EP1743349B1 - Mems mit niedriger betätigungsspannung und niedriger leistungsaufnahme - Google Patents

Mems mit niedriger betätigungsspannung und niedriger leistungsaufnahme Download PDF

Info

Publication number
EP1743349B1
EP1743349B1 EP05751606.4A EP05751606A EP1743349B1 EP 1743349 B1 EP1743349 B1 EP 1743349B1 EP 05751606 A EP05751606 A EP 05751606A EP 1743349 B1 EP1743349 B1 EP 1743349B1
Authority
EP
European Patent Office
Prior art keywords
microswitch
membrane
substrate
flexure arms
branches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05751606.4A
Other languages
English (en)
French (fr)
Other versions
EP1743349A2 (de
Inventor
Philippe Robert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1743349A2 publication Critical patent/EP1743349A2/de
Application granted granted Critical
Publication of EP1743349B1 publication Critical patent/EP1743349B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0063Switches making use of microelectromechanical systems [MEMS] having electrostatic latches, i.e. the activated position is kept by electrostatic forces other than the activation force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0084Switches making use of microelectromechanical systems [MEMS] with perpendicular movement of the movable contact relative to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/01Details
    • H01H61/0107Details making use of shape memory materials

Definitions

  • Microswitches are widely used, particularly in the field of telecommunications for signal routing, impedance matching networks, amplifier gain adjustment, etc.
  • the frequency bands of the signals to be switched can range from a few MHz to several tens of GHz.
  • micro-switches derived from microelectronics and used for radiofrequency circuits allow integration with electronics circuits and have a low manufacturing cost. However, their performance is limited.
  • silicon-based field effect transistor (FET) microswitches can switch high-power signals only at low frequencies.
  • MESFET Metal Semiconductor Field Effect Transistor
  • GaAs gallium arsenide
  • FET field effect transistor
  • all these microswitches have a significant loss of insertion in the on state, around 1 dB at 2 dB, and a relatively weak insulation in the open state, the order of -20dB to -25dB.
  • microswitches type MEMS Micro Electro Mechanical System
  • MEMS Micro Electro Mechanical System
  • Microswitches with electrostatic actuation have the advantage of having a high switching speed and a relatively simple technology. However, they have problems of reliability, especially because of an increased risk of sticking the structure of the microswitch, and they allow only small displacements.
  • the microswitches with thermal actuation have the advantage of having a low operating voltage (less than 5V), a high energy density and a high amplitude of deflection, but they encounter problems of excessive consumption and have a low switching speed.
  • a microswitch 1 conventionally comprises a membrane or a deformable beam 2, attached to a substrate 3 by its two ends.
  • Actuating means 4 allow, from a first stable position represented figure 1 , deforming the beam 2, so as to establish, in a second stable position represented figure 3 , an electrical contact between a first conductive pad 5, formed on the substrate 3 and a second conductive pad 6, integral with a lower face of the beam 2.
  • the actuating means 4 comprise, for example, thermal actuators 7 cooperating with heating resistors 8, inserted in the ends of the beam 2.
  • the microswitch 1 also comprises complementary electrostatic holding members 9, respectively integral with the beam 2 and the substrate 3. The electrostatic holding members 9 are intended to maintain the microswitch 1 in the second stable position ( figure 3 ).
  • the switching of the microswitch 1 is shown in Figures 1 to 3 .
  • the beam 2 is in its first stable position.
  • the actuating means 4 and the electrostatic holding members 9 are not solicited.
  • the temperature variation generated by the thermal actuator 7, represented by the waves and the arrows 10 causes the deformation of the beam 2.
  • the conductive pad 6 of the beam 2 then enters into contact with the conductive pad 5 of the substrate 3 to establish an electrical contact.
  • electrostatic forces 11 between the electrostatic holding members 9 are then generated to maintain the beam 2 in this stable position.
  • the thermal actuation is interrupted and the stable position is then retained by the electrostatic forces 11.
  • the electrostatic hold is interrupted, that is to say when the electrostatic forces 11 are deactivated, the beam 2 returns to its non-deformed state, that is to say in the first stable position represented figure 1 , and the electrical contact is interrupted.
  • the central zone 16 represented in dark gray, illustrates the zone of greatest deformation of the beam 2, namely the location of the conductive pad 6 and the contact zone of the beam 2 with the substrate 3.
  • the intermediate zones 17 and 18 represent the zones of the beam 2 biased by the electrostatic holding members 9.
  • the end zones 19, represented in light gray, comprise the thermal actuation means 4 and correspond to the parts of the beam 2 which do not deform, or virtually no.
  • the holding electrodes 9 are connected to the beam 2, they deform like the beam 2.
  • the zone with a small gap, namely the height between the electrostatic holding members 9 of the beam 2 and the substrate 3 in the second stable position ( figure 3 ) is reduced laterally.
  • the reduction of the holding voltage is consequently limited, in particular with respect to a simple electrostatic actuation.
  • the deformation of the electrostatic holding members 9, linked to the beam 2 can cause reliability problems of the microswitch 1.
  • the object of the invention is to remedy these drawbacks and is intended to provide a reliable microswitch with a low operating voltage and low power consumption.
  • a deformable diaphragm 12 of a microswitch 1 with thermal actuation and electrostatic hold comprises two bending branches 13, substantially parallel and having, at their ends, the thermal actuation means 4 of the microswitch 1.
  • the diaphragm 12 comprises, between the bending branches 13, a contact branch 14, substantially parallel to the bending branches 13 and preferably comprising two electrostatic holding electrodes 15 arranged with on either side of the conductive pad 6 of the membrane 12.
  • the bending branches 13 consist of bimetals, which have good deformation characteristics under the effect of a temperature variation.
  • the thermal actuation means 4 are constituted, for example, by heating resistors inserted in the ends of the flexion branches 13 of the membrane 12.
  • the deformation of the bending branches 13 causes the displacement of the contact branch 14 substantially parallel to the substrate 3 ( figure 7 ), so that the contact branch 14 does not deform, or virtually no, when actuating the microswitch 1.
  • Zones 20 of high deformation of the flexion branches 13, shown in dark gray on the figure 6 are located at the central part of the flexion branches 13.
  • the variation of the gray levels illustrates a more or less significant deformation of the flexion branches 13.
  • the end zones 21 of the flexion branches 13, represented in light gray, are the zones associated with the thermal actuation of the microswitch 1, namely areas of low deformation.
  • the contact branch 14 is connected to the flexion branches 13 at their zones 20 of high deformation, namely at their central portions.
  • the electrostatic holding electrodes 15, located on this contact branch 14, therefore move substantially parallel to the substrate 3 and do not deform, or virtually no, when actuating the microswitch 1 by thermal effect.
  • the bending branches 13 are attached to projecting flanges of the substrate 3 at both ends.
  • the conductive pad 6, integral with the contact branch 14 of the membrane 12 is in contact with the conductive pad 5 of the substrate 3.
  • the contact branch 14 is substantially parallel to the substrate 3 and the electrostatic holding electrodes 15, not deformed, are arranged at a very short distance facing the electrostatic holding members 9 of the substrate 3, complementary to the electrodes 15, so as to maintain the membrane 12 in this position stable.
  • the contact leg 14 can be lowered until it comes into contact with the electrostatic holding members 9.
  • a dielectric layer (not shown) is then required between the contact branch 14 and the electrostatic holding members 9, in order to isolate the branch 14 from the members 9.
  • the electrostatic forces generated in the small gap between the contact leg 14 and the electrostatic holding members 9 of the substrate 3 cause the membrane 12 of the microswitch 1 to be held in this position.
  • the electrodes 15 do not deform, or virtually no, which results in an improvement in the reliability of the microswitch 1.
  • each bending branch 13 thus has a first end integral with the substrate 3 (no shown) and a second end integral with the contact arm 14.
  • the end of each bending branch 13 integral with the substrate 3 comprises the thermal actuation means 4, for example, heating resistors.
  • the contact branch 14, arranged between the two bending branches 13, may comprise only one electrostatic holding electrode 15, the conductive pad 6 of the membrane 12 then being arranged on the side of the contact branch 14.
  • the zones 20 of strong deformation of the flexion branches 13 of the membrane 12 are the two ends integral with the contact branch 14.
  • the two adjacent flexion branches 13 are thus connected to the contact branch 14 in an opposite manner, that is to say that the first end of a bending branch 13 is integral with the substrate 3, while its second end is integral with a first end of the contact branch 14.
  • the first end of the flexion branch 13 adjacent to the first is then secured to the second end of the contact branch 14, while the second end of the flexion branch 13 adjacent to the first is secured to the substrate 3.
  • the deformation of the membrane 12, shown figure 9 illustrates this fixation "in opposition" of the bending branches 13, with the contact branch 14 moving substantially parallel to the substrate 3.
  • the zones 20 of strong deformation, represented in dark gray, are therefore the ends of the bending branches 13 integral with the contact branch 14, while the zones 21 of small deformation, represented in light gray, are the ends of the flexion branches 13 attached to the substrate 3 and comprise the thermal actuation means 4.
  • the substrate 3 (not shown for this embodiment) is then shaped so as to cooperate with the membrane 12. It comprises a conductive pad 5, facing the conductive pad 6 of the contact branch 14, and the holding members 9 electrostatic, facing the electrode 15 of the contact branch 14.
  • Such a deformable membrane 12 according to the Figures 8 and 9 allows to obtain a more compact microswitch 1.
  • the switching of the microswitch 1 is as follows.
  • the membrane 12 In the first stable position of the microswitch 1, the membrane 12 is substantially horizontal and parallel to the substrate 3, to which it is attached by the projecting flanges of the substrate 3.
  • the bimetals of the flexion branches 13 are urged, for example, by the passage a current in the heating resistors.
  • the actuation of the flexion branches 13 causes the membrane 12 of the microswitch 1 to deflect to the vicinity or to the contact between the conductive pads 5 and 6.
  • a potential difference is then applied between the electrostatic holding electrodes 15 arranged on the lower surface of the contact branch 14, and the complementary members 9, made on the substrate 3.
  • the microswitch 1 remains in its second stable position ( Figures 6, 7 and 9 ).
  • the potential difference applied between the electrodes 15 and the electrostatic holding members 9 is canceled, which causes the membrane 12 to rise to its initial position, that is to say the first stable position.
  • the microswitch 1, comprising a membrane 12 according to the figures 5 and 8 is carried out according to known techniques of microelectronics.
  • the materials used for the manufacture of the microswitch 1 are silicon oxide (SiO 2 ) or silicon nitride (Si x N y ) for the substrate 3, aluminum (Al) for the actuator of the thermal bimetallic, titanium nitride (TiN) for the heating resistor, titanium (Ti), aluminum (Al) or an alloy of chromium and gold (Cr / Au) for the electrodes 15 and the 9 electrostatic holding members, gold (Au) or platinum (Pt) for the conductive pads 5 and 6.
  • the contact leg 14 carrying the electrostatic holding electrodes 15 is preferably elongate.
  • the contact branch 14 has a length greater than half the length of the flexion branches 13.
  • the contact branch 14 has a length close to the length of the bending branches 13. This results in a significant gain of space, because it is possible to achieve a very reliable microswitch 1, low consumption and with dimensions that can be less than 100 ⁇ m 2 .
  • microswitch 1 provides, in particular, the following advantages, namely a low operating voltage and electrostatic hold, of the order of 5V, a low consumption, a conservation of all the advantages of bimetallic actuation (high deflection amplitude, high energy density, low operating voltage) and a technological achievement compatible with integrated circuit technology.
  • the microswitch 1 having two stable positions, the first position in which the electrical contact is interrupted and the second position in which the electrical contact is established, only the passage from one position to the other consumes energy and the microswitch 1 can, after actuation, remain in the first stable position without additional energy supply and in the second position stable with a supply of energy (holding voltage) very limited due to the proximity of the electrodes 15 and electrostatic holding members 9 in this position.
  • the invention is not limited to the embodiments described above.
  • the actuating means 4 of the microswitch 1 may in particular comprise a piezoelectric actuator.
  • the bending branches 13 then comprise at least one layer of piezoelectric material. They may optionally consist of SiN bimetals / piezoelectric layer and are provided with excitation electrodes on their upper and lower faces.
  • a voltage is then applied to the piezoelectric layer of the bending branches 13, to cause the deformation of the bending branches 13.
  • the materials used for producing the actuator piezoelectric are titanium lead zirconate (PZT), aluminum nitride (AIN) or zinc oxide (ZnO).
  • the membrane 12 may comprise bending arms 13, contact legs 14, electrodes 15 and additional conductive pads 6, the electrodes 15 and the conductive pads 6 being always arranged on the contact legs 14. case of a membrane 12 according to the figure 8 with additional bending legs 13, the contact legs 14 are then fixed in the same way to the adjacent bending branches 13, with the ends of the bending branches 13 fixed "in opposition".
  • Preferred applications for the microswitch 1 are, in general, all applications using microswitches in the fields of electronics and microelectronics, and more particularly the radio frequency applications, namely the antenna microswitches, the transmitters / receivers. , tape microswitches, etc.

Landscapes

  • Micromachines (AREA)
  • Thermally Actuated Switches (AREA)

Claims (8)

  1. Mikroschalter (1), umfassend:
    - eine verformbare Membran (12), die an einem Substrat (3) befestigt ist,
    - Betätigungsmittel (4), die dazu bestimmt sind, die Membran (12) aus einer ersten stabilen Position des Mikroschalters (1) derart zu verformen, dass in einer zweiten stabilen Position ein elektrischer Kontakt zwischen wenigstens einem auf dem Substrat (3) gebildeten ersten leitenden Plättchen (5) und wenigstens einem auf einer Unterseite der Membran (12) gebildeten zweiten leitenden Plättchen (6) hergestellt wird, und
    - Mittel zum elektrostatischen Halten, die dazu bestimmt sind, den Mikroschalter (1) in der zweiten stabilen Position zu halten, und die komplementäre Organe (15, 9) zum elektrostatischen Halten umfassen, welche mit der Membran (12) bzw. mit dem Substrat (3) fest verbunden sind, und
    dadurch gekennzeichnet, dass die Membran (12) wenigstens umfasst:
    - zwei langgestreckte, im Wesentlichen parallele Biegeschenkel (13) mit getrennten Achsen, die über wenigstens eines ihrer Enden an dem Substrat (3) befestigt sind und die die Betätigungsmittel (4) umfassen, und
    - wenigstens einen langgestreckten Kontaktschenkel (14) mit einer zu den Biegeschenkeln (13) im Wesentlichen parallelen Achse, der zwischen den Biegeschenkeln (13) angeordnet und in Höhe von stark verformten Bereichen (20) der Biegeschenkel (13) an den Biegeschenkeln (13) befestigt ist, wobei der Kontaktschenkel (14) sich bei Betätigung des Mikroschalters (1) im Wesentlichen parallel zu dem Substrat (3) bewegt und die Organe (15) zum elektrostatischen Halten der Membran (12) und das zweite leitende Plättchen (6) umfasst.
  2. Mikroschalter nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Enden der Biegeschenkel (13) mit dem Substrat (3) fest verbunden sind, wobei der Kontaktschenkel (14) über seinen mittleren Teil mit den Biegeschenkeln (13) im Bereich ihrer jeweiligen mittleren Teile verbunden ist.
  3. Mikroschalter nach Anspruch 1, dadurch gekennzeichnet, dass jeder Biegeschenkel (13) ein erstes Ende, das mit dem Substrat (3) fest verbunden ist, und ein zweites Ende, das mit dem Kontaktschenkel (14) fest verbunden ist, umfasst, wobei die zweiten Enden von zwei benachbarten Biegeschenkeln (13) jeweils mit gegenüberliegenden Enden des entsprechenden Kontaktschenkels (14) verbunden sind.
  4. Mikroschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Betätigungsmittel (4) des Mikroschalters (1) einen thermischen Aktor (7) umfassen.
  5. Mikroschalter nach Anspruch 4, dadurch gekennzeichnet, dass der thermische Aktor (7) einen Heizwiderstand (8) umfasst, der in wenigstens ein Ende der Biegeschenkel (13) eingefügt ist.
  6. Mikroschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Betätigungsmittel (4) des Mikroschalters (1) einen Piezoaktor umfassen.
  7. Mikroschalter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Biegeschenkel (13) Bimetallelemente sind.
  8. Mikroschalter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Organe zum elektrostatischen Halten der Membran (12) wenigstens eine Elektrode (15) umfassen.
EP05751606.4A 2004-04-06 2005-04-04 Mems mit niedriger betätigungsspannung und niedriger leistungsaufnahme Active EP1743349B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403586A FR2868591B1 (fr) 2004-04-06 2004-04-06 Microcommutateur a faible tension d'actionnement et faible consommation
PCT/FR2005/000815 WO2005101434A2 (fr) 2004-04-06 2005-04-04 Microcommutateur a faible tension d’actionnement et faible consommation

Publications (2)

Publication Number Publication Date
EP1743349A2 EP1743349A2 (de) 2007-01-17
EP1743349B1 true EP1743349B1 (de) 2013-10-09

Family

ID=34944406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05751606.4A Active EP1743349B1 (de) 2004-04-06 2005-04-04 Mems mit niedriger betätigungsspannung und niedriger leistungsaufnahme

Country Status (4)

Country Link
US (1) US7782170B2 (de)
EP (1) EP1743349B1 (de)
FR (1) FR2868591B1 (de)
WO (1) WO2005101434A2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713154B1 (ko) * 2005-12-15 2007-05-02 삼성전자주식회사 공압식 rf mems 스위치 및 그 제조 방법
JP2010500711A (ja) * 2006-08-09 2010-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 自動ロック式微小電気機械素子
US8154378B2 (en) * 2007-08-10 2012-04-10 Alcatel Lucent Thermal actuator for a MEMS-based relay switch
JP5081038B2 (ja) * 2008-03-31 2012-11-21 パナソニック株式会社 Memsスイッチおよびその製造方法
JP5176148B2 (ja) * 2008-10-31 2013-04-03 富士通株式会社 スイッチング素子および通信機器
US8779886B2 (en) * 2009-11-30 2014-07-15 General Electric Company Switch structures
NL2003681C2 (en) * 2009-10-21 2011-04-26 Stichting Materials Innovation Inst M2I Micro electromechanical switch and method of manufacturing such a micro electromechanical switch.
FR2951873B1 (fr) * 2009-10-26 2011-12-09 St Microelectronics Crolles 2 Dispositif de conversion d'energie thermique en electricite
KR102005808B1 (ko) * 2011-09-02 2019-07-31 카벤디시 키네틱스, 인크. Mems 장치용으로 병합된 레그 및 반가요성 고정장치
US10439591B2 (en) * 2015-11-12 2019-10-08 LGS Innovations LLC MEMS device with large out-of-plane actuation and low-resistance interconnect and methods of use
WO2020239930A1 (de) * 2019-05-28 2020-12-03 B&R Industrial Automation GmbH Transporteinrichtung

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423401A (en) * 1982-07-21 1983-12-27 Tektronix, Inc. Thin-film electrothermal device
DE3814150A1 (de) * 1988-04-27 1989-11-09 Draegerwerk Ag Ventilanordnung aus mikrostrukturierten komponenten
US5065978A (en) * 1988-04-27 1991-11-19 Dragerwerk Aktiengesellschaft Valve arrangement of microstructured components
US5058856A (en) * 1991-05-08 1991-10-22 Hewlett-Packard Company Thermally-actuated microminiature valve
DE4437261C1 (de) * 1994-10-18 1995-10-19 Siemens Ag Mikromechanisches elektrostatisches Relais
DE4437260C1 (de) * 1994-10-18 1995-10-19 Siemens Ag Mikromechanisches Relais
US5796152A (en) * 1997-01-24 1998-08-18 Roxburgh Ltd. Cantilevered microstructure
US5905241A (en) * 1997-05-30 1999-05-18 Hyundai Motor Company Threshold microswitch and a manufacturing method thereof
US6091050A (en) * 1997-11-17 2000-07-18 Roxburgh Limited Thermal microplatform
US6115231A (en) * 1997-11-25 2000-09-05 Tdk Corporation Electrostatic relay
FR2772512B1 (fr) * 1997-12-16 2004-04-16 Commissariat Energie Atomique Microsysteme a element deformable sous l'effet d'un actionneur thermique
US6100477A (en) * 1998-07-17 2000-08-08 Texas Instruments Incorporated Recessed etch RF micro-electro-mechanical switch
US6153839A (en) * 1998-10-22 2000-11-28 Northeastern University Micromechanical switching devices
US6236300B1 (en) * 1999-03-26 2001-05-22 R. Sjhon Minners Bistable micro-switch and method of manufacturing the same
JP2001076605A (ja) * 1999-07-01 2001-03-23 Advantest Corp 集積型マイクロスイッチおよびその製造方法
US6307452B1 (en) * 1999-09-16 2001-10-23 Motorola, Inc. Folded spring based micro electromechanical (MEM) RF switch
US6239685B1 (en) * 1999-10-14 2001-05-29 International Business Machines Corporation Bistable micromechanical switches
US6310339B1 (en) * 1999-10-28 2001-10-30 Hrl Laboratories, Llc Optically controlled MEM switches
US6396368B1 (en) * 1999-11-10 2002-05-28 Hrl Laboratories, Llc CMOS-compatible MEM switches and method of making
US6307169B1 (en) * 2000-02-01 2001-10-23 Motorola Inc. Micro-electromechanical switch
US6376787B1 (en) * 2000-08-24 2002-04-23 Texas Instruments Incorporated Microelectromechanical switch with fixed metal electrode/dielectric interface with a protective cap layer
JP2002075156A (ja) * 2000-09-01 2002-03-15 Nec Corp マイクロスイッチおよびその製造方法
US6483419B1 (en) * 2000-09-12 2002-11-19 3M Innovative Properties Company Combination horizontal and vertical thermal actuator
US6531947B1 (en) * 2000-09-12 2003-03-11 3M Innovative Properties Company Direct acting vertical thermal actuator with controlled bending
US6489857B2 (en) * 2000-11-30 2002-12-03 International Business Machines Corporation Multiposition micro electromechanical switch
FR2818795B1 (fr) * 2000-12-27 2003-12-05 Commissariat Energie Atomique Micro-dispositif a actionneur thermique
US6621387B1 (en) * 2001-02-23 2003-09-16 Analatom Incorporated Micro-electro-mechanical systems switch
KR100738064B1 (ko) * 2001-02-27 2007-07-12 삼성전자주식회사 비선형적 복원력의 스프링을 가지는 mems 소자
US6768403B2 (en) * 2002-03-12 2004-07-27 Hrl Laboratories, Llc Torsion spring for electro-mechanical switches and a cantilever-type RF micro-electromechanical switch incorporating the torsion spring
US6506989B2 (en) * 2001-03-20 2003-01-14 Board Of Supervisors Of Louisana State University And Agricultural And Mechanical College Micro power switch
SE0101182D0 (sv) * 2001-04-02 2001-04-02 Ericsson Telefon Ab L M Micro electromechanical switches
US6635837B2 (en) * 2001-04-26 2003-10-21 Adc Telecommunications, Inc. MEMS micro-relay with coupled electrostatic and electromagnetic actuation
US6803534B1 (en) * 2001-05-25 2004-10-12 Raytheon Company Membrane for micro-electro-mechanical switch, and methods of making and using it
EP1419511B1 (de) * 2001-08-20 2006-06-28 Honeywell International Inc. Thermischer schnappschalter
US6787438B1 (en) * 2001-10-16 2004-09-07 Teravieta Technologies, Inc. Device having one or more contact structures interposed between a pair of electrodes
US6919784B2 (en) * 2001-10-18 2005-07-19 The Board Of Trustees Of The University Of Illinois High cycle MEMS device
FR2831705B1 (fr) * 2001-10-25 2004-08-27 Commissariat Energie Atomique Micro-condensateur variable a fort rapport et faible tension d'actionnement
JP4045090B2 (ja) * 2001-11-06 2008-02-13 オムロン株式会社 静電アクチュエータの調整方法
CN100550429C (zh) * 2001-11-09 2009-10-14 图恩斯通系统公司 具有触头和支座凸块的mems器件及其相关方法
EP1321957A1 (de) * 2001-12-19 2003-06-25 Abb Research Ltd. Mikrorelaiseinrichtung mit geschlitzter Membrane
US6791441B2 (en) * 2002-05-07 2004-09-14 Raytheon Company Micro-electro-mechanical switch, and methods of making and using it
US6924966B2 (en) * 2002-05-29 2005-08-02 Superconductor Technologies, Inc. Spring loaded bi-stable MEMS switch
US6794101B2 (en) * 2002-05-31 2004-09-21 Motorola, Inc. Micro-electro-mechanical device and method of making
US6657525B1 (en) * 2002-05-31 2003-12-02 Northrop Grumman Corporation Microelectromechanical RF switch
US7053736B2 (en) * 2002-09-30 2006-05-30 Teravicta Technologies, Inc. Microelectromechanical device having an active opening switch
WO2004047133A2 (en) * 2002-11-18 2004-06-03 Washington State University Research Foundation Thermal switch, methods of use and manufacturing methods for same
FR2848020B1 (fr) * 2002-11-28 2005-01-07 Commissariat Energie Atomique Micro-commutateur electrostatique pour composants a faible tension d'actionnement
US7084724B2 (en) * 2002-12-31 2006-08-01 The Regents Of The University Of California MEMS fabrication on a laminated substrate
FR2865724A1 (fr) * 2004-02-04 2005-08-05 St Microelectronics Sa Microsysteme electromecanique pouvant basculer entre deux positions stables
US7352266B2 (en) * 2004-02-20 2008-04-01 Wireless Mems, Inc. Head electrode region for a reliable metal-to-metal contact micro-relay MEMS switch
US7362199B2 (en) * 2004-03-31 2008-04-22 Intel Corporation Collapsible contact switch
US7372348B2 (en) * 2004-08-20 2008-05-13 Palo Alto Research Center Incorporated Stressed material and shape memory material MEMS devices and methods for manufacturing
US7230513B2 (en) * 2004-11-20 2007-06-12 Wireless Mems, Inc. Planarized structure for a reliable metal-to-metal contact micro-relay MEMS switch
JP2006179252A (ja) * 2004-12-21 2006-07-06 Fujitsu Component Ltd スイッチデバイス
KR100633101B1 (ko) * 2005-07-27 2006-10-12 삼성전자주식회사 비대칭 스프링 강성을 갖는 rf 멤스 스위치

Also Published As

Publication number Publication date
FR2868591A1 (fr) 2005-10-07
EP1743349A2 (de) 2007-01-17
US20070215447A1 (en) 2007-09-20
WO2005101434A3 (fr) 2006-01-12
WO2005101434A2 (fr) 2005-10-27
US7782170B2 (en) 2010-08-24
FR2868591B1 (fr) 2006-06-09

Similar Documents

Publication Publication Date Title
EP1743349B1 (de) Mems mit niedriger betätigungsspannung und niedriger leistungsaufnahme
FR2857153A1 (fr) Micro-commutateur bistable a faible consommation.
CH691559A5 (fr) Micro-contacteur magnétique et son procédé de fabrication.
EP0688033A1 (de) Magnetischer Mikroschalter und sein Herstellungsverfahren
EP3465724B1 (de) Mems-membran mit integrierter übertragungsleitung
EP1562207A1 (de) Mikroelektromechanisches System mit zwei stabilen Kipplagen
EP1286465A1 (de) Mikroelektromechanisches Bauelement
FR2625368A1 (fr) Circuit integre monolithique micro-onde et procede de fabrication correspondant
EP3577683A1 (de) Struktur für funkfrequenzanwendungen
EP1543535B1 (de) Herstellungsverfahren eines elektrostatisch betriebenen mikroschalters mit kurzer antwortzeit und leistungsumschaltung
EP1468960B1 (de) Stimmbarer Mikroresonator auf isolierendem und mittels Bimetall - Effekt verbiegbarem Träger
EP1717830B1 (de) Elektromechanischer Micro-Kondensator mit variabler Kapazität und Verfahren zur Herstellung eines solchen Kondensators
EP1565921B1 (de) Mikromechanischer elektrostatischer schalter mit niedriger betätigungsspannung
EP0874379B1 (de) Magnetischer Mikroschalter und Herstellungsverfahren
WO2005057148A1 (fr) Dispositif de mesure d'energie rayonnante ameliore a deux positions.
EP2323142B1 (de) Vorrichtung zur Veränderung eines Merkmals eines elektrischen Signals
EP2673816B1 (de) Mikroelektromechanische vorrichtung mit piezoelektrischer betätigungsstruktur
FR2536211A1 (fr) Structure de diode hyperfrequences dont les connexions exterieures sont prises par deux poutres metalliques
Pranonsatit et al. Rotary RF MEMS switch based on the wobble motor principle
FR2946036A1 (fr) Procede d'integration de micro-interrupteurs de type mems sur des substrats en gan comportant des composants electroniques de puissance
WO2024133569A1 (fr) Composant de connexion radiofrequence supraconducteur
FR3143256A1 (fr) Elément actif piézoélectrique pour système électromécanique
FR3022691A1 (fr) Dispositif capacitif commandable integre
EP1126479B1 (de) Hochspannungswiderstand, speziell zur Strombegrenzung in Wanderwellen-HF-Sende-Röhren
EP3542401A1 (de) Elektronisches bauteil mit einem heteroübergang mit hoher elektronenmobilität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060926

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROBERT, PHILIPPE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20091104

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130612

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROBERT, PHILIPPE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 635855

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005041454

Country of ref document: DE

Effective date: 20131205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 635855

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131009

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140209

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005041454

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

26N No opposition filed

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005041454

Country of ref document: DE

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140404

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140404

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050404

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 19

Ref country code: DE

Payment date: 20230418

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230421

Year of fee payment: 19