EP1725702B1 - Dispositif de filage par fusion et de refroidissement - Google Patents

Dispositif de filage par fusion et de refroidissement Download PDF

Info

Publication number
EP1725702B1
EP1725702B1 EP05715675A EP05715675A EP1725702B1 EP 1725702 B1 EP1725702 B1 EP 1725702B1 EP 05715675 A EP05715675 A EP 05715675A EP 05715675 A EP05715675 A EP 05715675A EP 1725702 B1 EP1725702 B1 EP 1725702B1
Authority
EP
European Patent Office
Prior art keywords
cooling
blow
perforated cylinder
screen cylinder
spinneret
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05715675A
Other languages
German (de)
English (en)
Other versions
EP1725702A1 (fr
Inventor
Markus Reichwein
Ulrich Enders
Roland Nitschke
Klaus Schäfer
Peter Senge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Oerlikon Textile GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Textile GmbH and Co KG filed Critical Oerlikon Textile GmbH and Co KG
Publication of EP1725702A1 publication Critical patent/EP1725702A1/fr
Application granted granted Critical
Publication of EP1725702B1 publication Critical patent/EP1725702B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys

Definitions

  • the invention relates to an apparatus for melt spinning and cooling a plurality of synthetic filaments according to the preamble of claim 1.
  • a plurality of fine filament strands are extruded through a spinneret from a plastic melt.
  • the spinnerets have on their undersides a plurality of nozzle bores in a certain arrangement and distribution.
  • the freshly spun filament strands are cooled to solidify.
  • a plurality of the filament strands are usually combined into the filament strands extruded through the spinneret to form a multifilament thread, which is wound into a spool after further treatments at the end of the production process.
  • very fine threads or thicker threads can thus be produced.
  • the total titer of the thread results from the number of individual filament strands and the filament titer.
  • the quality of the thread is determined by the interaction of the filament properties. Therefore, it is known that in order to produce a high-quality yarn, each individual filament strand within the filament bundle must undergo the same treatment as possible in order to obtain the same structures and cross-sections.
  • the formation of the filament strands is significantly determined immediately after the extrusion by the cooling. It is thus known that the so-called transverse flow blowing, in which a cooling air flow oriented transversely to the yarn running direction of the filament strands and penetrating the filament bundle, is suitable only for filament strands having a spin titer of above 1 dpf (dtex per filament).
  • dpf dtex per filament
  • filaments having a spin titer of ⁇ Idpf are preferably cooled with a radial blowing after the extrusion.
  • a cooling air flow uniformly generated from inside to outside or from outside to inside over the entire circumference of the radial bundle is used to cool the filaments.
  • such devices basically have the disadvantage that when producing a plurality of threads each of the threads must be cooled separately by a radially generated cooling air flow.
  • the cross-flow blowing is advantageous also suitable for cooling a plurality of parallel filament bundles.
  • a device for guiding the freshly extruded filament strands is provided directly below a spinneret in a cooling shaft.
  • the screen cylinder has a gas-permeable jacket.
  • a U-shaped baffle is arranged, which has an opening to one side of the screen cylinder. The opening is connected to a cooling flow generator, through which a cooling air flow is injected into the opening transverse to the screen cylinder.
  • the filament strands enter the cooling shaft in which a transverse cooling air flow is generated for further cooling of the filament strands.
  • the filament strands receive a gentle cooling immediately after the extrusion, so that a pre-solidification of the edge layers of the filament strands begins before the final cooling takes place by the transverse cooling air flow.
  • the invention is characterized in that a cooling air flow flowing transversely to the direction of filaments is advantageously brought to the screen cylinder in such a way that the cooling air enters substantially uniformly around the circumference of the screen cylinder.
  • a cooling air flow flowing transversely to the direction of filaments is advantageously brought to the screen cylinder in such a way that the cooling air enters substantially uniformly around the circumference of the screen cylinder.
  • the flow divider can be advantageously formed by a plurality of arranged guide plates, which are preferably formed from two mutually angularly arranged individual plates, are held in the middle of the blow opening and extending substantially over the length of the screen cylinder.
  • the guide plates could be designed to change the angle of attack adjustable to each other.
  • the flow divider has a passage opening in the middle, through which a part of the cooling air is passed directly to the screen cylinder.
  • This can produce a further partial air flow, which allows a further improvement in the uniformity of the cooling air distribution.
  • the passage opening can also be formed by a plurality of separate openings or by a perforated plate structure.
  • the device according to the invention can be used for various processes for cooling filament strands.
  • methods are known in which the further cooling of the filament strands is effected by a transverse cooling air flow or by a cooling air flow guided in the thread running direction.
  • the development of the invention is to be used particularly advantageously, in which the screen cylinder is connected to the outlet side with the cooling shaft, which cooling shaft a distance from the screen cylinder lower thread outlet having.
  • the development of the invention is preferred in which the screen cylinder is connected on the outlet side to a cooling tube which has a funnel-shaped inlet for constricting the free flow cross section. This makes it possible to achieve a special guidance and cooling of the filament strands, which leads to higher production speeds and production outputs.
  • the cooling flow generator is preferably formed by a pressure chamber and a blower connected to the pressure chamber.
  • the pressure chamber may be connected directly to the blow opening or indirectly via a blowing wall, which advantageously extends over the entire length of the cooling shaft and injects a transverse cooling air flow into the cooling shaft and the blow opening.
  • a sealing device is advantageously provided on the inlet side of the screen cylinder through which the screen cylinder is sealingly connected to a nozzle carrier of the spinneret.
  • the screen cylinder associated with the spinnerets are advantageously held together with the baffles together on a support in the cooling shaft.
  • the carrier is preferably height-adjustable or exchangeably connected to the cooling shaft, so that for the purpose of maintenance work on the spinnerets, the screen cylinder can be removed in a simple manner from the nozzle carrier of the spinnerets.
  • the carrier can optionally be equipped with additional cooling tubes, which are each connected to the outlet sides of the screen cylinder.
  • additional cooling tubes which are each connected to the outlet sides of the screen cylinder.
  • the cooling shaft on the side facing the blowing openings on a replaceable blowing wall which is connected to the pressure chamber.
  • the blower wall can be exchanged for a cassette wall, which has a cooling air opening in the region of the blow opening, which is connected directly to the pressure chamber.
  • the device according to the invention can optionally be used for different cooling methods.
  • a first embodiment of the inventive device for cooling a filament bundle is shown in several views.
  • the embodiment is in a longitudinal sectional view
  • Fig. 2 in a cross-sectional view
  • Fig. 3 shown in a partial view of the blow opening.
  • the embodiment consists of a spinning device 1 and a cooling device 2.
  • the spinning device 1 has a spinneret 3, which is held in a heatable nozzle carrier 4.
  • the spinneret 3 is connected in its upper side with a melt line 5.
  • the melt line 5 leads to a spinning pump, which is not shown here.
  • On the underside of the spinneret 3 are a plurality of nozzle bores (not shown in detail here) to extrude a plurality of fine filament strands 16.
  • the cooling device 2 has a cuboid cooling shaft 6. On one side of the cooling shaft 6, a pressure chamber 7 is formed, which is connected to a fan 9. The pressure chamber 7 is connected by a blowing wall 8 with the cooling shaft 6.
  • the Blasw and 8 is gas permeable, so that a preferably introduced in the pressure chamber 7 by the fan 9 cooling medium Cooling air flows through the blowing wall 8 transversely to the direction of the filaments 16 in the cooling shaft 6.
  • a screen cylinder 10 with a gas-permeable jacket 19 is held immediately below the nozzle carrier 4.
  • the jacket 19 could be formed from a perforated plate, a sintered metal or a wire mesh.
  • a U-shaped baffle 11 is arranged at a distance from the jacket 19 of the screen cylinder 10.
  • the free legs of the guide plate 11 in the direction of the blowing wall 8 and between them form a blow opening 25.
  • the screen cylinder 10 is partially enclosed by the guide plate 11, wherein a semi-annular space 20 between the screen cylinder 10 and the baffle 11 is formed.
  • the baffle 11, which may be formed from one or more bent sheets, extends over the entire peripheral surface of the screen cylinder 10, so that the free legs of the guide plate 11 form the Blasöffuung 25 at a distance from the screen cylinder 10 immediately in front of the blowing wall 8.
  • the flow divider 12 is formed in this embodiment by two guide plates 13.1 and 13.2 arranged at an angle to each other.
  • the guide plates 13.1 and 13.2 extend over the entire height of the screen cylinder 10 and thus over the entire height of the guide plate eleventh
  • the blower opening 25 is subdivided by the flow divider 12 into a total of three partial openings. Between the free legs of the baffle 11 and the free longitudinal sides of the guide plates 13.1 and 13.2 each result Partblasö réelleen through which the cooling air flow passes directly into the gap 20. Another Partblasö réelle is formed through the central passage opening 26 in the flow divider 12. Thus, the cooling air flow entering the blow opening 25 is divided and guided into three partial air streams by the flow divider 12 arranged in the blow opening 25.
  • the screen cylinder 10, the baffle 11 and the flow divider 12 are mounted and held together on a support 15.
  • the carrier 15 is for this purpose connected to the walls of the cooling shaft 6 via holding devices (not shown).
  • the carrier 15 is held on the underside of the nozzle carrier 4. Between the nozzle carrier 4 and the carrier 15, a sealing device 14 is provided on the upper side of the screen cylinder 10, through which a substantially pressure-tight connection of the screen cylinder 10 to the spinneret 3 is possible.
  • the screen cylinder 10 has a diameter which is preferably equal to or greater than the diameter of the spinneret 3.
  • a yarn outlet 17 is formed in the lower region of the cooling shaft 6.
  • the yarn outlet 17 is associated with a yarn guide 18, which preferably cooperates with a preparation device (not shown here).
  • a preparation device not shown here.
  • the blowing wall 8 could preferably be formed in the lower region of the cooling shaft 6 as a closed wall.
  • a polymer melt is fed through a spinning pump, not shown here, the spinneret 3.
  • the melt is filtered and extruded at the bottom through a plurality of nozzle bores to a plurality of filament strands 16.
  • the spin titer is preferably in the range from 0.2 dpf to 1 dpf.
  • the device according to the invention is thus particularly suitable for cooling a multiplicity of fine filament strands.
  • Fig. 4 is a further embodiment of the device according to the invention shown in a longitudinal sectional view.
  • the components have the same function identical reference numerals.
  • the embodiment according to Fig. 4 has a spinning device 1 and a cooling device 2.
  • the spinning device 1 is identical to the previous embodiment, so that reference is made to the preceding description.
  • the cooling device consists of a cooling shaft 6, in which a screen cylinder 10 is held directly on the underside of the nozzle carrier 4.
  • the screen cylinder 10 has a gas-permeable jacket 19, preferably made of a wire mesh or a sieve.
  • the screen cylinder 10 is associated with a guide plate 11 and a flow divider 12.
  • the structure of the screen cylinder 10, the guide plate 11 and the flow divider 12 is identical to the previous embodiment, so that reference is made to the preceding description at this point.
  • the blow opening 25 formed by the guide plate 11 is connected directly to a pressure chamber 7 via a cooling air opening 23.
  • the pressure chamber 7 is connected to a fan 9.
  • the cooling tube 21 On the outlet side of the screen cylinder 10, a cooling pipe 21 is connected.
  • the cooling tube 21 has a funnel-shaped inlet 22, which is connected directly to the screen cylinder 10 within the cooling shaft 6.
  • the cooling tube 21 has a thread outlet 17, which is located outside of the cooling shaft 6.
  • the Fadanauslador 17 is associated with a yarn guide 18.
  • a sealing device 14 is arranged, wherein the carrier 15 of the screen cylinder 10 is held directly on the nozzle carrier 4.
  • FIG. 5 an embodiment of the device according to the invention is shown, through which a total of six threads can be spun and cooled simultaneously.
  • the construction of a spinning station corresponds essentially to the exemplary embodiment Fig. 1 , so that reference is made to the description of a spinning station to the description of the Fig. 1 ,
  • spinnerets 3 are held in rows on a nozzle carrier 4. Each of the spinnerets 3 is connected via a melt line 5 with a spin pump 27, which is designed as a multiple pump.
  • the cooling device 2 is arranged directly below the spinning device 1 and consists of a cooling shaft 6, which extends parallelepiped below the nozzle carrier 4.
  • the structure of the cooling shaft 6 substantially corresponds to the embodiment according to Fig. 1 , so that a transverse wall cooling air flow for cooling the filament strands 16 is generated by a blowing wall.
  • Fig. 5 the device is shown in a view parallel to the blowing wall.
  • the plane of the drawing corresponds to the plane directly between the blowing wall and the blow opening with a view into the blowing openings.
  • a carrier 15 is held by means not shown here directly on the underside of the nozzle carrier 4.
  • Each spinneret 3 is associated with a screen cylinder 10, wherein between the spinneret 3 and the screen cylinder 10 each have a sealing device 14 is held.
  • Each of the screen cylinder 10 has a baffle 11 and a flow divider 12.
  • the structure and arrangement of the baffles and flow divider is according to the in Fig. 1 shown embodiments.
  • the carrier 15 is held on both end faces of the cooling shaft 6 in a guide 24 such that the carrier 15 can be lowered by the holding device in order to perform, for example, maintenance work on the spinneret 3 can.
  • the guide 24 may also be designed such that the carrier 15 is held replaceable.
  • the carrier 15 could be plugged into the cooling shaft in the form of a cassette.
  • the filament strands 16 are each extruded in bundles through the spinnerets 3 and then guided into the respective associated screen cylinders 10. After precooling in the screening cylinders 10, the filament bundles are cooled together in the lower region of the cooling shaft 6 by a transverse cooling air flow.
  • the selected number of spinning nozzles held in the spinning device 1 is exemplary. Thus, 6, 8, 10 or even more threads can be cooled simultaneously in a cooling shaft 6.
  • Fig. 6 is a further embodiment of the device according to the invention for melt spinning and cooling of several filament bundles shown.
  • the embodiment is essentially identical to the embodiment according to Fig. 5 , wherein the cooling device 2 has a position structure, as before to the embodiment according to Fig. 4 has been described.
  • each spinneret 3 is assigned a respective screen cylinder 10 with a cooling pipe 21 connected on the outlet side.
  • the air supply takes place for all screen cylinder 10 together via a cooling shaft 6.
  • the screening cylinders are each assigned a baffle 11 and a flow divider 12, as already described above.
  • the cooling tubes 21 are designed to be adjustable in height together with the carrier 15 in order to carry out maintenance work on the spinnerets 3 can.
  • the function for cooling the filament strands is to the description of the Fig. 4 Referenced.
  • Fig. 1 to 6 illustrated embodiments of the device are exemplary in construction and arrangement of the individual components.
  • the embodiment of the current divider shown is exemplary.
  • the flow divider can also be advantageously formed from a guide plate, which can be improved by certain shapes.
  • the passage opening in the flow divider could also be designed by a perforated plate structure, so that there are several openings.
  • the device according to the invention is particularly suitable for cooling microfilaments with a high number of filaments.
  • comparative experiments with conventional cross-flow blown have shown significant improvements in the uniformity of the filament strands produced.
  • the device according to the invention can be used independently of the respective type of polymer or independently of the subsequent further processing for producing the threads for each type of fiber production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

L'invention concerne un dispositif de filage par fusion et de refroidissement d'une pluralité de filaments synthétiques. Ce dispositif comprend une unité de filage et une unité de refroidissement, l'unité de filage présentant au moins une filière servant à l'extrusion des filaments. Un cylindre perforé, présentant une enveloppe perméable aux gaz, est placé dans une cuve de refroidissement, sous la filière, pour refroidir les filaments venant d'être extrudés. Un déflecteur en U, entourant partiellement l'enveloppe et formant d'un côté une ouverture de soufflage, est associé au cylindre perforé. L'ouverture de soufflage communique avec un générateur de courant de refroidissement qui insuffle de l'air de refroidissement, s'écoulant transversalement au sens de déplacement des filaments, dans l'ouverture de soufflage. L'objectif de l'invention est de permettre d'obtenir une répartition, la plus homogène possible, de l'air de refroidissement à la périphérie du cylindre perforé. A cet effet, un répartiteur d'écoulement est placé dans l'ouverture de soufflage pour répartir l'air de refroidissement pénétrant dans l'ouverture de soufflage avant son arrivée sur le cylindre perforé.

Claims (14)

  1. Dispositif de filage par fusion et de refroidissement d'une pluralité de filaments synthétiques (16), comprenant un appareil de filage (1) qui présente au moins une filière (3) pour extruder les filaments, et un appareil de refroidissement (2) qui présente, dans un corps de refroidissement (6), un cylindre à tamis (10) disposé sous la filière (3), avec une enveloppe perméable aux gaz (19) et un générateur de flux de refroidissement (7, 9) pour générer un flux d'air de refroidissement s'écoulant transversalement à la direction d'avance des filaments, une tôle directrice en forme de U (11) étant associée au cylindre à tamis (10) à distance de celui-ci, et la tôle directrice (11) entourant partiellement l'enveloppe (19) du cylindre à tamis (10) et formant d'un côté une ouverture de soufflage (25) connectée au générateur de flux de refroidissement, caractérisé en ce que l'ouverture de soufflage (25) est associée à au moins un diviseur de flux (12) à travers lequel le flux d'air de refroidissement entrant dans l'ouverture de soufflage (25) est divisé avant de venir frapper le cylindre à tamis (10).
  2. Dispositif selon la revendication 1, caractérisé en ce que le diviseur de flux (12) est formé par une ou plusieurs tôles de guidage (13.1, 13.2), qui sont maintenues au centre de l'ouverture de soufflage (25) et qui s'étendent essentiellement sur la hauteur du cylindre à tamis (10).
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le diviseur de flux (12) présente centralement au moins une ouverture de passage (26), à travers laquelle une partie de l'air de refroidissement est guidée directement sur le cylindre à tamis (10).
  4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le cylindre à tamis (10) est raccordé du côté de la sortie au corps de refroidissement (6), lequel corps de refroidissement (6) présente une sortie de fil inférieure (17) à distance du cylindre à tamis (10).
  5. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le cylindre à tamis (10) est raccordé du côté de la sortie à un tube de refroidissement (21) qui présente une entrée en forme d'entonnoir (22) pour le rétrécissement de la section transversale d'écoulement libre.
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le générateur de flux de refroidissement est formé par une chambre de pression (7) raccordée à l'ouverture de soufflage (25) et une soufflante (9) raccordée à la chambre de pression (7).
  7. Dispositif selon la revendication 6, caractérisé en ce qu'entre la chambre de pression (7) et l'ouverture de soufflage (15) est réalisée une paroi de soufflage (8), la paroi de soufflage (8) s'étendant d'un côté le long du corps de refroidissement (6).
  8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le cylindre à tamis (10) présente, du côté de l'entrée, un appareil d'étanchéité (14), par le biais duquel le cylindre à tamis (10) est raccordé hermétiquement à un support de filière (4) de la filière (3).
  9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'enveloppe (19) du cylindre à tamis (10) est formée d'un tissu à fil métallique.
  10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'appareil de filage (1) présente plusieurs filières de filage (3) sur un support de filière commun (4), en ce que chaque filière (3) à l'intérieur du corps de refroidissement (6) est associée à l'un de plusieurs cylindres à tamis (10), et en ce que le cylindre à tamis (10), les tôles directrices (11) associées aux cylindres à tamis (10) et le diviseur de flux (12) sont maintenus ensemble par un support (15) dans le corps de refroidissement (6).
  11. Dispositif selon la revendication 10, caractérisé en ce que le support (15) est connecté de manière réglable en hauteur et/ou remplaçable au corps de refroidissement (6).
  12. Dispositif selon la revendication 10 ou 11, caractérisé en ce que le support (15) peut être muni de manière sélective de tubes de refroidissement supplémentaires (21), qui sont connectés à chaque fois aux côtés de sortie des cylindres à tamis (10).
  13. Dispositif selon l'une quelconque des revendications 10 à 12, caractérisé en ce que le corps de refroidissement (6) présente, sur le côté tourné vers les ouvertures de soufflage (25) des tôles directrices (11), une paroi de soufflage remplaçable (8) qui est raccordée à la chambre de pression (7).
  14. Dispositif selon la revendication 13, caractérisé en ce que la paroi de soufflage (8) peut être remplacée par une paroi de cassette, laquelle paroi de cassette présente, dans la région des ouvertures de soufflage (25), une ouverture d'air de refroidissement (23) qui est raccordée à la chambre de pression (8).
EP05715675A 2004-03-16 2005-03-03 Dispositif de filage par fusion et de refroidissement Not-in-force EP1725702B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004012715 2004-03-16
PCT/EP2005/002211 WO2005095683A1 (fr) 2004-03-16 2005-03-03 Dispositif de filage par fusion et de refroidissement

Publications (2)

Publication Number Publication Date
EP1725702A1 EP1725702A1 (fr) 2006-11-29
EP1725702B1 true EP1725702B1 (fr) 2012-08-22

Family

ID=34960925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05715675A Not-in-force EP1725702B1 (fr) 2004-03-16 2005-03-03 Dispositif de filage par fusion et de refroidissement

Country Status (4)

Country Link
EP (1) EP1725702B1 (fr)
CN (1) CN1930329B (fr)
TW (1) TW200606287A (fr)
WO (1) WO2005095683A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024994A1 (fr) * 2007-08-17 2009-02-26 Reliance Industries Limited Fils de filaments polymères continus ayant une uniformité de fibre améliorée avec une productivité accrue
DE202008015313U1 (de) 2008-09-16 2009-04-30 Oerlikon Textile Gmbh & Co. Kg Vorrichtung zum Abkühlen mehrerer synthetischer Filamentbündel
DE102010050394A1 (de) * 2009-11-06 2011-05-12 Oerlikon Textile Gmbh & Co. Kg Vorrichtung zum Abkühlen einer Vielzahl synthetischer Fäden
EP2665849B1 (fr) 2011-01-22 2014-10-22 Oerlikon Textile GmbH & Co. KG Dispositif de refroidissement d'une pluralité de fils synthétiques
CN102925996A (zh) * 2012-04-10 2013-02-13 南京理工大学 采用特殊滚筒的静电成形方法
CN103374762B (zh) * 2012-04-26 2016-12-21 欧瑞康纺织技术(北京)有限公司 用于熔融纺丝和冷却合成长丝的设备
CN103014887A (zh) * 2012-12-12 2013-04-03 苏州龙杰特种纤维股份有限公司 一种制备海岛纤维的涡轮式冷却装置
TWI568900B (zh) * 2014-07-15 2017-02-01 台灣玻璃工業股份有限公司 成型板及其應用之纖維製作機台
CN106868612A (zh) * 2017-03-28 2017-06-20 苏州市朗润纺织科技有限公司 纺丝冷却装置
CN108796205B (zh) * 2018-09-12 2023-08-04 珠海格力电工有限公司 一种退火线的风冷装置和退火方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067458A (en) * 1959-04-07 1962-12-11 Du Pont Melt spinning apparatus and process
US4529368A (en) * 1983-12-27 1985-07-16 E. I. Du Pont De Nemours & Company Apparatus for quenching melt-spun filaments
EP0826802B1 (fr) * 1996-08-28 2001-11-28 B a r m a g AG Procédé et dispositif de filature des fils multifilaments
JP3561101B2 (ja) * 1996-10-24 2004-09-02 帝人ファイバー株式会社 ポリエステル繊維の製造装置と製造方法

Also Published As

Publication number Publication date
EP1725702A1 (fr) 2006-11-29
CN1930329B (zh) 2010-05-05
TW200606287A (en) 2006-02-16
WO2005095683A1 (fr) 2005-10-13
CN1930329A (zh) 2007-03-14

Similar Documents

Publication Publication Date Title
EP1725702B1 (fr) Dispositif de filage par fusion et de refroidissement
EP1090170B1 (fr) Dispositif de filage pour filer un fil synthetique
EP2283174B1 (fr) Procédé de filage à l'état fondu, d'étirage et d'enroulement d'un fil multifilament, et dispositif destiné à la réalisation du procédé
EP2591153B1 (fr) Procédé et dispositif de fabrication d'un fil composite
EP3433400B1 (fr) Dispositif de filature par fusion, de levage et d'enroulement d'une nappe de fils
DE19821778A1 (de) Vorrichtung und Verfahren zur Herstellung von Mikrofilamenten von hoher Titer-Gleichmäßigkeit aus thermoplastischen Polymeren
DE102009034061A1 (de) Vorrichtung zum Schmelzspinnen und Aufwickeln einer Vielzahl synthetischer Fäden
WO2000005439A1 (fr) Dispositif et procede permettant de filer un fil synthetique
WO2006018240A1 (fr) Dispositif et procede de filage par fusion, de levee, de traitement et d'enroulement de plusieurs fils synthetiques
DE102009021131A1 (de) Vorrichtung zum Schmelzspinnen und Aufwickeln einer Mehrzahl von Fäden sowie ein Verfahren zum Führen mehrerer Fäden beim Schmelzspinnen und Aufwickeln
EP1710329A1 (fr) Procédé et machine de filage et de refroidissement de filaments
WO2012113668A1 (fr) Dispositif de filage par fusion
EP1045930A1 (fr) Procede et dispositif pour la production d'un fil hautement oriente
DE10053073A1 (de) Spinnvorrichtung
EP0455897A1 (fr) Dispositif pour la fabrication de fibres trés fines
DE10109838A1 (de) Vorrichtung zum Abkühlen einer synthetischen Filamentschar beim Schmelzspinnen
DE4220915A1 (de) Verfahren und Vorrichtung zur Herstellung synthetischer Endlosfilamente
EP2665849B1 (fr) Dispositif de refroidissement d'une pluralité de fils synthétiques
DE10116294A1 (de) Verfahren zm Schmelzspinnen eines Verbundfadens und Spinnvorrichtung
WO2004088008A1 (fr) Procede et dispositif pour fabriquer des fils continus gonflants
WO2000047801A1 (fr) Procede et dispositif de filature d'un fil synthetique
WO2017063913A1 (fr) Procédé et dispositif de fabrication de fils multifilaments fins
DE19935797A1 (de) Vergleichmäßigung der Kühlbedingungen an mehreren Spinnstellen
EP1646737A1 (fr) Dispositif de filature par fusion, refroidissement et d'enroulement
DE102005048334A1 (de) Vorrichtung zum Schmelzspinnen und Kühlen einer synthetischen Filamentschar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON TEXTILE GMBH & CO. KG

17Q First examination report despatched

Effective date: 20071102

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON TEXTILE GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013030

Country of ref document: DE

Effective date: 20121018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013030

Country of ref document: DE

Effective date: 20130523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150319

Year of fee payment: 11

Ref country code: IT

Payment date: 20150228

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150330

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013030

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160303