EP1712025A1 - Verfahren zur optischen bertragung eines polarisations-mult iplexsignals - Google Patents

Verfahren zur optischen bertragung eines polarisations-mult iplexsignals

Info

Publication number
EP1712025A1
EP1712025A1 EP05707871A EP05707871A EP1712025A1 EP 1712025 A1 EP1712025 A1 EP 1712025A1 EP 05707871 A EP05707871 A EP 05707871A EP 05707871 A EP05707871 A EP 05707871A EP 1712025 A1 EP1712025 A1 EP 1712025A1
Authority
EP
European Patent Office
Prior art keywords
signal
polarization
signals
phase
carrier signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05707871A
Other languages
German (de)
English (en)
French (fr)
Inventor
Nancy Hecker
Dirk Van Den Borne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xieon Networks SARL
Original Assignee
Siemens AG
Nokia Siemens Networks GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Nokia Siemens Networks GmbH and Co KG filed Critical Siemens AG
Publication of EP1712025A1 publication Critical patent/EP1712025A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • G02B6/2713Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
    • G02B6/272Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations comprising polarisation means for beam splitting and combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Definitions

  • the invention relates to an improved method for the optical transmission of a polarization multiplex signal.
  • the transmission of data in polarization multiplex operation is a promising method to double the transmission capacity without having to make higher demands on the transmission path or the signal-to-noise ratio.
  • PMD polarization mode dispersion
  • the process is easy to implement.
  • the carrier signals of both optical data signals (Polmux channels) derived from the same laser are shifted in phase by a constant 90 ° relative to one another. Both carrier signals therefore of course have exactly the same frequency and their phase difference remains constant during transmission.
  • the transmitter-side phase setting can be carried out using different elements such as phase modulators and delay elements.
  • phase control which ensures a constant phase difference between the carrier signals, regardless of the environmental conditions and component tolerances.
  • FIG. 1 shows a basic circuit diagram of the transmission arrangement
  • FIG. 2 shows a basic circuit diagram with phase control
  • FIG. 3 shows an arrangement for measuring the phase difference
  • FIG. 4 shows another arrangement for measuring the phase difference
  • FIG. 5 shows an arrangement for measuring the phase difference by evaluating orthogonal signal components.
  • Figure 1 shows a basic circuit diagram of the transmission arrangement.
  • the method can be implemented by any modified arrangements.
  • a light signal CW (constant wave) usually generated by a laser is fed via an input 1 to a polarization splitter 2, which splits it into two orthogonal carrier signals CW X and CW Y of the same amplitude, but which have different polarization planes by 90 ° ⁇ the arrows indicate the respective polarization).
  • the first orthogonal carrier signal CW is fed via a first optical fiber 3 to a first modulator 5, where it is intensity-modulated with a first data signal DS1.
  • the second orthogonal carrier signal CW Y is transmitted via a second ser 4 and a phase shifter 6 are fed to a second modulator 7 and there intensity is modulated with a second data signal DS2.
  • the optical data signals OS1 and 0S2 emitted at the outputs of the modulators, which are polarized orthogonally to one another and have a phase shift of their carrier signals by 90 °, are combined in a polarization combiner 8 to form a polarization multiplex signal (Pol ux signal) PMS and on Output 9 delivered. Both the phase shift between the carrier signals and the adjustment of the polarization can also take place after the modulators.
  • FIG. 2 shows such a variant, in which the carrier signal CW is first divided into two equal parts CW1 and CW2 in a power splitter 13, which are each modulated as carrier signals with one of the data signals DS1 and DS2.
  • the conversion into orthogonal optical data signals OS1 and OS2 is achieved by two polarization controllers 14 and 15, which are arranged in front of the polarization combiner 8 and then of course also convert the carrier signals CW1 and CW2 into the orthogonal carrier signals CW X and CW Y.
  • the phase shift between the carrier signals CW1 and CW2 is produced by a regulated phase shifter 10 (phase modulator, delay element), which is controlled by a control device 11.
  • the control device 11 receives, via a measuring splitter 12, a measuring signal MS of lower power corresponding to the Polmux signal PMS and monitors the phase shift between the carriers of the orthogonal data signals OS1 and OS2.
  • the time constant of the control device is chosen to be very large, so that the controlled phase shifter 10 practically has a constant value.
  • the phase shifter 10 can also be connected downstream of the polarization adjuster 15.
  • the phase shift of the carrier signals can thus be carried out by setting the carrier signals CW X and CW Y or CWl and CWs or the orthogonal data signals OS1 and 0S2.
  • a control criterion for the carrier phases can be obtained with little effort whenever both Polmux channels transmit a signal at the same time, for example when both signals correspond to a logical one.
  • FIG. 3 shows a basic circuit diagram of the control device for obtaining a control criterion.
  • the measuring principle is based on the fact that the "state of polarization" depends on the phase between the two polarized signals OS1 and OS2, and thus the phase difference can in turn be determined by measuring the polarization state. Only the measurement of the circular polarization component is required. To measure them, the measurement signal MS, which like the Polmux signal has a certain polarization, is split into two sub-signals, one of which is passed through a ( ⁇ / 4 plate and a 45 ° polarizer (polarization filter).
  • FIG. 4 shows a further possibility for determining the phase difference by using a so-called DGD element (differential group delay element), for example a polarization-maintaining fiber or a birefringent crystal, which reverses the 90 "phase shift of the carrier signals, so that their superimposition when Output signal RTS results in a maximum (or with opposite phase shift a minimum) of power.
  • DGD element differential group delay element
  • the polarization planes of the orthogonal signals OS1 and OS2 should be 45 ° with respect to the main axes of the DGD element.
  • FIG. 5 shows a further arrangement with which it is possible to regulate the phase.
  • the prerequisite is again that the Polmux signal PMS or the corresponding measurement signal MS has a certain polarization, as is the case with the transmitter anyway.
  • the Polmux signal or measurement signal here has two (at least almost) orthogonal signals OS1 and OS2, which are polarized at + 45 ° and -45 ° with respect to a polarization plane of the polarization splitter 24.
  • the measurement signal MS which represents both orthogonal signals OS1 and 0S2, is broken down by the polarization splitter 24 into two polarized signal components OS x and 0S Y , which thus each contain signal components of both orthogonal signals OS1 and OS2.
  • the signal components MS X and MS Y are converted separately into electrical signal components E x and E ⁇ in photodiodes 18 and 19. Only when there is a certain phase between the orthogonal signals OS1 and OS2 will both signal components MS X and MS Y be the same size.
  • a corresponding criterion EA - EB can be used for regulation.
  • the sensitivity of the control can be increased by special signal processing in the control device 25, for example by multiplying the signal components.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Communication System (AREA)
EP05707871A 2004-02-05 2005-01-27 Verfahren zur optischen bertragung eines polarisations-mult iplexsignals Withdrawn EP1712025A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005718A DE102004005718A1 (de) 2004-02-05 2004-02-05 Verfahren zur optischen Übertragung eines Polarisations-Multiplexsignals
PCT/EP2005/050353 WO2005076509A1 (de) 2004-02-05 2005-01-27 Verfahren zur optischen übertragung eines polarisations-multiplexsignals

Publications (1)

Publication Number Publication Date
EP1712025A1 true EP1712025A1 (de) 2006-10-18

Family

ID=34801624

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05707871A Withdrawn EP1712025A1 (de) 2004-02-05 2005-01-27 Verfahren zur optischen bertragung eines polarisations-mult iplexsignals

Country Status (5)

Country Link
US (1) US7715730B2 (zh)
EP (1) EP1712025A1 (zh)
CN (1) CN1918837B (zh)
DE (1) DE102004005718A1 (zh)
WO (1) WO2005076509A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7873286B2 (en) * 2007-10-19 2011-01-18 Ciena Corporation Optical receiver systems and methods for polarization demultiplexing, PMD compensation, and DXPSK demodulation
CN101505192B (zh) * 2008-02-04 2011-09-21 华为技术有限公司 一种产生差分正交相移键控码光信号的方法及装置
JP5083134B2 (ja) * 2008-09-10 2012-11-28 富士通株式会社 偏波多重光送信器およびその制御方法
JP5476697B2 (ja) * 2008-09-26 2014-04-23 富士通株式会社 光信号送信装置
US9374188B2 (en) * 2008-12-12 2016-06-21 Alcatel Lucent Optical communication using polarized transmit signal
US20100150555A1 (en) * 2008-12-12 2010-06-17 Zinan Wang Automatic polarization demultiplexing for polarization division multiplexed signals
US8270847B2 (en) * 2009-02-02 2012-09-18 Tyco Electronics Subsea Communications Llc Polarization multiplexing with different DPSK modulation schemes and system incorporating the same
CN101860500B (zh) 2009-04-13 2013-10-09 华为技术有限公司 一种产生、接收相位偏振调制信号的方法、装置和系统
CN102742187B (zh) * 2009-12-15 2018-03-16 骁阳网络有限公司 减少的偏振相关损耗情况下传输光传输信号的方法和设备
CN102137057B (zh) * 2010-06-18 2013-09-25 华为技术有限公司 一种信号生成方法及装置
US9768875B2 (en) * 2012-11-12 2017-09-19 Ciena Corporation Optical modulation schemes having reduced nonlinear optical transmission impairments
CN111181654B (zh) * 2014-03-20 2023-02-28 艾里尔大学研究与开发有限公司 用于控制信号相位的方法、系统及其应用设备
US9634786B2 (en) 2015-02-13 2017-04-25 Georgia Tech Research Corporation Communication systems with phase-correlated orthogonally-polarized light-stream generator
US10257014B2 (en) 2015-10-08 2019-04-09 Ariel-University Research And Development Company Ltd. Method and system for controlling phase of a signal
WO2018035954A1 (en) * 2016-08-25 2018-03-01 Huawei Technologies Co., Ltd. System and method for photonic digital to analog conversion
JP6911483B2 (ja) * 2017-04-19 2021-07-28 富士通株式会社 波長変換装置、制御光生成装置、波長変換方法、および制御光生成方法
PL428292A1 (pl) * 2018-12-20 2020-06-29 Dawis It Spółka Z Ograniczoną Odpowiedzialnością Sposób oraz system transmisyjny do ulepszonej jednokierunkowej lub dwukierunkowej transmisji danych w sieci telekomunikacyjnej, układ atraktora polaryzacji, program komputerowy oraz produkt w postaci programu komputerowego
US11621795B2 (en) * 2020-06-01 2023-04-04 Nubis Communications, Inc. Polarization-diversity optical power supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020186435A1 (en) * 2000-09-26 2002-12-12 Isaac Shpantzer System and method for orthogonal frequency division multiplexed optical communication
EP1330054A2 (en) * 2002-01-18 2003-07-23 Fujitsu Limited System and method for multi-level phase modulated communication

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111322A (en) 1991-04-04 1992-05-05 At&T Bell Laboratories Polarization multiplexing device with solitons and method using same
US6130766A (en) * 1999-01-07 2000-10-10 Qtera Corporation Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization
US6104515A (en) * 1999-02-01 2000-08-15 Otera Corporation Method and apparatus for providing high-order polarization mode dispersion compensation using temporal imaging
US6607313B1 (en) * 1999-06-23 2003-08-19 Jds Fitel Inc. Micro-optic delay element for use in a polarization multiplexed system
US20020003641A1 (en) 2000-05-08 2002-01-10 Hall Katherine L. Polarization division multiplexer
US20020093993A1 (en) * 2000-06-15 2002-07-18 Lagasse Michael J. Apparatus and method for demultiplexing a polarization-multiplexed signal
US7272271B2 (en) * 2001-09-26 2007-09-18 Celight, Inc. Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
DE10164497B4 (de) 2001-12-28 2005-03-10 Siemens Ag Anordnung und Verfahren zur Messung und zur Kompensation der Polarisationsmodendispersion eines optischen Signals
JP2003338805A (ja) * 2002-03-15 2003-11-28 Kddi Submarine Cable Systems Inc 光伝送システム、光送信装置及びこれらの方法
JP3689681B2 (ja) * 2002-05-10 2005-08-31 キヤノン株式会社 測定装置及びそれを有する装置群
CA2485304C (en) * 2002-05-10 2010-04-27 Siemens Aktiengesellschaft Method and arrangement for reducing the signal degradation in an optical polarisation-multiplex signal
EP1376908A1 (en) * 2002-06-28 2004-01-02 Adaptif Photonics GmbH Method for controlling an optical signal distortion compensator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020186435A1 (en) * 2000-09-26 2002-12-12 Isaac Shpantzer System and method for orthogonal frequency division multiplexed optical communication
EP1330054A2 (en) * 2002-01-18 2003-07-23 Fujitsu Limited System and method for multi-level phase modulated communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of WO2005076509A1 *
SETO I ET AL: "Polarization state and phase noise insensitive POLSK phase-diversity homodyne system in coherent optical communications", DISCOVERING A NEW WORLD OF COMMUNICATIONS. CHICAGO, JUNE 14 - 18, 1992; [PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATIONS], NEW YORK, IEEE, US, vol. -, 14 June 1992 (1992-06-14), pages 743 - 747, XP010062014, ISBN: 978-0-7803-0599-1, DOI: 10.1109/ICC.1992.268185 *

Also Published As

Publication number Publication date
WO2005076509A1 (de) 2005-08-18
US20070166046A1 (en) 2007-07-19
CN1918837B (zh) 2012-04-04
DE102004005718A1 (de) 2005-08-25
CN1918837A (zh) 2007-02-21
US7715730B2 (en) 2010-05-11

Similar Documents

Publication Publication Date Title
EP1712025A1 (de) Verfahren zur optischen bertragung eines polarisations-mult iplexsignals
DE69915553T2 (de) Verfahren zur Kompensation der Polarisationsmodendispersion
DE69839099T2 (de) Verfahren zur Bestimmung der Dispersion einer faseroptischen Übertragungsleitung und zugehörige Vorrichtung
DE60026626T2 (de) Verbesserter Verzerrungsanalysator für eine Vorrichtung zur Kompensation der Polarisationsmodendispersion erster Ordnung (PMD)
DE3785662T2 (de) Methoden und vorrichtungen zur aenderung der optischen polarisation.
DE3788537T2 (de) Symmetrischer doppelt-optischer Signalempfänger.
DE68926195T2 (de) Stabilisierungsverfahren für eine Frequenztrennung in einer optischen heterodynen oder homodynen Übertragung
DE69834787T2 (de) Verfahren und Vorrichtung zur automatischen Kompensation der Polarisationsmodendispersion erster Ordnung
EP1371154B1 (de) Anordnung und verfahren für eine optische informationsübertragung
DE69632733T2 (de) Dispersionskompensation
DE60131112T2 (de) Polarisationsmodendispersionsmessung mit phasenempfindlicher Seitenbanddetection
DE60212267T2 (de) Mehrfachempfänger für verschiedene Polarisationen mit planaren Wellenleitern und plolarisierendem Strahlteiler
DE69031110T2 (de) Anordnung und Verfahren zur Abstimmung eines verzerrungsauslöschenden faseroptischen Übertragungssystems
EP1298826B1 (de) Verfahren zur Übertragung von mindestens einem ersten und zweiten Datensignal im Polarisationsmultiplex in einem optischen Übertragungssystem
DE69533536T2 (de) Polarisationsmodulation in Wellenlängen-Multiplex Übertragungssystemen
DE69914030T2 (de) Verfahren zur Messung der Polarisationsmodendispersion
DE60125951T2 (de) Mehrkanaliger optischer empfänger zur verarbeitung von drei-zell-detektorausgängne mit polarisationsdiversität
EP1514373A1 (de) Verfahren und anordnung zur verringerung der signaldegradation eines optischen polarisation-multiplexsignals
EP1210785B1 (de) Anordnung und verfahren für eine optische informationsübertragung
EP1262033A1 (de) Vorrichtung zur erfassung der pmd von optoelektronischen übertragungsstrecken
DE69533772T2 (de) Dynamisch kontrollierte Polarisationsmodulation in Wellenlängenmultiplex-Übertragungssystemen
DE69117152T2 (de) Übertragungssystem für polarisationsunempfindliche Übertragung von Signalen
DE69219969T2 (de) Übertragungssystem für die polarisationsunabhängige Übertragung von Signalen
EP0248234A1 (de) Endlos-Polarisationsregelung
DE69310980T2 (de) Verfahren zum Betreiben eines optischen Hybrids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA SIEMENS NETWORKS GMBH & CO. KG

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA SIEMENS NETWORKS S.P.A.

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA SIEMENS NETWORKS GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA SOLUTIONS AND NETWORKS GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: XIEON NETWORKS S.A.R.L.

17Q First examination report despatched

Effective date: 20150310

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150721