EP1731625B1 - Stahldraht für feder - Google Patents
Stahldraht für feder Download PDFInfo
- Publication number
- EP1731625B1 EP1731625B1 EP05709768.5A EP05709768A EP1731625B1 EP 1731625 B1 EP1731625 B1 EP 1731625B1 EP 05709768 A EP05709768 A EP 05709768A EP 1731625 B1 EP1731625 B1 EP 1731625B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel wire
- spring
- steel
- mass
- quenching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 140
- 239000010959 steel Substances 0.000 title claims description 140
- 238000010438 heat treatment Methods 0.000 claims description 41
- 229910000639 Spring steel Inorganic materials 0.000 claims description 33
- 238000005496 tempering Methods 0.000 claims description 25
- 230000009467 reduction Effects 0.000 claims description 24
- 229910001566 austenite Inorganic materials 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 229910000734 martensite Inorganic materials 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000011572 manganese Substances 0.000 description 18
- 238000005121 nitriding Methods 0.000 description 18
- 239000010936 titanium Substances 0.000 description 12
- 239000011651 chromium Substances 0.000 description 11
- 238000010791 quenching Methods 0.000 description 11
- 230000000171 quenching effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000010955 niobium Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000003252 repetitive effect Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000005491 wire drawing Methods 0.000 description 3
- ZXVONLUNISGICL-UHFFFAOYSA-N 4,6-dinitro-o-cresol Chemical compound CC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O ZXVONLUNISGICL-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a spring steel wire having a tempered martensitic structure brought about by quenching-tempering, to a method of manufacturing the spring steel wire in a well-suited efficient manner, and to a spring manufactured from the steel wire. More particularly, the present invention relates to a high toughness spring steel wire having a high strength with excellent fatigue properties that is advantageously applicable to engine valve springs or those springs used for transmission interior parts, etc. of automobiles.
- JP2004002994A EP 1491647 relates to a steel wire for hard drawn spring excellent in fatigue strength and set resistance, and a hard drawn spring.
- JP2003306747A relates to a steel wire and production method therefor, and a spring.
- JP11246943A or US 6224686 relates to a high strength valve spring and its manufacture.
- springs such as engine valve springs or springs for transmission parts have been increasingly required to have better mechanical or physical properties in recent years, so that further improvement has come to be demanded in spring steel wires and springs worked from the steel wire.
- spring steel wires and springs manufactured therefrom be provided with fatigue properties and toughness in better balance than ever.
- springs worked from steel wires are typically subjected to heat treatment (nitriding treatment) at elevated temperatures (specifically, around 420-480°C) .
- the patent document 1 discloses a technique that aims at improving the toughness of a steel wire by providing it with a C (carbon) content ranging from 0.3% to 0.5% by weight.
- a steel wire with a carbon content as low as less than 0.50% by weight will have a reduced thermal resistance
- a spring worked from such a low carbon content steel wire is subjected to nitriding treatment at elevated temperatures as described above, the resultant spring will have a reduced fatigue strength, so that it may undergo internal breakage when put into practical use.
- the patent document 2 discloses a technique that aims at improving the fatigue strength of a steel wire by achieving a fine structure having an average grain size of 1.0-7.0 micrometers as austenite after quenching.
- the quenching temperature is lowered to make the austenite grain size smaller, there will remain undissolved carbide, which may lower the toughness of the resultant steel wire.
- the steel wire will become more susceptible to breakage while being worked into spring and consequently the mass productivity of the spring therefrom will be adversely affected thereby.
- the patent document 3 discloses a technique that aims at improving a steel wire in its workability into spring- by decarbonizing its surface purposely during the oil tempering so as to reduce the surface hardness, but this prior art technique is inadequate for the mass production of such a steel wire or spring because it is practically difficult to obtain a uniform decarburized layer in the surface of the steel wire. Moreover, the oxygen concentration must be well controlled when heating the steel wire (during the oil tempering), thus adding to the cost accordingly.
- the proof stress of the material (spring) to a stress exerted inside in its torsional direction i.e., the shear yield stress of the spring is not examined subsequent to the nitriding treatment to which the spring is subjected after worked from the steel wire.
- a principal object of the present invention is to provide a high strength spring steel wire which is excellent not only in fatigue strength but also in toughness. Also, it is another object of the present invention to provide a spring manufactured from the above-described steel wire and a suitable method to manufacture the spring steel wire.
- the present invention provides a spring steel wire according to claim 1 or claim 2 of the claims appended hereto.
- the present invention provides a spring steel wire which has a tempered martensitic structure brought about by quenching-tempering.
- the present spring steel wire is characterized by a 40% or higher reduction of area and by a 1,000 MPa or higher shear yield stress after subjected to heat treatment for at least 2 hours at a temperature ranging from 420°C to 480°C.
- the present invention also provides a method of manufacturing the above-described spring steel wire according to claim 6 or claim 7 of the claims appended hereto
- the improvement of a spring in its fatigue properties may preferably be addressed in terms of the suppression of its fatigue breakage.
- a repetitive stress is exerted on the spring not only in the tensile and compression directions but also in the shear direction simultaneously.
- the spring undergoes a repetitive slip deformation (plastic deformation) locally or intensively and creates projections and depressions in the surface region to induce cracks leading to breakage, namely resulting in fatigue breakage. Therefore, for suppressing the fatigue breakage of the spring, it will be effective to suppress such a local or concentrated plastic deformation.
- the steel wire is typically subjected to heat treatment such as nitriding treatment after worked into spring to increase its surface hardness and thereby to increase its fatigue limit.
- heat treatment such as nitriding treatment after worked into spring to increase its surface hardness and thereby to increase its fatigue limit.
- mere an increase in fatigue limit of the springs may sometimes be insufficient to allow their practical use, because such springs tend to undergo permanent set in fatigue.
- the inventors have studied above-described subject from various aspects to find out that an adequate torsional proof stress provided inside the material (i.e., spring) after the above-mentioned heat treatment such as nitriding treatment or like is substantially effective for meeting these requirements. More specifically, it turned out that the fatigue properties of a spring can be improved, if the spring has a 1,000 MPa or higher shear yield stress after the above-mentioned heat treatment such as nitriding treatment or like. Based on these findings, the present invention provides a spring steel wire having a shear yield stress limited to a specific range of 1,000 MPa or higher after subjected to particular heat treatment following the quenching-tempering.
- the present invention provides a spring steel wire having a reduction of area limited to a specific range of 40% or higher.
- the steel wire tends to undergo in-process breakage when worked into spring and its mass productivity could be substantially compromised thereby.
- the reduction of area may decrease a little when subjecting the steel wire to such particular heat treatment comparable to nitriding treatment that is accomplished at a temperature ranging from 420°C to 480°C for at least 2 hours following the quenching-tempering as described previously.
- the steel wire has a 40% or higher reduction of area after quenching-tempering as described above, it can maintain a 35% or higher reduction of area even after the above-described heat treatment, and a spring manufactured from this steel wire can have a high fatigue properties.
- the reduction of area of a spring steel wire and its shear yield stress after subjected to heat treatment comparable to nitriding treatment following the above quenching-tempering are limited to specific ranges, respectively, to provide the spring steel wire and the spring manufactured from the steel wire with a high fatigue strength and high toughness in adequate balance.
- the present invention specifically limits the present steel wire to predetermined optimal chemical compositions and optimal manufacturing conditions, especially patenting conditions.
- the fatigue limit of a spring can be improved by increasing the surface hardness of the spring by subjecting it to the heat treatment such as nitriding treatment or like after it is worked from a steel wire
- an internal hardness of the spring decreases by the heat treatment to sometimes cause the spring to undergo internal breakage in use.
- the steel wire to be worked into a spring contains carbon (C) and silicon (Si) in a quantity (in mass %) falling in a predetermined range in order to improve the thermal resistance of a matrix of the steel wire.
- the steel wire contains a predetermined quantity of chromium (Cr) in order to produce carbide in the structure of the steel wire when it is tempered and to thereby increase the softening resistance of the steel wire.
- the steel wire may contain also a predetermined quantity of molybdenum (Mo), vanadium (V), niobium (Nb), Tungsten (W), or titanium (Ti) to effectively increase the softening resistance.
- Mo molybdenum
- V vanadium
- Nb niobium
- W Tungsten
- Ti titanium
- the inventors have found out that, for improving the shear yield stresses of the steel wire and the spring manufactured therefrom of the present invention, it is effective to provide the steel wire with a 0.02-1.00 mass % cobalt (Co) content or a rather excess manganese (Mn) content (over 0.7 to 1.5 mass %).
- the steel wire of the present invention has Mn and Co contents limited to specific ranges, respectively. The ranges of these contents and the grounds for such limitation will be described in detail herein later.
- the spring steel wire of the present invention is obtained by subjecting a steel having the above-described chemical compositions to the following processes in sequence: steel ingot making ⁇ hot forging ⁇ hot rolling ⁇ patenting ⁇ wire drawing ⁇ quenching-tempering
- a steel rod is subjected, before wire drawing, to patenting under particular conditions to fully austenitize the structure of the steel to thereby dissolve the undissolved carbide and to obtain a homogeneous pearlitic structure through an appropriate isothermal transformation following the austenitization. Insufficient austenitization may cause the reduction of toughness and shear yield stress of the resultant steel wire. Then, for fully austenitizing the steel, it is required to heat the steel rod at a temperature of 900-1,050°C for 60 to 180 seconds.
- the heating temperature is lower than 900°C, or if the heating temperature falls in the range of 900-1,050°C but the heating time is shorter than 60 seconds, sufficient austenitization will not be achieved and undissolved carbide will remain. However, if the heating temperature is higher than 1,050°C, or if the heating temperature falls in the range of 900-1,050°C but the heating time is longer than 180 seconds, austenite grains will become coarse, thus tending to produce martensite during the succeeding transformation, so that the drawability of the steel rod will not be secured during the wire drawing process.
- the isothermal transformation of the steel following the austenitization it is required to heat the steel rod at 600-750°C for 20 to 100 seconds. If the heating temperature is higher than 750°C, or if the heating temperature falls in the 600-750°C range but the heating time is longer than 100 seconds, cementite spheroidizes in the structure of the steel, which may degrade the drawability of the steel rod. On the other hand, if the heating temperature is lower than 600°C, or if the heating temperature falls in the 600-750°C range but the heating time is shorter than 20 seconds, the transformation to pearlite will not be completed and martensite will be produced to thereby degrade the drawability.
- the steel wire obtained by drawing the steel rod which is subjected to patenting as above is then subjected to quenching at too low a temperature, undissolved carbide will remain in the structure of the steel wire, which acts to reduce the toughness of the steel wire.
- the quenching temperature is too high, the austenite grains will grow to larger sizes and consequently the fatigue limits of the steel wire and the spring manufactured therefrom will be reduced.
- the quenching temperature be higher than 850°C but lower than 1,050°C.
- the spring steel wire has a tempered martensitic structure. Moreover, if the austenite grains (prior austenite grains) of the steel wire are rendered fine as observed after subjected to the quenching-tempering, such a steel wire and the spring manufactured from the steel wire will become hard to undergo a slip deformation locally or intensively even when a repetitive stress is applied thereto. That is to say, since the shear yield stress of the steel wire or spring can be improved by rendering fine the austenite grains (prior austenite grains), this consequently contributes to improved fatigue properties of the steel wire or spring.
- the average grain sizer of the austenite grains fall in the range of 3.0-7.0 micrometers.
- the average grain size can be changed by varying the temperature for patenting the steel rod. More specifically, if the austenitization during patenting is effected at a lower temperature, the grain size will tend to become smaller, while if this austenitizing temperature is increased, the grain size tends to increase. With an average grain size smaller than 3.0 micrometers, undissolved carbide will remain due to the lower austenitizing temperature and tend to reduce the toughness of the steel wire. Meanwhile, if the average grain size is larger than 7.0 micrometers, it is difficult to improve the fatigue limit of the steel wire or the spring manufactured therefrom. Now it is to be noted that the average grain size herein is given in measurements taken on steel wires after drawing and then subjected to quenching-tempering.
- Carbon (C) is an important element which determines the strength of steel, and since a carbon content lower than 0.50 mass % of the total steel will not allow a resulting steel wire to have a sufficient strength, while a carbon content exceeding 0.75 mass % will result in reduced toughness, it is required that the carbon content ranges from 0.50 mass % to 0.75 mass %.
- Silicon (Si) is used as a deoxidizer when melting and smelting a raw steel. Moreover, Si is solid-dissolved in steel's ferrite to improve the thermal resistance of the steel and has the effect of preventing the hardness reduction inside the steel wire (spring) due to heat treatment such as strain relief annealing or nitriding treatment to which the spring is subjected after worked from the steel wire. It is required that the steel have a Si content ranging from 1.80 mass % to 2.70 mass %, because the 1.80 mass % or higher Si content is required to maintain an adequate thermal resistance but the toughness will decrease if the Si content exceeds 2.70 mass %.
- the steel wire either comprises 0.1-0.7% Mn and 0.02-1.0% Co or it comprises over 0.7-1.5% Mn and optionally at least one of 0.1-1.0% Ni and 0.02-1.00% Co.
- manganese (Mn) is used as a deoxidizer when melting and smelting a raw steel. Therefore, it is preferred that the Mn content required for such a deoxidizer has a lower limit of 0.1 mass %.
- Mn has the effect of improving the hardenability of the steel wire to thereby increase its strength and improve the shear yield stress of the steel wire and the spring manufactured therefrom.
- the Mn content preferably has an upper limit of 1.5 mass %.
- the Mn content may fall in a rather lower range of 0.1-0.7 mass %, while it is required for a formulation without Co content that the Mn content fall in a rather higher range of over 0.7 to 1.5 mass %.
- a formulation having a rather higher Mn content may contain also Co.
- Cr chromium
- Cr acts to improve the hardenability and thus the softening resistance of the steel, it is effective for preventing the spring worked from the steel wire from softening when subjected to heat treatment such as tempering and nitriding treatment. Since a Cr content lower than 0.70 mass % of the total steel will not work to provide a sufficient effect of preventing the softening, it is required that the Cr content is 0.70 mass % or higher, while a Cr content exceeding 1.50 mass % will tend to produce martensite during the patenting process to thus cause wire breakage in the drawing process and further to reduce the toughness of the patented (oil-tempered) steel. Therefore, it is required that the Cr content falls in the range of 0.70 to 1.50 mass %.
- a small quantity of cobalt (Co) added to a steel acts to improve the shear yield stress of the resultant steel wire and the spring worked from the steel wire. Also, Co is effective for improving the thermal resistance of the steel wire and for the softening prevention of the spring worked from the steel wire and subjected to the tempering and nitriding treatment. Further, Co does not act to reduce the toughness of the steel wire, so long as its content is low. A Co content lower than 0.02 mass % is hard to contribute to any improved shear yield stress for the steel wire or the spring as described above or to any improved thermal resistance for the steel wire.
- the Co content fall in the range of 0.02 mass % to 1.00 mass %.
- Mn content of the steel may fall in a rather low range of 0.1-0.7 mass %, as described above.
- Nickel (Ni) contained in the steel has the effect of improving the corrosion resistance and toughness of the resultant steel wire.
- An Ni content lower than 0.1 mass % is hard to contribute to any improved properties of the steel wire as mentioned above, and even if the Ni content exceeds 1.0 mass %, no further improvement in the toughness of the resultant steel wire cannot be achieved, but it just adds to its manufacturing cost.
- the Ni content preferably ranges from 0.1 mass % to 1.0 mass %.
- These elements act to produce carbide in the structure of a steel wire when it is tempered and have the effect of tending to increase the softening resistance of the steel wire. If the content of each of molybdenum (Mo), vanadium (V), tungsten (W) or niobium (Nb) is lower than 0.05 mass % of the total steel, the above-described effect will be hard to achieve. Meanwhile, if the Mo content exceeds 0.50 mass %, if the V content exceeds 0.50 mass %, if the W content exceeds 0.15 mass %, or if the Nb content exceeds 0.15 mass %, the resultant steel wire tends to have reduced toughness in either case.
- Mo molybdenum
- V vanadium
- W tungsten
- Nb niobium
- Titanium acts to produce carbide when the steel wire is tempered and has the effect of tending to increase a softening resistance of the steel wire.
- a Ti content lower than 0.01 mass % will not yield the above-mentioned effect, while a Ti content higher than 0.20 mass % will produce a high-melting point non-metallic inclusion TiO in the structure of the steel wire, tending to reduce the toughness of the steel wire.
- the Ti content preferably ranges from 0.01 mass % to 0.20 mass %.
- the spring steel wire of the present invention may have any cross-sectional shape as cut by a plane perpendicular to the longitudinal direction (drawing direction) of the steel wire, including a typical circular shape and other special or peculiar cross-sectional shapes such as an ellipse, a trapezoid, a square, a rectangle, and so on.
- the spring of the present invention may be provided by subjecting the above-described spring .steel wire to any known spring forming process such as coiling. Especially, it is to be noted here that by subjecting the spring worked from the present spring steel wire to heat treatment such as nitriding treatment or like, the resultant spring can have an improved surface hardness and thus an excellent fatigue limit.
- the respective 6.5 mm ⁇ wire rods were patented under several varied patenting conditions, including austenitizing conditions under which the wire rods were heated at varied temperatures for varied retention times, and conditions for isothermal transformation under which the wire rods were heated also at varied temperatures for varied retention times- subsequently to the austenization, as shown in Table 2.
- the resultant steel wires (3.0mm ⁇ ) were then subjected to quenching-tempering.
- quenching the conditions shown in Table 3 were used, while the tempering was carried out using a heating temperature of 450-530°C for all wires.
- the reduction of area (RA) and the average grain sizes (average ⁇ grain size) of austenite grains (prior austenite grains) were measured on the respective quench-tempered wires.
- the results are shown in Table 3.
- the wire quenching temperature was varied to change the average grain size of austenite grains (prior austenite grains).
- the average grain size of austenite grains was determined based on the intercept method subject to JIS G 0552.
- shear yield stress and the fatigue properties were measured on those steel wires which were subjected, after the quenching-tempering, to heat treatment (420°C for 2 hours or 480°C for 2 hours) comparable to nitriding treatment.
- the results are shown also in Table 3.
- the shear yield stress of the steel wires which were heat-treated as above was determined from torque- ⁇ curves obtained through twisting tests on samples of 100d in length (d: sample diameter).
- the fatigue limit was evaluated based on a Nakamura-type rotating bending fatigue test. [Table 3] No.
- the samples No. 1-4, 6, and 8 having a low shear yield stress after the heat treatment comparable to nitriding treatment turned out to have a low fatigue limit.
- the samples No.2 and 4 had also an inferior toughness with a low reduction of area.
- the steel wires of the samples No. 5 and 7 underwent martensite generation in their wire rod structures during patenting and then frequent wire breakage in the succeeding shaving step, and thus the experiment was forced to stop continuing.
- the sample No. 11 since it had a higher V content of the total steel in addition to its low shear yield stress after the heat treatment, it had a lowered reduction of area of the steel wire to thus reduce its fatigue limit.
- the sample No. 12 since it had a higher Ti content in addition to its low shear yield stress after the heat treatment, it underwent a reduction in fatigue limit owing to breakage caused by Ti-based inclusions.
- the sample No. 9 since it had a smaller average grain size of the austenite grains (prior austenite grains) in addition to its low shear yield stress after the heat treatment, it showed also a low reduction of area.
- the sample No. 10 showed a reduction in fatigue limit, because it had a large average grain size of the austenite grains (prior austenite grains) in addition to its low shear yield stress after the heat treatment.
- the spring steel wire of the present invention is excellent both in fatigue properties and in toughness, it is best suited as a material for springs that are used for parts requiring an adequate fatigue strength.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatment Of Steel (AREA)
- Springs (AREA)
Claims (7)
- Federstahldraht mit einer getemperten martensitischen Struktur, verursacht durch Quensch-Tempern, wobei der Federstahldraht, bezogen auf Masse-%, besteht aus:0,50 bis 0,75 % C,1,80 bis 2,70 % Si,0,1 bis 0,7 % Mn,0,70 bis 1,50 % Cr,0,02 bis 1,0 % Co,wahlweise zumindest einem Element, ausgewählt aus der Gruppe von 5 Elementen bestehend aus:0,05 bis 0,50 % V,0,05 bis 0,50 % Mo,0,05 bis 0,15 % W,0,05 bis 0,15 % Nb und0,01 bis 0,20 Ti,wobei der Rest Fe und Verunreinigungen ist,
wobei der Federstahldraht enthält:eine 40 %-ige oder höhere Reduktion der Fläche undeine 1.000 MPa oder höhere Scherfliessspannung nach Durchführen einer Wärmebehandlung für zumindest 2 Stunden bei einer Temperatur im Bereich von 420 bis 480°C. - Federstahldraht mit einer getemperten martensitischen Struktur, verursacht durch Quensch-Tempern, wobei der Federstahldraht, bezogen auf Masse-%, besteht aus:0,50 bis 0,75 % C,1,80 bis 2,70 % Si,mehr als 0,7 bis 1,5 % Mn,0,70 bis 1,50 % Cr,wahlweise zumindest einem Element, aus:0,01 bis 1,0 % Ni und0,02 bis 1,00 % Co,wahlweise zumindest einem Element, ausgewählt aus der Gruppe von 5 Elementen bestehend aus:0,05 bis 0,50 % V,0,05 bis 0,50 % Mo,0,05 bis 0,15 % W,0,05 bis 0,15 % Nb und0,01 bis 0,20 Ti undwobei der Rest Fe und Verunreinigungen ist,
wobei der Federstahldraht enthält:eine 40 %-ige oder höhere Reduktion der Fläche undeine 1.000 MPa oder höhere Scherfliessspannung nach Durchführen einer Wärmebehandlung für zumindest 2 Stunden bei einer Temperatur im Bereich von 420 bis 480°C. - Federstahldraht gemäß Anspruch 1 oder 2, enthaltend Austenitkörner (Vor-Austenitkörner), die eine durchschnittliche Korngröße im Bereich von 3,0 bis 7,0 µm haben.
- Feder, hergestellt aus dem Federstahldraht gemäß Anspruch 1 oder 2.
- Feder, hergestellt aus dem Federstahldraht gemäß Anspruch 3.
- Verfahren zur Herstellung eines Federstahldrahtes, enthaltend die Schritte:Patentieren eines Stahlstabes, bestehend aus, basierend auf Masse-%:0,50 bis 0,75 % C,1,80 bis 2,70 % Si,0,1 bis 0,7 % Mn,0,70 bis 1,50 % Cr,0,02 bis 1,0 % Co,wahlweise zumindest einem Element, ausgewählt aus der Gruppe von 5 Elementen bestehend aus:0,05 bis 0,50 % V,0,05 bis 0,50 % Mo,0,05 bis 0,15 % W,0,05 bis 0,15 % Nb und0,01 bis 0,20 Ti,wobei der Rest Fe und Verunreinigungen ist,Ziehen des somit patentierten Stahls zu einem Stahldraht, undDurchführen eines Quensch-Temperns mit dem resultierenden Stahldraht,worin das Patentierverfahren enthält:einen Austenitisierungsschritt, bei dem der Stahl bei 900 bis 1.050°C 60 bis 180 Sekunden erwärmt wird, undeinen isothermen Transformationsschritt, bei dem der somit austenitisierte Stahl bei 600 bis 750°C 20 bis 100 Sekunden erwärmt wird.
- Verfahren zur Herstellung eines Federstahldrahtes, enthaltend die Schritte:Patentieren eines Stahlstabes, bestehend aus, basierend auf Masse-%:0,50 bis 0,75 % C,1,80 bis 2,70 % Si,mehr als 0,7 bis 1,5 % Mn,0,70 bis 1,50 % Cr,wahlweise zumindest einem Element, aus:0,01 bis 1,0 % Ni und0,02 bis 1,0 % Co,wahlweise zumindest einem Element, ausgewählt aus der Gruppe von 5 Elementen bestehend aus:0,05 bis 0,50 % V,0,05 bis 0,50 % Mo,0,05 bis 0,15 % W,0,05 bis 0,15 % Nb und0,01 bis 0,20 % Ti,wobei der Rest Fe und Verunreinigungen ist,Ziehen des somit patentierten Stahls zu einem Stahldraht undDurchführen eines Quensch-Temperns mit dem resultierenden Stahldraht,worin das Patentierverfahren enthält:einen Austenitisierungsschritt, bei dem der Stahl bei 900 bis 1.050°C 60 bis 180 Sekunden erwärmt wird, undeinen isothermen Transformationsschritt, bei dem der somit austenitisierte Stahl bei 600 bis 750°C 20 bis 100 Sekunden erwärmt wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004027891A JP4357977B2 (ja) | 2004-02-04 | 2004-02-04 | ばね用鋼線 |
PCT/JP2005/001703 WO2005075695A1 (ja) | 2004-02-04 | 2005-02-04 | ばね用鋼線 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1731625A1 EP1731625A1 (de) | 2006-12-13 |
EP1731625A4 EP1731625A4 (de) | 2012-03-28 |
EP1731625B1 true EP1731625B1 (de) | 2019-10-09 |
Family
ID=34835907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05709768.5A Not-in-force EP1731625B1 (de) | 2004-02-04 | 2005-02-04 | Stahldraht für feder |
Country Status (6)
Country | Link |
---|---|
US (1) | US20080271824A1 (de) |
EP (1) | EP1731625B1 (de) |
JP (1) | JP4357977B2 (de) |
KR (1) | KR101096888B1 (de) |
CN (1) | CN100449026C (de) |
WO (1) | WO2005075695A1 (de) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007114491A1 (ja) * | 2006-03-31 | 2007-10-11 | Nippon Steel Corporation | 高強度ばね用熱処理鋼 |
JP5189580B2 (ja) * | 2008-11-17 | 2013-04-24 | 公益財団法人電磁材料研究所 | 磁性不感高硬度恒弾性合金及びその製造法、並びにひげぜんまい、機械式駆動装置及び時計 |
DE102009042954A1 (de) * | 2009-09-24 | 2011-04-07 | Webasto Ag | Steuerstange für ein verstellbares Schließelement eines Fahrzeugdachs |
US8328169B2 (en) * | 2009-09-29 | 2012-12-11 | Chuo Hatsujo Kabushiki Kaisha | Spring steel and spring having superior corrosion fatigue strength |
JP5711539B2 (ja) | 2011-01-06 | 2015-05-07 | 中央発條株式会社 | 腐食疲労強度に優れるばね |
KR101289104B1 (ko) | 2011-11-08 | 2013-07-23 | 주식회사 포스코 | 선재, 강선 및 강선의 제조 방법 |
JP6208611B2 (ja) | 2014-03-31 | 2017-10-04 | 株式会社神戸製鋼所 | 疲労特性に優れた高強度鋼材 |
WO2016001706A1 (en) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability and obtained sheet |
EP3346020B1 (de) * | 2015-09-04 | 2020-07-29 | Nippon Steel Corporation | Stahldraht für federn und feder |
CN105648332A (zh) * | 2016-01-27 | 2016-06-08 | 太仓捷公精密金属材料有限公司 | 一种高性能弹簧钢 |
KR102061806B1 (ko) | 2017-10-23 | 2020-01-02 | (주)포스코케미칼 | Rh 침적관 플랜지 보수용 열간 스프레이 보수재 |
KR102120699B1 (ko) * | 2018-08-21 | 2020-06-09 | 주식회사 포스코 | 인성 및 부식피로특성이 향상된 스프링용 선재, 강선 및 이들의 제조방법 |
CN109972038B (zh) * | 2019-04-01 | 2021-07-20 | 宝钢特钢韶关有限公司 | 一种超深井钻杆接头用钢及其制造方法 |
DE112020000034T5 (de) | 2019-07-01 | 2022-03-24 | Sumitomo Electric Industries, Ltd. | Stahldraht und Feder |
US20230081462A1 (en) * | 2020-02-21 | 2023-03-16 | Nippon Steel Corporation | Damper spring |
CN112143869B (zh) * | 2020-09-27 | 2022-08-12 | 广州市奥赛钢线科技有限公司 | 一种抗拉强度为2300~2400MPa淬回火弹簧钢丝制备工艺 |
CN114318125A (zh) * | 2020-09-30 | 2022-04-12 | 宝山钢铁股份有限公司 | 一种高强韧合金工具钢线材及其制造方法 |
CN112427484B (zh) * | 2020-11-11 | 2022-07-26 | 南京工程学院 | 一种再结晶退火调控不锈弹簧钢线成形制造方法 |
KR102492641B1 (ko) * | 2020-12-17 | 2023-01-30 | 주식회사 포스코 | 내피로특성과 질화처리 특성이 향상된 스프링용 선재, 강선, 스프링 및 그 제조 방법 |
CN113881897A (zh) * | 2021-09-29 | 2022-01-04 | 东莞市锦中秀寝具用品有限公司 | 一种弹簧用高强度合金材料及高强度弹簧 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6224686B1 (en) * | 1998-02-27 | 2001-05-01 | Chuo Hatsujo Kabushiki Kaisha | High-strength valve spring and it's manufacturing method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2842579B2 (ja) * | 1991-10-02 | 1999-01-06 | 株式会社 神戸製鋼所 | 疲労強度の優れた高強度ばね用鋼 |
JP2783145B2 (ja) * | 1993-12-28 | 1998-08-06 | 株式会社神戸製鋼所 | 疲労強度の優れた窒化ばね用鋼および窒化ばね |
JP3426463B2 (ja) * | 1997-03-12 | 2003-07-14 | 本田技研工業株式会社 | 耐遅れ破壊性に優れたばね用オイルテンパ線 |
JPH11246943A (ja) * | 1998-02-27 | 1999-09-14 | Chuo Spring Co Ltd | 高強度弁ばね及びその製造方法 |
JP2000017388A (ja) * | 1998-04-30 | 2000-01-18 | Sumitomo Electric Ind Ltd | ばね用オイルテンパ―線 |
JP3595901B2 (ja) * | 1998-10-01 | 2004-12-02 | 鈴木金属工業株式会社 | 高強度ばね用鋼線およびその製造方法 |
JP2001247934A (ja) * | 2000-03-03 | 2001-09-14 | Sumitomo Electric Ind Ltd | ばね用鋼線およびその製造方法ならびにばね |
JP2003213372A (ja) * | 2002-01-25 | 2003-07-30 | Sumitomo Denko Steel Wire Kk | ばね用鋼線およびばね |
JP4062612B2 (ja) * | 2002-04-02 | 2008-03-19 | 株式会社神戸製鋼所 | 疲労強度および耐へたり性に優れた硬引きばね用鋼線並びに硬引きばね |
JP3975110B2 (ja) * | 2002-04-16 | 2007-09-12 | 住友電工スチールワイヤー株式会社 | 鋼線およびその製造方法ならびにばね |
JP2004190116A (ja) * | 2002-12-13 | 2004-07-08 | Sumitomo Denko Steel Wire Kk | ばね用鋼線 |
KR100711370B1 (ko) * | 2003-03-28 | 2007-05-02 | 가부시키가이샤 고베 세이코쇼 | 가공성이 우수한 고강도 스프링용 강선 및 고강도 스프링 |
-
2004
- 2004-02-04 JP JP2004027891A patent/JP4357977B2/ja not_active Expired - Fee Related
-
2005
- 2005-02-04 US US10/588,287 patent/US20080271824A1/en not_active Abandoned
- 2005-02-04 WO PCT/JP2005/001703 patent/WO2005075695A1/ja active Application Filing
- 2005-02-04 EP EP05709768.5A patent/EP1731625B1/de not_active Not-in-force
- 2005-02-04 CN CNB2005800039621A patent/CN100449026C/zh not_active Expired - Fee Related
-
2006
- 2006-08-14 KR KR1020067016315A patent/KR101096888B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6224686B1 (en) * | 1998-02-27 | 2001-05-01 | Chuo Hatsujo Kabushiki Kaisha | High-strength valve spring and it's manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
EP1731625A1 (de) | 2006-12-13 |
KR20060129019A (ko) | 2006-12-14 |
WO2005075695A1 (ja) | 2005-08-18 |
EP1731625A4 (de) | 2012-03-28 |
CN100449026C (zh) | 2009-01-07 |
KR101096888B1 (ko) | 2011-12-22 |
US20080271824A1 (en) | 2008-11-06 |
JP2005220392A (ja) | 2005-08-18 |
CN1914347A (zh) | 2007-02-14 |
JP4357977B2 (ja) | 2009-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1731625B1 (de) | Stahldraht für feder | |
EP2058411B1 (de) | Wärmebehandelter stahldraht für hochfeste feder | |
EP2374904B1 (de) | Stahldrahtmaterial für Feder und Herstellungsverfahren dafür | |
EP2003222B1 (de) | Ein gehärteter und vergüteter stahl für den einsatz als feder | |
EP2453033B1 (de) | Stahldraht für eine hochfeste feder | |
EP2682493B2 (de) | Feder und herstellungsverfahren dafür | |
EP2357260B1 (de) | Einsatzstahl, aufgekohlte komponente und verfahren zur herstellung des einsatzstahls | |
JP4435954B2 (ja) | 冷間鍛造用棒線材とその製造方法 | |
US7815750B2 (en) | Method of production of steel soft nitrided machine part | |
EP2357262B1 (de) | Herstellungsverfahren für eine Kurbelwelle | |
US9080233B2 (en) | Spring and method for producing same | |
EP1491647A1 (de) | Stahldraht für hartgezogene feder mit hervorragender dauerfestigkeit und senkungsbeständigkeit und hartgezogene feder | |
EP2746420B1 (de) | Federstahl und feder | |
JP2010163689A (ja) | オイルテンパー線とその製造方法、及びばね | |
JP2007063584A (ja) | オイルテンパー線およびその製造方法 | |
EP1347072A1 (de) | Walzdraht für hartgezogene feder, gezogener draht für hartgezogene feder und hartgezogene feder und verfahren zur herstellung von hartgezogenen federn | |
JP3754788B2 (ja) | 耐遅れ破壊性に優れたコイルばね及びその製造方法 | |
US9469895B2 (en) | Spring steel and surface treatment method for steel material | |
EP3020841B1 (de) | Spiralfeder und verfahren zur herstellung davon | |
JPH08260039A (ja) | 浸炭肌焼鋼の製造方法 | |
JPH09279296A (ja) | 冷間鍛造性に優れた軟窒化用鋼 | |
JPH04329824A (ja) | 冷間鍛造用マルテンサイト系ステンレス鋼の製造方法 | |
CN117795117A (zh) | 弹簧用钢和钢丝及其制造方法 | |
JPH0559430A (ja) | 冷間鍛造用マルテンサイト系ステンレス鋼の製造方法 | |
JPH07252589A (ja) | 窒化非調質熱間鍛造品とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060828 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT SE |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20120224 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F16F 1/02 20060101ALI20120220BHEP Ipc: C22C 38/52 20060101ALI20120220BHEP Ipc: C22C 38/34 20060101ALI20120220BHEP Ipc: C21D 9/52 20060101ALI20120220BHEP Ipc: C21D 8/06 20060101ALI20120220BHEP Ipc: C22C 38/00 20060101AFI20120220BHEP |
|
17Q | First examination report despatched |
Effective date: 20130611 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190510 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005056306 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005056306 Country of ref document: DE Representative=s name: BOULT WADE TENNANT LLP, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602005056306 Country of ref document: DE Representative=s name: MAIER, LL.M., MICHAEL C., DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005056306 Country of ref document: DE Representative=s name: BOULT WADE TENNANT LLP, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200122 Year of fee payment: 16 Ref country code: SE Payment date: 20200210 Year of fee payment: 16 Ref country code: IT Payment date: 20200128 Year of fee payment: 16 Ref country code: DE Payment date: 20200121 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200113 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005056306 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200710 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005056306 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210901 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210204 |