EP1735252A2 - Liant hydraulique - Google Patents

Liant hydraulique

Info

Publication number
EP1735252A2
EP1735252A2 EP05731153A EP05731153A EP1735252A2 EP 1735252 A2 EP1735252 A2 EP 1735252A2 EP 05731153 A EP05731153 A EP 05731153A EP 05731153 A EP05731153 A EP 05731153A EP 1735252 A2 EP1735252 A2 EP 1735252A2
Authority
EP
European Patent Office
Prior art keywords
alkali
weight
hydraulic binder
amounts
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05731153A
Other languages
German (de)
English (en)
Other versions
EP1735252B1 (fr
Inventor
Suz-Chung Ko
Peter Kruspan
Juraj Gebauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holcim Technology Ltd
Original Assignee
Holcim Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holcim Ltd filed Critical Holcim Ltd
Priority to PL05731153T priority Critical patent/PL1735252T3/pl
Publication of EP1735252A2 publication Critical patent/EP1735252A2/fr
Application granted granted Critical
Publication of EP1735252B1 publication Critical patent/EP1735252B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • C04B7/21Mixtures thereof with other inorganic cementitious materials or other activators with calcium sulfate containing activators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the invention relates to an alkali-activated hydraulic binder containing slags and aluminum silicates.
  • supersulfated cinder-cement is based on the addition of calcium sulfate to the cement.
  • supersulfated cement is defined as a mixture of at least 75% by weight crushed granulated blast furnace slag, large additions of calcium sulfate (> 5% by weight SO3) and at most 5% by weight slaked lime, Portland cement clinker or Portland cement.
  • the granulated slag according to the German standard must have at least 13% by weight.
  • AI2O3 and the formula (CaO + MgO + Al2 ⁇ 3) / Si ⁇ 2> 1.6 correspond.
  • an amount of 15 to 20% clay slag with a minimum modulus of (CaO + CaS + 0.5 MgO + Al 2 O 3) / (SiO 2 + MnO)> 1.8 is preferred.
  • the CaO / SiO 2 ratio must be between 1.45 and 1.54 and the Al 2 O 3 / SiO 2 ratio between 1.8 and 1.9.
  • Lime, clinker or cement is added to increase the pH in the cement paste and to facilitate the solubility of clay soil in the liquid phase during the hydration of the cement.
  • the hardening of supersulphated metallurgical cement can be carried out without chemical additives or a special shaping treatment.
  • US 5 626 665 discloses a mixed puzzolan for use with Portland cement for the preparation of a cementitious system.
  • the mixed pozzolan contains calcined clay and at least one member selected from the group consisting of about 2% to about 30% gypsum, about 0% to about 25% hydrated furnace dust, about 0% to about 20% hydrated lime, about 0% to about 20% % hydrated lime kiln dust, from about 0% to about 50% fly ash and from about 0% to about 5% organic plasticizer; gate.
  • the burnt lime is present in sufficient quantities to give a mixed pozzolan with a final sum weight of 100%.
  • the mixed pozzolan is mixed with the Portland cement in a weight ratio of about 1:20 to about 1: 1, preferably about 1: 2 to about 1: 3.
  • the basicity of the hydrated calcium aluminates and the insolubility of the aluminas contained in the aluminates depend on the concentration of lime in the liquid phase of the cement during hydration, irrespective of whether the hydrated calcium aluminates are present in the hardened cement in crystalline or amorphous form.
  • concentration of lime in the liquid phase determines the type of influence of the calcium sulfate on the setting time of the cement and the maximum amount of calcium sulphate that the cement can contain, without causing internal disintegration due to delayed ettringite formation.
  • the initial setting and curing of supersulfated cement goes hand in hand with the formation of the high sulfate form of calcium sulfoaluminate from the slag components and the added calcium sulfate.
  • the addition of Portland cement to cement is necessary to establish the proper alkalinity to allow the formation of ettringite.
  • the most important hydration products are the mono- and trisulfoaluminate-topmorite-like phase and alumina.
  • Supersulfated cement combines with hydration with more water than Portland cement. It meets all standard requirements of cement with regard to grinding fineness. It is considered as low calorific cement. Like any other Portland or slag cement, it can be used in the form of concrete, plaster or joint mortar. The conditions to consider when using supersulphated cement are the same as those used in the selection, mixing and application of other cements.
  • Alkali activated aluminosilicate binders are cementitious materials formed by reacting fine silica and alumina solids with an alkali or alkali salt solution to produce gels and crystalline compounds.
  • Alkali activation technology was originally developed by Purdon between 1930 and 1940. disgusted who discovered that the addition of alkali to slag provides a fast curing binder.
  • a wide variety of materials can be used as a source of aluminosilicate materials.
  • Various alkali solutions can be used to produce curing reactions (alkali hydroxide, silicate, sulfate and carbonate, etc.). This means that the sources of AAAS binders are almost unlimited.
  • alkali activation a high concentration of OH ions in the mixture acts on the aluminosilicates. While in Portland or supersulfated cement paste, due to the solubility of calcium hydroxide, a pH> 12 is produced, the pH in the AAAS system is above 13.5.
  • the amount of alkali which is generally 2 to 25 wt.% Alkali (> 3% Na 2 O), depends on the alkalinity of the aluminosilicates.
  • AAAS binder The reactivity of an AAAS binder depends on its chemical and mineral composition, the degree of glazing and the fineness of the milling.
  • AAAS binders can begin setting within 15 minutes and provide rapid cure and strong strength gain in the long term. The setting reaction and the hardening process are still not very clear. They proceed with the initial leaching of alkali and the formation of weakly crystalline calciu hydrosilicates of the tobermorite group. Calcium aluminosilicates begin to crystallize to form zeolite-type products and subsequently alkali zeolites.
  • the strength values in the AAAS system are attributed to the strong crystallization contact between zeolites and calcium hydrosilicates.
  • the hydraulic activity is improved by an increase in Alkalidosen.
  • the relationship between Seeing the hydraulic activity and the amount of alkali as well as the presence of zeolite in the hydrated products has shown that alkalis not only act as simple catalysts, but participate in reactions in the same manner as lime and gypsum and due to a strong cationic influence a relatively high strength exhibit.
  • WO 00/00448 already discloses an activated aluminosilicate binder in which cement oven dust was used as the activator for reducing high proportions of soda lye or potassium hydroxide solution and for improving the strength values.
  • Cement kiln dust was hiebei in amounts of 1 to 20 wt. Proposed. The addition of cement kiln dust, however, increases the water requirement and thus increases the risk of shrinkage cracks.
  • the invention now aims to provide an alkali-activated hydraulic binder of the type mentioned, which is characterized by lower calcareous fractions and improved early strength values and a reduced water / cement factor, which ensures a higher resistance and a reduced susceptibility to cracking is.
  • the binder according to the invention essentially consists in that slag, in particular blast furnace slag, in amounts of ⁇ 20 wt.% Of blast furnace slag different aluminum silicates, preferably fly ash and natural aluminum silicates, preferably basalt, clays, marls, andesites or zeolites, in Amounts of from 5 wt.% To 75 wt.% And an alkali activator in an amount corresponding to an a2 ⁇ equivalent defined as (Na2 ⁇ + 0.658 K2 ⁇ ) (ASTM C 150) between 0.7 wt.% And 4 wt.% , Surprisingly, it has now been found that when using the Alkali activator in the specified amounts of the proportion of blast furnace slag can be lowered to up to 20 wt.% And yet corresponding early strength values can be achieved.
  • slag in particular blast furnace slag
  • different aluminum silicates preferably fly ash and natural aluminum silicates, preferably basalt, clays,
  • Such a reduction in a proportion of blast-furnace slag is achieved, in particular, in the preferred aluminosilicates, such as fly ash and natural aluminum silicates, such as basalt, while simultaneously achieving the advantage, with the binder according to the invention, that the proportion of CaO in the mixture can be substantially reduced.
  • the proportion of CaO in the mixture can be substantially reduced.
  • the CO 2 evolution in the production of such a binder is substantially lower and therefore the production becomes more environmentally friendly.
  • the replacement of blast-furnace slag with aluminum silicates simultaneously results in a substantial improvement in the shrinkage behavior at the beginning of the hardening process, reducing the water requirement and reducing the alkali aggregate reactivity. All of these properties result in a particularly durable and durable product.
  • alkali metal hydroxides, silicates, carbonates and / or sulfates of Na and / or K are used according to the invention as alkali activator.
  • limestone and / or quartzes may advantageously be added to the mixture with the proviso that the Al 2 O 3 content of the
  • the shrinkage behavior and thus the higher load resistance can be improved in particular by adding plasticizer and / or superplasticizer in amounts of from 0.1 to 1% by weight, based on the dry substance, to reduce the water / cement ratio, wherein preferably additionally Setting accelerator Portland cement clinker in amounts between 0.1 and 5 wt.% Are used to ensure correspondingly high early strength values can. While the addition of Portland cement clinker usually improves the early strength values, such an additive can be dispensed with if the alkali-activated hydraulic binder according to the invention is subjected to a heat treatment.
  • a binder with high early strength is provided, which is characterized in that the mixture at temperatures below 50 ° C, preferably between 40 ° C and 50 ° C, over 3 hours, preferably 4 to 6 hours, heat treated.
  • heat treated has the consequence that comparable early strength values are achieved after only one day, even if Portland cement clinker is completely eliminated.
  • water glass can be used in a particularly advantageous manner.
  • Table 1 gives three examples of possible compositions of the binder according to the invention and the strength values contained therein.
  • Example 1 2 3 Blast furnace slag% 69 46 23 Fly ash% 23 46 69 Na2Si ⁇ 3-5H2 ⁇ % 6 6 6 KOH% 2 2 2 2 Water / cement Factor 0.34 0.32 0.31 CS 1 day MPa 22.1 21.4 12.3 CS 2 days MPa 28.5 28.1 20.0 CS 28 days MPa 55.9 54.2 37.2
  • Table 2 presents another three embodiments, from which the improvement of the early strength by addition of Portland cement clinker or the temperature treatment results.
  • Example 1 2 3 Blast furnace slag 45.5 43.0 45.5 Basalt% 45.5 43.0 45.5 a2Si ⁇ 3.5H2 ⁇ % 9 9 9 Portland cement clinker% - 5 - Temperature treatment% normal normal 40 ° C (6h) Water / cement factor 0.33 0.32 0.35 CS 1 day MPa 1.3 21.6 20.3 CS 2 days MPa 23.9 30.6 23.8 CS 28 days MPa 51.9 53.4 44.1
  • FIG. 1 shows the improvement of the shrinkage behavior over time by at least partial replacement of the blast furnace slag by fly ash.
  • Figure 2 shows the increasing suppression of alkali-silica reactivity by blast furnace slag replacement by basalt, where OPC means Portland cement clinker and BFS blast furnace slag.
  • ASR refers to the alkali-silica reactivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Ceramic Products (AREA)
  • Manufacture Of Iron (AREA)
  • Paints Or Removers (AREA)

Abstract

Liant hydraulique à activation par des alcalis et contenant des scories et des silicates d'aluminium, qui contient en tant que constituants essentiels du mélange, des scories, en particulier des scories de faut fourneau, dans des quantités = 20 % en poids, des silicates d'aluminium différents des scories de haut fourneau, tels que par ex. des cendres volantes et des silicates d'aluminium naturels tels que le basalte, l'argile, la marne, l'andésite ou la zéolithe, dans des quantités de 5 % en poids à 75 % en poids et un activateur de type alcali dans une quantité correspondant à un équivalent Na2O défini comme (Na2O + 0,658 K2O) (ASTM C 150) de 0,7 % en poids à 4 % en poids, par rapport au poids du mélange total.
EP05731153A 2004-04-05 2005-04-05 Liant hydraulique Active EP1735252B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05731153T PL1735252T3 (pl) 2004-04-05 2005-04-05 Spoiwo hydrauliczne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0059804A AT413535B (de) 2004-04-05 2004-04-05 Hydraulisches bindemittel sowie verfahren zu dessen herstellung
PCT/IB2005/000878 WO2005097701A2 (fr) 2004-04-05 2005-04-05 Liant hydraulique

Publications (2)

Publication Number Publication Date
EP1735252A2 true EP1735252A2 (fr) 2006-12-27
EP1735252B1 EP1735252B1 (fr) 2007-12-05

Family

ID=34842272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05731153A Active EP1735252B1 (fr) 2004-04-05 2005-04-05 Liant hydraulique

Country Status (18)

Country Link
US (1) US20080271641A1 (fr)
EP (1) EP1735252B1 (fr)
JP (1) JP2007531690A (fr)
CN (1) CN1964929A (fr)
AR (1) AR049796A1 (fr)
AT (2) AT413535B (fr)
AU (1) AU2005232029B2 (fr)
BR (1) BRPI0509625B1 (fr)
CA (1) CA2562115C (fr)
DE (1) DE502005002162D1 (fr)
ES (1) ES2297692T3 (fr)
MX (1) MXPA06011527A (fr)
PL (1) PL1735252T3 (fr)
PT (1) PT1735252E (fr)
RU (1) RU2376252C2 (fr)
UA (1) UA83570C2 (fr)
WO (1) WO2005097701A2 (fr)
ZA (1) ZA200608275B (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT413534B (de) * 2004-04-05 2006-03-15 Holcim Ltd Hydraulisches bindemittel
PL1986970T3 (pl) * 2006-02-24 2017-03-31 Cemex Research Group Ag Uniwersalne spoiwo hydrauliczne na bazie popiołu lotnego typu f
WO2008128287A1 (fr) * 2007-04-20 2008-10-30 Descrete Ip Pty Limited Composition liante
JP2010532307A (ja) * 2007-06-29 2010-10-07 インダストリー ファウンデーション オブ チョンナム ナショナル ユニバーシティー セメントを含まないアルカリ活性結合材、それを用いたモルタルの製造方法およびセメントを含まないアルカリ活性補強モルタルの製造方法
FR2943662B1 (fr) * 2009-03-24 2015-01-16 Lafarge Sa Beton a faible teneur en clinker
EP2253600A1 (fr) * 2009-05-14 2010-11-24 Aalborg Portland A/S Ciment Portland à l'argile calcaire calcinée
RU2442759C2 (ru) * 2010-04-12 2012-02-20 Юрий Александрович Бурлов Сульфоалюминатный клинкер на основе техногенных отходов, полученный плавленым методом
CA2746034C (fr) 2010-07-15 2018-09-04 Lafarge Compositions de cimentation a faible densite utilisant du calcaire
US8435930B2 (en) 2010-07-15 2013-05-07 Lafarge Low density cementitious compositions using lime kiln dust
EP2428499A1 (fr) * 2010-09-13 2012-03-14 Construction Research & Technology GmbH Utilisation de liaisons contenant de l'aluminium et du silicium pour la fabrication d'un produit en matériau de construction hydrophile
KR20140066714A (ko) 2011-08-18 2014-06-02 하이델베르크시멘트 아게 테르네사이트 제조 방법
AT511958B1 (de) * 2011-09-29 2013-04-15 Holcim Technology Ltd Verfahren zur herstellung eines baustoffs
US9745224B2 (en) 2011-10-07 2017-08-29 Boral Ip Holdings (Australia) Pty Limited Inorganic polymer/organic polymer composites and methods of making same
US8864901B2 (en) 2011-11-30 2014-10-21 Boral Ip Holdings (Australia) Pty Limited Calcium sulfoaluminate cement-containing inorganic polymer compositions and methods of making same
CN104386991B (zh) * 2014-10-27 2016-04-13 西安建筑科技大学 硅酸钠碱激发矿渣混凝土循环利用方法
CN105948542B (zh) * 2016-04-29 2018-05-22 山东众森节能材料有限公司 一种混凝土胶凝材料、制备方法及其应用
FR3051461B1 (fr) * 2016-05-18 2018-05-18 Saint-Gobain Weber Liant a base de derives d'aluminosilicate de calcium pour materiaux de construction
RU2664567C1 (ru) * 2017-09-19 2018-08-21 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Способ получения вяжущего для бетонов и строительных растворов
RU2694653C1 (ru) * 2018-08-01 2019-07-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" Способ получения расширяющейся цементной смеси
FR3093513B1 (fr) 2019-03-06 2022-12-09 Materrup Procédé de sélection de la composition d’un matériau de construction comportant une terre argileuse excavée, procédé et système de préparation d’un tel matériau de construction
CN110510966B (zh) * 2019-09-29 2021-12-31 中国建筑第五工程局有限公司 高强度的渣土免烧制品及其制备方法
CN110981262A (zh) * 2019-12-17 2020-04-10 江苏建筑职业技术学院 一种建筑装饰工程用环保型复合掺合料、制备方法及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836981A (ja) * 1981-08-15 1983-03-04 黒崎窯業株式会社 水硬性を有する含繊維耐熱組成物およびこれよりなるプレモ−ルド品
US4472201A (en) * 1981-08-15 1984-09-18 Kurosaki Refractories Co., Ltd. Hydraulic heat-resisting material and premold product made of such hydraulic heat-resisting material
US6409819B1 (en) * 1998-06-30 2002-06-25 International Mineral Technology Ag Alkali activated supersulphated binder
CZ289735B6 (cs) * 1998-11-26 2002-03-13 Čvut V Praze, Kloknerův Ústav Alkalicky aktivované pojivo na bázi latentně hydraulicky aktivních látek
MXPA03002960A (es) * 2000-10-05 2004-12-06 Ko Suzchung Cemento de escorias.
US20040187740A1 (en) * 2003-03-27 2004-09-30 Research Incubator, Ltd. Cementitious composition
AT413534B (de) * 2004-04-05 2006-03-15 Holcim Ltd Hydraulisches bindemittel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005097701A2 *

Also Published As

Publication number Publication date
MXPA06011527A (es) 2007-03-21
ATE380166T1 (de) 2007-12-15
EP1735252B1 (fr) 2007-12-05
BRPI0509625B1 (pt) 2015-01-13
PL1735252T3 (pl) 2008-05-30
CA2562115A1 (fr) 2005-10-20
DE502005002162D1 (de) 2008-01-17
WO2005097701A3 (fr) 2006-04-13
CN1964929A (zh) 2007-05-16
AT413535B (de) 2006-03-15
PT1735252E (pt) 2008-02-06
UA83570C2 (en) 2008-07-25
BRPI0509625A (pt) 2007-09-18
RU2006139055A (ru) 2008-05-20
ZA200608275B (en) 2007-06-27
CA2562115C (fr) 2012-07-17
AU2005232029B2 (en) 2010-12-02
ATA5982004A (de) 2005-08-15
AR049796A1 (es) 2006-09-06
AU2005232029A1 (en) 2005-10-20
RU2376252C2 (ru) 2009-12-20
JP2007531690A (ja) 2007-11-08
US20080271641A1 (en) 2008-11-06
WO2005097701A2 (fr) 2005-10-20
ES2297692T3 (es) 2008-05-01

Similar Documents

Publication Publication Date Title
EP1735252B1 (fr) Liant hydraulique
EP1732861B1 (fr) Liant hydraulique
EP1091914B1 (fr) Liant a base d'aluminosilicates active
WO2014183844A1 (fr) Procédé de production d'un ciment de silicate de magnésium-bélite aluminate de calcium
WO2013023732A2 (fr) Ternésite utilisée comme activateur pour des substances aux propriétés hydrauliques latentes et pouzzolaniques
EP2729430A1 (fr) Liant hydraulique
EP2636654A1 (fr) Ternesite en tant qu'additif au ciment de sulfoaluminate de calcium
EP3310737B1 (fr) Activateur à ph faible pour matériaux de remplacement de clinker
EP0923506A2 (fr) Procede de fabrication de ciment sulfate ou granulats de ciment sulfate
AT506809B1 (de) Hydraulisches bindemittel
EP2617692B1 (fr) Procédé et additif destinés à l'augmentation de la résistance initiale et l'utilisation d'additif
US8741055B2 (en) Method for production of hydraulic binder
EP2617691B1 (fr) Ternesite comme activateur de matériaux puzzolaniques et à latence hydraulique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061002

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KRUSPAN, PETER

Inventor name: GEBAUER, JURAJ

Inventor name: KO, SUZ-CHUNG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG PATENTE MARKEN LIZENZEN

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005002162

Country of ref document: DE

Date of ref document: 20080117

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20080125

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2297692

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20080312

Year of fee payment: 4

Ref country code: PT

Payment date: 20080312

Year of fee payment: 4

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E002894

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20080416

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HOLCIM TECHNOLOGY LTD.

Free format text: HOLCIM LTD.#HAGENHOLZSTRASSE 85#8050 ZUERICH (CH) -TRANSFER TO- HOLCIM TECHNOLOGY LTD.#ZUERCHERSTRASSE 156#8645 JONA (CH)

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

26N No opposition filed

Effective date: 20080908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080306

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090625 AND 20090701

REG Reference to a national code

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): DERZSI KATALIN, S.B.G. & K. SZABADALMI UEGYVIVOEI IRODA, HU

Representative=s name: S.B.G. & K. SZABADALMI ES UEGYVEDI IRODA, HU

Ref country code: HU

Ref legal event code: GB9C

Owner name: HOLCIM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER(S): HOLCIM LTD., CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20090408

Year of fee payment: 5

Ref country code: RO

Payment date: 20090406

Year of fee payment: 5

NLS Nl: assignments of ep-patents

Owner name: HOLCIM TECHNOLOGY LTD

Effective date: 20090715

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20091006

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091006

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20080327

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090405

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20170320

Year of fee payment: 13

Ref country code: CZ

Payment date: 20170327

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170426

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170614

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170427

Year of fee payment: 13

Ref country code: ES

Payment date: 20170503

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20170329

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180405

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180501

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 3031

Country of ref document: SK

Effective date: 20180405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180405

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230419

Year of fee payment: 19

Ref country code: FR

Payment date: 20230425

Year of fee payment: 19

Ref country code: DE

Payment date: 20230427

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230223

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230427

Year of fee payment: 19