenzsignal (ZF1), eine an den Mischer (12) angeschlossene Signalaufbereitungseinheit (13) zur Erzeugung eines aufbereiteten Zwischenfrequenzsig- nals (ZF2) aus dem Zwischenfrequenzsignal (ZF1), eine an die Signalaufbereitiingseinheit (13) angeschlossene Kon- ttoUeinheit (6; 30) zur Rückgewinnung des Datensignals (D) aus dem aufbereiteten Zwischenfrequenzsignal (ZF2), einen die KontroUeinheit (6; 30) mit einem Taktsignal (T) versor- genden Taktgenerator (16) dadurch gekennzeichnet, dass eine Verbindung (18, 18a; 32) zwischen dem Vergleichseingang (20a) und dem Taktgenerator (16) besteht und das Vergleichssignal (V) aus dem Taktsignal (T) abgeleitet ist.
8. Einrichtung nach Ansprach 7, dadurch gekennzeichnet, dass die Verbindung zwischen dem Vergleichseingang (20a) und dem Taktgenerator (16) als externe Verbindungsleitung (32) ausgebildet ist.
9. Einrichtung nach Ansprach 7, dadurch gekennzeichnet, dass die Verbindung (18) zwischen dem Vergleichseingang (20a) und dem Taktgenerator (16) zumindest teilweise durch die Kontrolleinheit (6) verläuft.
10. Einrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die KontroUeinheit (6; 30) einen Abtasteingang (14) aufweist, mittels dessen die KontroUeinheit (6; 30) an die Signalaufbe- reitimgseinheit (13) angeschlossen ist, und die Rückgewinnung des Datensignals (D) mittels einer Abtastung erfolgt.
EP05706740A 2004-04-01 2005-02-05 Verfahren und einrichtung zur demodulation Withdrawn EP1743434A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004016834 2004-04-01
DE102004043635A DE102004043635A1 (de) 2004-04-01 2004-09-07 Verfahren und Einrichtung zur Demodulation
PCT/DE2005/000200 WO2005101676A1 (de) 2004-04-01 2005-02-05 Verfahren und einrichtung zur demodulation

Publications (1)

Publication Number Publication Date
EP1743434A1 true EP1743434A1 (de) 2007-01-17

Family

ID=34954904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05706740A Withdrawn EP1743434A1 (de) 2004-04-01 2005-02-05 Verfahren und einrichtung zur demodulation

Country Status (4)

Country Link
EP (1) EP1743434A1 (de)
DE (2) DE102004043635A1 (de)
FR (1) FR2868625A1 (de)
WO (1) WO2005101676A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006048334A1 (de) * 2006-10-12 2008-04-17 Conti Temic Microelectronic Gmbh Verfahren und Einrichtung zur Übertragung von Daten zwischen einem Steuergerät und einem Radmodul

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517194A (en) * 1994-02-10 1996-05-14 Racom Systems, Inc. Passive RF transponder and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2019054B (en) * 1978-01-25 1982-04-21 Helsby N C Portable timecode receiver clock
AU564509B2 (en) * 1984-10-09 1987-08-13 X-Cyte Inc. Phase-encoded transponder interrogation
DE69728797T2 (de) * 1996-01-03 2005-04-14 Texas Instruments Deutschland Gmbh Identifizierungssystem
KR100427854B1 (ko) * 1998-10-22 2004-04-28 인피니언 테크놀로지스 아게 주파수 안정화된 송/수신 회로
US6801583B1 (en) * 2000-06-28 2004-10-05 Northrop Grumman Corporation Multi-carrier receiver including an analog-to-digital converter for a wireless telecommunication system
WO2003058834A1 (en) * 2002-01-11 2003-07-17 Koninklijke Philips Electronics N.V. Method for providing clock signals to transceiver chip and transceiver chip
DE10210037A1 (de) * 2002-03-07 2003-10-02 Siemens Ag Aktiver Backscatter-Transponder, Kommunikationssystem mit einem solchen und Verfahren zum Übertragen von Daten mit einem solchen aktiven Backscatter-Transponder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517194A (en) * 1994-02-10 1996-05-14 Racom Systems, Inc. Passive RF transponder and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2005101676A1 *

Also Published As

Publication number Publication date
WO2005101676A1 (de) 2005-10-27
DE102004043635A1 (de) 2005-10-20
DE112005000380D2 (de) 2006-11-02
FR2868625A1 (fr) 2005-10-07

Similar Documents

Publication Publication Date Title
EP1587716B1 (de) Sende-/ empfangseinrichtung für eine an ein kommunikations-netzwerk angeschlossene komponente eines kraftfahrzeugs
DE69936309T2 (de) Verfahren und vorrichtung zur verfügungstellung von stabiler synchronisation in radiosendern
DE3216666A1 (de) Verfahren und einrichtungen zum uebertragen digitaler daten mit hoher bitgeschwindigkeit in netzleitungs-kommunikationsmedien mit hohem harmonischem rauschgehalt
WO2018149459A1 (de) Kompensator, elektronische schaltungsanordnung zum betreiben einer antenne und antennenvorrichtung
DE3231123A1 (de) Empfaenger fuer stereofone rundfunksignale
DE19528702A1 (de) Vorrichtung zur Taktwiederherstellung, Empfänger und Übertragungsvorrichtung, die sie als Bestandteil enthalten, und von ihnen benutztes Hochfrequenzsignal
DE3016118A1 (de) Rauschunterdrueckungseinrichtung in einem fm-empfaenger
DE10164200B4 (de) Datenempfänger zum Ungültigsetzen fehlerhafter Impulse
DE10304081B4 (de) Zugangssystem für ein Kraftfahrzeug
DE3902826A1 (de) Anordnung zur rueckgewinnung der phasenverriegelung fuer eine schaltung mit einem phasenregelkreis
DE4024593A1 (de) Verfahren und vorrichtung zur demodulation eines biphasenmodulierten signals
EP1801738A1 (de) Transponder und Verfahren zum Betreiben eines Transponders
EP1743434A1 (de) Verfahren und einrichtung zur demodulation
EP4052425A1 (de) Verfahren, modem und netzwerk zur kommunikation zwischen geräten eines fahrzeugs
DE3311878A1 (de) Vorrichtung zum empfang von sendewellen
DE102008033355A1 (de) Empfangsvorrichtung
DE102007000096B4 (de) Empfangsschaltung und Empfangsverfahren
WO1989011184A1 (en) Reception process and antenna system for mobile reception
DE102011084049A1 (de) Sender zum Wecken von elektronischen Systemen, Empfänger, Luft- und Raumfahrzeug und Verfahren
DE10101196A1 (de) Interfaceschaltung und Verfahren für Digitalsignale
DE10300267B4 (de) Demodulation eines frequenzmodulierten Empfangssignals durch Abbilden der Nulldurchgänge auf eine Folge von Parameterwerten
EP0644438A2 (de) Radargerät
DE112008000084B4 (de) Anordnung und Verfahren zur Rückgewinnung eines Trägersignals und Demodulationseinrichtung
EP1147952B1 (de) Verfahren und Vorrichtung zur Überprüfung, ob eine Anforderung zur Freigabe einer Funktion einer Einrichtung berechtigt ist
DE4446639B4 (de) Verfahren zur Gewinnung einer Schätzung von Trägerfrequenz und Trägerphase eines nach einem kohärenten mehrstufigen Modulationsverfahren modulierten Funksignals zu dessen Demodulation in einem Empfänger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20070308

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DONAUBAUER, JUERGEN

Inventor name: KRAMMEL, KARL

Inventor name: KUFNER, BERNHARD

Inventor name: FLEISCHER, THOMAS

Inventor name: HAHN, KARL-HEINZ

Inventor name: LIESAUS, FRANK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080220