EP1720812A1 - Keramischer versatz und zugeho riges produkt fur feuerfe ste anwendungen - Google Patents

Keramischer versatz und zugeho riges produkt fur feuerfe ste anwendungen

Info

Publication number
EP1720812A1
EP1720812A1 EP05715686A EP05715686A EP1720812A1 EP 1720812 A1 EP1720812 A1 EP 1720812A1 EP 05715686 A EP05715686 A EP 05715686A EP 05715686 A EP05715686 A EP 05715686A EP 1720812 A1 EP1720812 A1 EP 1720812A1
Authority
EP
European Patent Office
Prior art keywords
sio
base material
carrier
batch according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05715686A
Other languages
English (en)
French (fr)
Inventor
Harald Harmuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Refractory Intellectual Property GmbH and Co KG
Original Assignee
Refractory Intellectual Property GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200410010740 external-priority patent/DE102004010740C5/de
Priority claimed from DE200410010739 external-priority patent/DE102004010739B4/de
Application filed by Refractory Intellectual Property GmbH and Co KG filed Critical Refractory Intellectual Property GmbH and Co KG
Publication of EP1720812A1 publication Critical patent/EP1720812A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/06Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • C04B35/6309Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention relates to a ceramic substitute and an associated product for refractory applications.
  • Ceramic additives with refractory raw materials are used to manufacture refractory ceramic products and are used in many areas of technology, especially for lining
  • the refractory raw materials are both basic and non-basic varieties.
  • MgO in particular MgO sinter, is an essential component of all MgO and MgO spinel products.
  • the main component of MgO sinter is periclase.
  • the main raw material base for the production of MgO sinter is magnesite, i.e. magnesium carbonate, or a synthetic magnesia source.
  • Unformed products for example casting compounds, are formed from batches which are brought to a desired processing consistency with a certain viscosity by water or other liquids and, if appropriate, additives (such as binders, plasticizers, dispersants). These masses are then processed directly as monolithic masses, for example for the monolithic lining of a metallurgical melting vessel, or they are used for the production of so-called prefabricated components. In this case, the offsets can also be processed as such or in combination with certain additives, for example cast in molds.
  • additives such as binders, plasticizers, dispersants
  • cracks may form during subsequent drying and / or shrinkage during the subsequent sintering, which reduce the durability of the infeed or the prefabricated component.
  • the mentioned products based on MgO in combination with various spinels have proven themselves in principle.
  • the introduction of the spinels introduces additional oxides into the batch, which can lead to a reduction in the hot strength of the fired products.
  • the invariant point which is the temperature of the first melting phase formation
  • calcium-rich infiltrates such as basic slags or cement clinker melts, can then reduce the heat resistance and durability.
  • the invention has for its object to offer a ceramic offset and associated products that have a symbiosis of the required property characteristics mentioned.
  • the products formed from the offset should have reduced brittleness (ie improved ductility), good thermal shock properties, advantageous heat resistance and the best possible resistance to corrosion while at the same time being inexpensive to produce.
  • the term “product” includes in particular unshaped and shaped products, those with and without heat treatment before use, sintered products and products that are / have been heat treated (heated) during use.
  • the invention is based on the knowledge that the brittleness of refractory products or products intended for refractory applications can be significantly reduced if the formation of macroscopically recognizable (large) cracks is avoided and the system is set so that it only serves to form microcracks in the Structure is coming. This is achieved by adding a separate SiO 2 carrier to the offset.
  • the crack density is increased (expressed, for example, as the number of cracks per square meter of the surface).
  • the cracks have a much smaller crack width (in particular ⁇ 20 ⁇ m), and are therefore significantly smaller than the macroscopically recognizable cracks in products in the prior art.
  • These micro cracks do not have the same negative impact on the durability of the products. These products are also better able to withstand thermo-mechanical loads during use, for example due to thermal shocks.
  • the fact that the SiO 2 carrier as a largely independent component is retained and no melting phases form, the effects of microcracking are retained even after temperature treatment.
  • the physical changes in the structure can be achieved in certain mass fractions by adding a separate, grained SiO 2 carrier.
  • SiO 2 carrier encompasses all crystalline SiO 2 modifications which have sufficient stability at room temperature. These include primarily cristobalite (ß-form) and tridymite ( ⁇ -tridymite). Another possible SiO 2 modification is coesite. Quartz (ß-shape) or quartz can also be used as SiO 2 carrier. This also applies to substances that have been prepared from the above-mentioned SiO 2 raw materials by physical and / or chemical processes (pretreatment). For example, quartz can be ground, compacted, sintered and then processed in a suitable grain.
  • the pretreatment or preparation of the SiO 2 carrier can be used to reduce its bulk density to values of ⁇ 2.65 g / cm 3 , for example to values between 2.2 and 2.5 g / cm 3 .
  • the chemical composition of the SiO 2 carrier can also be varied by admixtures such as CaO.
  • microcracks is caused by a non-linear thermal expansion during phase transformations of the crystalline SiO 2 carrier.
  • phase transformation is, for example, that of ⁇ -quartz to ⁇ -quartz at 573 ° C and the transformation of ⁇ -quartz to ⁇ -cristobalite at over 1050 ° C, often at around 1250 ° C.
  • Ss-Cristobalite is already changing at 270 ° C in ⁇ -cristobalite, which is also associated with a volume expansion. Therefore, the desired effect can be seen in the product of Example 5 below after drying at 380 ° C.
  • the invention then relates to a ceramic offset for refractory applications
  • the offset can only consist of components A and B.
  • the refractory base material can be a basic substance such as doloma (i.e. burnt dolomite) or magnesia (ie MgO), or a non-basic substance, for example based on Al 2 O 3 or ZrO 2 .
  • doloma i.e. burnt dolomite
  • magnesia ie MgO
  • non-basic substance for example based on Al 2 O 3 or ZrO 2 .
  • the proportion of the refractory base material is 90-99% by weight.
  • the proportion of the granular SiO 2 carrier is, for example,> 1 and / or ⁇ 7% by weight, in each case based on the total offset, the upper limit also being able to be set at ⁇ 5% by weight or ⁇ 4% by weight.
  • the mixture of refractory base material for example an MgO base material and crystalline SiO 2 support , leads to expansion in the corresponding modification conversions of the SiO support during a temperature treatment (in particular in the case of fire) after shaping the offset, according to current knowledge, which leads to generation of micro-cracks in the structure. These micro cracks are responsible for reducing the brittleness.
  • microcracks are formed when the crystalline SiO 2 support is added during the heating phase of the firing process, while in the prior art microcracking can be observed in the cooling phase. If a glassy SiO 2 carrier (quartz material) is used, the crack formation is due to the greater shrinkage of the refractory (refractory) basic component when cooling after the fire.
  • the principle of microcrack initiation by a separate, grained SiO 2 carrier is basically independent of the raw material (the refractory basic component) and is therefore, for example, based on ceramic-bonded, chemically bonded, carbon-bonded, hydraulically bonded, shaped and unshaped, annealed, fired and unburned refractory displacements and products applicable.
  • the temperature can be a criterion for the selection of the SiO 2 carrier.
  • the prefabricated components casting compounds or carbon-bonded refractory products mentioned, it can make sense to use cristobalite as an SiO 2 carrier.
  • the desired microcracks can be formed even at a very low temperature level, for example when the casting compounds are heated up. The unwanted shrinkage cracks can be avoided.
  • An important group for the application of the invention are unshaped products such as concrete masses or casting masses for the production of refractory linings or prefabricated components. These masses can be hydraulic or harden semi-hydraulically, e.g. be masses based on cement, especially alumina cement.
  • the invention can also be applied to low-cement or cement-free casting compounds, for example those based on bauxite as a non-basic refractory base material.
  • the dry mix (e.g. bauxite and cristobalite) is mixed with the required amount of water to achieve a desired processing consistency. If necessary, additives such as plasticizers are added.
  • the described conversion of ß-cristobalite to ⁇ -cristobalite takes place already during drying from 270 ° Celsius.
  • the mode of operation described is largely independent of the grain fraction of the refractory basic component.
  • small maximum grain sizes (for example 2 mm) or small proportions (for example 5% by weight) of the coarse fraction (for example 2 to 4 mm) can have an unfavorable effect on the reduction in brittleness.
  • the SiO 2 carrier has a grain size d 50 or d 05 which is larger than a maximum grain (or larger than at least 95% by weight) of the fine grain fraction of the refractory base material. Accordingly, 50 or 95% by weight of the SiO 2 carrier is coarser than 95 or 100% by weight of the fine grain of the refractory base material.
  • the refractory base material is typically used in a relatively wide range of particles.
  • the component can have a proportion of a medium grain, for example 0.25- ⁇ 1mm and a fine grain fraction (flour fraction) ⁇ 0.25mm.
  • the limit grain size between coarse grain and medium grain can also be set at 1, 5 or 2mm.
  • the proportion of flour grain can be determined, for example, to a grain fraction ⁇ 0.125 mm (125 ⁇ m).
  • the abovementioned fine grain fraction of the refractory base material is 10-30% by weight, 15-25% by weight or 25-30% by weight, in each case based on the total batch.
  • the average grain fraction as stated above, can be, for example, orders of magnitude of 5-30% by weight, 10-25% by weight or 10-20% by weight, again based on the total offset.
  • the coarse grain fraction is calculated accordingly from the above proportions of fine grain or medium grain.
  • the refractory, in particular oxidic, raw material is proposed in the following particle size distribution:
  • the granular SiO 2 carrier has a grain size of up to 6 mm, the upper grain limit also being selected at 3.0 or 1.5 mm and the lower grain limit at 0.25, 0.50, 1 or 2 mm can.
  • the SiO 2 carrier is typically present in a grain fraction between 0.5 and 3 mm. In comparison with grain sizes in the range below 1 mm, the increase in the grain size (> 1 mm) with the same amount leads to a higher effectiveness in the sense of the invention. A grain size of 1 to 2mm is therefore more effective than a grain size of 0.5 to 1mm.
  • At least one of the following components can be selected as the non-basic refractory base material: chamotte, sillimanite, andalusite, kyanite, mullite, bauxite, corundum raw materials such as high-grade corundum or brown corundum, Tabular alumina, calcined alumina, basic materials containing zirconium oxide such as zirconium mullite, zirconium corundum, zirconium silicate or zirconium oxide, titanium oxide (TiO 2 ), Mg-Al spinel, silicon carbide.
  • Quartzite can also be used as a refractory base material, with cristobalite, tridymite, coesite and / or the aforementioned pretreated SiO 2 carrier being used as an additive.
  • MgO base material with an MgO content of 83 to 99.5% by weight is proposed in particular as the basic refractory base material.
  • the lower limit for the MgO content is 85, 88, 93, 94, 95, 96 or 97% by weight, the upper limit for example 97, 98 or 99% by weight.
  • the MgO content is 94 to 99 or 96 to 99% by weight.
  • the MgO base material can consist of sintered magnesia, melted magnesia or mixtures thereof.
  • the MgO content of the batch can be provided in a proportionate amount of 3 to 20% by weight (or 3 to 10% by weight) based on the total mixture, a spinel of the Herzynit type, the Galaxit type or mixtures thereof become.
  • the microcracks initiated by the granular SiO 2 carrier in the heating phase are supplemented by further microcracks by the spinel component during the cooling phase in the pyroprocess.
  • the batch can contain other constituents in relatively small proportions, for example at least one of the following components: (elementary) carbon, graphite, resin, pitch, soot, coke, tar.
  • the offset can therefore be used to produce C-linked products. This applies in particular to applications of the offsets in carbon-bound products or products that are soaked in tar.
  • ASC products include so-called ASC products, the names of which derive from the main components A (for Al O 3 carriers), S (for SiC and / or Si metal) and C (for the carbon carrier).
  • ASC products the names of which derive from the main components A (for Al O 3 carriers), S (for SiC and / or Si metal) and C (for the carbon carrier).
  • Magnesia carriers (for spinel formation) and Mg-Al spinels can also be part of the recipe.
  • Such offsets are bound with a synthetic resin, for example a phenolic resin, as a binder. They are used for example for pig iron pans, but also for shadow pipes, dip pipes, etc.
  • the curing process can be carried out in such a way that, for example, the transition temperature from ß-cristobalite to ⁇ -cristobalite is reached or exceeded, so that microcracks are already present in the product when the pre-assembled molded parts are delivered.
  • the offset described also serves in particular for the production of fired refractory products, in particular fired refractory molded parts.
  • a binder in particular a temporary binder, for example a lignin sulfonate solution, is mixed into the batch and the mixture is then pressed, for example into stones, dried and fired.
  • a typical firing temperature is 1300-1700 ° Celsius.
  • a typical firing temperature for a batch with 96% by weight of MgO and 4% of a granular SiO 2 carrier is 1,400 ° C (+/- 50 ° C).
  • Too high a firing temperature or application temperature can lead to a reduced effect of the SiO 2 carrier and increase the brittleness again due to too intensive sintering (usually involving melting phases).
  • the reaction behavior in particular the formation of melting phases, between the SiO 2 carrier and the refractory base material must be taken into account without preventing sufficient sintering.
  • the exact firing temperature is dependent on the specifically selected components of the offset and has to be determined empirically.
  • the offsets of Examples 1-3 are used to produce fired, shaped products based on non-basic raw materials.
  • a temporary binder must be added to the offset components.
  • This can be, for example, sulfite waste liquor, phosphoric acid or monoaluminum phosphate.
  • a binding tone can also be used in the recipe be included.
  • stones or other molded parts can be produced from the offsets, which are then fired.
  • the firing temperature should be selected so that the sintering is sufficient, but not so high that excessive sintering counteracts the effect of reducing the brittleness.
  • the granulometry of the fine-grain fraction of the non-basic raw material and the binder are decisive.
  • a firing temperature of 1450 ° Celsius was chosen.
  • the (pressed) stones produced from offsets 2 and 3 were fired at 1550 ° Celsius.
  • Offset No. 4 is used to manufacture a so-called ASC product, i.e. a C-linked product, as was presented above, with an addition of cristobalite. Via the cristobalite conversion, microcracks in the structure are initiated during the tempering (400 ° Celsius) of the products made from the offset.
  • Example 5 shows an offset for a casting compound with a proportion of alumina cement.
  • the batch was mixed with water and molded parts were made from it, which were dried or tempered at temperatures up to 380 ° Celsius.
  • a comparison mass No. 6
  • analog samples were produced and also dried or tempered at 380 ° Celsius.
  • all other basic components of batch No. 5 were increased by 4% each.
  • G F denotes this specific breaking energy (N / m), E the modulus of elasticity (Pa), and f t (Pa) the tensile strength.
  • Gp / ft of the specific breaking energy G F to the tensile strength f t The ratio G F / O Z is used to characterize products according to the invention.
  • a basic wedge gap test to determine the specific breaking energy G F and the nominal notch tensile strength ⁇ _z is described in K. Rieder et.al.
  • the wedge gap test is carried out after a temperature treatment of the product (for example after drying, tempering or fire of the product) at room temperature.
  • the table at the end of the description lists the conditions for the wedge gap test depending on the starting product.
  • “Unformed product” denotes an offset, if appropriate after adding a binder and / or a mixing liquid.
  • molded product includes all shapes and shaping processes, the product having to be at least the size of the test specimen described below. A distinction is made between molded products without and after temperature treatment and according to their different types of bonds.
  • An "originally unshaped product" for example a casting or injection molding compound, can become Solidification of the creation of a monolithic body (for example a furnace lining) solidifies during use and thus virtually becomes a “molded” part. This also applies analogously to prefabricated components which are exposed to higher temperatures at least during use.
  • the shape of the test specimen is shown in FIG. 1.
  • the cuboid test specimen has the following dimensions: width W: 1 10 mm, length L: 75 mm, height H: 100 mm.
  • a recess A with the following dimensions can be seen on the upper side: width b: 24 mm; Length 1: 75 mm, height h: 22 mm.
  • the recess A is used to hold strips, rollers and a wedge for power transmission. From the bottom of the recess A, a notch Kl extends with a width b 'of 3 mm and a height h' of 12 mm downwards in the direction of the base area G. In each case, another notch adjoins the notch Kl
  • K2, K3 each have a width b "of 3 mm and a height h" of 6 mm.
  • a wedge K1 according to FIG. 3 (above) is placed in the middle between the strips LS and is supported against the strips LS via two rollers R (FIG. 3 below), as shown in FIG.
  • the shaping process of product manufacture is done by uniaxial pressing, the sample is taken so that the direction of the pressing force is parallel to the plane of the ligament surface (that is the surface where the fracture is generated during the test).
  • the length of the wedge K and the strips LS corresponds to the sample length of 75 mm.
  • the rolls R are a little longer.
  • Wedge Kl, strips LS and rollers R are made of steel.
  • the test specimen rests on a linear support.
  • This is a square steel rod S, which has an edge length of 5 mm and whose length corresponds at least to the specimen width of 75 mm and extends over the entire length of the specimen.
  • the bar S covers the width of the Notches K2, K3 even on both sides.
  • the course of the test is shown in FIG. 5.
  • a load cell KM can be seen in the upper image area.
  • the vertical force V exerted by the testing machine on the wedge Kl causes horizontal forces which lead to a steadily progressing crack formation during the test.
  • the vertical load F v and the vertical displacement ⁇ v are determined. These sizes are registered until the load drops to 10% or less of the maximum load.
  • the fracture energy GF is determined as the area under the load / displacement diagram.
  • A is the ligament area of 66 x 63 mm [(100-22-12) x (75-6-6)]
  • ⁇ max is the maximum displacement during the measurement.
  • the nominal notch tensile strength is calculated using the following equation:
  • B is the ligament length (63mm) and W is the ligament height (66mm).
  • the size y denotes the vertical distance of the line of action of the horizontal force introduced by the rollers from the center of gravity of the ligament surface. A value of 62 mm is used as a sufficient approximation for this (FIGS. 1 and 4).
  • the horizontal maximum load FH max used in this relationship (III) can be determined from the vertical maximum load Fy ma according to the following relationship:
  • the following table shows the comparison values for the specific breaking energy G F , the nominal notch tensile strength ⁇ j z and the quotient of the two.
  • Products according to the invention are characterized by a ratio G F / Ü Z > 40. Values> 50 are aimed for.
  • the product according to the invention shows a more than doubled quotient of specific breaking energy and nominal notch tensile strength, from which a significantly reduced brittleness can be read.
  • FIG. 6 shows the load / displacement diagrams of the wedge gap test (carried out at room temperature) and demonstrates the significantly less brittle behavior of the offset (7) according to the invention. In the table above, this can be seen from the higher quotient of the specific breaking energy G F by the nominal notch tensile strength ⁇ : z.
  • the addition of the granular SiO 2 support to the magnesia component causes a significant reduction in the modulus of elasticity, namely from 75.8 GPa to 14.9 GPa.
  • the table also shows that the ratio of the nominal notch tensile strength to the dynamic modulus of elasticity is significantly higher in the variant according to the invention. This leads to an increase in the thermal stress parameter R according to Kingery [WD Kingery et.al. : Introduction to Ceramics, John Wiley & Sons, 1960; ISBN 0-471 -4786C- 1].
  • the invention manages with a simple, inexpensive additive (granular SiO 2 carrier) in addition to the refractory basic component, the said offset proves to be a good basis for the production of refractory products which have a relatively low brittleness, so that they show good thermal shock resistance, are corrosion resistant, but also do not cause a reduction in the heat resistance in comparison to other products from the prior art.
  • the selection of the offset components and manufacturing conditions is such that the product gives a ratio Gp / ⁇ z> 40.
  • the product according to the invention has the advantage of a higher mechanical or thermomechanical resistance to thermal shock or impressed deformations.
  • magnesia chromite products there is the advantage of a chromium-free delivery material, whereby the risk of Cr 6+ formation can be avoided.
  • spinel products there is a cost advantage due to the relatively inexpensive SiO 2 carrier available.
  • building materials in the CaO-MgO-SiO 2 system with mass ratios of CaO to SiO 2 (C / S ratios) below 0.93 have an invariant point of at least 1502 ° C., which at C / S ratios below approx. 0.25 (presence of a forsterite mixed crystal as the only silicatic secondary phase) can be increased further with a decreasing C / S ratio up to a maximum of approx. 1860 ° C.
  • a magnesia stone containing spinel (MgAl 2 O 4 ) with a C / S ratio above 1.87, as it corresponds to the prior art has an invariant point of 1325 ° C.
  • the higher invariant point in the product according to the invention can be used to improve the hot properties if, taking into account the product composition and any infiltrates in use, the amount of melting phase is also more favorable. Compared to products with the addition of ZrO 2 there is in any case an economic advantage due to the lower cost of the SiO 2 carrier.
  • the product according to the invention allows a material composition that consists exclusively of crystalline phases.
  • Another advantage is that when using cristobalite, microcrack initiation and thus a reduction in brittleness already occurs at a temperature of 270 ° C. This allows unburned products to be manufactured or used even at low temperatures with reduced brittleness. These include, for example, casting compounds and prefabricated components. It is also possible, for example, to reduce the brittleness of carbon-bound unbaked products in this way.
  • a test specimen is formed from the batch, optionally after adding a binder and / or water (for example: chemical or hydraulic binder), and this is heat-treated at 350 ° C.
  • a binder and / or water for example: chemical or hydraulic binder
  • test specimen is formed from the batch, optionally after adding a binder and / or water (for example: chemical or hydraulic binder), and this is heat-treated at 650 ° C., alternatively> 1350 ° C.
  • a binder and / or water for example: chemical or hydraulic binder
  • test specimen is cut from the product and this is heat-treated at 350 ° C., provided that the product has not previously been heat-treated at a temperature> 350 ° C.
  • test specimen is cut from the product and this is heat-treated at 650 ° C, alternatively 1350 ° C, provided the product has not previously been heat-treated at a temperature> 650 C, alternatively> 1350 ° C.
  • test specimen is cut from the product formed during use and this is heat-treated at 350 ° C., provided the product has not already been temperature-treated during use> 350 ° C.
  • test specimen is cut from the product formed during use and this is heat-treated at 650 ° C, alternatively 1350 ° C, provided the product has not already been heat-treated during use> 650 C, alternatively> 1350 ° C.
  • the SiO 2 carrier consists of at least 50% by weight of cristobalite and / or tridymite.
  • the SiO 2 carrier consists of less than 50% by weight of cristobalite and / or tridymite.
  • the temperature treatment is usually carried out at 1350 ° C. If the temperature of 1350 ° C is too high to reduce brittleness, the temperature treatment is carried out alternatively at 650 ° C, which is higher than the temperature for the quartz crack.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Die Erfindung betrifft einen keramischer Versatz für feuerfeste Anwendungen mit 83-99,5 Gew.-% mindestens eines refraktären Grundstoffs in einer Kornfraktion < 8mm und 0,5-12 Gew.-% mindestens eines separaten, gekörnten SiO2-Trägers sowie etwaiger Rest: sonstige Bestandteile. Die Erfindung betrifft auch ein Produkt unter Verwendung dieses Versatzes.

Description

Keramischer Versatz und zugehöriges Produkt für feuerfeste Anwendungen
Beschreibung
Die Erfindung betrifft einen keramischen Nersatz sowie ein zugehöriges Produkt für feuerfeste Anwendungen.
Keramische Nersätze mit refraktären Grundstoffen dienen zur Herstellung feuerfester keramischer Produkte und finden in vielen Bereichen der Technik Anwendung, insbesondere zur Auskleidung
und Reparatur von metallurgischen Schmelzgefäßen oder Industrieofen- Auskleidungen. Weiters werden derartige Grundstoffe zur Herstellung so genannter Funktionalprodukte eingesetzt, beispielsweise für Ausgüsse, Tauchrohre, Schattenrohre, Schieberplatten, etc., wie sie in den genannten Schmelzaggregaten und Öfen benötigt werden.
Die refraktären Grundstoffe sind sowohl basische als auch nicht basische Sorten. MgO, im Besonderen MgO-Sinter, ist wesentlicher Bestandteil aller MgO- und MgO-Spinell-Erzeugnisse. Hauptbestandteil von MgO- Sinter ist Periklas. Wesentliche Ro stoffgrundlage zur Herstellung von MgO-Sinter ist Magnesit, also Magnesiumcarbonat, beziehungsweise eine synthetische Magnesiaquelle.
Zur Einstellung bestimmter Werkstoffeigenschaften, insbesondere zur Verbesserung der chemischen Resistenz gegen Schlacken, der Verbesserung der Duktilität sowie der Temperatur- Wechselbeständigkeit und der Heißfestigkeit sind verschiedene feuerfeste keramische Versätze in Kombination mit verschiedenen Zusätzen bekannt, aus denen dann die entsprechenden ungeformten oder geformten Produkte hergestellt werden.
Hierzu gehört beispielsweise Chromerz zur Herstellung so genannter Magnesiachromitsteine. Ihr Vorteil liegt in einer geringen Sprödigkeit (beziehungsweise höheren Duktilität) gegenüber reinen Magnesiasteinen. Allerdings besteht ein zunehmender Bedarf nach Cr O3-freien feuerfesten Baustoffen, um das Potential der Bildung von toxischem Cr6+ zu vermeiden. In diesem Zusammenhang wurden verschiedene Versätze vorgeschlagen, die frei an Chromoxid sind. Gemäß DE 44 03 869 C2 besteht ein solcher Versatz aus 50 bis 97 Gew.-% MgO-Sinter und 3 bis 50 Gew.-% eines Spinells vom Herzynit-Typ. Produkte, die aus einem solchen Versatz gebrannt werden, weisen im Gegensatz zu reinen MgO-Produkten eine verringerte Sprödigkeit auf.
Ungeformte Produkte, beispielsweise Gießmassen, werden aus Versätzen gebildet, die durch Wasser oder andere Flüssigkeiten sowie gegebenenfalls Zusatzmittel (wie Bindemittel, Verflüssiger, Dispergiermittel) in eine gewünschte Verarbeitungskonsistenz mit einer bestimmten Viskosität gebracht werden. Diese Massen werden anschließend als monolithische Massen direkt verarbeitet, beispielsweise zur monolithischen Auskleidung eines metallurgischen Schmelzgefäßes, oder sie werden zur Herstellung so genannter Fertigbauteile verwendet. In diesem Fall können die Versätze auch als solche oder in Kombination mit bestimmten Zusatzmitteln verarbeitet werden, beispielsweise in Formen gegossen werden.
Bei den genannten Gießmassen, zu denen auch refraktäre Betonmassen gezählt werden, kann es bei einer anschließenden Trocknung und/oder Schwindung während der späteren Versinterung zur Ausbildung von Rissen kommen, die die Haltbarkeit der Zustellung oder des Fertigbauteils vermindern.
Solche Risse werden häufig bei der Zustellung von Gießpfannen der Stahlindustrie mit nicht basischen Gießmassen beobachtet. Um dem entgegenzuwirken sind im Stand der Technik Spinell-bildende Massen vorgeschlagen worden. Bei der Spinellbildung kommt es zu einer Volumenvergrößerung, die Schwindungen entgegenwirkt. Die Rissbildung tritt aber häufig schon bei Temperaturen auf, die unterhalb der Temperaturen für die Spinellbildung liegen. Die gewünschten höheren Haltbarkeiten lassen sich dann nicht erreichen.
Die genannten Produkte auf Basis MgO in Kombination mit verschiedenen Spinellen haben sich im Prinzip bewährt. Durch die Einbringung der Spinelle werden jedoch zusätzliche Oxide in den Versatz eingeführt, was zu einer Verringerung der Heißfestigkeit der gebrannten Produkte führen kann. So kann zum Beispiel der invariante Punkt, das ist die Temperatur der ersten Schmelzphasenbildung, bei einem Magnesiastein mit einem Zusatz von MgAl2O4 lediglich 1.325° C betragen. Vor allem kalziumreiche Infiltrate, wie zum Beispiel basische Schlacken oder Zementklinkerschmelzen, können dann die Heißfestigkeit und Haltbarkeit verringern.
Auch bei gebrannten, geformten Produkten führen die oben erwähnten Einflüsse, wie Schlackenangriff, Temperaturwechsel, etc. zu einer oft unzureichenden Lebensdauer der feuerfesten Produkte. Dies gilt insbesondere für Anwendungen, bei denen zum Beispiel mit mechanischen oder thermo- mechanischen Spannungen zu rechnen ist. Hierzu gehören feuerfeste Auskleidungen von Aggregaten, bei denen periodisch wechselnde Verformungen auftreten, zum Beispiel Drehrohröfen zur Herstellung von Zement. Aber auch bei Ofenaggregaten im Bereich der Stahl- und Nichteisenmetallindustrie werden feuerfeste Produkte mit verringerter Sprödigkeit (oder anders ausgedrückt: mit erhöhter "Flexibilität") benötigt.
Diese Problematik ist bei basischen Werkstoffen größer als bei nichtbasischen Sorten. Dies liegt unter anderem an der meist geringeren thermischen Dehnung und an einem gewissen Glasphasenanteil nichtbasischer Produkte. Zur Verringerung der Sprödigkeit ist es schließlich bekannt, dem Versatz einen Anteil an körnigem, stabilisierten Zirkonoxid (Zirkoniumdioxid; ZrO2) zuzumischen. Nachteilig dabei ist, dass nur eine relativ geringe Verringerung der Sprödigkeit erreicht wird und ZrO2 teuer ist.
Der Erfindung liegt die Aufgabe zugrunde, einen keramischen Versatz und zugehörige Produkte anzubieten, die eine Symbiose der erwähnten geforderten Eigenschaftsmerkmale aufweisen. Insbesondere sollen die aus dem Versatz gebildeten Produkte bei der Anwendung eine reduzierte Sprödigkeit (also eine verbesserte Duktilität), gute Thermoschockeigenschaften, vorteilhafte Heißfestigkeiten sowie eine bestmögliche Korrosionsbeständigkeit aufweisen und dabei gleichzeitig kostengünstig herstellbar sein. Der Begriff „Produkt" umfasst insbesondere ungeformte und geformte Erzeugnisse, solche mit und ohne Temperaturbehandlung vor der Anwendung, gesinterte Produkte und Produkte, die bei der Anwendung temperaturbehandelt (erwärmt) werden/ wurden.
Der Erfindung liegt die Erkenntnis zugrunde, dass die Sprödigkeit feuerfester Produkte oder für feuerfeste Anwendungen vorgesehener Produkte deutlich vermindert werden kann, wenn die Bildung makroskopisch erkennbarer (großer) Risse vermieden wird und dafür das System so eingestellt wird, dass es lediglich zur Ausbildung von Mikrorissen im Gefüge kommt. Dies wird durch die Zugabe eines separaten SiO2-Trägers in den Versatz erreicht. Dabei wird zwar die Rissdichte (beispielsweise ausgedrückt als Anzahl der Risse pro Quadratmeter der Oberfläche) erhöht. Die Risse weisen aber eine wesentlich geringere Rissweite (insbesondere < 20μm) auf, sind also deutlich kleiner als die makroskopisch erkennbaren Risse bei Produkten im Stand der Technik. Diese Mikrorisse wirken sich nicht in gleicher Weise negativ auf die Haltbarkeit der Produkte aus. Auch thermo-mechanischen Belastungen bei der Anwendung, zum Beispiel durch Thermoschocks, widerstehen diese Produkte besser. Dadurch, dass der SiO2-Träger auch nach Temperaturbehandlung als weitestgehend eigenständige Komponente erhalten bleibt und keine Schmelzphasen bildet, bleiben die Effekte der Mikrorissbildung auch nach Temperaturbehandlung erhalten.
Die physikalischen Änderungen des Gefüges lassen sich erfindungsgemäß durch Zugabe eines separaten, gekörnten SiO2-Trägers in bestimmten Masseanteilen erreichen. Dabei umfasst der Begriff "SiO2-Träger" alle kristallinen SiO2-Modifikationen, die bei Raumtemperatur eine ausreichende Beständigkeit aufweisen. In erster Linie gehören hierzu Cristobalit (ß-Form) und Tridymit (γ-Tridymit). Eine andere mögliche SiO2-Modifikation ist Coesit. Quarz (ß-Form) oder Quarzgut können ebenfalls als SiO2-Träger verwendet werden. Dies gilt auch für Stoffe, die aus den genannten SiO2- Grundstoffen durch physikalische und/oder chemische Prozesse (Vorbehandlung) aufbereitet wurden. Beispielsweise kann Quarz gemahlen, verdichtet, gesintert und anschließend in geeigneter Körnung aufbereitet werden. Dabei kann die Vorbehandlung beziehungsweise Aufbereitung des SiO2-Trägers genutzt werden, dessen Rohdichte auf Werte < 2,65 g/cm3 zu verringern, beispielsweise auf Werte zwischen 2,2 und 2,5 g/cm3. Durch Zumischungen wie CaO kann ferner die chemische Zusammensetzung des SiO2-Trägers variiert werden.
Die Mikrorissbildung wird durch eine nicht lineare thermische Dehnung bei Phasenumwandlungen des kristallinen SiO2-Trägers bewirkt. Eine solche Phasenumwandlung ist z.B. die des ß-Quarzes zu α-Quarz bei 573° C sowie die Umwandlung des α-Quarzes zum α-Cristobalit bei über 1050° C, häufig bei etwa 1250° C. ß-Cristobalit wandelt sich schon bei 270° C in α-Cristobalit um, was ebenfalls mit einer Volumendehnung verbunden ist. Deshalb ist beim Produkt des folgenden Beispiels 5 schon nach einer Trocknung bei 380° C der gewünschte Effekt zu sehen.
In ihrer allgemeinsten Ausführungsform betrifft die Erfindung danach einen keramischen Versatz für feuerfeste Anwendungen mit A: 83-99,5 Gew.-% mindestens eines refraktären Grundstoffs in einer Kornfraktion < 8mm, und B: 0,5- 12 Gew.-% mindestens eines separaten, gekörnten SiO2-Trägers, sowie C: etwaiger Rest: sonstige Bestandteile.
Der Versatz kann nur aus den Komponenten A und B bestehen.
Der refraktäre Grundstoff kann ein basischer Stoff wie Doloma (also gebrannter Dolomit) oder Magnesia (also MgO) sein, oder ein nicht basischer Stoff, zum Beispiel auf Basis Al2O3 oder ZrO2.
Nach einer Ausführungsform beträgt der Anteil des refraktären Grundstoffs 90-99 Gew.-%. Der Anteil des gekörnten SiO2-Trägers beträgt beispielsweise > 1 und/oder < 7 Gew.-%, jeweils bezogen auf den Gesamtversatz, wobei die Obergrenze auch bei < 5 Gew.-% oder < 4 Gew.-% gelegt werden kann.
Die Mischung aus refraktärem Grundstoff, beispielsweise einem MgO- Grundstoff und kristallinem SiO2-Träger führt bei einer Temperaturbehandlung (insbesondere beim Brand) nach Formgebung des Versatzes nach derzeitigen Erkenntnissen zu Dehnungen bei den entsprechenden Modifikationsum-wandlungen des SiO -Trägers, wodurch es zur Generierung von Mikro-rissen im Gefüge kommt. Diese Mikrorisse sind für eine Verringerung der Sprödigkeit verantwortlich.
Im Unterschied zu Magnesiaerzeugnissen mit einem Zusatz an Spinellen, beispielsweise Herzynit, erfolgt die Ausbildung von Mikrorissen bei Zugabe des kristallinen SiO2-Trägers während der Aufheizphase des Brennprozesses, während beim Stand der Technik eine Mikrorissbildung in der Abkühlphase zu beobachten ist. Bei Verwendung eines glasigen SiO2-Trägers (Quarzgut) beruht die Rissbildung auf der größeren Schwindung der refraktären (feuerfesten) Grundkomponente beim Abkühlen nach dem Brand.
Das Prinzip der Mikrorissinitiierung durch einen separaten, gekörnten SiO2- Träger ist grundsätzlich vom Rohstoff (der refraktären Grundkomponente) unabhängig und deshalb beispielsweise auf keramisch gebundene, chemisch gebundene, kohlenstoffgebundene, hydraulisch gebundene, geformte und ungeformte, getemperte, gebrannte und nicht gebrannte feuerfeste Versätze und Produkte anwendbar.
Für die Auswahl des SiO2-Trägers kann die Temperatur ein Kriterium sein.
So kann es zum Beispiel bei den erwähnten Fertigbauteilen, Gießmassen oder kohlenstoffgebundenen feuerfesten Produkten sinnvoll sein, als SiO2-Träger Cristobalit einzusetzen. Auf diese Weise können schon bei einem sehr niedrigen Temperaturniveau, beispielsweise bereits beim Aufheizen der Gießmassen, die gewünschten Mikrorisse gebildet werden. Die unerwünschten Schwindrisse lassen sich dadurch vermeiden.
Dies gilt auch beispielsweise für die Trocknung von monolithischen Massen oder die Härtung (Temperung) von kunstharzgebundenen oder pechgebundenen feuerfesten Produkten.
Eine bedeutende Gruppe für die Anwendung der Erfindung sind ungeformte Produkte wie Betonmassen oder Gießmassen zur Herstellung von feuerfesten Auskleidungen oder Fertigbauteilen. Diese Massen können hydraulisch oder semihydraulisch erhärten, also beispielsweise Massen auf Basis Zement, insbesondere Tonerdezement sein. Ebenso ist die Erfindung auf zementarme oder zementfreie Gießmassen anwendbar, beispielsweise solche auf Basis von Bauxit als nicht-basischem refraktärem Grundstoff.
Der trockene Versatz (beispielsweise aus Bauxit und Cristobalit) wird zum Erreichen einer gewünschten Verarbeitungskonsistenz mit der erforderlichen Wassermenge vermischt. Gegebenenfalls werden Zusätze wie Verflüssiger beigegeben. Schon während der Trocknung findet ab 270° Celsius die beschriebene Umwandlung von ß-Cristobalit in α-Cristobalit statt.
Die beschriebene Wirkungsweise ist von der Kornfraktion der refraktären Grundkomponente weitestgehend unabhängig. Geringe Maximalkorngrößen (zum Beispiel 2mm) beziehungsweise geringe Anteile (zum Beispiel 5 Gew.-%) der Grobfraktion (zum Beispiel 2 bis 4mm) können sich jedoch ungünstig auf die Sprödigkeits Verminderung auswirken. Es hat sich allerdings als günstig herausgestellt, wenn der SiO2-Träger eine Korngröße d50 oder d05 aufweist, die größer ist als ein Maximalkorn (oder größer als mindestens 95 Gew.-%) des Feinkornanteils des refraktären Grundstoffs. Entsprechend sind 50 beziehungsweise 95 Gew.-% des SiO2- Trägers gröber als 95 beziehungsweise 100 Gew.-% des Feinkorns des refraktären Grundstoffs.
Typischerweise wird der refraktäre Grundstoff in einem relativ weiten Kornspektrum eingesetzt. Neben einem Grobkornanteil (< 8mm), beispielsweise l -6mm, kann die Komponente einen Anteil eines mittleren Korns, beispielsweise 0,25- < 1mm und einen Feinkornanteil (Mehlanteil) < 0,25mm aufweisen.
Die Grenzkorngröße zwischen Grobkorn und Mittelkorn kann auch bei 1 ,5 oder 2mm gesetzt werden. Ebenso kann der Mehlkornanteil beispielsweise auf eine Kornfraktion < 0, 125mm (125μm) festgelegt werden. Der vorstehend genannte Feinkornanteil des feuerfesten Grundstoffs liegt nach verschiedenen Ausführungsformen bei 10-30 Gew.-%, 15-25 Gew.-% beziehungsweise 25-30 Gew. -%, jeweils bezogen auf den Gesamtversatz. Der mittlere Kornanteil, wie er vorstehend angegeben wurde, kann beispielsweise Größenordnungen von 5-30 Gew.-%, 10-25 Gew.-% oder 10-20 Gew.-% betragen, wiederum bezogen auf den Gesamtversatz. Aus vorstehenden Anteilen des Feinkorns beziehungsweise Mittelkorns berechnet sich entsprechend der Grobkornanteil.
Nach einer weiteren Ausführungsform wird der refraktäre, insbesondere oxidische Grundstoff in folgender Kornverteilung vorgeschlagen:
50-60 Gew.-% l -6mm,
10-25 Gew.-% 0,25- <lmm,
25-30 Gew.-% < 0,25mm, wobei die Summe jeweils 100 Gew.-% beträgt.
Der gekörnte SiO2-Träger weist nach einer Ausführungsform eine Korngröße bis 6mm auf, wobei die Korn-Obergrenze auch bei 3,0 oder 1 ,5mm und die Korn-Untergrenze bei 0,25, 0,50, 1 oder 2 mm gewählt werden kann. Typischerweise liegt der SiO2-Träger in einer Kornfraktion zwischen 0,5 und 3mm vor. Im Vergleich mit Körnungen im Bereich unter 1mm führt die Erhöhung der Korngröße (> l mm) bei gleicher Menge zu einer höheren Wirksamkeit im Sinne der Erfindung. Eine Körnung 1 bis 2mm ist somit wirksamer als eine Körnung 0,5 bis 1mm.
Als nicht-basischer refraktärer Grundstoff kann mindestens eine der folgenden Komponenten gewählt werden: Schamotte, Sillimanit, Andalusit, Kyanit, Mullit, Bauxit, Korundrohstoffe wie Edelkorund oder Braunkorund, Tabulartonerde, kalzinierte Tonerde, zirkonoxidhaltige Grundstoffe wie Zirkonmullit, Zirkonkorund, Zirkonsilikat oder Zirkonoxid, Titanoxid (TiO2), Mg-Al-Spinell, Siliciumcarbid.
Auch Quarzit kann als refraktärer Grundstoff verwendet werden, wobei dann Cristobalit, Tridymit, Coesit und/oder der erwähnte vorbehandelte SiO -Träger als Zusatz eingesetzt wird.
Als basischer refraktärer Grundstoff wird insbesondere ein MgO- Grundstoff mit einem MgO-Gehalt von 83 bis 99,5 Gew.-% vorgeschlagen. Dabei liegt die Untergrenze für den MgO-Gehalt nach verschiedenen Ausführungsformen bei 85, 88, 93, 94, 95, 96 oder 97 Gew.-%, die Obergrenze beispielsweise bei 97, 98 oder 99 Gew.-%.
Nach einer Ausführungsform beträgt der MgO-Gehalt 94 bis 99 beziehungsweise 96 bis 99 Gew.-%.
Der MgO-Grundstoff kann aus Sintermagnesia, Schmelzmagnesia oder Mischungen daraus bestehen.
Der MgO-Anteil des Versatzes kann nach einer Ausführungsform anteilig durch 3 bis 20 Gew.-%, (oder 3 - 10 Gew.-%) bezogen auf die Gesamtmischung, eines Spinells des Herzynit-Typs, des Galaxit-Typs oder Mischungen daraus bereitgestellt werden. In diesem Fall werden die durch den körnigen SiO2-Träger in der Aufheizphase initiierten Mikrorisse durch weitere Mikrorisse durch die Spinellkomponente während der Abkühlphase im Pyroprozess ergänzt. Darüber hinaus kann der Versatz sonstige Bestandteile in relativ geringen Anteilen enthalten, beispielsweise mindestens eine der folgenden Komponenten: (elementarer) Kohlenstoff, Graphit, Harz, Pech, Ruß, Koks, Teer.
Der Versatz kann demnach zur Herstellung von C-gebundenen Produkten eingesetzt werden. Dies gilt insbesondere für Anwendungen der Versätze in kohlenstoffgebundenen Produkten oder Produkten, die teergetränkt werden.
Hierzu gehören so genannte ASC-Produkte, deren Bezeichnung von den Hauptkomponenten A (für Al O3-Träger), S (für SiC und/oder Si-Metall) und C (für den Kohlenstoffträger) herrührt. Auch Magnesiaträger (zur Spinellbildung) sowie Mg-Al-Spinelle können Bestandteile der Rezeptur sein. Solche Versätze werden mit einem Kunstharz, beispielsweise einem Phenolharz, als Bindemittel gebunden. Sie werden zum Beispiel für Roheisenpfannen eingesetzt, aber auch für Schattenrohre, Tauchrohre, etc.
Für solche kunstharzgebundenen Produkte kann der Härtungsprozess so geführt werden, dass beispielsweise die Umwandlungstemperatur von ß-Cristobalit in α-Cristobalit erreicht oder überschritten wird, sodass bei der Auslieferung der vorkonfektionierten Formteile bereits Mikrorisse im Produkt vorliegen. Alternativ ist es aber auch möglich, bei geringerer Temperatur (zum Beispiel 160-220°) zu härten (tempern) und den Prozess der Mikrorissbildung auf die spätere Anwendung zu verschieben. Die Mikrorissbildung erfolgt dann während des Aufheizens des Produktes nach dessen Zustellung. Wie bereits ausgeführt, dient der beschriebene Versatz insbesondere auch zur Herstellung gebrannter feuerfester Produkte, insbesondere gebrannter feuerfester Formteile. Dabei wird dem Versatz - wie üblich - ein Bindemittel, insbesondere ein temporäres Bindemittel, zum Beispiel eine Ligninsulfonatlösung, zugemischt und die Mischung dann beispielsweise zu Steinen verpresst, getrocknet und gebrannt. Eine typische Brenntemperatur liegt bei 1300-1700° Celsius. Eine typische Brenntemperatur für einen Versatz mit 96 Gew.-% MgO und 4 % eines körnigen SiO2-Trägers liegt bei 1.400° C (+/- 50° C). Bei der Wahl der Brenntemperatur gelten folgende Erfahrungen: Eine zu hohe Brenntemperatur oder Anwendungstemperatur kann durch zu intensive Versinterung (meist unter Beteiligung von Schmelzphasen) zu einer reduzierten Wirkung des SiO2-Trägers führen und die Sprödigkeit wieder erhöhen. Insoweit ist das Reaktionsverhalten, insbesondere die Bildung von Schmelzphasen, zwischen SiO2-Träger und refraktärem Grundmaterial zu berücksichtigen, ohne eine ausreichende Versinterung zu verhindern. Die genaue Brenntemperatur ist insoweit von den konkret gewählten Komponenten des Versatzes abhängig und empirisch zu ermitteln.
Die Erfindung wird nachstehend anhand verschiedener Ausführungsbeispiele näher erläutert. Insgesamt werden nachstehend 5 Versätze (Nr. 1 -5) mit nichtbasischen Grundkomponenten, ein Versatz (Nr. 7) auf Basis MgO und je ein Vergleichsbeispiel nach dem Stand der Technik (Nr. 6, 8) aufgeführt, wobei jeweils die Rohstoffzusammensetzung und die chemische Zusammensetzung in Form einer Oxidanalyse angegeben sind.
Die Versätze der Beispiele 1 -3 dienen zur Herstellung gebrannter, geformter Produkte auf Basis nicht-basischer Grundstoffe. Es ist selbstverständlich, dass den Versatzkomponenten ein temporäres Bindemittel zugemischt werden muss. Dabei kann es sich zum Beispiel um Sulfitablauge, Phosphorsäure oder Monoaluminiumphosphat handeln. Auch ein Bindeton kann in die Rezeptur einbezogen werden. Aus den Versätzen lassen sich bei üblichen Pressdrücken (zum Beispiel 65-130 MPa) Steine oder andere Formteile herstellen, die anschließend gebrannt werden. Die Brenntemperatur ist so zu wählen, dass die Versinterung ausreichend ist, jedoch nicht so hoch, dass eine zu intensive Versinterung dem Effekt der Verringerung der Sprödigkeit entgegenwirkt. Dafür ist bei gegebener Zusammensetzung der Komponenten insbesondere die Granulometrie des Feinkornanteils des nicht basischen Grundstoffs sowie das Bindemittel entscheidend.
Für das Beispiel 1 wurde eine Brenntemperatur von 1450° Celsius gewählt. Die aus den Versätzen 2 und 3 hergestellten (gepressten) Steine wurden bei 1550° Celsius gebrannt.
Versatz Nr. 4 dient zur Herstellung eines so genannten ASC-Produktes, also eines C-gebundenen Produktes, wie es oben vorgestellt wurde, mit einem Zusatz an Cristobalit. Über die Cristobalit-Umwandlung werden bei der Temperung (400° Celsius) der aus dem Versatz hergestellten Produkte Mikrorisse im Gefüge initiiert.
Beispiel 5 zeigt einen Versatz für eine Gießmasse mit einem Anteil an Tonerdezement. Der Versatz wurde mit Wasser angemacht und es wurden Formteile daraus hergestellt, die bei Temperaturen bis 380° Celsius getrocknet beziehungsweise getempert wurden. Daneben wurde eine Vergleichsmasse (Nr. 6), jedoch ohne Cristobalitzusatz, gefertigt und es wurden analoge Proben hergestellt und ebenfalls bei 380° Celsius getrocknet beziehungsweise getempert. Um die fehlenden 4 Gew.-% Cristobalit beim Versatz Nr. 6 auszugleichen, wurden alle übrigen Grund-Komponenten des Versatzes Nr. 5 relativ um jeweils 4 % erhöht. Beispiel (1)
Beispiel (2)
Beispiel (3)
Beispiel (4)
* bezogen auf oxidierend geglühte Probe
Beispiel (5)
Bruchmechanische Prüfungen haben gezeigt, dass die Mikrorissinitiierung die Sprödigkeit vermindern kann. Maßzahlen für die Sprödigkeit eines Produktes können auf unterschiedliche Art und Weise gebildet werden. Eine solche Maßzahl ist zum Beispiel die charakteristische Länge
_ GF - E lch (I) f In dieser Gleichung bezeichnet GF diese spezifische Bruchenergie (N/m), E den Elastizitätsmodul (Pa), und ft (Pa) die Zugfestigkeit. Die Sprödigkeit des Feuerfestbaustoffes ist umso geringer, je größer die charakteristische Länge ist. In der Regel beobachtet man eine Abnahme der Sprödigkeit mit steigendem Quotienten Gp/ft der spezifischen Bruchenergie GF zur Zugfestigkeit ft. Zur Charakterisierung erfindungsgemäßer Produkte wird das Verhältnis GF/O Z verwendet. Ein Keilspalttest zur Bestimmung der spezifischen Bruchenergie GF und der nominellen Kerbzugfestigkeit σκ_z wird in seiner grundsätzlichen Funktionsweise in K. Rieder et.al. "Bruchmechanische Kalt- und Heißprüfung feuerfester grobkeramischer Werkstoffe", Fortschrittsberichte der Deutschen Keramischen Gesellschaft, Werkstoffe - Verfahren - Anwendung - Band 10 (1995), Heft 3, ISSN 0177- 6983, 62-70 beschrieben. Die Prüfmethode wird nachfolgend weiter erläutert:
Der Keilspalttest wird nach einer Temperaturbehandlung des Produktes (zum Beispiel nach Trocknung, Temperung oder Brand des Produktes) bei Raumtemperatur durchgeführt.
Die am Ende der Beschreibung angegebene Tabelle nennt die Bedingungen für den Keilspalttest in Abhängigkeit vom Ausgangsprodukt. „Ungeformtes Produkt" bezeichnet einen Versatz, gegebenenfalls nach Zugabe eines Bindemittels und/oder einer Anmachflüssigkeit. Der Begriff „geformtes Produkt" schließt alle Formen und Formgebungsverfahren ein, wobei das Produkt mindestens die Größe des nachstehend beschriebenen Prüfkörpers aufweisen muss. Dabei werden geformte Produkte ohne und nach Temperaturbehandlung sowie entsprechend ihren unterschiedlichen Bindungsarten unterschieden. Ein „ursprünglich ungeformtes Produkt", zum Beispiel eine Gieß- oder Spritzmasse, kann sich nach Erstellung eines monolithischen Körpers (zum Beispiel einer Ofenauskleidung) bei der Anwendung verfestigen und wird so quasi zu einem „Formten". Dies gilt analog für Fertigbauteile, die zumindest bei der Anwendung höheren Temperaturen ausgesetzt werden.
Es werden mindestens drei Prüfkörper von jedem Produkt geprüft und der Mittelwert der Ergebnisse zur Beurteilung herangezogen. Die Form des Prüfkörpers ist in Fig. 1 dargestellt. Der quaderartige Prüfkörper hat folgende Abmessungen: Breite B: 1 10 mm, Länge L: 75 mm, Höhe H: 100 mm. Auf der Oberseite ist eine Ausnehmung A mit folgenden Abmessungen zu erkennen: Breite b: 24 mm; Länge 1: 75 mm, Höhe h: 22 mm. Die Ausnehmung A dient der Aufnahme von Leisten, Rollen und eines Keils zur Kraftübertragung. Vom Boden der Ausnehmung A erstreckt sich eine Kerbe Kl mit einer Breite b' von 3 mm und einer Höhe h' von 12 mm nach unten in Richtung auf die Grundfläche G. Endseitig schließen an die Kerbe Kl jeweils eine weitere
Kerbe K2, K3 an, die bis zur Grundfläche G des Prüfkörpers verlaufen. K2, K3 haben jeweils eine Breite b" von 3 mm und eine Höhe h" von 6 mm. Zum Test werden in die Aufnahme A außenseitig Spiegelbild zwei Leisten LS eingesetzt, deren Form und Größe sich aus Figur 2 ergibt. Mittig zwischen die Leisten LS wird ein Keil Kl gemäß Figur 3 (oben) platziert, der sich über zwei Rollen R (Figur 3 unten) gegen die Leisten LS abstützt, wie in Figur 4 dargestellt. Wenn der Formgebungsprozess der Produktherstellung durch uniaxiales Pressen erfolgt wird die Probe so entnommen, dass die Richtung der Presskraft parallel zur Ebene der Ligamentfläche (das ist jene Fläche, in der bei der Prüfung der Bruch erzeugt wird) ist. Die Länge des Keils K und der Leisten LS entspricht der Probenlänge von 75 mm. Die Rollen R sind etwas länger. Keil Kl, Leisten LS und Rollen R bestehen aus Stahl. Während der Prüfung ruht der Prüfkörper auf einem linearen Auflager. Dabei handelt es sich um einen vierkantigen Stahlstab S, der eine Kantenlänge von 5 mm aufweist und dessen Länge zumindest der Prüfkörperbreite von 75 mm entspricht und sich über die gesamte Länge des Prüfkörpers erstreckt. Der Stab S überdeckt die Breite der Kerben K2, K3 beidseitig gleichmäßig. Den Ablauf der Prüfung zeigt Fig. 5. Im oberen Bildbereich ist eine Kraftmessdose KM ersichtlich. Die durch Belastung des Keils Kl durch die Prüfmaschine aufgebrachte Vertikalkraft V verursacht Horizontalkräfte, die zu einer stabil fortschreitenden Rissbildung während der Prüfung führen. Währenddessen werden die Vertikallast Fv und die Vertikalverschiebung δv bestimmt. Die Registrierung dieser Größen erfolgt bis zu einem Lastabfall auf 10 % oder weniger der Maximallast. Die Bruchenergie GF wird als Fläche unter dem Last/Verschiebungsdiagramm bestimmt. Es ist daher
In dieser Gleichung (II) ist A die Ligamentfläche von 66 x 63 mm [(100-22- 12)x(75-6-6)], δmax ist die maximale Verschiebung während der Messung. Die nominelle Kerbzugfestigkeit wird nach folgender Gleichung berechnet:
= ^≡- + 6 ' Ffl^ ' y (III) κz B - W B - W2
In dieser Gleichung (III) ist B die Ligamentlänge (63mm) und W die Ligamenthöhe (66mm). Die Größe y bezeichnet den Vertikalabstand der Wirkungslinie der durch die Rollen eingebrachten Horizontalkraft vom Schwerpunkt der Ligamentfläche. Dafür wird als ausreichende Näherung ein Wert von 62 mm verwendet (Fig. 1 und 4). Die in dieser Beziehung (III) verwendete horizontale Maximallast FH max kann aus der vertikalen Maximallast Fy ma gemäß folgender Beziehung ermittelt werden:
F V max r H max ~ 2 • t ,an( / i2rΛ) (^N In dieser Beziehung (IN) bedeutet α den Keilwinkel, der mit 10 ° gewählt wurde. Die Prüfung wir vorschubgeregelt mit einer vertikalen Geschwindigkeit des Stempels der Prüfmaschine von 0,5mm/min durchgeführt.
Für den Fall, dass bei einem bestimmten Produkt diese Prüfparameter nicht eingehalten werden können - z.B. weil keine ausreichend große Probe hergestellt werden kann oder aus sonstigen Gründen, die Zweifel an der Exaktheit der bestimmten Absolutwerte aufkommen lassen - wird der Quotient GFRZ für das erfindungsgemäße Produkt sowie ein analog hergestelltes und geprüftes Produkt ohne SiO2 Träger bestimmt. Dabei wird der fehlende SiO2- Anteil anteilig allen anderen Komponenten des Produktes hinzuaddiert. Die Sprödigkeitsverminderung wird dann am Nerhältnis des Quotienten Gp/σκz für das erfindungsgemäße Produkt zum Quotienten Gp/σκz für das analog hergestellte Produkt ohne SiO2 Träger bestimmt. Das Nerhältnis ist > 1 , meist > 1 ,5 oder > 1 ,8. Werte > 2 werden angestrebt. Wie nachfolgende Beispiele (7), (8) zeigen werden Werte von fast 3 erreicht.
In der nachfolgenden Tabelle sind die Nergleichswerte für die spezifische Bruchenergie GF, die nominelle Kerbzugfestigkeit σj z sowie der Quotient aus beiden angegeben. Erfindungsgemäße Produkte zeichnen sich durch ein Verhältnis GFZ > 40 aus. Werte > 50 sind angestrebt.
Das erfindungsgemäße Produkt zeigt einen mehr als verdoppelten Quotienten von spezifischer Bruchenergie und nomineller Kerbzugfestigkeit, woraus eine deutlich verringerte Sprödigkeit abgelesen werden kann.
Auch hier wurde zum Nachweis der Verminderung der Sprödigkeit der erwähnte Keilspalttest durchgeführt.
Figur 6 zeigt die Last/Verschiebungsdiagramme des Keilspalttests (durchgeführt bei Raumtemperatur) und belegt das deutlich geringer spröde Verhalten des erfindungsgemäßen Versatzes (7). In der vorstehenden Tabelle ist dies an dem höheren Quotienten der spezifischen Bruchenergie GF durch die nominelle Kerbzugfestigkeit σκ:z ersichtlich.
Weiters wurde der dynamische Elastizitätsmodul E yn aus der Resonanzfrequenz der Dehnwelle bestimmt [Hennicke, Leers: Die Bestimmung elastischer Konstanten mit dynamischen Methoden, Tonindustrie-Zeitung 89 Nr.23/24, 539-543 (1976)] .
Wie vorstehende Tabelle zeigt, verursacht der Zusatz des körnigen SiO2- Trägers zur Magnesiakomponente eine deutliche Verringerung des Elastizitätsmoduls, nämlich von 75,8 GPa auf 14,9 GPa. Der Tabelle ist ferner zu entnehmen, dass das Verhältnis der nominellen Kerbzugfestigkeit zum dynamischen Elastizitätsmodul bei der erfindungsgemäßen Variante deutlich höher liegt. Dies lässt eine Erhöhung des Wärmespannungsparameters R nach Kingery [W.D. Kingery et.al. : Introduction to Ceramics, John Wiley & Sons, 1960; ISBN 0-471 -4786C- 1] vermuten.
Obwohl die Erfindung mit einem einfachen, preiswerten Zusatzstoff (körniger SiO -Träger) neben der refraktären Grundkomponente auskommt, erweist sich der genannte Versatz als gute Grundlage zur Herstellung feuerfester Produkte, die eine relativ geringe Sprödigkeit aufweisen, damit eine gute Thermoschockbeständigkeit zeigen, korrosionsbeständig sind, aber auch im Vergleich zu anderen Produkten aus dem Stand der Technik keine Verringerung der Heißfestigkeit verursachen. Die Auswahl der Versatzkomponenten und Herstellungsbedingungen erfolgt so, dass das Produkt ein Verhältnis Gp/σκz > 40 ergibt.
Gegenüber Magnesiaprodukten ohne gekörnten SiO2-Träger hat das erfindungsgemäße Produkt den Vorteil einer höheren mechanischen bzw. ther- momechanischen Beständigkeit bei Thermoschock bzw. aufgeprägten Verformungen. Im.ι Vergleich zu Magnesiachromitprodukten ergibt sich der Vorteil eines chromfreien Zustellungsmaterials, wodurch die Gefahr der Cr6+ Bildung vermieden werden kann. Im Vergleich zu Spinell-Produkten ergibt sich einerseits ein Kostenvorteil durch relativ kostengünstig verfügbare SiO2 Träger. Anderseits haben Baustoffe im System CaO-MgO-SiO2 bei Massenverhältnissen von CaO zu SiO2 (C/S Verhältnissen) unter 0,93, wie sie für erfindungsgemäße Produkte zu erwarten sind, einen invarianten Punkt von zumindest 1502°C, der bei C/S Verhältnissen unter ca. 0,25 (Vorliegen eines Forsteritmischkristalls als einzige silikatische Nebenphase) mit sinkendem C/S Verhältnis weiter bis maximal ca. 1860°C gesteigert werden kann. Demgegenüber hat ein Spinell (MgAl2O4) haltiger Magnesiastein mit einem C/S Verhältnis über 1 ,87, wie er dem Stand der Technik entspricht, einen invarianten Punkt von 1325°C. Der beim erfindungsgemäßen Produkt höhere invariante Punkt kann zu einer Verbesserung der Heißeigenschaften genutzt werden, wenn unter Berücksichtigung der Produktzusammensetzung sowie eventueller Infiltrate im Einsatz auch die Schmelzphasenmenge günstiger ist. Gegenüber Produkten mit Zusatz von ZrO2 ist jedenfalls ein wirtschaftlicher Vorteil aufgrund geringerer Kosten der SiO2 Träger gegeben.
Bei nichtbasischen Produkten ergibt sich gegenüber dem Einsatz von Mullit oder Zirkonmullit der Vorteil, dass keine Komponente eingebracht wird, die Glasphase enthält und dadurch eine ungünstige Beeinflussung des Erweichungsverhaltens ergibt. Das erfindungsgemäße Produkt gestattet eine Materialzusammensetzung, die ausschließlich aus kristallinen Phasen besteht. Ein weiterer Vorteil besteht darin, dass bei Verwendung von Cristobalit schon bei einer Temperatur von 270°C eine Mikrorissinitiierung und damit eine Sprödigkeitsverminderung eintritt. Damit können ungebrannte Produkte auch schon bei geringer Temperatur mit verminderter Sprödigkeit hergestellt bzw. eingesetzt werden. Dazu gehören z.B. Gießmassen und Fertigbauteile. Es ist es auch möglich, zum Beispiel kohlenstoffgebundene ungebrannte Produkte auf diese Art in ihrer Sprödigkeit zu vermindern.
Dabei bedeuten:
1 : Aus dem Versatz wird, gegebenenfalls nach Zugabe eines Bindemittels und/oder Wasser (zum Beispiel: chemisches oder hydraulisches Bindemittel), ein Prüfkörper geformt und dieser bei 350° C temperaturbehandelt.
2: Aus dem Versatz wird, gegebenenfalls nach Zugabe eines Bindemittels und/oder Wasser (zum Beispiel: chemisches oder hydraulisches Bindemittel), ein Prüfkörper geformt und dieser bei 650° C, alternativ > 1350° C temperaturbehandelt.
3 : Aus dem Produkt wird ein Prüfkörper geschnitten und dieser bei 350° C temperaturbehandelt, sofern das Produkt nicht schon zuvor bei einer Temperatur > 350°C temperaturbehandelt wurde.
4: Aus dem Produkt wird ein Prüfkörper geschnitten und dieser bei 650° C, alternativ 1350° C temperaturbehandelt, sofern das Produkt nicht schon zuvor bei einer Temperatur > 650 C, alternativ > 1350° C temperaturbehandelt wurde.
5 : Aus dem bei der Anwendung gebildeten Produkt wird ein Prüfkörper geschnitten und dieser bei 350° C temperaturbehandelt, sofern das Produkt nicht schon bei der Anwendung > 350°C temperaturbehandelt wurde.
6: Aus dem bei der Anwendung gebildeten Produkt wird ein Prüfkörper geschnitten und dieser bei 650° C, alternativ 1350° C temperaturbehandelt, sofern das Produkt nicht schon bei der Anwendung > 650 C, alternativ > 1350° C temperaturbehandelt wurde.
7: Aus dem Produkt wird ein Prüfkörper geschnitten.
8 : Der SiO2-Träger besteht zu mindestens 50 Gew.-% aus Cristobalit und/oder Tridymit.
9: Der SiO2-Träger besteht zu weniger als 50 Gew.-% aus Cristobalit und/oder Tridymit.
Bei 4. und 6. erfolgt die Temperaturbehandlung üblicherweise bei 1350° C. Falls die Temperatur von 1350° C zur Erzielung einer Sprödigkeitsverminderung zu hoch ist erfolgt die Temperaturbehandlung alternativ bei 650° C, das ist über der Temperatur für den Quarzsprung.
* : mit reduzierender Atmosphäre bei der Temperaturbehandlung

Claims

7£-Patentansprüche
1. Keramischer Versatz für feuerfeste Anwendungen mit
A) 83-99,5 Gew.-% mindestens eines refraktären Grundstoffs in einer Kornfraktion < 8mm und B) 0,5-12 Gew.-% mindestens eines separaten, gekörnten SiO2-Trägers, sowie C) etwaiger Rest: sonstige Bestandteile
2. Versatz nach Anspruch 1 , dessen refraktärer Grundstoff zumindest teilweise ein nicht-basischer Grundstoff ist.
3. Versatz nach Anspruch 1 , dessen refraktärer Grundstoff zumindest teilweise aus Doloma und/oder Magnesia besteht.
4. Versatz nach Anspruch 1 mit A) 90-99 Gew.-% des refraktären Grundstoffs, und B) 1 -7 Gew.-% des gekörnten SiO -Trägers
5. Versatz nach Anspruch 1 , dessen gekörnter SiO2-Träger aus mindestens einer der folgenden SiO2-Modifikationen besteht: Cristobalit, Tridymit, Coesit, einem vorbehandelten Produkt mit einer Rohdichte < 2,65 g/cm3.
6. Versatz nach Anspruch 1 , dessen SiO2-Träger eine Korngröße d5o aufweist, die größer ist als 95 Gew.-% des Feinkornanteils des refraktären Grundstoffs.
7. Versatz nach Anspruch 1 , dessen SiO2-Träger eine Korngröße d05 aufweist, die größer ist als 95 Gew. ■% des Feinkornanteils des refraktären Grundstoffs.
8. Versatz nach Anspruch 1 , dessen refraktärer Grundstoff einen Feinkornanteil mit 95 Gew.-% < 250μm aufweist.
9. Versatz nach Anspruch 1 , dessen refraktärer Grundstoff einen Feinkornanteil mit 95 Gew.-% < 125μm aufweist.
10. Versatz nach Anspruch 8 oder 9, dessen Feinkornanteil des refraktären Grundstoffs 10-30 Gew.-% des Gesamtversatzes beträgt.
1 1. Versatz nach Anspruch 1 , dessen SiO2-Träger eine Korngröße bis 6mm aufweist.
12. Versatz nach Anspruch 1 , dessen SiO2-Träger eine Korngröße bis 3mm aufweist.
13. Versatz nach Anspruch 1 , dessen SiO2-Träger eine Korngröße zwischen 0,5 und 3mm aufweist.
14. Versatz nach Anspruch 1 , dessen refraktärer Grundstoff eine Korngröße < 6mm aufweist.
15. Versatz nach Anspruch 1 , dessen refraktärer Grundstoff folgende Kornverteilung aufweist: a) 50-60 Gew.-% l -6mm, b) 10-25 Gew.-% 0,25- <lmm, c) 25-30 Gew.-% < 0,25mm wobei die Summe 100 Gew.-% beträgt.
16. Versatz nach Anspruch 1 , mit einem nicht-basischen refraktären Grundstoff aus mindestens einer der folgenden Komponenten: Schamotte, Silimanit, Andalusit, Kyanit, Mullit, Bauxit, Korundrohstoffe wie Edelkorund oder Braunkorund, Tabulartonerde, kalzinierte Tonerde, Quarzit, Zirkonoxidhaltige Grundstoffe wie Zirkonmullit, Zirkonkorund, Zirkonsilikat oder Zirkonoxid, Titanoxid, Mg-Al-Spinell, Siliciumcarbid.
17. Versatz nach Anspruch 1 , mit einem MgO-Grundstoff, der zu 3 bis 20 Gew.-%, bezogen auf die Gesamtmischung, aus einem Spinell des Herzynit-Typs, des Galaxit-Typs oder Mischungen daraus besteht.
18. Versatz nach Anspruch 1 , der als sonstige Bestandteile mindestens eine der folgenden Komponenten aufweist: Kohlenstoff, Graphit, Harz, Pech, Ruß, Koks, Teer.
19. Produkt auf Basis eines Versatzes nach einem der Ansprüche 1 -18, mit einem Quotienten aus spezifischer Bruchenergie GF (N/m) und nomineller Kerbzugfestigkeit σj_z (MPa) > 40 μm, jeweils bestimmt mittels Keilspalttest an einem Prüfkörper wie hierin beschrieben.
20. Produkt auf Basis eines Versatzes nach einem der Ansprüche 1-18, mit einem Quotienten aus spezifischer Bruchenergie GF (N/m) und nomineller Kerbzugfestigkeit σ z (MPa), jeweils bestimmt mittels Keilspalttest an einem Prüfkörper wie hierin beschrieben, der mindestens das 1 ,5-fache des ebenso bestimmten Quotienten für ein analoges Produkt ohne separaten, gekörnten SiO2-Träger beträgt, dessen übrige Grund-Bestandteile anteilig um den fehlenden SiO -Anteil zu insgesamt 100 Gew.-% angepasst sind.
EP05715686A 2004-03-05 2005-03-03 Keramischer versatz und zugeho riges produkt fur feuerfe ste anwendungen Withdrawn EP1720812A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200410010740 DE102004010740C5 (de) 2004-03-05 2004-03-05 Feuerfester keramischer Versatz und dessen Verwendung
DE200410010739 DE102004010739B4 (de) 2004-03-05 2004-03-05 Verfahren zur Herstellung eines ungeformten oder geformten, gebrannten oder nicht gebrannten feuerfesten Produkts
PCT/EP2005/002226 WO2005085155A1 (de) 2004-03-05 2005-03-03 Keramischer versatz und zugehöriges produkt für feuerfeste anwendungen

Publications (1)

Publication Number Publication Date
EP1720812A1 true EP1720812A1 (de) 2006-11-15

Family

ID=34921208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05715686A Withdrawn EP1720812A1 (de) 2004-03-05 2005-03-03 Keramischer versatz und zugeho riges produkt fur feuerfe ste anwendungen

Country Status (7)

Country Link
US (1) US20070203013A1 (de)
EP (1) EP1720812A1 (de)
BR (1) BRPI0507341A (de)
CA (1) CA2558526C (de)
RU (1) RU2386604C2 (de)
WO (1) WO2005085155A1 (de)
ZA (1) ZA200607731B (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823626B2 (ja) * 2005-09-26 2011-11-24 新日本製鐵株式会社 高炉炉底極小空隙への骨材圧入方法
DE102006007781B4 (de) * 2006-02-20 2008-09-25 Refratechnik Holding Gmbh Grobkeramischer feuerfester Versatz sowie feuerfestes Erzeugnis daraus
DE102006038772B4 (de) * 2006-08-17 2009-09-10 Refractory Intellectual Property Gmbh & Co. Kg Versatz zur Herstellung eines feuerfesten keramischen Produktes und daraus hergestelltes gebranntes feuerfestes keramisches Produkt
DE102006040269B4 (de) 2006-08-28 2009-09-24 Refractory Intellectual Property Gmbh & Co. Kg Gebranntes feuerfestes keramisches Produkt
US8030235B2 (en) * 2008-12-18 2011-10-04 North American Refractories Company Refractory brick for steel ladles
FR2954768A1 (fr) 2009-12-24 2011-07-01 Saint Gobain Ct Recherches Poudre pour pise sec vitroceramique
CN102049464B (zh) * 2011-01-26 2012-07-04 东风汽车有限公司 实型铸造专用涂料及其制备方法
EP2683675B1 (de) 2011-03-11 2018-08-08 Saint-Gobain Ceramics & Plastics, Inc. Feuerfestes objekt
JP5680187B2 (ja) 2011-03-30 2015-03-04 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 耐火物、ガラスオーバーフロー成形ブロックならびに耐火物の成形方法および使用
RU2656647C1 (ru) 2011-04-13 2018-06-06 Сэнт-Гобэн Керамикс Энд Пластикс, Инк. Огнеупорное изделие, содержащее бета-глинозём
CN102320844B (zh) * 2011-07-08 2013-07-31 郑州市裕丰耐火材料有限公司 Rh浸渍管及环流管用铝镁锆砖及其制备方法
RU2477452C1 (ru) * 2011-08-22 2013-03-10 Учреждение Российской академии наук Институт химии твердого тела и механохимии Сибирского отделения РАН (ИХТТМ СО РАН) Способ анализа вяжущего материала на основе альфа-оксида алюминия (экспресс-метод)
ES2412454B1 (es) * 2011-10-14 2014-05-07 Refractaria, S.A. Material refractario de protección para hornos de clinker (cemento) que evita el ataque termo-químico sin la formación de encostramiento o anillos.
KR20140112539A (ko) 2012-01-11 2014-09-23 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 내화체 및 내화체를 이용한 유리판 성형방법
DE102012004987B4 (de) * 2012-03-14 2014-03-06 Heraeus Electro-Nite International N.V. Vorrichtung zur Temperaturmessung in Metallschmelzen
RU2530935C2 (ru) * 2013-01-09 2014-10-20 Федеральное Государственное Бюджетное Учреждение Науки Институт Геологии Дагестанского Научного Центра Российской Академии Наук Огнеупорная масса для футеровки тепловых агрегатов
DE102013010854A1 (de) * 2013-06-28 2014-12-31 Refratechnik Holding Gmbh Feuerfester Versatz und seine Verwendung
FR3008967B1 (fr) * 2013-07-26 2016-12-30 Saint-Gobain Centre De Rech Et D'Etudes Europeen Produit a haute teneur en alumine
CN106132905A (zh) * 2014-03-27 2016-11-16 康宁股份有限公司 陶瓷氧化物主体、其制造方法以及玻璃板的制造方法
EP3262011A4 (de) 2015-02-24 2018-08-01 Saint-Gobain Ceramics&Plastics, Inc. Feuerfester artikel und verfahren zur herstellung
RU2612375C1 (ru) * 2016-02-09 2017-03-09 Юлия Алексеевна Щепочкина Керамическая масса для изготовления облицовочной плитки, печных изразцов
CN106007745A (zh) * 2016-05-17 2016-10-12 江苏江能新材料科技有限公司 一种红土镍矿回转窑专用浇注料及其制造方法
JP6758147B2 (ja) * 2016-10-11 2020-09-23 黒崎播磨株式会社 コージェライト含有アルミナ−シリカれんがの製造方法
CN108530042A (zh) * 2018-06-08 2018-09-14 郑州凯翔耐火材料有限公司 一种烧制高抗热震铝矾土砖及其生产工艺
CN111763092A (zh) * 2020-06-17 2020-10-13 林国强 一种抗结渣高温耐磨复合材料及其制备方法
CN115403253B (zh) * 2022-10-09 2023-06-16 江苏德和绝热科技有限公司 一种高强度耐高温泡沫玻璃的生产工艺

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652307A (en) * 1969-07-07 1972-03-28 Gen Refractories Co Alumina refractories
FR2142149A5 (en) * 1971-06-14 1973-01-26 Snecma Magnesia-based refractory concrete - forcasting or ramming
DE2605949C3 (de) * 1976-02-14 1979-03-15 Kwm Keramik-Werk Mering Gmbh & Co Kg, 8905 Mering Brennhilfsmittel mit verbesserter Temperaturwechselbestandigkeit
US4231800A (en) * 1979-05-14 1980-11-04 Valley Mineral Products Corporation Dry heat setting refractory and methods of using same
CA1156686A (en) * 1980-10-27 1983-11-08 Berhl E. Wishon Alumino-silicate refractory brick
US4391917A (en) * 1980-10-27 1983-07-05 Dresser Industries, Inc. Alumino-silicate refractory brick
GB2138927B (en) * 1983-02-18 1986-09-03 Glaverbel Adding to silica refractory structures
US5298200A (en) * 1987-11-18 1994-03-29 G-C Dental Industrial Corp. Dental refractory model materials
JPH0657619B2 (ja) * 1987-12-28 1994-08-03 品川白煉瓦株式会社 カーボン含有耐火物
DE4403869C2 (de) * 1994-02-08 1998-01-15 Veitsch Radex Ag Feuerfester keramischer Versatz und dessen Verwendung
FR2798378B1 (fr) * 1999-08-17 2001-12-21 Philippe Dubois Composition pour moulage
US6753299B2 (en) * 2001-11-09 2004-06-22 Badger Mining Corporation Composite silica proppant material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005085155A1 *

Also Published As

Publication number Publication date
US20070203013A1 (en) 2007-08-30
ZA200607731B (en) 2008-04-30
WO2005085155A1 (de) 2005-09-15
RU2006134295A (ru) 2008-04-10
CA2558526C (en) 2010-06-22
CA2558526A1 (en) 2005-09-15
BRPI0507341A (pt) 2007-07-03
RU2386604C2 (ru) 2010-04-20

Similar Documents

Publication Publication Date Title
WO2005085155A1 (de) Keramischer versatz und zugehöriges produkt für feuerfeste anwendungen
EP2766322B1 (de) Verwendung von ungebrannten feuerfesten erzeugnissen als zustellung von grossvolumigen industrieöfen sowie industrieofen ausgekleidet mit den ungebrannten feuerfesten erzeugnissen
DE112009000274B4 (de) Refraktäres Zirkoniumdioxid-Mullit-Rohmaterial und plattenförmiger Ziegel
EP2845843B1 (de) Verfahren zur herstellung leichter, keramischer werkstoffe
DE102017121452B9 (de) Verfahren zur Herstellung einer porösen Sintermagnesia, Versatz zur Herstellung eines grobkeramischen feuerfesten Erzeugnisses mit einer Körnung aus der Sintermagnesia, Verwendung des Versatzes zur Herstellung des Erzeugnisses sowie Verfahren zur Herstellung des Erzeugnisses
EP3371129B1 (de) Gesinterter feuerfester zirkonmullit-verbundstoff, verfahren zu seiner herstellung und seine verwendung
DE112009000724B4 (de) Ziegelsteinplatte und Verfahren zu ihrer Herstellung
EP1072569B1 (de) Verfahren zur Herstellung von keramischen hochtemperaturbeständigen Werkstoffen mit einem einstellbaren thermischen Ausdehnungskoeffizienten und deren Verwendung
EP2813481B1 (de) Versatz zur Herstellung eines ungeformten feuerfesten keramischen Erzeugnisses, Verfahren zur Herstellung eines gebrannten feuerfesten keramischen Erzeugnisses, ein gebranntes feuerfestes keramisches Erzeugnis sowie die Verwendung eines ungeformten feuerfesten keramischen Erzeugnisses
DE102004010739B4 (de) Verfahren zur Herstellung eines ungeformten oder geformten, gebrannten oder nicht gebrannten feuerfesten Produkts
EP0940376B1 (de) Basische freifliessende Giessmasse und daraus hergestellte Formteile
EP2057106B1 (de) Gebranntes feuerfestes produkt
DE10117026B4 (de) Feuerfester Versatz, feuerfester Formkörper daraus und Verfahren zu deren Herstellung
DE202017007171U1 (de) Poröse Sintermagnesia, Versatz zur Herstellung eines grobkeramischen feuerfesten Erzeugnisses mit einer Körnung aus der Sintermagnesia, derartiges Erzeugnis sowie Zustellung eines Industrieofens und Industrieofen
EP3483134B1 (de) Feuerfeste platte für einen schieberverschluss, verwendung eines schmelzrohstoffs als werkstoff in einer solchen platte sowie ein eine solche platte aufweisendes schmelzgefäss
DE102019220085B9 (de) Versatz zur Herstellung eines grobkeramischen feuerfesten basischen Erzeugnisses und Verwendung des Versatzes, derartiges Erzeugnis so-wie Verfahren zu seiner Herstellung, Zustellung eines Industrieofens und Verwendung der Zustellung für einen Industrieofen
DE102004010740B4 (de) Feuerfester keramischer Versatz und dessen Verwendung
EP4389722A1 (de) Feuerfestes material, verfahren zur dessen herstellung und verwendung desselben
EP1966106A1 (de) Versatz für ein feuerfestes keramisches produkt und daraus gebildetes feuerfestes keramisches produkt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131001